

 Navigation

 	
 index

 	Tensorflow2 stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/tensorflow2/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/tensorflow2/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Tensorflow2 stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.sparse_add.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_add(a, b, thresh=0) {#sparse_add}

Adds two tensors, at least one of each is a SparseTensor.

If one SparseTensor and one Tensor are passed in, returns a Tensor. If
both arguments are SparseTensors, this returns a SparseTensor. The order
of arguments does not matter. Use vanilla tf.add() for adding two dense
Tensors.

The indices of any input SparseTensor are assumed ordered in standard
lexicographic order. If this is not the case, before this step run
SparseReorder to restore index ordering.

If both arguments are sparse, we perform “clipping” as follows. By default,
if two values sum to zero at some index, the output SparseTensor would still
include that particular location in its index, storing a zero in the
corresponding value slot. To override this, callers can specify thresh,
indicating that if the sum has a magnitude strictly smaller than thresh, its
corresponding value and index would then not be included. In particular,
thresh == 0.0 (default) means everything is kept and actual thresholding
happens only for a positive value.

For example, suppose the logical sum of two sparse operands is (densified):

[2]
[.1 0]
[6 -.2]

Then,

- thresh == 0 (the default): all 5 index/value pairs will be returned.
- thresh == 0.11: only .1 and 0 will vanish, and the remaining three
 index/value pairs will be returned.
- thresh == 0.21: .1, 0, and -.2 will vanish.

Args:

		a: The first operand; SparseTensor or Tensor.

		b: The second operand; SparseTensor or Tensor. At least one operand
must be sparse.

		thresh: A 0-D Tensor. The magnitude threshold that determines if an
output value/index pair takes space. Its dtype should match that of the
values if they are real; if the latter are complex64/complex128, then the
dtype should be float32/float64, correspondingly.

Returns:

A SparseTensor or a Tensor, representing the sum.

Raises:

		TypeError: If both a and b are Tensors. Use tf.add() instead.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.image.extract_glimpse.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.extract_glimpse(input, size, offsets, centered=None, normalized=None, uniform_noise=None, name=None) {#extract_glimpse}

Extracts a glimpse from the input tensor.

Returns a set of windows called glimpses extracted at location
offsets from the input tensor. If the windows only partially
overlaps the inputs, the non overlapping areas will be filled with
random noise.

The result is a 4-D tensor of shape [batch_size, glimpse_height, glimpse_width, channels]. The channels and batch dimensions are the
same as that of the input tensor. The height and width of the output
windows are specified in the size parameter.

The argument normalized and centered controls how the windows are built:

		If the coordinates are normalized but not centered, 0.0 and 1.0
correspond to the minimum and maximum of each height and width
dimension.

		If the coordinates are both normalized and centered, they range from
-1.0 to 1.0. The coordinates (-1.0, -1.0) correspond to the upper
left corner, the lower right corner is located at (1.0, 1.0) and the
center is at (0, 0).

		If the coordinates are not normalized they are interpreted as
numbers of pixels.

Args:

		input: A Tensor of type float32.
A 4-D float tensor of shape [batch_size, height, width, channels].

		size: A Tensor of type int32.
A 1-D tensor of 2 elements containing the size of the glimpses
to extract. The glimpse height must be specified first, following
by the glimpse width.

		offsets: A Tensor of type float32.
A 2-D integer tensor of shape [batch_size, 2] containing
the x, y locations of the center of each window.

		centered: An optional bool. Defaults to True.
indicates if the offset coordinates are centered relative to
the image, in which case the (0, 0) offset is relative to the center
of the input images. If false, the (0,0) offset corresponds to the
upper left corner of the input images.

		normalized: An optional bool. Defaults to True.
indicates if the offset coordinates are normalized.

		uniform_noise: An optional bool. Defaults to True.
indicates if the noise should be generated using a
uniform distribution or a gaussian distribution.

		name: A name for the operation (optional).

Returns:

A Tensor of type float32.
A tensor representing the glimpses [batch_size, glimpse_height, glimpse_width, channels].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.train.RMSPropOptimizer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Optimizer that implements the RMSProp algorithm.

See the [paper]
(http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf).

tf.train.RMSPropOptimizer.__init__(learning_rate, decay=0.9, momentum=0.0, epsilon=1e-10, use_locking=False, name='RMSProp') {#RMSPropOptimizer.init}

Construct a new RMSProp optimizer.

Note that in dense implement of this algorithm, m_t and v_t will
update even if g is zero, but in sparse implement, m_t and v_t
will not update in iterations g is zero.

Args:

		learning_rate: A Tensor or a floating point value. The learning rate.

		decay: Discounting factor for the history/coming gradient

		momentum: A scalar tensor.

		epsilon: Small value to avoid zero denominator.

		use_locking: If True use locks for update operation.

		name: Optional name prefix for the operations created when applying
gradients. Defaults to “RMSProp”.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.rnn.LSTMBlockCell.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Basic LSTM recurrent network cell.

The implementation is based on: http://arxiv.org/abs/1409.2329.

We add forget_bias (default: 1) to the biases of the forget gate in order to
reduce the scale of forgetting in the beginning of the training.

Unlike BasicLSTMCell, this is a monolithic op and should be much faster. The
weight and bias matrixes should be compatible as long as the variabel scope
matches.

tf.contrib.rnn.LSTMBlockCell.__call__(x, states_prev, scope=None) {#LSTMBlockCell.call}

Long short-term memory cell (LSTM).

tf.contrib.rnn.LSTMBlockCell.__init__(num_units, forget_bias=1.0, use_peephole=False) {#LSTMBlockCell.init}

Initialize the basic LSTM cell.

Args:

		num_units: int, The number of units in the LSTM cell.

		forget_bias: float, The bias added to forget gates (see above).

		use_peephole: Whether to use peephole connections or not.

tf.contrib.rnn.LSTMBlockCell.output_size {#LSTMBlockCell.output_size}

tf.contrib.rnn.LSTMBlockCell.state_size {#LSTMBlockCell.state_size}

tf.contrib.rnn.LSTMBlockCell.zero_state(batch_size, dtype) {#LSTMBlockCell.zero_state}

Return zero-filled state tensor(s).

Args:

		batch_size: int, float, or unit Tensor representing the batch size.

		dtype: the data type to use for the state.

Returns:

If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.framework.reduce_sum_n.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.reduce_sum_n(tensors, name=None) {#reduce_sum_n}

Reduce tensors to a scalar sum.

This reduces each tensor in tensors to a scalar via tf.reduce_sum, then
adds them via tf.add_n.

Args:

		tensors: List of tensors, all of the same numeric type.

		name: Tensor name, and scope for all other ops.

Returns:

Total loss tensor, or None if no losses have been configured.

Raises:

		ValueError: if losses is missing or empty.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.framework.VariableDeviceChooser.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Device chooser for variables.

When using a parameter server it will assign them in a round-robin fashion.
When not using a parameter server it allows GPU or CPU placement.

tf.contrib.framework.VariableDeviceChooser.__call__(op) {#VariableDeviceChooser.call}

tf.contrib.framework.VariableDeviceChooser.__init__(num_tasks=0, job_name='ps', device_type='CPU', device_index=0) {#VariableDeviceChooser.init}

Initialize VariableDeviceChooser.

Usage:

To use with 2 parameter servers:
VariableDeviceChooser(2)

To use without parameter servers:
VariableDeviceChooser()
VariableDeviceChooser(device_type=’GPU’) # For GPU placement

Args:

		num_tasks: number of tasks.

		job_name: String, a name for the parameter server job.

		device_type: Optional device type string (e.g. “CPU” or “GPU”)

		device_index: int. Optional device index. If left
unspecified, device represents ‘any’ device_index.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.rank.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.rank(input, name=None) {#rank}

Returns the rank of a tensor.

This operation returns an integer representing the rank of input.

For example:

't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]
shape of tensor 't' is [2, 2, 3]
rank(t) ==> 3

Note: The rank of a tensor is not the same as the rank of a matrix. The
rank of a tensor is the number of indices required to uniquely select each
element of the tensor. Rank is also known as “order”, “degree”, or “ndims.”

Args:

		input: A Tensor or SparseTensor.

		name: A name for the operation (optional).

Returns:

A Tensor of type int32.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.losses.mean_squared_error.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.losses.mean_squared_error(*args, **kwargs) {#mean_squared_error}

Adds a Sum-of-Squares loss to the training procedure. (deprecated)

THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-01.
Instructions for updating:
Use mean_squared_error.

weight acts as a coefficient for the loss. If a scalar is provided, then the
loss is simply scaled by the given value. If weight is a tensor of size
[batch_size], then the total loss for each sample of the batch is rescaled
by the corresponding element in the weight vector. If the shape of
weight matches the shape of predictions, then the loss of each
measurable element of predictions is scaled by the corresponding value of
weight.

Args:
predictions: The predicted outputs.
targets: The ground truth output tensor, same dimensions as ‘predictions’.
weight: Coefficients for the loss a scalar, a tensor of shape
[batch_size] or a tensor whose shape matches predictions.
scope: The scope for the operations performed in computing the loss.

Returns:
A scalar Tensor representing the loss value.

Raises:
ValueError: If the shape of predictions doesn’t match that of targets or
if the shape of weight is invalid.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.graph_editor.detach_control_inputs.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.detach_control_inputs(sgv) {#detach_control_inputs}

Detach all the external control inputs of the subgraph sgv.

Args:

		sgv: the subgraph view to be detached. This argument is converted to a
subgraph using the same rules as the function subgraph.make_view.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.graph_editor.get_consuming_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.get_consuming_ops(ts) {#get_consuming_ops}

Return all the consuming ops of the tensors in ts.

Args:

		ts: a list of tf.Tensor

Returns:

A list of all the consuming tf.Operation of the tensors in ts.

Raises:

		TypeError: if ts cannot be converted to a list of tf.Tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.errors.UnimplementedError.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Raised when an operation has not been implemented.

Some operations may raise this error when passed otherwise-valid
arguments that it does not currently support. For example, running
the tf.nn.max_pool() operation
would raise this error if pooling was requested on the batch dimension,
because this is not yet supported.

tf.errors.UnimplementedError.__init__(node_def, op, message) {#UnimplementedError.init}

Creates an UnimplementedError.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.learn.monitors.get_default_monitors.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.learn.monitors.get_default_monitors(loss_op=None, summary_op=None, save_summary_steps=100, output_dir=None, summary_writer=None) {#get_default_monitors}

Returns a default set of typically-used monitors.

Args:

		loss_op: Tensor, the loss tensor. This will be printed using PrintTensor
at the default interval.

		summary_op: See SummarySaver.

		save_summary_steps: See SummarySaver.

		output_dir: See SummarySaver.

		summary_writer: See SummarySaver.

Returns:

list of monitors.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.segment_max.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.segment_max(data, segment_ids, name=None) {#segment_max}

Computes the maximum along segments of a tensor.

Read the section on Segmentation
for an explanation of segments.

Computes a tensor such that
\(output_i = \max_j(data_j)\) where max is over j such
that segment_ids[j] == i.

[image:]

Args:

		data: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		segment_ids: A Tensor. Must be one of the following types: int32, int64.
A 1-D tensor whose rank is equal to the rank of data‘s
first dimension. Values should be sorted and can be repeated.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.
Has same shape as data, except for dimension 0 which
has size k, the number of segments.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.bayesflow.variational_inference.ELBOForms.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Constants to control the elbo calculation.

analytic_kl uses the analytic KL divergence between the
variational distribution(s) and the prior(s).

analytic_entropy uses the analytic entropy of the variational
distribution(s).

sample uses the sample KL or the sample entropy is the joint is provided.

See elbo for what is used with default.

tf.contrib.bayesflow.variational_inference.ELBOForms.check_form(form) {#ELBOForms.check_form}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.graph_editor.graph_replace.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.graph_replace(target_ts, replacement_ts, dst_scope='', src_scope='', reuse_dst_scope=False) {#graph_replace}

Create a new graph which compute the targets from the replaced Tensors.

Args:

		target_ts: a single tf.Tensor or an iterabble of tf.Tensor.

		replacement_ts: dictionary mapping from original tensors to replaced tensors

		dst_scope: the destination scope.

		src_scope: the source scope.

		reuse_dst_scope: if True the dst_scope is re-used if it already exists.
Otherwise, the scope is given a unique name based on the one given
by appending an underscore followed by a digit (default).

Returns:

A single tf.Tensor or a list of target tf.Tensor, depending on
the type of the input argument target_ts.
The returned tensors are recomputed using the tensors from replacement_ts.

Raises:

		ValueError: if the targets are not connected to replacement_ts.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.graph_editor.sgv_scope.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.sgv_scope(scope, graph) {#sgv_scope}

Make a subgraph from a name scope.

Args:

		scope: the name of the scope.

		graph: the tf.Graph.

Returns:

A subgraph view representing the given scope.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.bayesflow.stochastic_tensor.GammaTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 GammaTensor is a StochasticTensor backed by the distribution Gamma.

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#GammaTensor.init}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.clone(name=None, **dist_args) {#GammaTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.distribution {#GammaTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.dtype {#GammaTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.entropy(name='entropy') {#GammaTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.graph {#GammaTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.input_dict {#GammaTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.loss(final_loss, name='Loss') {#GammaTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.mean(name='mean') {#GammaTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.name {#GammaTensor.name}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.value(name='value') {#GammaTensor.value}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.value_type {#GammaTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.train.QueueRunner.from_proto.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.QueueRunner.from_proto(queue_runner_def) {#QueueRunner.from_proto}

Returns a QueueRunner object created from queue_runner_def.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.util.make_tensor_proto.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.util.make_tensor_proto(values, dtype=None, shape=None) {#make_tensor_proto}

Create a TensorProto.

Args:

		values: Values to put in the TensorProto.

		dtype: Optional tensor_pb2 DataType value.

		shape: List of integers representing the dimensions of tensor.

Returns:

A TensorProto. Depending on the type, it may contain data in the
“tensor_content” attribute, which is not directly useful to Python programs.
To access the values you should convert the proto back to a numpy ndarray
with tensor_util.MakeNdarray(proto).

Raises:

		TypeError: if unsupported types are provided.

		ValueError: if arguments have inappropriate values.

make_tensor_proto accepts “values” of a python scalar, a python list, a
numpy ndarray, or a numpy scalar.

If “values” is a python scalar or a python list, make_tensor_proto
first convert it to numpy ndarray. If dtype is None, the
conversion tries its best to infer the right numpy data
type. Otherwise, the resulting numpy array has a compatible data
type with the given dtype.

In either case above, the numpy ndarray (either the caller provided
or the auto converted) must have the compatible type with dtype.

make_tensor_proto then converts the numpy array to a tensor proto.

If “shape” is None, the resulting tensor proto represents the numpy
array precisely.

Otherwise, “shape” specifies the tensor’s shape and the numpy array
can not have more elements than what “shape” specifies.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.one_hot.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.one_hot(indices, depth, on_value=None, off_value=None, axis=None, dtype=None, name=None) {#one_hot}

Returns a one-hot tensor.

The locations represented by indices in indices take value on_value,
while all other locations take value off_value.

on_value and off_value must have matching data types. If dtype is also
provided, they must be the same data type as specified by dtype.

If on_value is not provided, it will default to the value 1 with type
dtype

If off_value is not provided, it will default to the value 0 with type
dtype

If the input indices is rank N, the output will have rank N+1. The
new axis is created at dimension axis (default: the new axis is appended
at the end).

If indices is a scalar the output shape will be a vector of length depth

If indices is a vector of length features, the output shape will be:

 features x depth if axis == -1
 depth x features if axis == 0

If indices is a matrix (batch) with shape [batch, features], the output
shape will be:

 batch x features x depth if axis == -1
 batch x depth x features if axis == 1
 depth x batch x features if axis == 0

If dtype is not provided, it will attempt to assume the data type of
on_value or off_value, if one or both are passed in. If none of
on_value, off_value, or dtype are provided, dtype will default to the
value tf.float32

Note: If a non-numeric data type output is desired (tf.string, tf.bool, etc.),
both on_value and off_value must be provided to one_hot

Examples

Suppose that

 indices = [0, 2, -1, 1]
 depth = 3
 on_value = 5.0
 off_value = 0.0
 axis = -1

Then output is [4 x 3]:

 output =
 [5.0 0.0 0.0] // one_hot(0)
 [0.0 0.0 5.0] // one_hot(2)
 [0.0 0.0 0.0] // one_hot(-1)
 [0.0 5.0 0.0] // one_hot(1)

Suppose that

 indices = [[0, 2], [1, -1]]
 depth = 3
 on_value = 1.0
 off_value = 0.0
 axis = -1

Then output is [2 x 2 x 3]:

 output =
 [
 [1.0, 0.0, 0.0] // one_hot(0)
 [0.0, 0.0, 1.0] // one_hot(2)
][
 [0.0, 1.0, 0.0] // one_hot(1)
 [0.0, 0.0, 0.0] // one_hot(-1)
]

Using default values for on_value and off_value:

 indices = [0, 1, 2]
 depth = 3

The output will be

 output =
 [[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]]

Args:

		indices: A Tensor of indices.

		depth: A scalar defining the depth of the one hot dimension.

		on_value: A scalar defining the value to fill in output when indices[j] = i. (default: 1)

		off_value: A scalar defining the value to fill in output when indices[j] != i. (default: 0)

		axis: The axis to fill (default: -1, a new inner-most axis).

		dtype: The data type of the output tensor.

Returns:

		output: The one-hot tensor.

Raises:

		TypeError: If dtype of either on_value or off_value don’t match dtype

		TypeError: If dtype of on_value and off_value don’t match one another

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.concat.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.concat(concat_dim, values, name='concat') {#concat}

Concatenates tensors along one dimension.

Concatenates the list of tensors values along dimension concat_dim. If
values[i].shape = [D0, D1, ... Dconcat_dim(i), ...Dn], the concatenated
result has shape

[D0, D1, ... Rconcat_dim, ...Dn]

where

Rconcat_dim = sum(Dconcat_dim(i))

That is, the data from the input tensors is joined along the concat_dim
dimension.

The number of dimensions of the input tensors must match, and all dimensions
except concat_dim must be equal.

For example:

t1 = [[1, 2, 3], [4, 5, 6]]
t2 = [[7, 8, 9], [10, 11, 12]]
tf.concat(0, [t1, t2]) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
tf.concat(1, [t1, t2]) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]

tensor t3 with shape [2, 3]
tensor t4 with shape [2, 3]
tf.shape(tf.concat(0, [t3, t4])) ==> [4, 3]
tf.shape(tf.concat(1, [t3, t4])) ==> [2, 6]

Note: If you are concatenating along a new axis consider using pack.
E.g.

tf.concat(axis, [tf.expand_dims(t, axis) for t in tensors])

can be rewritten as

tf.pack(tensors, axis=axis)

Args:

		concat_dim: 0-D int32 Tensor. Dimension along which to concatenate.

		values: A list of Tensor objects or a single Tensor.

		name: A name for the operation (optional).

Returns:

A Tensor resulting from concatenation of the input tensors.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.graph_editor.replace_t_with_placeholder_handler.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.replace_t_with_placeholder_handler(info, t) {#replace_t_with_placeholder_handler}

Transform a tensor into a placeholder tensor.

This handler is typically used to transform a subgraph input tensor into a
placeholder.

Args:

		info: Transform._Info instance.

		t: tensor whose input must be transformed into a place holder.

Returns:

The tensor generated by the newly created place holder.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.learn.read_batch_features.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.learn.read_batch_features(file_pattern, batch_size, features, reader, randomize_input=True, num_epochs=None, queue_capacity=10000, feature_queue_capacity=100, reader_num_threads=1, parser_num_threads=1, parse_fn=None, name=None) {#read_batch_features}

Adds operations to read, queue, batch and parse Example protos.

Given file pattern (or list of files), will setup a queue for file names,
read Example proto using provided reader, use batch queue to create
batches of examples of size batch_size and parse example given features
specification.

All queue runners are added to the queue runners collection, and may be
started via start_queue_runners.

All ops are added to the default graph.

Args:

		file_pattern: List of files or pattern of file paths containing
Example records. See tf.gfile.Glob for pattern rules.

		batch_size: An int or scalar Tensor specifying the batch size to use.

		features: A dict mapping feature keys to FixedLenFeature or
VarLenFeature values.

		reader: A function or class that returns an object with
read method, (filename tensor) -> (example tensor).

		randomize_input: Whether the input should be randomized.

		num_epochs: Integer specifying the number of times to read through the
dataset. If None, cycles through the dataset forever. NOTE - If specified,
creates a variable that must be initialized, so call
tf.initialize_local_variables() as shown in the tests.

		queue_capacity: Capacity for input queue.

		feature_queue_capacity: Capacity of the parsed features queue. Set this
value to a small number, for example 5 if the parsed features are large.

		reader_num_threads: The number of threads to read examples.

		parser_num_threads: The number of threads to parse examples.
records to read at once

		parse_fn: Parsing function, takes Example Tensor returns parsed
representation. If None, no parsing is done.

		name: Name of resulting op.

Returns:

A dict of Tensor or SparseTensor objects for each in features.

Raises:

		ValueError: for invalid inputs.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.graph_editor.select_ops_and_ts.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.select_ops_and_ts(*args, **kwargs) {#select_ops_and_ts}

Helper to select operations and tensors.

Args:

		*args: list of 1) regular expressions (compiled or not) or 2) (array of)
tf.Operation 3) (array of) tf.Tensor. Regular expressions matching tensors
must start with the comment “(?#ts)”, for instance: “(?#ts)^foo/.*”.

		**kwargs: ‘graph’: tf.Graph in which to perform the regex query.This is
required when using regex.
‘positive_filter’: an elem if selected only if positive_filter(elem) is
True. This is optional.

Returns:

A tuple (ops, ts) where:
ops is a list of tf.Operation
ts is a list of tf.Tensor

Raises:

		TypeError: if the optional keyword argument graph is not a tf.Graph
or if an argument in args is not an (array of) tf.Tensor
or an (array of) tf.Operation or a string or a regular expression.

		ValueError: if one of the keyword arguments is unexpected or if a regular
expression is used without passing a graph as a keyword argument.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.graph_editor.make_list_of_op.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.make_list_of_op(ops, check_graph=True, allow_graph=True, ignore_ts=False) {#make_list_of_op}

Convert ops to a list of tf.Operation.

Args:

		ops: can be an iterable of tf.Operation, a tf.Graph or a single operation.

		check_graph: if True check if all the operations belong to the same graph.

		allow_graph: if False a tf.Graph cannot be converted.

		ignore_ts: if True, silently ignore tf.Tensor.

Returns:

A newly created list of tf.Operation.

Raises:

		TypeError: if ops cannot be converted to a list of tf.Operation or,
if check_graph is True, if all the ops do not belong to the same graph.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/cc/ClassTensorShape.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

class tensorflow::TensorShape

###Member Details

uint8 tensorflow::TensorShape::buf[16][16] {#uint8_tensorflow_TensorShape_buf_16_}

Rep64* tensorflow::TensorShape::unused_aligner {#Rep64_tensorflow_TensorShape_unused_aligner}

tensorflow::TensorShape::TensorShape(gtl::ArraySlice< int64 > dim_sizes) {#tensorflow_TensorShape_TensorShape}

Construct a TensorShape from the provided sizes. REQUIRES: dim_sizes[i] >= 0

tensorflow::TensorShape::TensorShape(std::initializer_list< int64 > dim_sizes) {#tensorflow_TensorShape_TensorShape}

tensorflow::TensorShape::TensorShape(const TensorShapeProto &proto) {#tensorflow_TensorShape_TensorShape}

REQUIRES: IsValid(proto)

tensorflow::TensorShape::TensorShape() {#tensorflow_TensorShape_TensorShape}

Create a tensor shape with no dimensions and one element, which you can then call AddDim() on.

tensorflow::TensorShape::~TensorShape() {#tensorflow_TensorShape_TensorShape}

tensorflow::TensorShape::TensorShape(const TensorShape &b) {#tensorflow_TensorShape_TensorShape}

Copy the specified shape.

void tensorflow::TensorShape::operator=(const TensorShape &b) {#void_tensorflow_TensorShape_operator_}

tensorflow::TensorShape::TensorShape(TensorShape &&b) {#tensorflow_TensorShape_TensorShape}

Move the specified shape. After moving, is safe for destruction and.

void tensorflow::TensorShape::operator=(TensorShape &&b) {#void_tensorflow_TensorShape_operator_}

void tensorflow::TensorShape::Clear() {#void_tensorflow_TensorShape_Clear}

Clear a tensor shape.

void tensorflow::TensorShape::AddDim(int64 size) {#void_tensorflow_TensorShape_AddDim}

Add a dimension to the end (“inner-most”). REQUIRES: size >= 0

void tensorflow::TensorShape::AppendShape(const TensorShape &shape) {#void_tensorflow_TensorShape_AppendShape}

Appends all the dimensions from shape.

void tensorflow::TensorShape::InsertDim(int d, int64 size) {#void_tensorflow_TensorShape_InsertDim}

Insert a dimension somewhere in the TensorShape. REQUIRES: 0 <= d <= dims() REQUIRES: size >= 0

void tensorflow::TensorShape::set_dim(int d, int64 size) {#void_tensorflow_TensorShape_set_dim}

Modifies the size of the dimension d to be size REQUIRES: 0 <= d < dims() REQUIRES: size >= 0

void tensorflow::TensorShape::RemoveDim(int d) {#void_tensorflow_TensorShape_RemoveDim}

Removes dimension d from the TensorShape. REQUIRES: 0 <= d < dims()

int tensorflow::TensorShape::dims() const {#int_tensorflow_TensorShape_dims}

Return the number of dimensions in the tensor.

int64 tensorflow::TensorShape::dim_size(int d) const {#int64_tensorflow_TensorShape_dim_size}

Returns the number of elements in dimension d. REQUIRES: 0 <= d < dims()

gtl::InlinedVector< int64, 4 > tensorflow::TensorShape::dim_sizes() const {#gtl_InlinedVector_int64_4_tensorflow_TensorShape_dim_sizes}

Returns sizes of all dimensions.

int64 tensorflow::TensorShape::num_elements() const {#int64_tensorflow_TensorShape_num_elements}

Returns the number of elements in the tensor.

We use int64 and not size_t to be compatible with Eigen::Tensor which uses ptrdiff_t.

bool tensorflow::TensorShape::IsSameSize(const TensorShape &b) const {#bool_tensorflow_TensorShape_IsSameSize}

Returns true if *this and b have the same sizes. Ignores dimension names.

bool tensorflow::TensorShape::operator==(const TensorShape &b) const {#bool_tensorflow_TensorShape_operator_}

bool tensorflow::TensorShape::operator!=(const TensorShape &b) const {#bool_tensorflow_TensorShape_operator_}

void tensorflow::TensorShape::AsProto(TensorShapeProto *proto) const {#void_tensorflow_TensorShape_AsProto}

Fill *proto from *this.

Eigen::DSizes< Eigen::DenseIndex, NDIMS > tensorflow::TensorShape::AsEigenDSizes() const {#Eigen_DSizes_Eigen_DenseIndex_NDIMS_tensorflow_TensorShape_AsEigenDSizes}

Fill *dsizes from *this.

Eigen::DSizes< Eigen::DenseIndex, NDIMS > tensorflow::TensorShape::AsEigenDSizesWithPadding() const {#Eigen_DSizes_Eigen_DenseIndex_NDIMS_tensorflow_TensorShape_AsEigenDSizesWithPadding}

Same as AsEigenDSizes() but allows for NDIMS > dims() in which case we pad the rest of the sizes with 1.

TensorShapeIter tensorflow::TensorShape::begin() const {#TensorShapeIter_tensorflow_TensorShape_begin}

For iterating through the dimensions.

TensorShapeIter tensorflow::TensorShape::end() const {#TensorShapeIter_tensorflow_TensorShape_end}

string tensorflow::TensorShape::DebugString() const {#string_tensorflow_TensorShape_DebugString}

For error messages.

void tensorflow::TensorShape::DumpRep() const {#void_tensorflow_TensorShape_DumpRep}

bool tensorflow::TensorShape::IsValid(const TensorShapeProto &proto) {#bool_tensorflow_TensorShape_IsValid}

Returns true iff proto is a valid tensor shape.

Status tensorflow::TensorShape::IsValidShape(const TensorShapeProto &proto) {#Status_tensorflow_TensorShape_IsValidShape}

Returns OK iff proto is a valid tensor shape, and a descriptive error status otherwise.

static constexpr int tensorflow::TensorShape::MaxDimensions() {#static_constexpr_int_tensorflow_TensorShape_MaxDimensions}

string tensorflow::TensorShape::DebugString(const TensorShapeProto &proto) {#string_tensorflow_TensorShape_DebugString}

Same as TensorShape(proto). DebugString() but doesn

‘

t crash for invalid protos.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.nn.max_pool3d.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.max_pool3d(input, ksize, strides, padding, name=None) {#max_pool3d}

Performs 3D max pooling on the input.

Args:

		input: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
Shape [batch, depth, rows, cols, channels] tensor to pool over.

		ksize: A list of ints that has length >= 5.
1-D tensor of length 5. The size of the window for each dimension of
the input tensor. Must have ksize[0] = ksize[4] = 1.

		strides: A list of ints that has length >= 5.
1-D tensor of length 5. The stride of the sliding window for each
dimension of input. Must have strides[0] = strides[4] = 1.

		padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. The max pooled output tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/cc/ClassTensorShapeUtils.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

class tensorflow::TensorShapeUtils

Static helper routines for TensorShape. Includes a few common predicates on a tensor shape.

###Member Details

static bool tensorflow::TensorShapeUtils::IsScalar(const TensorShape &shape) {#static_bool_tensorflow_TensorShapeUtils_IsScalar}

static bool tensorflow::TensorShapeUtils::IsVector(const TensorShape &shape) {#static_bool_tensorflow_TensorShapeUtils_IsVector}

static bool tensorflow::TensorShapeUtils::IsVectorOrHigher(const TensorShape &shape) {#static_bool_tensorflow_TensorShapeUtils_IsVectorOrHigher}

static bool tensorflow::TensorShapeUtils::IsMatrix(const TensorShape &shape) {#static_bool_tensorflow_TensorShapeUtils_IsMatrix}

static bool tensorflow::TensorShapeUtils::IsSquareMatrix(const TensorShape &shape) {#static_bool_tensorflow_TensorShapeUtils_IsSquareMatrix}

static bool tensorflow::TensorShapeUtils::IsMatrixOrHigher(const TensorShape &shape) {#static_bool_tensorflow_TensorShapeUtils_IsMatrixOrHigher}

static Status tensorflow::TensorShapeUtils::MakeShape(const int32 *dims, int64 n, TensorShape *out) {#static_Status_tensorflow_TensorShapeUtils_MakeShape}

Returns a TensorShape whose dimensions are dims[0], dims[1], ..., dims[n-1].

static Status tensorflow::TensorShapeUtils::MakeShape(const int64 *dims, int64 n, TensorShape *out) {#static_Status_tensorflow_TensorShapeUtils_MakeShape}

static Status tensorflow::TensorShapeUtils::MakeShape(gtl::ArraySlice< int32 > shape, TensorShape *out) {#static_Status_tensorflow_TensorShapeUtils_MakeShape}

static Status tensorflow::TensorShapeUtils::MakeShape(gtl::ArraySlice< int64 > shape, TensorShape *out) {#static_Status_tensorflow_TensorShapeUtils_MakeShape}

string tensorflow::TensorShapeUtils::ShapeListString(const gtl::ArraySlice< TensorShape > &shapes) {#string_tensorflow_TensorShapeUtils_ShapeListString}

bool tensorflow::TensorShapeUtils::StartsWith(const TensorShape &shape0, const TensorShape &shape1) {#bool_tensorflow_TensorShapeUtils_StartsWith}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.sparse_to_indicator.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_to_indicator(sp_input, vocab_size, name=None) {#sparse_to_indicator}

Converts a SparseTensor of ids into a dense bool indicator tensor.

The last dimension of sp_input.indices is discarded and replaced with
the values of sp_input. If sp_input.shape = [D0, D1, ..., Dn, K], then
output.shape = [D0, D1, ..., Dn, vocab_size], where

output[d_0, d_1, ..., d_n, sp_input[d_0, d_1, ..., d_n, k]] = True

and False elsewhere in output.

For example, if sp_input.shape = [2, 3, 4] with non-empty values:

[0, 0, 0]: 0
[0, 1, 0]: 10
[1, 0, 3]: 103
[1, 1, 2]: 150
[1, 1, 3]: 149
[1, 1, 4]: 150
[1, 2, 1]: 121

and vocab_size = 200, then the output will be a [2, 3, 200] dense bool
tensor with False everywhere except at positions

(0, 0, 0), (0, 1, 10), (1, 0, 103), (1, 1, 149), (1, 1, 150),
(1, 2, 121).

Note that repeats are allowed in the input SparseTensor.
This op is useful for converting SparseTensors into dense formats for
compatibility with ops that expect dense tensors.

The input SparseTensor must be in row-major order.

Args:

		sp_input: A SparseTensor with values property of type int32 or
int64.

		vocab_size: A scalar int64 Tensor (or Python int) containing the new size
of the last dimension, all(0 <= sp_input.values < vocab_size).

		name: A name prefix for the returned tensors (optional)

Returns:

A dense bool indicator tensor representing the indices with specified value.

Raises:

		TypeError: If sp_input is not a SparseTensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.fixed_size_partitioner.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.fixed_size_partitioner(num_shards, axis=0) {#fixed_size_partitioner}

Partitioner to specify a fixed number of shards along given axis.

Args:

		num_shards: int, number of shards to partition variable.

		axis: int, axis to partition on.

Returns:

A partition function usable as the partitioner argument to
variable_scope, get_variable, and get_partitioned_variable_list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.util.stripped_op_list_for_graph.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.util.stripped_op_list_for_graph(graph_def) {#stripped_op_list_for_graph}

Collect the stripped OpDefs for ops used by a graph.

This function computes the stripped_op_list field of MetaGraphDef and
similar protos. The result can be communicated from the producer to the
consumer, which can then use the C++ function
RemoveNewDefaultAttrsFromGraphDef to improve forwards compatibility.

Args:

		graph_def: A GraphDef proto, as from graph.as_graph_def().

Returns:

An OpList of ops used by the graph.

Raises:

		ValueError: If an unregistered op is used.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.learn.DNNClassifier.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A classifier for TensorFlow DNN models.

Example:

education = sparse_column_with_hash_bucket(column_name="education",
 hash_bucket_size=1000)
occupation = sparse_column_with_hash_bucket(column_name="occupation",
 hash_bucket_size=1000)

education_emb = embedding_column(sparse_id_column=education, dimension=16,
 combiner="sum")
occupation_emb = embedding_column(sparse_id_column=occupation, dimension=16,
 combiner="sum")

estimator = DNNClassifier(
 feature_columns=[education_emb, occupation_emb],
 hidden_units=[1024, 512, 256])

Or estimator using the ProximalAdagradOptimizer optimizer with
regularization.
estimator = DNNClassifier(
 feature_columns=[education_emb, occupation_emb],
 hidden_units=[1024, 512, 256],
 optimizer=tf.train.ProximalAdagradOptimizer(
 learning_rate=0.1,
 l1_regularization_strength=0.001
))

Input builders
def input_fn_train: # returns x, Y
 pass
estimator.fit(input_fn=input_fn_train)

def input_fn_eval: # returns x, Y
 pass
estimator.evaluate(input_fn=input_fn_eval)
estimator.predict(x=x)

Input of fit and evaluate should have following features,
otherwise there will be a KeyError:

		if weight_column_name is not None, a feature with
key=weight_column_name whose value is a Tensor.

		for each column in feature_columns:
		if column is a SparseColumn, a feature with key=column.name
whose value is a SparseTensor.

		if column is a WeightedSparseColumn, two features: the first with
key the id column name, the second with key the weight column name.
Both features’ value must be a SparseTensor.

		if column is a RealValuedColumn, a feature with key=column.name
whose value is a Tensor.

tf.contrib.learn.DNNClassifier.__init__(hidden_units, feature_columns, model_dir=None, n_classes=2, weight_column_name=None, optimizer=None, activation_fn=relu, dropout=None, gradient_clip_norm=None, enable_centered_bias=None, config=None) {#DNNClassifier.init}

Initializes a DNNClassifier instance.

Args:

		hidden_units: List of hidden units per layer. All layers are fully
connected. Ex. [64, 32] means first layer has 64 nodes and second one
has 32.

		feature_columns: An iterable containing all the feature columns used by
the model. All items in the set should be instances of classes derived
from FeatureColumn.

		model_dir: Directory to save model parameters, graph and etc. This can also
be used to load checkpoints from the directory into a estimator to continue
training a previously saved model.

		n_classes: number of target classes. Default is binary classification.
It must be greater than 1.

		weight_column_name: A string defining feature column name representing
weights. It is used to down weight or boost examples during training. It
will be multiplied by the loss of the example.

		optimizer: An instance of tf.Optimizer used to train the model. If
None, will use an Adagrad optimizer.

		activation_fn: Activation function applied to each layer. If None, will
use tf.nn.relu.

		dropout: When not None, the probability we will drop out a given
coordinate.

		gradient_clip_norm: A float > 0. If provided, gradients are
clipped to their global norm with this clipping ratio. See
tf.clip_by_global_norm for more details.

		enable_centered_bias: A bool. If True, estimator will learn a centered
bias variable for each class. Rest of the model structure learns the
residual after centered bias.

		config: RunConfig object to configure the runtime settings.

Returns:

A DNNClassifier estimator.

Raises:

		ValueError: If n_classes < 2.

tf.contrib.learn.DNNClassifier.bias_ {#DNNClassifier.bias_}

DEPRECATED FUNCTION

THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-13.
Instructions for updating:
This method inspects the private state of the object, and should not be used

tf.contrib.learn.DNNClassifier.config {#DNNClassifier.config}

tf.contrib.learn.DNNClassifier.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) {#DNNClassifier.evaluate}

See evaluable.Evaluable.

tf.contrib.learn.DNNClassifier.export(export_dir, input_fn=None, input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, default_batch_size=1, exports_to_keep=None) {#DNNClassifier.export}

See BaseEstimator.export.

tf.contrib.learn.DNNClassifier.fit(x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None) {#DNNClassifier.fit}

See trainable.Trainable.

tf.contrib.learn.DNNClassifier.get_variable_names() {#DNNClassifier.get_variable_names}

Returns list of all variable names in this model.

Returns:

List of names.

tf.contrib.learn.DNNClassifier.get_variable_value(name) {#DNNClassifier.get_variable_value}

Returns value of the variable given by name.

Args:

		name: string, name of the tensor.

Returns:

Tensor object.

tf.contrib.learn.DNNClassifier.model_dir {#DNNClassifier.model_dir}

tf.contrib.learn.DNNClassifier.predict(*args, **kwargs) {#DNNClassifier.predict}

Returns predicted classes for given features. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-15.
Instructions for updating:
The default behavior of predict() is changing. The default value for
as_iterable will change to True, and then the flag will be removed
altogether. The behavior of this flag is described below.

Args:
 x: features.
 input_fn: Input function. If set, x must be None.
 batch_size: Override default batch size.
 as_iterable: If True, return an iterable which keeps yielding predictions
 for each example until inputs are exhausted. Note: The inputs must
 terminate if you want the iterable to terminate (e.g. be sure to pass
 num_epochs=1 if you are using something like read_batch_features).

Returns:
 Numpy array of predicted classes (or an iterable of predicted classes if
 as_iterable is True).

tf.contrib.learn.DNNClassifier.predict_proba(*args, **kwargs) {#DNNClassifier.predict_proba}

Returns prediction probabilities for given features. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-15.
Instructions for updating:
The default behavior of predict() is changing. The default value for
as_iterable will change to True, and then the flag will be removed
altogether. The behavior of this flag is described below.

Args:
 x: features.
 input_fn: Input function. If set, x and y must be None.
 batch_size: Override default batch size.
 as_iterable: If True, return an iterable which keeps yielding predictions
 for each example until inputs are exhausted. Note: The inputs must
 terminate if you want the iterable to terminate (e.g. be sure to pass
 num_epochs=1 if you are using something like read_batch_features).

Returns:
 Numpy array of predicted probabilities (or an iterable of predicted
 probabilities if as_iterable is True).

tf.contrib.learn.DNNClassifier.weights_ {#DNNClassifier.weights_}

DEPRECATED FUNCTION

THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-13.
Instructions for updating:
This method inspects the private state of the object, and should not be used

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.reduce_all.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.reduce_all(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_all}

Computes the “logical and” of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

'x' is [[True, True]
[False, False]]
tf.reduce_all(x) ==> False
tf.reduce_all(x, 0) ==> [False, False]
tf.reduce_all(x, 1) ==> [True, False]

Args:

		input_tensor: The boolean tensor to reduce.

		reduction_indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

		keep_dims: If true, retains reduced dimensions with length 1.

		name: A name for the operation (optional).

Returns:

The reduced tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.floor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.floor(x, name=None) {#floor}

Returns element-wise largest integer not greater than x.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.nn.dilation2d.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.dilation2d(input, filter, strides, rates, padding, name=None) {#dilation2d}

Computes the grayscale dilation of 4-D input and 3-D filter tensors.

The input tensor has shape [batch, in_height, in_width, depth] and the
filter tensor has shape [filter_height, filter_width, depth], i.e., each
input channel is processed independently of the others with its own structuring
function. The output tensor has shape
[batch, out_height, out_width, depth]. The spatial dimensions of the output
tensor depend on the padding algorithm. We currently only support the default
“NHWC” data_format.

In detail, the grayscale morphological 2-D dilation is the max-sum correlation
(for consistency with conv2d, we use unmirrored filters):

output[b, y, x, c] =
 max_{dy, dx} input[b,
 strides[1] * y + rates[1] * dy,
 strides[2] * x + rates[2] * dx,
 c] +
 filter[dy, dx, c]

Max-pooling is a special case when the filter has size equal to the pooling
kernel size and contains all zeros.

Note on duality: The dilation of input by the filter is equal to the
negation of the erosion of -input by the reflected filter.

Args:

		input: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.
4-D with shape [batch, in_height, in_width, depth].

		filter: A Tensor. Must have the same type as input.
3-D with shape [filter_height, filter_width, depth].

		strides: A list of ints that has length >= 4.
The stride of the sliding window for each dimension of the input
tensor. Must be: [1, stride_height, stride_width, 1].

		rates: A list of ints that has length >= 4.
The input stride for atrous morphological dilation. Must be:
[1, rate_height, rate_width, 1].

		padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
4-D with shape [batch, out_height, out_width, depth].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.bayesflow.entropy.elbo_ratio.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.bayesflow.entropy.elbo_ratio(log_p, q, z=None, n=None, seed=None, form=None, name='elbo_ratio') {#elbo_ratio}

Estimate of the ratio appearing in the ELBO and KL divergence.

With p(z) := exp{log_p(z)}, this Op returns an approximation of

E_q[Log[p(Z) / q(Z)]]

The term E_q[Log[p(Z)]] is always computed as a sample mean.
The term E_q[Log[q(z)]] can be computed with samples, or an exact formula
if q.entropy() is defined. This is controlled with the kwarg form.

This log-ratio appears in different contexts:

KL[q || p]

If log_p(z) = Log[p(z)] for distribution p, this Op approximates
the negative Kullback-Leibler divergence.

elbo_ratio(log_p, q, n=100) = -1 * KL[q || p],
KL[q || p] = E[Log[q(Z)] - Log[p(Z)]]

Note that if p is a Distribution, then distributions.kl(q, p) may be
defined and available as an exact result.

ELBO

If log_p(z) = Log[p(z, x)] is the log joint of a distribution p, this is
the Evidence Lower BOund (ELBO):

ELBO ~= E[Log[p(Z, x)] - Log[q(Z)]]
 = Log[p(x)] - KL[q || p]
 <= Log[p(x)]

User supplies either Tensor of samples z, or number of samples to draw n

Args:

		log_p: Callable mapping samples from q to Tensors with
shape broadcastable to q.batch_shape.
For example, log_p works “just like” q.log_prob.

		q: tf.contrib.distributions.BaseDistribution.

		z: Tensor of samples from q, produced by q.sample_n.

		n: Integer Tensor. Number of samples to generate if z is not provided.

		seed: Python integer to seed the random number generator.

		form: Either ELBOForms.analytic_entropy (use formula for entropy of q)
or ELBOForms.sample (sample estimate of entropy), or ELBOForms.default
(attempt analytic entropy, fallback on sample).
Default value is ELBOForms.default.

		name: A name to give this Op.

Returns:

Scalar Tensor holding sample mean KL divergence. shape is the batch
shape of q, and dtype is the same as q.

Raises:

		ValueError: If form is not handled by this function.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.train.slice_input_producer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None, capacity=32, shared_name=None, name=None) {#slice_input_producer}

Produces a slice of each Tensor in tensor_list.

Implemented using a Queue – a QueueRunner for the Queue
is added to the current Graph‘s QUEUE_RUNNER collection.

Args:

		tensor_list: A list of Tensor objects. Every Tensor in
tensor_list must have the same size in the first dimension.

		num_epochs: An integer (optional). If specified, slice_input_producer
produces each slice num_epochs times before generating
an OutOfRange error. If not specified, slice_input_producer can cycle
through the slices an unlimited number of times.

		shuffle: Boolean. If true, the integers are randomly shuffled within each
epoch.

		seed: An integer (optional). Seed used if shuffle == True.

		capacity: An integer. Sets the queue capacity.

		shared_name: (optional). If set, this queue will be shared under the given
name across multiple sessions.

		name: A name for the operations (optional).

Returns:

A list of tensors, one for each element of tensor_list. If the tensor
in tensor_list has shape [N, a, b, .., z], then the corresponding output
tensor will have shape [a, b, ..., z].

Raises:

		ValueError: if slice_input_producer produces nothing from tensor_list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.random_normal_initializer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.random_normal_initializer(mean=0.0, stddev=1.0, seed=None, dtype=tf.float32) {#random_normal_initializer}

Returns an initializer that generates tensors with a normal distribution.

Args:

		mean: a python scalar or a scalar tensor. Mean of the random values
to generate.

		stddev: a python scalar or a scalar tensor. Standard deviation of the
random values to generate.

		seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

		dtype: The data type. Only floating point types are supported.

Returns:

An initializer that generates tensors with a normal distribution.

Raises:

		ValueError: if dtype is not a floating point type.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.load_op_library.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.load_op_library(library_filename) {#load_op_library}

Loads a TensorFlow plugin, containing custom ops and kernels.

Pass “library_filename” to a platform-specific mechanism for dynamically
loading a library. The rules for determining the exact location of the
library are platform-specific and are not documented here. When the
library is loaded, ops and kernels registered in the library via the
REGISTER_* macros are made available in the TensorFlow process. Note
that ops with the same name as an existing op are rejected and not
registered with the process.

Args:

		library_filename: Path to the plugin.
Relative or absolute filesystem path to a dynamic library file.

Returns:

A python module containing the Python wrappers for Ops defined in
the plugin.

Raises:

		RuntimeError: when unable to load the library or get the python wrappers.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.train.Supervisor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A training helper that checkpoints models and computes summaries.

The Supervisor is a small wrapper around a Coordinator, a Saver,
and a SessionManager that takes care of common needs of TensorFlow
training programs.

Use for a single program

with tf.Graph().as_default():
 ...add operations to the graph...
 # Create a Supervisor that will checkpoint the model in '/tmp/mydir'.
 sv = Supervisor(logdir='/tmp/mydir')
 # Get a TensorFlow session managed by the supervisor.
 with sv.managed_session(FLAGS.master) as sess:
 # Use the session to train the graph.
 while not sv.should_stop():
 sess.run(<my_train_op>)

Within the with sv.managed_session() block all variables in the graph have
been initialized. In addition, a few services have been started to
checkpoint the model and add summaries to the event log.

If the program crashes and is restarted, the managed session automatically
reinitialize variables from the most recent checkpoint.

The supervisor is notified of any exception raised by one of the services.
After an exception is raised, should_stop() returns True. In that case
the training loop should also stop. This is why the training loop has to
check for sv.should_stop().

Exceptions that indicate that the training inputs have been exhausted,
tf.errors.OutOfRangeError, also cause sv.should_stop() to return True
but are not re-raised from the with block: they indicate a normal
termination.

Use for multiple replicas

To train with replicas you deploy the same program in a Cluster.
One of the tasks must be identified as the chief: the task that handles
initialization, checkpoints, summaries, and recovery. The other tasks
depend on the chief for these services.

The only change you have to do to the single program code is to indicate
if the program is running as the chief.

Choose a task as the chief. This could be based on server_def.task_index,
or job_def.name, or job_def.tasks. It's entirely up to the end user.
But there can be only one *chief*.
is_chief = (server_def.task_index == 0)
server = tf.train.Server(server_def)

with tf.Graph().as_default():
 ...add operations to the graph...
 # Create a Supervisor that uses log directory on a shared file system.
 # Indicate if you are the 'chief'
 sv = Supervisor(logdir='/shared_directory/...', is_chief=is_chief)
 # Get a Session in a TensorFlow server on the cluster.
 with sv.managed_session(server.target) as sess:
 # Use the session to train the graph.
 while not sv.should_stop():
 sess.run(<my_train_op>)

In the chief task, the Supervisor works exactly as in the first example
above. In the other tasks sv.managed_session() waits for the Model to have
been initialized before returning a session to the training code. The
non-chief tasks depend on the chief task for initializing the model.

If one of the tasks crashes and restarts, managed_session()
checks if the Model is initialized. If yes, it just creates a session and
returns it to the training code that proceeds normally. If the model needs
to be initialized, the chief task takes care of reinitializing it; the other
tasks just wait for the model to have been initialized.

NOTE: This modified program still works fine as a single program.
The single program marks itself as the chief.

What master string to use

Whether you are running on your machine or in the cluster you can use the
following values for the –master flag:

		Specifying '' requests an in-process session that does not use RPC.

		Specifying 'local' requests a session that uses the RPC-based
“Master interface” to run TensorFlow programs. See
tf.train.Server.create_local_server() for
details.

		Specifying 'grpc://hostname:port' requests a session that uses
the RPC interface to a specific , and also allows the in-process
master to access remote tensorflow workers. Often, it is
appropriate to pass server.target (for some tf.train.Server
named `server).

Advanced use

Launching additional services

managed_session() launches the Checkpoint and Summary services (threads).
If you need more services to run you can simply launch them in the block
controlled by managed_session().

Example: Start a thread to print losses. We want this thread to run
every 60 seconds, so we launch it with sv.loop().

...
sv = Supervisor(logdir='/tmp/mydir')
with sv.managed_session(FLAGS.master) as sess:
 sv.loop(60, print_loss, (sess))
 while not sv.should_stop():
 sess.run(my_train_op)

Launching fewer services

managed_session() launches the “summary” and “checkpoint” threads which use
either the optionally summary_op and saver passed to the constructor, or
default ones created automatically by the supervisor. If you want to run
your own summary and checkpointing logic, disable these services by passing
None to the summary_op and saver parameters.

Example: Create summaries manually every 100 steps in the chief.

Create a Supervisor with no automatic summaries.
sv = Supervisor(logdir='/tmp/mydir', is_chief=is_chief, summary_op=None)
As summary_op was None, managed_session() does not start the
summary thread.
with sv.managed_session(FLAGS.master) as sess:
 for step in xrange(1000000):
 if sv.should_stop():
 break
 if is_chief and step % 100 == 0:
 # Create the summary every 100 chief steps.
 sv.summary_computed(sess, sess.run(my_summary_op))
 else:
 # Train normally
 sess.run(my_train_op)

Custom model initialization

managed_session() only supports initializing the model by running an
init_op or restoring from the latest checkpoint. If you have special
initialization needs, see how to specify a local_init_op when creating the
supervisor. You can also use the SessionManager directly to create a
session and check if it could be initialized automatically.

tf.train.Supervisor.__init__(graph=None, ready_op=0, ready_for_local_init_op=0, is_chief=True, init_op=0, init_feed_dict=None, local_init_op=0, logdir=None, summary_op=0, saver=0, global_step=0, save_summaries_secs=120, save_model_secs=600, recovery_wait_secs=30, stop_grace_secs=120, checkpoint_basename='model.ckpt', session_manager=None, summary_writer=0, init_fn=None) {#Supervisor.init}

Create a Supervisor.

Args:

		graph: A Graph. The graph that the model will use. Defaults to the
default Graph. The supervisor may add operations to the graph before
creating a session, but the graph should not be modified by the caller
after passing it to the supervisor.

		ready_op: 1-D string Tensor. This tensor is evaluated by supervisors in
prepare_or_wait_for_session() to check if the model is ready to use.
The model is considered ready if it returns an empty array. Defaults to
the tensor returned from tf.report_uninitialized_variables() If
None, the model is not checked for readiness.

		ready_for_local_init_op: 1-D string Tensor. This tensor is evaluated by
supervisors in prepare_or_wait_for_session() to check if the model is
ready to run the local_init_op.
The model is considered ready if it returns an empty array. Defaults to
the tensor returned from
tf.report_uninitialized_variables(tf.all_variables()). If None, the
model is not checked for readiness before running local_init_op.

		is_chief: If True, create a chief supervisor in charge of initializing
and restoring the model. If False, create a supervisor that relies
on a chief supervisor for inits and restore.

		init_op: Operation. Used by chief supervisors to initialize the model
when it can not be recovered. Defaults to an Operation that
initializes all variables. If None, no initialization is done
automatically unless you pass a value for init_fn, see below.

		init_feed_dict: A dictionary that maps Tensor objects to feed values.
This feed dictionary will be used when init_op is evaluated.

		local_init_op: Operation. Used by all supervisors to run initializations
that should run for every new supervisor instance. By default these
are table initializers and initializers for local variables.
If None, no further per supervisor-instance initialization is
done automatically.

		logdir: A string. Optional path to a directory where to checkpoint the
model and log events for the visualizer. Used by chief supervisors.
The directory will be created if it does not exist.

		summary_op: An Operation that returns a Summary for the event logs.
Used by chief supervisors if a logdir was specified. Defaults to the
operation returned from merge_all_summaries(). If None, summaries are
not computed automatically.

		saver: A Saver object. Used by chief supervisors if a logdir was
specified. Defaults to the saved returned by Saver().
If None, the model is not saved automatically.

		global_step: An integer Tensor of size 1 that counts steps. The value
from ‘global_step’ is used in summaries and checkpoint filenames.
Default to the op named ‘global_step’ in the graph if it exists, is of
rank 1, size 1, and of type tf.int32 ot tf.int64. If None the global
step is not recorded in summaries and checkpoint files. Used by chief
supervisors if a logdir was specified.

		save_summaries_secs: Number of seconds between the computation of
summaries for the event log. Defaults to 120 seconds. Pass 0 to
disable summaries.

		save_model_secs: Number of seconds between the creation of model
checkpoints. Defaults to 600 seconds. Pass 0 to disable checkpoints.

		recovery_wait_secs: Number of seconds between checks that the model
is ready. Used by supervisors when waiting for a chief supervisor
to initialize or restore the model. Defaults to 30 seconds.

		stop_grace_secs: Grace period, in seconds, given to running threads to
stop when stop() is called. Defaults to 120 seconds.

		checkpoint_basename: The basename for checkpoint saving.

		session_manager: SessionManager, which manages Session creation and
recovery. If it is None, a default SessionManager will be created
with the set of arguments passed in for backwards compatibility.

		summary_writer: SummaryWriter to use or USE_DEFAULT. Can be None
to indicate that no summaries should be written.

		init_fn: Optional callable used to initialize the model. Called
after the optional init_op is called. The callable must accept one
argument, the session being initialized.

Returns:

A Supervisor.

tf.train.Supervisor.managed_session(master='', config=None, start_standard_services=True, close_summary_writer=True) {#Supervisor.managed_session}

Returns a context manager for a managed session.

This context manager creates and automatically recovers a session. It
optionally starts the standard services that handle checkpoints and
summaries. It monitors exceptions raised from the with block or from the
services and stops the supervisor as needed.

The context manager is typically used as follows:

def train():
 sv = tf.train.Supervisor(...)
 with sv.managed_session(<master>) as sess:
 for step in xrange(..):
 if sv.should_stop():
 break
 sess.run(<my training op>)
 ...do other things needed at each training step...

An exception raised from the with block or one of the service threads is
raised again when the block exits. This is done after stopping all threads
and closing the session. For example, an AbortedError exception, raised
in case of preemption of one of the workers in a distributed model, is
raised again when the block exits.

If you want to retry the training loop in case of preemption you can do it
as follows:

def main(...):
 while True
 try:
 train()
 except tf.errors.Aborted:
 pass

As a special case, exceptions used for control flow, such as
OutOfRangeError which reports that input queues are exhausted, are not
raised again from the with block: they indicate a clean termination of
the training loop and are considered normal termination.

Args:

		master: name of the TensorFlow master to use. See the tf.Session
constructor for how this is interpreted.

		config: Optional ConfigProto proto used to configure the session.
Passed as-is to create the session.

		start_standard_services: Whether to start the standard services,
such as checkpoint, summary and step counter.

		close_summary_writer: Whether to close the summary writer when
closing the session. Defaults to True.

Returns:

A context manager that yields a Session restored from the latest
checkpoint or initialized from scratch if not checkpoint exists. The
session is closed when the with block exits.

tf.train.Supervisor.prepare_or_wait_for_session(master='', config=None, wait_for_checkpoint=False, max_wait_secs=7200, start_standard_services=True) {#Supervisor.prepare_or_wait_for_session}

Make sure the model is ready to be used.

Create a session on ‘master’, recovering or initializing the model as
needed, or wait for a session to be ready. If running as the chief
and start_standard_service is set to True, also call the session
manager to start the standard services.

Args:

		master: name of the TensorFlow master to use. See the tf.Session
constructor for how this is interpreted.

		config: Optional ConfigProto proto used to configure the session,
which is passed as-is to create the session.

		wait_for_checkpoint: Whether we should wait for the availability of a
checkpoint before creating Session. Defaults to False.

		max_wait_secs: Maximum time to wait for the session to become available.

		start_standard_services: Whether to start the standard services and the
queue runners.

Returns:

A Session object that can be used to drive the model.

tf.train.Supervisor.start_standard_services(sess) {#Supervisor.start_standard_services}

Start the standard services for ‘sess’.

This starts services in the background. The services started depend
on the parameters to the constructor and may include:

		A Summary thread computing summaries every save_summaries_secs.

		A Checkpoint thread saving the model every save_model_secs.

		A StepCounter thread measure step time.

Args:

		sess: A Session.

Returns:

A list of threads that are running the standard services. You can use
the Supervisor’s Coordinator to join these threads with:
sv.coord.Join()

Raises:

		RuntimeError: If called with a non-chief Supervisor.

		ValueError: If not logdir was passed to the constructor as the
services need a log directory.

tf.train.Supervisor.start_queue_runners(sess, queue_runners=None) {#Supervisor.start_queue_runners}

Start threads for QueueRunners.

Note that the queue runners collected in the graph key QUEUE_RUNNERS
are already started automatically when you create a session with the
supervisor, so unless you have non-collected queue runners to start
you do not need to call this explicitly.

Args:

		sess: A Session.

		queue_runners: A list of QueueRunners. If not specified, we’ll use the
list of queue runners gathered in the graph under the key
GraphKeys.QUEUE_RUNNERS.

Returns:

The list of threads started for the QueueRunners.

tf.train.Supervisor.summary_computed(sess, summary, global_step=None) {#Supervisor.summary_computed}

Indicate that a summary was computed.

Args:

		sess: A Session object.

		summary: A Summary proto, or a string holding a serialized summary proto.

		global_step: Int. global step this summary is associated with. If None,
it will try to fetch the current step.

Raises:

		TypeError: if ‘summary’ is not a Summary proto or a string.

		RuntimeError: if the Supervisor was created without a logdir.

tf.train.Supervisor.stop(threads=None, close_summary_writer=True) {#Supervisor.stop}

Stop the services and the coordinator.

This does not close the session.

Args:

		threads: Optional list of threads to join with the coordinator. If
None, defaults to the threads running the standard services, the
threads started for QueueRunners, and the threads started by the
loop() method. To wait on additional threads, pass the
list in this parameter.

		close_summary_writer: Whether to close the summary_writer. Defaults to
True if the summary writer was created by the supervisor, False
otherwise.

tf.train.Supervisor.request_stop(ex=None) {#Supervisor.request_stop}

Request that the coordinator stop the threads.

See Coordinator.request_stop().

Args:

		ex: Optional Exception, or Python exc_info tuple as returned by
sys.exc_info(). If this is the first call to request_stop() the
corresponding exception is recorded and re-raised from join().

tf.train.Supervisor.should_stop() {#Supervisor.should_stop}

Check if the coordinator was told to stop.

See Coordinator.should_stop().

Returns:

True if the coordinator was told to stop, False otherwise.

tf.train.Supervisor.stop_on_exception() {#Supervisor.stop_on_exception}

Context handler to stop the supervisor when an exception is raised.

See Coordinator.stop_on_exception().

Returns:

A context handler.

tf.train.Supervisor.wait_for_stop() {#Supervisor.wait_for_stop}

Block waiting for the coordinator to stop.

Other Methods

tf.train.Supervisor.Loop(timer_interval_secs, target, args=None, kwargs=None) {#Supervisor.Loop}

Start a LooperThread that calls a function periodically.

If timer_interval_secs is None the thread calls target(*args, **kwargs)
repeatedly. Otherwise it calls it every timer_interval_secs
seconds. The thread terminates when a stop is requested.

The started thread is added to the list of threads managed by the supervisor
so it does not need to be passed to the stop() method.

Args:

		timer_interval_secs: Number. Time boundaries at which to call target.

		target: A callable object.

		args: Optional arguments to pass to target when calling it.

		kwargs: Optional keyword arguments to pass to target when calling it.

Returns:

The started thread.

tf.train.Supervisor.PrepareSession(master='', config=None, wait_for_checkpoint=False, max_wait_secs=7200, start_standard_services=True) {#Supervisor.PrepareSession}

Make sure the model is ready to be used.

Create a session on ‘master’, recovering or initializing the model as
needed, or wait for a session to be ready. If running as the chief
and start_standard_service is set to True, also call the session
manager to start the standard services.

Args:

		master: name of the TensorFlow master to use. See the tf.Session
constructor for how this is interpreted.

		config: Optional ConfigProto proto used to configure the session,
which is passed as-is to create the session.

		wait_for_checkpoint: Whether we should wait for the availability of a
checkpoint before creating Session. Defaults to False.

		max_wait_secs: Maximum time to wait for the session to become available.

		start_standard_services: Whether to start the standard services and the
queue runners.

Returns:

A Session object that can be used to drive the model.

tf.train.Supervisor.RequestStop(ex=None) {#Supervisor.RequestStop}

Request that the coordinator stop the threads.

See Coordinator.request_stop().

Args:

		ex: Optional Exception, or Python exc_info tuple as returned by
sys.exc_info(). If this is the first call to request_stop() the
corresponding exception is recorded and re-raised from join().

tf.train.Supervisor.ShouldStop() {#Supervisor.ShouldStop}

Check if the coordinator was told to stop.

See Coordinator.should_stop().

Returns:

True if the coordinator was told to stop, False otherwise.

tf.train.Supervisor.StartQueueRunners(sess, queue_runners=None) {#Supervisor.StartQueueRunners}

Start threads for QueueRunners.

Note that the queue runners collected in the graph key QUEUE_RUNNERS
are already started automatically when you create a session with the
supervisor, so unless you have non-collected queue runners to start
you do not need to call this explicitly.

Args:

		sess: A Session.

		queue_runners: A list of QueueRunners. If not specified, we’ll use the
list of queue runners gathered in the graph under the key
GraphKeys.QUEUE_RUNNERS.

Returns:

The list of threads started for the QueueRunners.

tf.train.Supervisor.StartStandardServices(sess) {#Supervisor.StartStandardServices}

Start the standard services for ‘sess’.

This starts services in the background. The services started depend
on the parameters to the constructor and may include:

		A Summary thread computing summaries every save_summaries_secs.

		A Checkpoint thread saving the model every save_model_secs.

		A StepCounter thread measure step time.

Args:

		sess: A Session.

Returns:

A list of threads that are running the standard services. You can use
the Supervisor’s Coordinator to join these threads with:
sv.coord.Join()

Raises:

		RuntimeError: If called with a non-chief Supervisor.

		ValueError: If not logdir was passed to the constructor as the
services need a log directory.

tf.train.Supervisor.Stop(threads=None, close_summary_writer=True) {#Supervisor.Stop}

Stop the services and the coordinator.

This does not close the session.

Args:

		threads: Optional list of threads to join with the coordinator. If
None, defaults to the threads running the standard services, the
threads started for QueueRunners, and the threads started by the
loop() method. To wait on additional threads, pass the
list in this parameter.

		close_summary_writer: Whether to close the summary_writer. Defaults to
True if the summary writer was created by the supervisor, False
otherwise.

tf.train.Supervisor.StopOnException() {#Supervisor.StopOnException}

Context handler to stop the supervisor when an exception is raised.

See Coordinator.stop_on_exception().

Returns:

A context handler.

tf.train.Supervisor.SummaryComputed(sess, summary, global_step=None) {#Supervisor.SummaryComputed}

Indicate that a summary was computed.

Args:

		sess: A Session object.

		summary: A Summary proto, or a string holding a serialized summary proto.

		global_step: Int. global step this summary is associated with. If None,
it will try to fetch the current step.

Raises:

		TypeError: if ‘summary’ is not a Summary proto or a string.

		RuntimeError: if the Supervisor was created without a logdir.

tf.train.Supervisor.WaitForStop() {#Supervisor.WaitForStop}

Block waiting for the coordinator to stop.

tf.train.Supervisor.coord {#Supervisor.coord}

Return the Coordinator used by the Supervisor.

The Coordinator can be useful if you want to run multiple threads
during your training.

Returns:

A Coordinator object.

tf.train.Supervisor.global_step {#Supervisor.global_step}

Return the global_step Tensor used by the supervisor.

Returns:

An integer Tensor for the global_step.

tf.train.Supervisor.init_feed_dict {#Supervisor.init_feed_dict}

Return the feed dictionary used when evaluating the init_op.

Returns:

A feed dictionary or None.

tf.train.Supervisor.init_op {#Supervisor.init_op}

Return the Init Op used by the supervisor.

Returns:

An Op or None.

tf.train.Supervisor.is_chief {#Supervisor.is_chief}

Return True if this is a chief supervisor.

Returns:

A bool.

tf.train.Supervisor.loop(timer_interval_secs, target, args=None, kwargs=None) {#Supervisor.loop}

Start a LooperThread that calls a function periodically.

If timer_interval_secs is None the thread calls target(*args, **kwargs)
repeatedly. Otherwise it calls it every timer_interval_secs
seconds. The thread terminates when a stop is requested.

The started thread is added to the list of threads managed by the supervisor
so it does not need to be passed to the stop() method.

Args:

		timer_interval_secs: Number. Time boundaries at which to call target.

		target: A callable object.

		args: Optional arguments to pass to target when calling it.

		kwargs: Optional keyword arguments to pass to target when calling it.

Returns:

The started thread.

tf.train.Supervisor.ready_for_local_init_op {#Supervisor.ready_for_local_init_op}

tf.train.Supervisor.ready_op {#Supervisor.ready_op}

Return the Ready Op used by the supervisor.

Returns:

An Op or None.

tf.train.Supervisor.save_model_secs {#Supervisor.save_model_secs}

Return the delay between checkpoints.

Returns:

A timestamp.

tf.train.Supervisor.save_path {#Supervisor.save_path}

Return the save path used by the supervisor.

Returns:

A string.

tf.train.Supervisor.save_summaries_secs {#Supervisor.save_summaries_secs}

Return the delay between summary computations.

Returns:

A timestamp.

tf.train.Supervisor.saver {#Supervisor.saver}

Return the Saver used by the supervisor.

Returns:

A Saver object.

tf.train.Supervisor.session_manager {#Supervisor.session_manager}

Return the SessionManager used by the Supervisor.

Returns:

A SessionManager object.

tf.train.Supervisor.summary_op {#Supervisor.summary_op}

Return the Summary Tensor used by the chief supervisor.

Returns:

A string Tensor for the summary or None.

tf.train.Supervisor.summary_writer {#Supervisor.summary_writer}

Return the SummaryWriter used by the chief supervisor.

Returns:

A SummaryWriter.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.nn.max_pool_with_argmax.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.max_pool_with_argmax(input, ksize, strides, padding, Targmax=None, name=None) {#max_pool_with_argmax}

Performs max pooling on the input and outputs both max values and indices.

The indices in argmax are flattened, so that a maximum value at position
[b, y, x, c] becomes flattened index
((b * height + y) * width + x) * channels + c.

Args:

		input: A Tensor. Must be one of the following types: float32, half.
4-D with shape [batch, height, width, channels]. Input to pool over.

		ksize: A list of ints that has length >= 4.
The size of the window for each dimension of the input tensor.

		strides: A list of ints that has length >= 4.
The stride of the sliding window for each dimension of the
input tensor.

		padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.

		Targmax: An optional tf.DType from: tf.int32, tf.int64. Defaults to tf.int64.

		name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (output, argmax).

		output: A Tensor. Has the same type as input. The max pooled output tensor.

		argmax: A Tensor of type Targmax. 4-D. The flattened indices of the max values chosen for each output.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.assign_add.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.assign_add(ref, value, use_locking=None, name=None) {#assign_add}

Update ‘ref’ by adding ‘value’ to it.

This operation outputs “ref” after the update is done.
This makes it easier to chain operations that need to use the reset value.

Args:

		ref: A mutable Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
Should be from a Variable node.

		value: A Tensor. Must have the same type as ref.
The value to be added to the variable.

		use_locking: An optional bool. Defaults to False.
If True, the addition will be protected by a lock;
otherwise the behavior is undefined, but may exhibit less contention.

		name: A name for the operation (optional).

Returns:

Same as “ref”. Returned as a convenience for operations that want
to use the new value after the variable has been updated.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.tuple.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.tuple(tensors, name=None, control_inputs=None) {#tuple}

Group tensors together.

This creates a tuple of tensors with the same values as the tensors
argument, except that the value of each tensor is only returned after the
values of all tensors have been computed.

control_inputs contains additional ops that have to finish before this op
finishes, but whose outputs are not returned.

This can be used as a “join” mechanism for parallel computations: all the
argument tensors can be computed in parallel, but the values of any tensor
returned by tuple are only available after all the parallel computations
are done.

See also group and with_dependencies.

Args:

		tensors: A list of Tensors or IndexedSlices, some entries can be None.

		name: (optional) A name to use as a name_scope for the operation.

		control_inputs: List of additional ops to finish before returning.

Returns:

Same as tensors.

Raises:

		ValueError: If tensors does not contain any Tensor or IndexedSlices.

		TypeError: If control_inputs is not a list of Operation or Tensor
objects.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.learn.infer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.learn.infer(restore_checkpoint_path, output_dict, feed_dict=None) {#infer}

Restore graph from restore_checkpoint_path and run output_dict tensors.

If restore_checkpoint_path is supplied, restore from checkpoint. Otherwise,
init all variables.

Args:

		restore_checkpoint_path: A string containing the path to a checkpoint to
restore.

		output_dict: A dict mapping string names to Tensor objects to run.
Tensors must all be from the same graph.

		feed_dict: dict object mapping Tensor objects to input values to feed.

Returns:

Dict of values read from output_dict tensors. Keys are the same as
output_dict, values are the results read from the corresponding Tensor
in output_dict.

Raises:

		ValueError: if output_dict or feed_dicts is None or empty.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/cc/ClassPartialTensorShapeUtils.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

class tensorflow::PartialTensorShapeUtils

Static helper routines for PartialTensorShape. Includes a few common predicates on a partially known tensor shape.

###Member Details

string tensorflow::PartialTensorShapeUtils::PartialShapeListString(const gtl::ArraySlice< PartialTensorShape > &shapes) {#string_tensorflow_PartialTensorShapeUtils_PartialShapeListString}

bool tensorflow::PartialTensorShapeUtils::AreCompatible(const gtl::ArraySlice< PartialTensorShape > &shapes0, const gtl::ArraySlice< PartialTensorShape > &shapes1) {#bool_tensorflow_PartialTensorShapeUtils_AreCompatible}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.get_default_graph.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.get_default_graph() {#get_default_graph}

Returns the default graph for the current thread.

The returned graph will be the innermost graph on which a
Graph.as_default() context has been entered, or a global default
graph if none has been explicitly created.

NOTE: The default graph is a property of the current thread. If you
create a new thread, and wish to use the default graph in that
thread, you must explicitly add a with g.as_default(): in that
thread’s function.

Returns:

The default Graph being used in the current thread.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/cc/ClassTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

class tensorflow::Tensor

Represents an n-dimensional array of values.

###Member Details

tensorflow::Tensor::Tensor() {#tensorflow_Tensor_Tensor}

Creates a 1-dimensional, 0-element float tensor.

The returned Tensor is not a scalar (shape {}), but is instead an empty one-dimensional Tensor (shape {0}, NumElements() == 0). Since it has no elements, it does not need to be assigned a value and is initialized by default (IsInitialized() is true). If this is undesirable, consider creating a one-element scalar which does require initialization:

tensorflow::Tensor::Tensor(DataType type, const TensorShape &shape) {#tensorflow_Tensor_Tensor}

Creates a Tensor of the given type and shape. If LogMemory::IsEnabled() the allocation is logged as coming from an unknown kernel and step. Calling the Tensor constructor directly from within an Op is deprecated: use the OpKernelConstruction/OpKernelContext allocate_* methods to allocate a new tensor, which record the kernel and step.

The underlying buffer is allocated using a CPUAllocator.

tensorflow::Tensor::Tensor(Allocator *a, DataType type, const TensorShape &shape) {#tensorflow_Tensor_Tensor}

Creates a tensor with the input type and shape, using the allocator a to allocate the underlying buffer. If LogMemory::IsEnabled() the allocation is logged as coming from an unknown kernel and step. Calling the Tensor constructor directly from within an Op is deprecated: use the OpKernelConstruction/OpKernelContext allocate_* methods to allocate a new tensor, which record the kernel and step.

a must outlive the lifetime of this Tensor .

tensorflow::Tensor::Tensor(Allocator *a, DataType type, const TensorShape &shape, const AllocationAttributes &allocation_attr) {#tensorflow_Tensor_Tensor}

Creates a tensor with the input type and shape, using the allocator a and the specified “allocation_attr” to allocate the underlying buffer. If the kernel and step are known allocation_attr.allocation_will_be_logged should be set to true and LogMemory::RecordTensorAllocation should be called after the tensor is constructed. Calling the Tensor constructor directly from within an Op is deprecated: use the OpKernelConstruction/OpKernelContext allocate_* methods to allocate a new tensor, which record the kernel and step.

a must outlive the lifetime of this Tensor .

tensorflow::Tensor::Tensor(DataType type) {#tensorflow_Tensor_Tensor}

Creates an empty Tensor of the given data type.

Like Tensor() , returns a 1-dimensional, 0-element Tensor with IsInitialized() returning True. See the Tensor() documentation for details.

tensorflow::Tensor::Tensor(const Tensor &other) {#tensorflow_Tensor_Tensor}

tensorflow::Tensor::Tensor(Tensor &&other) {#tensorflow_Tensor_Tensor}

Copy constructor.

tensorflow::Tensor::~Tensor() {#tensorflow_Tensor_Tensor}

DataType tensorflow::Tensor::dtype() const {#DataType_tensorflow_Tensor_dtype}

Returns the data type.

const TensorShape& tensorflow::Tensor::shape() const {#const_TensorShape_tensorflow_Tensor_shape}

Returns the shape of the tensor.

int tensorflow::Tensor::dims() const {#int_tensorflow_Tensor_dims}

Convenience accessor for the tensor shape.

For all shape accessors, see comments for relevant methods of TensorShape in tensor_shape.h.

int64 tensorflow::Tensor::dim_size(int d) const {#int64_tensorflow_Tensor_dim_size}

Convenience accessor for the tensor shape.

int64 tensorflow::Tensor::NumElements() const {#int64_tensorflow_Tensor_NumElements}

Convenience accessor for the tensor shape.

bool tensorflow::Tensor::IsSameSize(const Tensor &b) const {#bool_tensorflow_Tensor_IsSameSize}

bool tensorflow::Tensor::SharesBufferWith(const Tensor &b) const {#bool_tensorflow_Tensor_SharesBufferWith}

bool tensorflow::Tensor::IsInitialized() const {#bool_tensorflow_Tensor_IsInitialized}

If necessary, has this Tensor been initialized?

Zero-element Tensors are always considered initialized, even if they have never been assigned to and do not have any memory allocated.

size_t tensorflow::Tensor::TotalBytes() const {#size_t_tensorflow_Tensor_TotalBytes}

Returns the estimated memory usage of this tensor.

bool tensorflow::Tensor::IsAligned() const {#bool_tensorflow_Tensor_IsAligned}

Returns true iff this tensor is aligned.

Tensor& tensorflow::Tensor::operator=(const Tensor &other) {#Tensor_tensorflow_Tensor_operator_}

Assign operator. This tensor shares other

‘

s underlying storage.

Tensor & tensorflow::Tensor::operator=(Tensor &&other) {#Tensor_tensorflow_Tensor_operator_}

Move operator. See move constructor for details.

bool tensorflow::Tensor::CopyFrom(const Tensor &other, const TensorShape &shape) TF_MUST_USE_RESULT {#bool_tensorflow_Tensor_CopyFrom}

Copy the other tensor into this tensor and reshape it.

This tensor shares other

‘

s underlying storage. Returns true iff other.shape() has the same number of elements of the given shape.

Tensor tensorflow::Tensor::Slice(int64 dim0_start, int64 dim0_limit) const {#Tensor_tensorflow_Tensor_Slice}

Slice this tensor along the 1st dimension.

I.e., the returned tensor satisfies returned[i, ...] == this[dim0_start + i, ...]. The returned tensor shares the underlying tensor buffer with this tensor.

NOTE: The returned tensor may not satisfies the same alignment requirement as this tensor depending on the shape. The caller must check the returned tensor

‘

s alignment before calling certain methods that have alignment requirement (e.g., flat(), tensor()).

REQUIRES: dims() >= 1 REQUIRES: 0 <= dim0_start <= dim0_limit <= dim_size(0)

bool tensorflow::Tensor::FromProto(const TensorProto &other) TF_MUST_USE_RESULT {#bool_tensorflow_Tensor_FromProto}

Parse other and construct the tensor.

Returns true iff the parsing succeeds. If the parsing fails, the state of *this is unchanged.

bool tensorflow::Tensor::FromProto(Allocator *a, const TensorProto &other) TF_MUST_USE_RESULT {#bool_tensorflow_Tensor_FromProto}

void tensorflow::Tensor::AsProtoField(TensorProto *proto) const {#void_tensorflow_Tensor_AsProtoField}

Fills in proto with *this tensor

‘

s content.

AsProtoField() fills in the repeated field for proto.dtype(), while AsProtoTensorContent() encodes the content in proto.tensor_content() in a compact form.

void tensorflow::Tensor::AsProtoTensorContent(TensorProto *proto) const {#void_tensorflow_Tensor_AsProtoTensorContent}

TTypes<T>::Vec tensorflow::Tensor::vec() {#TTypes_T_Vec_tensorflow_Tensor_vec}

Return the tensor data as an Eigen::Tensor with the type and sizes of this Tensor.

Use these methods when you know the data type and the number of dimensions of the Tensor and you want an Eigen::Tensor automatically sized to the Tensor sizes. The implementation check fails if either type or sizes mismatch.

Example:

Tensor my_mat(...built with Shape{rows: 3, cols: 5}...);
auto mat = my_mat.matrix<T>(); // 2D Eigen::Tensor, 3 x 5.
auto mat = my_mat.tensor<T, 2>(); // 2D Eigen::Tensor, 3 x 5.
auto vec = my_mat.vec<T>(); // CHECK fails as my_mat is 2D.
auto vec = my_mat.tensor<T, 3>(); // CHECK fails as my_mat is 2D.
auto mat = my_mat.matrix<int32>();// CHECK fails as type mismatch.

TTypes<T>::Matrix tensorflow::Tensor::matrix() {#TTypes_T_Matrix_tensorflow_Tensor_matrix}

TTypes< T, NDIMS >::Tensor tensorflow::Tensor::tensor() {#TTypes_T_NDIMS_Tensor_tensorflow_Tensor_tensor}

TTypes< T, NDIMS >::Tensor tensorflow::Tensor::bit_casted_tensor() {#TTypes_T_NDIMS_Tensor_tensorflow_Tensor_bit_casted_tensor}

Return the tensor data to an Eigen::Tensor with the same size but a bitwise cast to the specified dtype T.

Using a bitcast is useful for move and copy operations. NOTE: this is the same as tensor() except a bitcast is allowed.

TTypes<T>::Flat tensorflow::Tensor::flat() {#TTypes_T_Flat_tensorflow_Tensor_flat}

Return the tensor data as an Eigen::Tensor of the data type and a specified shape.

These methods allow you to access the data with the dimensions and sizes of your choice. You do not need to know the number of dimensions of the Tensor to call them. However, they CHECK that the type matches and the dimensions requested creates an Eigen::Tensor with the same number of elements as the tensor.

Example:

Tensor my_ten(...built with Shape{planes: 4, rows: 3, cols: 5}...);
// 1D Eigen::Tensor, size 60:
auto flat = my_ten.flat<T>();
// 2D Eigen::Tensor 12 x 5:
auto inner = my_ten.flat_inner_dims<T>();
// 2D Eigen::Tensor 4 x 15:
auto outer = my_ten.shaped<T, 2>({4, 15});
// CHECK fails, bad num elements:
auto outer = my_ten.shaped<T, 2>({4, 8});
// 3D Eigen::Tensor 6 x 5 x 2:
auto weird = my_ten.shaped<T, 3>({6, 5, 2});
// CHECK fails, type mismatch:
auto bad = my_ten.flat<int32>();

TTypes<T>::UnalignedFlat tensorflow::Tensor::unaligned_flat() {#TTypes_T_UnalignedFlat_tensorflow_Tensor_unaligned_flat}

TTypes< T, NDIMS >::Tensor tensorflow::Tensor::flat_inner_dims() {#TTypes_T_NDIMS_Tensor_tensorflow_Tensor_flat_inner_dims}

Returns the data as an Eigen::Tensor with NDIMS dimensions, collapsing all Tensor dimensions but the last NDIMS-1 into the first dimension of the result. If NDIMS > dims() then leading dimensions of size 1 will be added to make the output rank NDIMS.

TTypes< T, NDIMS >::Tensor tensorflow::Tensor::flat_outer_dims() {#TTypes_T_NDIMS_Tensor_tensorflow_Tensor_flat_outer_dims}

Returns the data as an Eigen::Tensor with NDIMS dimensions, collapsing all Tensor dimensions but the first NDIMS-1 into the last dimension of the result. If NDIMS > dims() then trailing dimensions of size 1 will be added to make the output rank NDIMS.

TTypes< T, NDIMS >::Tensor tensorflow::Tensor::shaped(gtl::ArraySlice< int64 > new_sizes) {#TTypes_T_NDIMS_Tensor_tensorflow_Tensor_shaped}

TTypes< T, NDIMS >::Tensor tensorflow::Tensor::bit_casted_shaped(gtl::ArraySlice< int64 > new_sizes) {#TTypes_T_NDIMS_Tensor_tensorflow_Tensor_bit_casted_shaped}

Return the tensor data to an Eigen::Tensor with the new shape specified in new_sizes and cast to a new dtype T.

Using a bitcast is useful for move and copy operations. The allowed bitcast is the only difference from shaped().

TTypes< T, NDIMS >::UnalignedTensor tensorflow::Tensor::unaligned_shaped(gtl::ArraySlice< int64 > new_sizes) {#TTypes_T_NDIMS_UnalignedTensor_tensorflow_Tensor_unaligned_shaped}

TTypes< T >::Scalar tensorflow::Tensor::scalar() {#TTypes_T_Scalar_tensorflow_Tensor_scalar}

Return the Tensor data as a TensorMap of fixed size 1: TensorMap<TensorFixedSize<T, 1>>.

Using scalar() allows the compiler to perform optimizations as the size of the tensor is known at compile time.

TTypes<T>::ConstVec tensorflow::Tensor::vec() const {#TTypes_T_ConstVec_tensorflow_Tensor_vec}

Const versions of all the methods above.

TTypes<T>::ConstMatrix tensorflow::Tensor::matrix() const {#TTypes_T_ConstMatrix_tensorflow_Tensor_matrix}

TTypes< T, NDIMS >::ConstTensor tensorflow::Tensor::tensor() const {#TTypes_T_NDIMS_ConstTensor_tensorflow_Tensor_tensor}

TTypes< T, NDIMS >::ConstTensor tensorflow::Tensor::bit_casted_tensor() const {#TTypes_T_NDIMS_ConstTensor_tensorflow_Tensor_bit_casted_tensor}

Return the tensor data to an Eigen::Tensor with the same size but a bitwise cast to the specified dtype T.

Using a bitcast is useful for move and copy operations. NOTE: this is the same as tensor() except a bitcast is allowed.

TTypes<T>::ConstFlat tensorflow::Tensor::flat() const {#TTypes_T_ConstFlat_tensorflow_Tensor_flat}

TTypes<T>::UnalignedConstFlat tensorflow::Tensor::unaligned_flat() const {#TTypes_T_UnalignedConstFlat_tensorflow_Tensor_unaligned_flat}

TTypes< T, NDIMS >::ConstTensor tensorflow::Tensor::shaped(gtl::ArraySlice< int64 > new_sizes) const {#TTypes_T_NDIMS_ConstTensor_tensorflow_Tensor_shaped}

TTypes< T, NDIMS >::ConstTensor tensorflow::Tensor::bit_casted_shaped(gtl::ArraySlice< int64 > new_sizes) const {#TTypes_T_NDIMS_ConstTensor_tensorflow_Tensor_bit_casted_shaped}

Return the tensor data to an Eigen::Tensor with the new shape specified in new_sizes and cast to a new dtype T.

Using a bitcast is useful for move and copy operations. The allowed bitcast is the only difference from shaped().

TTypes< T, NDIMS >::UnalignedConstTensor tensorflow::Tensor::unaligned_shaped(gtl::ArraySlice< int64 > new_sizes) const {#TTypes_T_NDIMS_UnalignedConstTensor_tensorflow_Tensor_unaligned_shaped}

TTypes< T >::ConstScalar tensorflow::Tensor::scalar() const {#TTypes_T_ConstScalar_tensorflow_Tensor_scalar}

TTypes< T, NDIMS >::ConstTensor tensorflow::Tensor::flat_inner_dims() const {#TTypes_T_NDIMS_ConstTensor_tensorflow_Tensor_flat_inner_dims}

TTypes< T, NDIMS >::ConstTensor tensorflow::Tensor::flat_outer_dims() const {#TTypes_T_NDIMS_ConstTensor_tensorflow_Tensor_flat_outer_dims}

string tensorflow::Tensor::SummarizeValue(int64 max_entries) const {#string_tensorflow_Tensor_SummarizeValue}

Render the first max_entries values in *this into a string.

string tensorflow::Tensor::DebugString() const {#string_tensorflow_Tensor_DebugString}

A human-readable summary of the tensor suitable for debugging.

void tensorflow::Tensor::FillDescription(TensorDescription *description) const {#void_tensorflow_Tensor_FillDescription}

Fill in the TensorDescription proto with metadata about the tensor that is useful for monitoring and debugging.

StringPiece tensorflow::Tensor::tensor_data() const {#StringPiece_tensorflow_Tensor_tensor_data}

Returns a StringPiece mapping the current tensor

‘

s buffer.

The returned StringPiece may point to memory location on devices that the CPU cannot address directly.

NOTE: The underlying tensor buffer is refcounted, so the lifetime of the contents mapped by the StringPiece matches the lifetime of the buffer; callers should arrange to make sure the buffer does not get destroyed while the StringPiece is still used.

REQUIRES: DataTypeCanUseMemcpy(dtype()).

void tensorflow::Tensor::UnsafeCopyFromInternal(const Tensor &, DataType dtype, const TensorShape &) {#void_tensorflow_Tensor_UnsafeCopyFromInternal}

Copy the other tensor into this tensor and reshape it and reinterpret the buffer

‘

s datatype.

This tensor shares other

‘

s underlying storage.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.distributions.Bernoulli.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Bernoulli distribution.

The Bernoulli distribution is parameterized by p, the probability of a
positive event.

tf.contrib.distributions.Bernoulli.__init__(logits=None, p=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='Bernoulli') {#Bernoulli.init}

Construct Bernoulli distributions.

Args:

		logits: An N-D Tensor representing the log-odds
of a positive event. Each entry in the Tensor parametrizes
an independent Bernoulli distribution where the probability of an event
is sigmoid(logits).

		p: An N-D Tensor representing the probability of a positive
event. Each entry in the Tensor parameterizes an independent
Bernoulli distribution.

		dtype: dtype for samples.

		validate_args: Boolean, default False. Whether to validate that
0 <= p <= 1. If validate_args is False, and the inputs are
invalid, methods like log_pmf may return NaN values.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: A name for this distribution.

Raises:

		ValueError: If p and logits are passed, or if neither are passed.

tf.contrib.distributions.Bernoulli.allow_nan_stats {#Bernoulli.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Bernoulli.batch_shape(name='batch_shape') {#Bernoulli.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Bernoulli.cdf(value, name='cdf') {#Bernoulli.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Bernoulli.dtype {#Bernoulli.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Bernoulli.entropy(name='entropy') {#Bernoulli.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Bernoulli.event_shape(name='event_shape') {#Bernoulli.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Bernoulli.get_batch_shape() {#Bernoulli.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Bernoulli.get_event_shape() {#Bernoulli.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Bernoulli.is_continuous {#Bernoulli.is_continuous}

tf.contrib.distributions.Bernoulli.is_reparameterized {#Bernoulli.is_reparameterized}

tf.contrib.distributions.Bernoulli.log_cdf(value, name='log_cdf') {#Bernoulli.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Bernoulli.log_pdf(value, name='log_pdf') {#Bernoulli.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Bernoulli.log_pmf(value, name='log_pmf') {#Bernoulli.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Bernoulli.log_prob(value, name='log_prob') {#Bernoulli.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Bernoulli.log_survival_function(value, name='log_survival_function') {#Bernoulli.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Bernoulli.logits {#Bernoulli.logits}

tf.contrib.distributions.Bernoulli.mean(name='mean') {#Bernoulli.mean}

Mean.

tf.contrib.distributions.Bernoulli.mode(name='mode') {#Bernoulli.mode}

Mode.

tf.contrib.distributions.Bernoulli.name {#Bernoulli.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Bernoulli.p {#Bernoulli.p}

tf.contrib.distributions.Bernoulli.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Bernoulli.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Bernoulli.param_static_shapes(cls, sample_shape) {#Bernoulli.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Bernoulli.parameters {#Bernoulli.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Bernoulli.pdf(value, name='pdf') {#Bernoulli.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Bernoulli.pmf(value, name='pmf') {#Bernoulli.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Bernoulli.prob(value, name='prob') {#Bernoulli.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Bernoulli.q {#Bernoulli.q}

1-p.

tf.contrib.distributions.Bernoulli.sample(sample_shape=(), seed=None, name='sample') {#Bernoulli.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Bernoulli.sample_n(n, seed=None, name='sample_n') {#Bernoulli.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Bernoulli.std(name='std') {#Bernoulli.std}

Standard deviation.

tf.contrib.distributions.Bernoulli.survival_function(value, name='survival_function') {#Bernoulli.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Bernoulli.validate_args {#Bernoulli.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Bernoulli.variance(name='variance') {#Bernoulli.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.metrics.aggregate_metric_map.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.aggregate_metric_map(names_to_tuples) {#aggregate_metric_map}

Aggregates the metric names to tuple dictionary.

This function is useful for pairing metric names with their associated value
and update ops when the list of metrics is long. For example:

metrics_to_values, metrics_to_updates = slim.metrics.aggregate_metric_map({
‘Mean Absolute Error’: new_slim.metrics.streaming_mean_absolute_error(
predictions, labels, weights),
‘Mean Relative Error’: new_slim.metrics.streaming_mean_relative_error(
predictions, labels, labels, weights),
‘RMSE Linear’: new_slim.metrics.streaming_root_mean_squared_error(
predictions, labels, weights),
‘RMSE Log’: new_slim.metrics.streaming_root_mean_squared_error(
predictions, labels, weights),
})

Args:

		names_to_tuples: a map of metric names to tuples, each of which contain the
pair of (value_tensor, update_op) from a streaming metric.

Returns:

A dictionary from metric names to value ops and a dictionary from metric
names to update ops.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/cc/ClassEnv.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

class tensorflow::Env

An interface used by the tensorflow implementation to access operating system functionality like the filesystem etc.

Callers may wish to provide a custom Env object to get fine grain control.

All Env implementations are safe for concurrent access from multiple threads without any external synchronization.

###Member Details

tensorflow::Env::Env() {#tensorflow_Env_Env}

virtual tensorflow::Env::~Env()=default {#virtual_tensorflow_Env_Env}

Status tensorflow::Env::GetFileSystemForFile(const string &fname, FileSystem **result) {#Status_tensorflow_Env_GetFileSystemForFile}

Returns the FileSystem object to handle operations on the file specified by

‘

fname‘

. The FileSystem object is used as the implementation for the file system related (non-virtual) functions that follow. Returned FileSystem object is still owned by the Env object and will.

Status tensorflow::Env::GetRegisteredFileSystemSchemes(std::vector< string > *schemes) {#Status_tensorflow_Env_GetRegisteredFileSystemSchemes}

Returns the file system schemes registered for this Env .

Status tensorflow::Env::RegisterFileSystem(const string &scheme, FileSystemRegistry::Factory factory) {#Status_tensorflow_Env_RegisterFileSystem}

Status tensorflow::Env::NewRandomAccessFile(const string &fname, std::unique_ptr< RandomAccessFile > *result) {#Status_tensorflow_Env_NewRandomAccessFile}

Creates a brand new random access read-only file with the specified name.

On success, stores a pointer to the new file in *result and returns OK. On failure stores NULL in *result and returns non-OK. If the file does not exist, returns a non-OK status.

The returned file may be concurrently accessed by multiple threads.

The ownership of the returned RandomAccessFile is passed to the caller and the object should be deleted when is not used. The file object shouldn

‘

t live longer than the Env object.

Status tensorflow::Env::NewWritableFile(const string &fname, std::unique_ptr< WritableFile > *result) {#Status_tensorflow_Env_NewWritableFile}

Creates an object that writes to a new file with the specified name.

Deletes any existing file with the same name and creates a new file. On success, stores a pointer to the new file in *result and returns OK. On failure stores NULL in *result and returns non-OK.

The returned file will only be accessed by one thread at a time.

The ownership of the returned WritableFile is passed to the caller and the object should be deleted when is not used. The file object shouldn

‘

t live longer than the Env object.

Status tensorflow::Env::NewAppendableFile(const string &fname, std::unique_ptr< WritableFile > *result) {#Status_tensorflow_Env_NewAppendableFile}

Creates an object that either appends to an existing file, or writes to a new file (if the file does not exist to begin with).

On success, stores a pointer to the new file in *result and returns OK. On failure stores NULL in *result and returns non-OK.

The returned file will only be accessed by one thread at a time.

The ownership of the returned WritableFile is passed to the caller and the object should be deleted when is not used. The file object shouldn

‘

t live longer than the Env object.

Status tensorflow::Env::NewReadOnlyMemoryRegionFromFile(const string &fname, std::unique_ptr< ReadOnlyMemoryRegion > *result) {#Status_tensorflow_Env_NewReadOnlyMemoryRegionFromFile}

Creates a readonly region of memory with the file context.

On success, it returns a pointer to read-only memory region from the content of file fname. The ownership of the region is passed to the caller. On failure stores nullptr in *result and returns non-OK.

The returned memory region can be accessed from many threads in parallel.

The ownership of the returned ReadOnlyMemoryRegion is passed to the caller and the object should be deleted when is not used. The memory region object shouldn

‘

t live longer than the Env object.

bool tensorflow::Env::FileExists(const string &fname) {#bool_tensorflow_Env_FileExists}

Returns true iff the named file exists.

Status tensorflow::Env::GetChildren(const string &dir, std::vector< string > *result) {#Status_tensorflow_Env_GetChildren}

Stores in *result the names of the children of the specified directory. The names are relative to “dir”.

Original contents of *results are dropped.

virtual bool tensorflow::Env::MatchPath(const string &path, const string &pattern)=0 {#virtual_bool_tensorflow_Env_MatchPath}

Returns true if the path matches the given pattern. The wildcards allowed in pattern are described below (GetMatchingPaths).

Status tensorflow::Env::GetMatchingPaths(const string &pattern, std::vector< string > *results) {#Status_tensorflow_Env_GetMatchingPaths}

Given a pattern, stores in *results the set of paths that matches that pattern. *results is cleared.

pattern must match all of a name, not just a substring. pattern: { term } term:

‘

‘

: matches any sequence of non-‘

/‘

 characters ‘

?‘

: matches a single non-‘

/‘

 character ‘

[‘

 [‘

^‘

] { match-list } ‘

]‘

: matches any single character (not) on the list c: matches character c (c != ‘

‘

, ‘

?‘

, ‘

', ‘

[‘

) ‘

' c: matches character c character-range: c: matches character c (c != ‘

', ‘

-‘

, ‘

]‘

) ‘

' c: matches character c lo ‘

-‘

 hi: matches character c for lo <= c <= hi

Typical return codes

OK - no errors

UNIMPLEMENTED - Some underlying functions (like GetChildren) are not implemented The default implementation uses a combination of GetChildren, MatchPath and IsDirectory.

Status tensorflow::Env::DeleteFile(const string &fname) {#Status_tensorflow_Env_DeleteFile}

Deletes the named file.

Status tensorflow::Env::DeleteRecursively(const string &dirname, int64 *undeleted_files, int64 *undeleted_dirs) {#Status_tensorflow_Env_DeleteRecursively}

Deletes the specified directory and all subdirectories and files underneath it. undeleted_files and undeleted_dirs stores the number of files and directories that weren

‘

t deleted (unspecified if the return status is not OK). REQUIRES: undeleted_files, undeleted_dirs to be not null. Typical return codes.

OK - dirname exists and we were able to delete everything underneath.

NOT_FOUND - dirname doesn

‘

t exist

PERMISSION_DENIED - dirname or some descendant is not writable

UNIMPLEMENTED - Some underlying functions (like Delete) are not implemented

Status tensorflow::Env::RecursivelyCreateDir(const string &dirname) {#Status_tensorflow_Env_RecursivelyCreateDir}

Creates the specified directory and all the necessary subdirectories. Typical return codes.

OK - successfully created the directory and sub directories, even if they were already created.

PERMISSION_DENIED - dirname or some subdirectory is not writable.

Status tensorflow::Env::CreateDir(const string &dirname) {#Status_tensorflow_Env_CreateDir}

Creates the specified directory. Typical return codes.

OK - successfully created the directory.

ALREADY_EXISTS - directory already exists.

PERMISSION_DENIED - dirname is not writable.

Status tensorflow::Env::DeleteDir(const string &dirname) {#Status_tensorflow_Env_DeleteDir}

Deletes the specified directory.

Status tensorflow::Env::Stat(const string &fname, FileStatistics *stat) {#Status_tensorflow_Env_Stat}

Obtains statistics for the given path.

Status tensorflow::Env::IsDirectory(const string &fname) {#Status_tensorflow_Env_IsDirectory}

Returns whether the given path is a directory or not. Typical return codes (not guaranteed exhaustive):

OK - The path exists and is a directory.

FAILED_PRECONDITION - The path exists and is not a directory.

NOT_FOUND - The path entry does not exist.

PERMISSION_DENIED - Insufficient permissions.

UNIMPLEMENTED - The file factory doesn

‘

t support directories.

Status tensorflow::Env::GetFileSize(const string &fname, uint64 *file_size) {#Status_tensorflow_Env_GetFileSize}

Stores the size of fname in *file_size.

Status tensorflow::Env::RenameFile(const string &src, const string &target) {#Status_tensorflow_Env_RenameFile}

Renames file src to target. If target already exists, it will be replaced.

virtual uint64 tensorflow::Env::NowMicros()=0 {#virtual_uint64_tensorflow_Env_NowMicros}

Returns the number of micro-seconds since some fixed point in time. Only useful for computing deltas of time.

virtual uint64 tensorflow::Env::NowSeconds() {#virtual_uint64_tensorflow_Env_NowSeconds}

Returns the number of seconds since some fixed point in time. Only useful for computing deltas of time.

virtual void tensorflow::Env::SleepForMicroseconds(int64 micros)=0 {#virtual_void_tensorflow_Env_SleepForMicroseconds}

Sleeps/delays the thread for the prescribed number of micro-seconds.

virtual Thread* tensorflow::Env::StartThread(const ThreadOptions &thread_options, const string &name, std::function< void()> fn) TF_MUST_USE_RESULT=0 {#virtual_Thread_tensorflow_Env_StartThread}

Returns a new thread that is running fn() and is identified (for debugging/performance-analysis) by “name”.

Caller takes ownership of the result and must delete it eventually (the deletion will block until fn() stops running).

virtual void tensorflow::Env::SchedClosure(std::function< void()> closure)=0 {#virtual_void_tensorflow_Env_SchedClosure}

virtual void tensorflow::Env::SchedClosureAfter(int64 micros, std::function< void()> closure)=0 {#virtual_void_tensorflow_Env_SchedClosureAfter}

virtual Status tensorflow::Env::LoadLibrary(const char *library_filename, void **handle)=0 {#virtual_Status_tensorflow_Env_LoadLibrary}

virtual Status tensorflow::Env::GetSymbolFromLibrary(void *handle, const char *symbol_name, void **symbol)=0 {#virtual_Status_tensorflow_Env_GetSymbolFromLibrary}

static Env* tensorflow::Env::Default() {#static_Env_tensorflow_Env_Default}

Returns a default environment suitable for the current operating system.

Sophisticated users may wish to provide their own Env implementation instead of relying on this default environment.

The result of Default() belongs to this library and must never be deleted.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.graph_editor.swap_inputs.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.swap_inputs(sgv0, sgv1) {#swap_inputs}

Swap all the inputs of sgv0 and sgv1 (see reroute_inputs).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.train.summary_iterator.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.summary_iterator(path) {#summary_iterator}

An iterator for reading Event protocol buffers from an event file.

You can use this function to read events written to an event file. It returns
a Python iterator that yields Event protocol buffers.

Example: Print the contents of an events file.

for e in tf.train.summary_iterator(path to events file):
 print(e)

Example: Print selected summary values.

This example supposes that the events file contains summaries with a
summary value tag 'loss'. These could have been added by calling
`add_summary()`, passing the output of a scalar summary op created with
with: `tf.scalar_summary(['loss'], loss_tensor)`.
for e in tf.train.summary_iterator(path to events file):
 for v in e.summary.value:
 if v.tag == 'loss':
 print(v.simple_value)

See the protocol buffer definitions of
Event [https://www.tensorflow.org/code/tensorflow/core/util/event.proto]
and
Summary [https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto]
for more information about their attributes.

Args:

		path: The path to an event file created by a SummaryWriter.

Yields:

Event protocol buffers.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/cc/StructState.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

struct tensorflow::Status::State

###Member Details

tensorflow::error::Code tensorflow::Status::State::code {#tensorflow_error_Code_tensorflow_Status_State_code}

string tensorflow::Status::State::msg {#string_tensorflow_Status_State_msg}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 MultivariateNormalDiagPlusVDVTTensor is a StochasticTensor backed by the distribution MultivariateNormalDiagPlusVDVT.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#MultivariateNormalDiagPlusVDVTTensor.init}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.clone(name=None, **dist_args) {#MultivariateNormalDiagPlusVDVTTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.distribution {#MultivariateNormalDiagPlusVDVTTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.dtype {#MultivariateNormalDiagPlusVDVTTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.entropy(name='entropy') {#MultivariateNormalDiagPlusVDVTTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.graph {#MultivariateNormalDiagPlusVDVTTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.input_dict {#MultivariateNormalDiagPlusVDVTTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.loss(final_loss, name='Loss') {#MultivariateNormalDiagPlusVDVTTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.mean(name='mean') {#MultivariateNormalDiagPlusVDVTTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.name {#MultivariateNormalDiagPlusVDVTTensor.name}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.value(name='value') {#MultivariateNormalDiagPlusVDVTTensor.value}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.value_type {#MultivariateNormalDiagPlusVDVTTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.gather.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.gather(params, indices, validate_indices=None, name=None) {#gather}

Gather slices from params according to indices.

indices must be an integer tensor of any dimension (usually 0-D or 1-D).
Produces an output tensor with shape indices.shape + params.shape[1:] where:

Scalar indices
output[:, ..., :] = params[indices, :, ... :]

Vector indices
output[i, :, ..., :] = params[indices[i], :, ... :]

Higher rank indices
output[i, ..., j, :, ... :] = params[indices[i, ..., j], :, ..., :]

If indices is a permutation and len(indices) == params.shape[0] then
this operation will permute params accordingly.

[image:]

Args:

		params: A Tensor.

		indices: A Tensor. Must be one of the following types: int32, int64.

		validate_indices: An optional bool. Defaults to True.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as params.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.mul.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.mul(x, y, name=None) {#mul}

Returns x * y element-wise.

NOTE: Mul supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.space_to_batch.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.space_to_batch(input, paddings, block_size, name=None) {#space_to_batch}

SpaceToBatch for 4-D tensors of type T.

This is a legacy version of the more general SpaceToBatchND.

Zero-pads and then rearranges (permutes) blocks of spatial data into batch.
More specifically, this op outputs a copy of the input tensor where values from
the height and width dimensions are moved to the batch dimension. After
the zero-padding, both height and width of the input must be divisible by the
block size.

Args:

		input: A Tensor. 4-D with shape [batch, height, width, depth].

		paddings: A Tensor. Must be one of the following types: int32, int64.
2-D tensor of non-negative integers with shape [2, 2]. It specifies
the padding of the input with zeros across the spatial dimensions as follows:

 paddings = [[pad_top, pad_bottom], [pad_left, pad_right]]

The effective spatial dimensions of the zero-padded input tensor will be:

 height_pad = pad_top + height + pad_bottom
 width_pad = pad_left + width + pad_right

The attr block_size must be greater than one. It indicates the block size.

		Non-overlapping blocks of size block_size x block size in the height and
width dimensions are rearranged into the batch dimension at each location.

		The batch of the output tensor is batch * block_size * block_size.

		Both height_pad and width_pad must be divisible by block_size.

The shape of the output will be:

 [batch*block_size*block_size, height_pad/block_size, width_pad/block_size,
 depth]

Some examples:

(1) For the following input of shape [1, 2, 2, 1] and block_size of 2:

x = [[[[1], [2]], [[3], [4]]]]

The output tensor has shape [4, 1, 1, 1] and value:

[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]

(2) For the following input of shape [1, 2, 2, 3] and block_size of 2:

x = [[[[1, 2, 3], [4, 5, 6]],
 [[7, 8, 9], [10, 11, 12]]]]

The output tensor has shape [4, 1, 1, 3] and value:

[[[1, 2, 3]], [[4, 5, 6]], [[7, 8, 9]], [[10, 11, 12]]]

(3) For the following input of shape [1, 4, 4, 1] and block_size of 2:

x = [[[[1], [2], [3], [4]],
 [[5], [6], [7], [8]],
 [[9], [10], [11], [12]],
 [[13], [14], [15], [16]]]]

The output tensor has shape [4, 2, 2, 1] and value:

x = [[[[1], [3]], [[5], [7]]],
 [[[2], [4]], [[10], [12]]],
 [[[5], [7]], [[13], [15]]],
 [[[6], [8]], [[14], [16]]]]

(4) For the following input of shape [2, 2, 4, 1] and block_size of 2:

x = [[[[1], [2], [3], [4]],
 [[5], [6], [7], [8]]],
 [[[9], [10], [11], [12]],
 [[13], [14], [15], [16]]]]

The output tensor has shape [8, 1, 2, 1] and value:

x = [[[[1], [3]]], [[[9], [11]]], [[[2], [4]]], [[[10], [12]]],
 [[[5], [7]]], [[[13], [15]]], [[[6], [8]]], [[[14], [16]]]]

Among others, this operation is useful for reducing atrous convolution into
regular convolution.

		block_size: An int that is >= 2.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.util.ops_used_by_graph_def.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.util.ops_used_by_graph_def(graph_def) {#ops_used_by_graph_def}

Collect the list of ops used by a graph.

Does not validate that the ops are all registered.

Args:

		graph_def: A GraphDef proto, as from graph.as_graph_def().

Returns:

A list of strings, each naming an op used by the graph.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.nn.raw_rnn.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.raw_rnn(cell, loop_fn, parallel_iterations=None, swap_memory=False, scope=None) {#raw_rnn}

Creates an RNN specified by RNNCell cell and loop function loop_fn.

NOTE: This method is still in testing, and the API may change.

This function is a more primitive version of dynamic_rnn that provides
more direct access to the inputs each iteration. It also provides more
control over when to start and finish reading the sequence, and
what to emit for the output.

For example, it can be used to implement the dynamic decoder of a seq2seq
model.

Instead of working with Tensor objects, most operations work with
TensorArray objects directly.

The operation of raw_rnn, in pseudo-code, is basically the following:

time = tf.constant(0, dtype=tf.int32)
(finished, next_input, initial_state, _, loop_state) = loop_fn(
 time=time, cell_output=None, cell_state=None, loop_state=None)
emit_ta = TensorArray(dynamic_size=True, dtype=initial_state.dtype)
state = initial_state
while not all(finished):
 (output, cell_state) = cell(next_input, state)
 (next_finished, next_input, next_state, emit, loop_state) = loop_fn(
 time=time + 1, cell_output=output, cell_state=cell_state,
 loop_state=loop_state)
 # Emit zeros and copy forward state for minibatch entries that are finished.
 state = tf.select(finished, state, next_state)
 emit = tf.select(finished, tf.zeros_like(emit), emit)
 emit_ta = emit_ta.write(time, emit)
 # If any new minibatch entries are marked as finished, mark these
 finished = tf.logical_or(finished, next_finished)
 time += 1
return (emit_ta, state, loop_state)

with the additional properties that output and state may be (possibly nested)
tuples, as determined by cell.output_size and cell.state_size, and
as a result the final state and emit_ta may themselves be tuples.

A simple implementation of dynamic_rnn via raw_rnn looks like this:

inputs = tf.placeholder(shape=(max_time, batch_size, input_depth),
 dtype=tf.float32)
sequence_length = tf.placeholder(shape=(batch_size,), dtype=tf.int32)
inputs_ta = tf.TensorArray(dtype=tf.float32, size=max_time)
inputs_ta = inputs_ta.unpack(inputs)

cell = tf.nn.rnn_cell.LSTMCell(num_units)

def loop_fn(time, cell_output, cell_state, loop_state):
 emit_output = cell_output # == None for time == 0
 if cell_output is None: # time == 0
 next_cell_state = cell.zero_state(batch_size, tf.float32)
 else:
 next_cell_state = cell_state
 elements_finished = (time >= sequence_length)
 finished = tf.reduce_all(elements_finished)
 next_input = tf.cond(
 finished,
 lambda: tf.zeros([batch_size, input_depth], dtype=tf.float32),
 lambda: inputs_ta.read(time))
 next_loop_state = None
 return (elements_finished, next_input, next_cell_state,
 emit_output, next_loop_state)

outputs_ta, final_state, _ = raw_rnn(cell, loop_fn)
outputs = outputs_ta.pack()

Args:

		cell: An instance of RNNCell.

		loop_fn: A callable that takes inputs
(time, cell_output, cell_state, loop_state)
and returns the tuple
(finished, next_input, next_cell_state, emit_output, next_loop_state).
Here time is an int32 scalar Tensor, cell_output is a
Tensor or (possibly nested) tuple of tensors as determined by
cell.output_size, and cell_state is a Tensor
or (possibly nested) tuple of tensors, as determined by the loop_fn
on its first call (and should match cell.state_size).
The outputs are: finished, a boolean Tensor of
shape [batch_size], next_input: the next input to feed to cell,
next_cell_state: the next state to feed to cell,
and emit_output: the output to store for this iteration.

Note that emit_output should be a Tensor or (possibly nested)
tuple of tensors with shapes and structure matching cell.output_size
and cell_output above. The parameter cell_state and output
next_cell_state may be either a single or (possibly nested) tuple
of tensors. The parameter loop_state and
output next_loop_state may be either a single or (possibly nested) tuple
of Tensor and TensorArray objects. This last parameter
may be ignored by loop_fn and the return value may be None. If it
is not None, then the loop_state will be propagated through the RNN
loop, for use purely by loop_fn to keep track of its own state.
The next_loop_state parameter returned may be None.

The first call to loop_fn will be time = 0, cell_output = None,
cell_state = None, and loop_state = None. For this call:
The next_cell_state value should be the value with which to initialize
the cell’s state. It may be a final state from a previous RNN or it
may be the output of cell.zero_state(). It should be a
(possibly nested) tuple structure of tensors.
If cell.state_size is an integer, this must be
a Tensor of appropriate type and shape [batch_size, cell.state_size].
If cell.state_size is a TensorShape, this must be a Tensor of
appropriate type and shape [batch_size] + cell.state_size.
If cell.state_size is a (possibly nested) tuple of ints or
TensorShape, this will be a tuple having the corresponding shapes.
The emit_output value may be either None or a (possibly nested)
tuple structure of tensors, e.g.,
(tf.zeros(shape_0, dtype=dtype_0), tf.zeros(shape_1, dtype=dtype_1)).
If this first emit_output return value is None,
then the emit_ta result of raw_rnn will have the same structure and
dtypes as cell.output_size. Otherwise emit_ta will have the same
structure, shapes (prepended with a batch_size dimension), and dtypes
as emit_output. The actual values returned for emit_output at this
initializing call are ignored. Note, this emit structure must be
consistent across all time steps.

		parallel_iterations: (Default: 32). The number of iterations to run in
parallel. Those operations which do not have any temporal dependency
and can be run in parallel, will be. This parameter trades off
time for space. Values >> 1 use more memory but take less time,
while smaller values use less memory but computations take longer.

		swap_memory: Transparently swap the tensors produced in forward inference
but needed for back prop from GPU to CPU. This allows training RNNs
which would typically not fit on a single GPU, with very minimal (or no)
performance penalty.

		scope: VariableScope for the created subgraph; defaults to “RNN”.

Returns:

A tuple (emit_ta, final_state, final_loop_state) where:

emit_ta: The RNN output TensorArray.
If loop_fn returns a (possibly nested) set of Tensors for
emit_output during initialization, (inputs time = 0,
cell_output = None, and loop_state = None), then emit_ta will
have the same structure, dtypes, and shapes as emit_output instead.
If loop_fn returns emit_output = None during this call,
the structure of cell.output_size is used:
If cell.output_size is a (possibly nested) tuple of integers
or TensorShape objects, then emit_ta will be a tuple having the
same structure as cell.output_size, containing TensorArrays whose
elements’ shapes correspond to the shape data in cell.output_size.

final_state: The final cell state. If cell.state_size is an int, this
will be shaped [batch_size, cell.state_size]. If it is a
TensorShape, this will be shaped [batch_size] + cell.state_size.
If it is a (possibly nested) tuple of ints or TensorShape, this will
be a tuple having the corresponding shapes.

final_loop_state: The final loop state as returned by loop_fn.

Raises:

		TypeError: If cell is not an instance of RNNCell, or loop_fn is not
a callable.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.py_func.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.py_func(func, inp, Tout, stateful=True, name=None) {#py_func}

Wraps a python function and uses it as a tensorflow op.

Given a python function func, which takes numpy arrays as its
inputs and returns numpy arrays as its outputs. E.g.,

def my_func(x):
 # x will be a numpy array with the contents of the placeholder below
 return np.sinh(x)
inp = tf.placeholder(tf.float32, [...])
y = py_func(my_func, [inp], [tf.float32])

The above snippet constructs a tf graph which invokes a numpy
sinh(x) as an op in the graph.

Args:

		func: A python function.

		inp: A list of Tensor.

		Tout: A list or tuple of tensorflow data types or a single tensorflow data
type if there is only one, indicating what func returns.

		stateful: A boolean indicating whether the function should be considered
stateful or stateless. I.e. whether it, given the same input, will
return the same output and at the same time does not change state
in an observable way. Optimizations such as common subexpression
elimination are only possible when operations are stateless.

		name: A name for the operation (optional).

Returns:

A list of Tensor or a single Tensor which func computes.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.layers.xavier_initializer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.xavier_initializer(uniform=True, seed=None, dtype=tf.float32) {#xavier_initializer}

Returns an initializer performing “Xavier” initialization for weights.

This function implements the weight initialization from:

Xavier Glorot and Yoshua Bengio (2010):
Understanding the difficulty of training deep feedforward neural
networks. International conference on artificial intelligence and
statistics.

This initializer is designed to keep the scale of the gradients roughly the
same in all layers. In uniform distribution this ends up being the range:
x = sqrt(6. / (in + out)); [-x, x] and for normal distribution a standard
deviation of sqrt(3. / (in + out)) is used.

Args:

		uniform: Whether to use uniform or normal distributed random initialization.

		seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

		dtype: The data type. Only floating point types are supported.

Returns:

An initializer for a weight matrix.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.name_scope.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.name_scope(name, default_name=None, values=None) {#name_scope}

Returns a context manager for use when defining a Python op.

This context manager validates that the given values are from the
same graph, makes that graph the default graph, and pushes a
name scope in that graph (see
Graph.name_scope()
for more details on that).

For example, to define a new Python op called my_op:

def my_op(a, b, c, name=None):
 with tf.name_scope(name, "MyOp", [a, b, c]) as scope:
 a = tf.convert_to_tensor(a, name="a")
 b = tf.convert_to_tensor(b, name="b")
 c = tf.convert_to_tensor(c, name="c")
 # Define some computation that uses `a`, `b`, and `c`.
 return foo_op(..., name=scope)

Args:

		name: The name argument that is passed to the op function.

		default_name: The default name to use if the name argument is None.

		values: The list of Tensor arguments that are passed to the op function.

Returns:

A context manager for use in defining Python ops. Yields the name scope.

Raises:

		ValueError: if neither name nor default_name is provided
but values are.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.nn.rnn_cell.LSTMStateTuple.__new__.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.rnn_cell.LSTMStateTuple.__new__(_cls, c, h) {#LSTMStateTuple.new}

Create new instance of LSTMStateTuple(c, h)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.layers.l1_regularizer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.l1_regularizer(scale, scope=None) {#l1_regularizer}

Returns a function that can be used to apply L1 regularization to weights.

L1 regularization encourages sparsity.

Args:

		scale: A scalar multiplier Tensor. 0.0 disables the regularizer.

		scope: An optional scope name.

Returns:

A function with signature l1(weights) that apply L1 regularization.

Raises:

		ValueError: If scale is negative or if scale is not a float.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/cc/StructSessionOptions.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

struct tensorflow::SessionOptions

Configuration information for a Session .

###Member Details

Env* tensorflow::SessionOptions::env {#Env_tensorflow_SessionOptions_env}

The environment to use.

string tensorflow::SessionOptions::target {#string_tensorflow_SessionOptions_target}

The TensorFlow runtime to connect to.

If

‘

target‘

 is empty or unspecified, the local TensorFlow runtime implementation will be used. Otherwise, the TensorFlow engine defined by ‘

target‘

 will be used to perform all computations.

“target” can be either a single entry or a comma separated list of entries. Each entry is a resolvable address of the following format: local ip:port host:port ... other system-specific formats to identify tasks and jobs ...

NOTE: at the moment

‘

local‘

 maps to an in-process service-based runtime.

Upon creation, a single session affines itself to one of the remote processes, with possible load balancing choices when the “target” resolves to a list of possible processes.

If the session disconnects from the remote process during its lifetime, session calls may fail immediately.

ConfigProto tensorflow::SessionOptions::config {#ConfigProto_tensorflow_SessionOptions_config}

Configuration options.

tensorflow::SessionOptions::SessionOptions() {#tensorflow_SessionOptions_SessionOptions}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.graph_editor.reroute_a2b_outputs.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.reroute_a2b_outputs(sgv0, sgv1) {#reroute_a2b_outputs}

Re-route all the outputs of sgv0 to sgv1 (see _reroute_outputs).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/cc/ClassRandomAccessFile.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

class tensorflow::RandomAccessFile

A file abstraction for randomly reading the contents of a file.

###Member Details

tensorflow::RandomAccessFile::RandomAccessFile() {#tensorflow_RandomAccessFile_RandomAccessFile}

tensorflow::RandomAccessFile::~RandomAccessFile() {#tensorflow_RandomAccessFile_RandomAccessFile}

virtual Status tensorflow::RandomAccessFile::Read(uint64 offset, size_t n, StringPiece *result, char *scratch) const =0 {#virtual_Status_tensorflow_RandomAccessFile_Read}

Reads up to n bytes from the file starting at offset.

scratch[0..n-1] may be written by this routine. Sets *result to the data that was read (including if fewer than n bytes were successfully read). May set *result to point at data in scratch[0..n-1], so scratch[0..n-1] must be live when *result is used.

On OK returned status: n bytes have been stored in *result. On non-OK returned status: [0..n] bytes have been stored in *result.

Returns OUT_OF_RANGE if fewer than n bytes were stored in *result because of EOF.

Safe for concurrent use by multiple threads.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/cc/ClassThread.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

class tensorflow::Thread

###Member Details

tensorflow::Thread::Thread() {#tensorflow_Thread_Thread}

tensorflow::Thread::~Thread() {#tensorflow_Thread_Thread}

Blocks until the thread of control stops running.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/cc/ClassStatus.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

class tensorflow::Status

###Member Details

tensorflow::Status::Status() {#tensorflow_Status_Status}

Create a success status.

tensorflow::Status::~Status() {#tensorflow_Status_Status}

tensorflow::Status::Status(tensorflow::error::Code code, tensorflow::StringPiece msg) {#tensorflow_Status_Status}

Create a status with the specified error code and msg as a human-readable string containing more detailed information.

tensorflow::Status::Status(const Status &s) {#tensorflow_Status_Status}

Copy the specified status.

void tensorflow::Status::operator=(const Status &s) {#void_tensorflow_Status_operator_}

bool tensorflow::Status::ok() const {#bool_tensorflow_Status_ok}

Returns true iff the status indicates success.

tensorflow::error::Code tensorflow::Status::code() const {#tensorflow_error_Code_tensorflow_Status_code}

const string& tensorflow::Status::error_message() const {#const_string_tensorflow_Status_error_message}

bool tensorflow::Status::operator==(const Status &x) const {#bool_tensorflow_Status_operator_}

bool tensorflow::Status::operator!=(const Status &x) const {#bool_tensorflow_Status_operator_}

void tensorflow::Status::Update(const Status &new_status) {#void_tensorflow_Status_Update}

If ok(), stores new_status into *this. If !ok(), preserves the current status, but may augment with additional information about new_status.

Convenient way of keeping track of the first error encountered. Instead of: if (overall_status.ok()) overall_status = new_status Use: overall_status.Update(new_status);

string tensorflow::Status::ToString() const {#string_tensorflow_Status_ToString}

Return a string representation of this status suitable for printing. Returns the string "OK" for success.

return tensorflow::Status::OK() {#return_tensorflow_Status_OK}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/cc/StructThreadOptions.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

struct tensorflow::ThreadOptions

Options to configure a Thread .

Note that the options are all hints, and the underlying implementation may choose to ignore it.

###Member Details

size_t tensorflow::ThreadOptions::stack_size {#size_t_tensorflow_ThreadOptions_stack_size}

Thread stack size to use (in bytes).

size_t tensorflow::ThreadOptions::guard_size {#size_t_tensorflow_ThreadOptions_guard_size}

Guard area size to use near thread stacks to use (in bytes)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/cc/ClassEnvWrapper.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

class tensorflow::EnvWrapper

An implementation of Env that forwards all calls to another Env .

May be useful to clients who wish to override just part of the functionality of another Env .

###Member Details

tensorflow::EnvWrapper::EnvWrapper(Env *t) {#tensorflow_EnvWrapper_EnvWrapper}

Initializes an EnvWrapper that delegates all calls to *t.

tensorflow::EnvWrapper::~EnvWrapper() {#tensorflow_EnvWrapper_EnvWrapper}

Env* tensorflow::EnvWrapper::target() const {#Env_tensorflow_EnvWrapper_target}

Returns the target to which this Env forwards all calls.

Status tensorflow::EnvWrapper::GetFileSystemForFile(const string &fname, FileSystem **result) override {#Status_tensorflow_EnvWrapper_GetFileSystemForFile}

Returns the FileSystem object to handle operations on the file specified by

‘

fname‘

. The FileSystem object is used as the implementation for the file system related (non-virtual) functions that follow. Returned FileSystem object is still owned by the Env object and will.

Status tensorflow::EnvWrapper::GetRegisteredFileSystemSchemes(std::vector< string > *schemes) override {#Status_tensorflow_EnvWrapper_GetRegisteredFileSystemSchemes}

Returns the file system schemes registered for this Env .

Status tensorflow::EnvWrapper::RegisterFileSystem(const string &scheme, FileSystemRegistry::Factory factory) override {#Status_tensorflow_EnvWrapper_RegisterFileSystem}

bool tensorflow::EnvWrapper::MatchPath(const string &path, const string &pattern) override {#bool_tensorflow_EnvWrapper_MatchPath}

Returns true if the path matches the given pattern. The wildcards allowed in pattern are described below (GetMatchingPaths).

uint64 tensorflow::EnvWrapper::NowMicros() override {#uint64_tensorflow_EnvWrapper_NowMicros}

Returns the number of micro-seconds since some fixed point in time. Only useful for computing deltas of time.

void tensorflow::EnvWrapper::SleepForMicroseconds(int64 micros) override {#void_tensorflow_EnvWrapper_SleepForMicroseconds}

Sleeps/delays the thread for the prescribed number of micro-seconds.

Thread* tensorflow::EnvWrapper::StartThread(const ThreadOptions &thread_options, const string &name, std::function< void()> fn) override {#Thread_tensorflow_EnvWrapper_StartThread}

Returns a new thread that is running fn() and is identified (for debugging/performance-analysis) by “name”.

Caller takes ownership of the result and must delete it eventually (the deletion will block until fn() stops running).

void tensorflow::EnvWrapper::SchedClosure(std::function< void()> closure) override {#void_tensorflow_EnvWrapper_SchedClosure}

void tensorflow::EnvWrapper::SchedClosureAfter(int64 micros, std::function< void()> closure) override {#void_tensorflow_EnvWrapper_SchedClosureAfter}

Status tensorflow::EnvWrapper::LoadLibrary(const char *library_filename, void **handle) override {#Status_tensorflow_EnvWrapper_LoadLibrary}

Status tensorflow::EnvWrapper::GetSymbolFromLibrary(void *handle, const char *symbol_name, void **symbol) override {#Status_tensorflow_EnvWrapper_GetSymbolFromLibrary}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Chi2WithAbsDfTensor is a StochasticTensor backed by the distribution Chi2WithAbsDf.

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#Chi2WithAbsDfTensor.init}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.clone(name=None, **dist_args) {#Chi2WithAbsDfTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.distribution {#Chi2WithAbsDfTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.dtype {#Chi2WithAbsDfTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.entropy(name='entropy') {#Chi2WithAbsDfTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.graph {#Chi2WithAbsDfTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.input_dict {#Chi2WithAbsDfTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.loss(final_loss, name='Loss') {#Chi2WithAbsDfTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.mean(name='mean') {#Chi2WithAbsDfTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.name {#Chi2WithAbsDfTensor.name}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.value(name='value') {#Chi2WithAbsDfTensor.value}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.value_type {#Chi2WithAbsDfTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.learn.monitors.SummaryWriterCache.clear.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.learn.monitors.SummaryWriterCache.clear() {#SummaryWriterCache.clear}

Clear cached summary writers. Currently only used for unit tests.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/resources/bib.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow Whitepaper

If you use TensorFlow in your research and would like to cite the TensorFlow
system, we suggest you cite the whitepaper [http://download.tensorflow.org/paper/whitepaper2015.pdf]:

@misc{tensorflow2015-whitepaper,
title={{TensorFlow}: Large-Scale Machine Learning on Heterogeneous Systems},
url={http://tensorflow.org/},
note={Software available from tensorflow.org},
author={
 Mart\'{\i}n~Abadi and
 Ashish~Agarwal and
 Paul~Barham and
 Eugene~Brevdo and
 Zhifeng~Chen and
 Craig~Citro and
 Greg~S.~Corrado and
 Andy~Davis and
 Jeffrey~Dean and
 Matthieu~Devin and
 Sanjay~Ghemawat and
 Ian~Goodfellow and
 Andrew~Harp and
 Geoffrey~Irving and
 Michael~Isard and
 Yangqing Jia and
 Rafal~Jozefowicz and
 Lukasz~Kaiser and
 Manjunath~Kudlur and
 Josh~Levenberg and
 Dan~Man\'{e} and
 Rajat~Monga and
 Sherry~Moore and
 Derek~Murray and
 Chris~Olah and
 Mike~Schuster and
 Jonathon~Shlens and
 Benoit~Steiner and
 Ilya~Sutskever and
 Kunal~Talwar and
 Paul~Tucker and
 Vincent~Vanhoucke and
 Vijay~Vasudevan and
 Fernanda~Vi\'{e}gas and
 Oriol~Vinyals and
 Pete~Warden and
 Martin~Wattenberg and
 Martin~Wicke and
 Yuan~Yu and
 Xiaoqiang~Zheng},
 year={2015},
}

In textual form:

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Mike Schuster,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.extract_image_patches.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.extract_image_patches(images, ksizes, strides, rates, padding, name=None) {#extract_image_patches}

Extract patches from images and put them in the “depth” output dimension.

Args:

		images: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.
4-D Tensor with shape [batch, in_rows, in_cols, depth].

		ksizes: A list of ints that has length >= 4.
The size of the sliding window for each dimension of images.

		strides: A list of ints that has length >= 4.
1-D of length 4. How far the centers of two consecutive patches are in
the images. Must be: [1, stride_rows, stride_cols, 1].

		rates: A list of ints that has length >= 4.
1-D of length 4. Must be: [1, rate_rows, rate_cols, 1]. This is the
input stride, specifying how far two consecutive patch samples are in the
input. Equivalent to extracting patches with
patch_sizes_eff = patch_sizes + (patch_sizes - 1) * (rates - 1), followed by subsampling them spatially by a factor ofrates`.

		padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.

We specify the size-related attributes as:

 ksizes = [1, ksize_rows, ksize_cols, 1]
 strides = [1, strides_rows, strides_cols, 1]
 rates = [1, rates_rows, rates_cols, 1]

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as images.
4-D Tensor with shape [batch, out_rows, out_cols, ksize_rows * ksize_cols * depth] containing image patches with size
ksize_rows x ksize_cols x depth vectorized in the “depth” dimension.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/resources/dims_types.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Tensor Ranks, Shapes, and Types

TensorFlow programs use a tensor data structure to represent all data. You can
think of a TensorFlow tensor as an n-dimensional array or list.
A tensor has a static type and dynamic dimensions. Only tensors may be passed
between nodes in the computation graph.

Rank

In the TensorFlow system, tensors are described by a unit of dimensionality
known as rank. Tensor rank is not the same as matrix rank. Tensor rank
(sometimes referred to as order or degree or n-dimension) is the number
of dimensions of the tensor. For example, the following tensor (defined as a
Python list) has a rank of 2:

t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

A rank two tensor is what we typically think of as a matrix, a rank one tensor
is a vector. For a rank two tensor you can access any element with the syntax
t[i, j]. For a rank three tensor you would need to address an element with
t[i, j, k].

Rank | Math entity | Python example
— | — | —
0 | Scalar (magnitude only) | s = 483
1 | Vector (magnitude and direction) | v = [1.1, 2.2, 3.3]
2 | Matrix (table of numbers) | m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3 | 3-Tensor (cube of numbers) | t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
n | n-Tensor (you get the idea) |

Shape

The TensorFlow documentation uses three notational conventions to describe
tensor dimensionality: rank, shape, and dimension number. The following table
shows how these relate to one another:

Rank | Shape | Dimension number | Example
— | — | — | —
0 | [] | 0-D | A 0-D tensor. A scalar.
1 | [D0] | 1-D | A 1-D tensor with shape [5].
2 | [D0, D1] | 2-D | A 2-D tensor with shape [3, 4].
3 | [D0, D1, D2] | 3-D | A 3-D tensor with shape [1, 4, 3].
n | [D0, D1, ... Dn-1] | n-D | A tensor with shape [D0, D1, ... Dn-1].

Shapes can be represented via Python lists / tuples of ints, or with the
TensorShape class.

Data types

In addition to dimensionality, Tensors have a data type. You can assign any one
of the following data types to a tensor:

Data type | Python type | Description
— | — | —
DT_FLOAT | tf.float32 | 32 bits floating point.
DT_DOUBLE | tf.float64 | 64 bits floating point.
DT_INT8 | tf.int8 | 8 bits signed integer.
DT_INT16 | tf.int16 | 16 bits signed integer.
DT_INT32 | tf.int32 | 32 bits signed integer.
DT_INT64 | tf.int64 | 64 bits signed integer.
DT_UINT8 | tf.uint8 | 8 bits unsigned integer.
DT_UINT16 | tf.uint16 | 16 bits unsigned integer.
DT_STRING | tf.string | Variable length byte arrays. Each element of a Tensor is a byte array.
DT_BOOL | tf.bool | Boolean.
DT_COMPLEX64 | tf.complex64 | Complex number made of two 32 bits floating points: real and imaginary parts.
DT_COMPLEX128 | tf.complex128 | Complex number made of two 64 bits floating points: real and imaginary parts.
DT_QINT8 | tf.qint8 | 8 bits signed integer used in quantized Ops.
DT_QINT32 | tf.qint32 | 32 bits signed integer used in quantized Ops.
DT_QUINT8 | tf.quint8 | 8 bits unsigned integer used in quantized Ops.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.complex.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.complex(real, imag, name=None) {#complex}

Converts two real numbers to a complex number.

Given a tensor real representing the real part of a complex number, and a
tensor imag representing the imaginary part of a complex number, this
operation returns complex numbers elementwise of the form (a + bj), where
a represents the real part and b represents the imag part.

The input tensors real and imag must have the same shape.

For example:

tensor 'real' is [2.25, 3.25]
tensor `imag` is [4.75, 5.75]
tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]]

Args:

		real: A Tensor. Must be one of the following types: float32, float64.

		imag: A Tensor. Must have the same type as real.

		name: A name for the operation (optional).

Returns:

A Tensor of type complex64 or complex128.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/resources/faq.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Frequently Asked Questions

This document provides answers to some of the frequently asked questions about
TensorFlow. If you have a question that is not covered here, you might find an
answer on one of the TensorFlow community resources.

[TOC]

Features and Compatibility

Can I run distributed training on multiple computers?

Yes! TensorFlow gained
support for distributed computation in
version 0.8. TensorFlow now supports multiple devices (CPUs and GPUs) in one or
more computers.

Does TensorFlow work with Python 3?

As of the 0.6.0 release timeframe (Early December 2015), we do support Python
3.3+.

Building a TensorFlow graph

See also the
API documentation on building graphs.

Why does c = tf.matmul(a, b) not execute the matrix multiplication immediately?

In the TensorFlow Python API, a, b, and c are
Tensor objects. A Tensor object is
a symbolic handle to the result of an operation, but does not actually hold the
values of the operation’s output. Instead, TensorFlow encourages users to build
up complicated expressions (such as entire neural networks and its gradients) as
a dataflow graph. You then offload the computation of the entire dataflow graph
(or a subgraph of it) to a TensorFlow
Session, which is able to execute the
whole computation much more efficiently than executing the operations
one-by-one.

How are devices named?

The supported device names are "/device:CPU:0" (or "/cpu:0") for the CPU
device, and "/device:GPU:i" (or "/gpu:i") for the ith GPU device.

How do I place operations on a particular device?

To place a group of operations on a device, create them within a
with tf.device(name): context. See
the how-to documentation on
using GPUs with TensorFlow for details of how
TensorFlow assigns operations to devices, and the
CIFAR-10 tutorial for an example model that
uses multiple GPUs.

What are the different types of tensors that are available?

TensorFlow supports a variety of different data types and tensor shapes. See the
ranks, shapes, and types reference for more details.

Running a TensorFlow computation

See also the
API documentation on running graphs.

What’s the deal with feeding and placeholders?

Feeding is a mechanism in the TensorFlow Session API that allows you to
substitute different values for one or more tensors at run time. The feed_dict
argument to Session.run() is a
dictionary that maps Tensor objects to
numpy arrays (and some other types), which will be used as the values of those
tensors in the execution of a step.

Often, you have certain tensors, such as inputs, that will always be fed. The
tf.placeholder() op allows you
to define tensors that must be fed, and optionally allows you to constrain
their shape as well. See the
beginners’ MNIST tutorial for an
example of how placeholders and feeding can be used to provide the training data
for a neural network.

What is the difference between Session.run() and Tensor.eval()?

If t is a Tensor object,
t.eval() is shorthand for
sess.run(t) (where sess is the
current default session. The
two following snippets of code are equivalent:

Using `Session.run()`.
sess = tf.Session()
c = tf.constant(5.0)
print sess.run(c)

Using `Tensor.eval()`.
c = tf.constant(5.0)
with tf.Session():
 print c.eval()

In the second example, the session acts as a
context manager [https://docs.python.org/2.7/reference/compound_stmts.html#with],
which has the effect of installing it as the default session for the lifetime of
the with block. The context manager approach can lead to more concise code for
simple use cases (like unit tests); if your code deals with multiple graphs and
sessions, it may be more straightforward to make explicit calls to
Session.run().

Do Sessions have a lifetime? What about intermediate tensors?

Sessions can own resources, such as
variables,
queues, and
readers; and these resources can use
a significant amount of memory. These resources (and the associated memory) are
released when the session is closed, by calling
Session.close().

The intermediate tensors that are created as part of a call to
Session.run() will be freed at or before the
end of the call.

Does the runtime parallelize parts of graph execution?

The TensorFlow runtime parallelizes graph execution across many different
dimensions:

		The individual ops have parallel implementations, using multiple cores in a
CPU, or multiple threads in a GPU.

		Independent nodes in a TensorFlow graph can run in parallel on multiple
devices, which makes it possible to speed up
CIFAR-10 training using multiple GPUs.

		The Session API allows multiple concurrent steps (i.e. calls to
Session.run() in parallel. This
enables the runtime to get higher throughput, if a single step does not use
all of the resources in your computer.

Which client languages are supported in TensorFlow?

TensorFlow is designed to support multiple client languages. Currently, the
best-supported client language is Python. The
C++ client API provides an interface for launching
graphs and running steps; we also have an experimental API for
building graphs in C++ [https://www.tensorflow.org/code/tensorflow/cc/tutorials/example_trainer.cc].

We would like to support more client languages, as determined by community
interest. TensorFlow has a
C-based client API [https://www.tensorflow.org/code/tensorflow/c/c_api.h]
that makes it easy to build a client in many different languages. We invite
contributions of new language bindings.

Does TensorFlow make use of all the devices (GPUs and CPUs) available on my machine?

TensorFlow supports multiple GPUs and CPUs. See the how-to documentation on
using GPUs with TensorFlow for details of how
TensorFlow assigns operations to devices, and the
CIFAR-10 tutorial for an example model that
uses multiple GPUs.

Note that TensorFlow only uses GPU devices with a compute capability greater
than 3.5.

Why does Session.run() hang when using a reader or a queue?

The reader and
queue classes provide special operations that
can block until input (or free space in a bounded queue) becomes
available. These operations allow you to build sophisticated
input pipelines, at the cost of making the
TensorFlow computation somewhat more complicated. See the how-to documentation
for
using QueueRunner objects to drive queues and readers
for more information on how to use them.

Variables

See also the how-to documentation on variables
and variable scopes, and
the API documentation for variables.

What is the lifetime of a variable?

A variable is created when you first run the
tf.Variable.initializer
operation for that variable in a session. It is destroyed when that
session is closed.

How do variables behave when they are concurrently accessed?

Variables allow concurrent read and write operations. The value read from a
variable may change if it is concurrently updated. By default, concurrent
assigment operations to a variable are allowed to run with no mutual exclusion.
To acquire a lock when assigning to a variable, pass use_locking=True to
Variable.assign().

Tensor shapes

See also the
TensorShape API documentation.

How can I determine the shape of a tensor in Python?

In TensorFlow, a tensor has both a static (inferred) shape and a dynamic (true)
shape. The static shape can be read using the
tf.Tensor.get_shape()
method: this shape is inferred from the operations that were used to create the
tensor, and may be
partially complete. If the static
shape is not fully defined, the dynamic shape of a Tensor t can be
determined by evaluating tf.shape(t).

What is the difference between x.set_shape() and x = tf.reshape(x)?

The tf.Tensor.set_shape() method updates
the static shape of a Tensor object, and it is typically used to provide
additional shape information when this cannot be inferred directly. It does not
change the dynamic shape of the tensor.

The tf.reshape() operation creates
a new tensor with a different dynamic shape.

How do I build a graph that works with variable batch sizes?

It is often useful to build a graph that works with variable batch sizes, for
example so that the same code can be used for (mini-)batch training, and
single-instance inference. The resulting graph can be
saved as a protocol buffer
and
imported into another program.

When building a variable-size graph, the most important thing to remember is not
to encode the batch size as a Python constant, but instead to use a symbolic
Tensor to represent it. The following tips may be useful:

		Use batch_size = tf.shape(input)[0]
to extract the batch dimension from a Tensor called input, and store it in
a Tensor called batch_size.

		Use tf.reduce_mean() instead
of tf.reduce_sum(...) / batch_size.

		If you use
placeholders for feeding input,
you can specify a variable batch dimension by creating the placeholder with
tf.placeholder(..., shape=[None, ...]). The
None element of the shape corresponds to a variable-sized dimension.

TensorBoard

How can I visualize a TensorFlow graph?

See the graph visualization tutorial.

What is the simplest way to send data to TensorBoard?

Add summary ops to your TensorFlow graph, and use a
SummaryWriter to write
these summaries to a log directory. Then, start TensorBoard using

python tensorflow/tensorboard/tensorboard.py --logdir=path/to/log-directory

For more details, see the [Summaries and TensorBoard tutorial]
(../how_tos/summaries_and_tensorboard/index.md).

Every time I launch TensorBoard, I get a network security popup!

You can change TensorBoard to serve on localhost rather than ‘0.0.0.0’ by
the flag –host=localhost. This should quiet any security warnings.

Extending TensorFlow

See also the how-to documentation for
adding a new operation to TensorFlow.

My data is in a custom format. How do I read it using TensorFlow?

There are two main options for dealing with data in a custom format.

The easier option is to write parsing code in Python that transforms the data
into a numpy array, then feed a [tf.placeholder()]
(../api_docs/python/io_ops.md#placeholder) a tensor with that data. See the
documentation on
using placeholders for input for
more details. This approach is easy to get up and running, but the parsing can
be a performance bottleneck.

The more efficient option is to
add a new op written in C++ that parses your
data format. The
guide to handling new data formats has
more information about the steps for doing this.

How do I define an operation that takes a variable number of inputs?

The TensorFlow op registration mechanism allows you to define inputs that are a
single tensor, a list of tensors with the same type (for example when adding
together a variable-length list of tensors), or a list of tensors with different
types (for example when enqueuing a tuple of tensors to a queue). See the
how-to documentation for
adding an op with a list of inputs or outputs
for more details of how to define these different input types.

Miscellaneous

What is TensorFlow’s coding style convention?

The TensorFlow Python API adheres to the
PEP8 [https://www.python.org/dev/peps/pep-0008/] conventions.* In
particular, we use CamelCase names for classes, and snake_case names for
functions, methods, and properties. We also adhere to the
Google Python style guide [https://google.github.io/styleguide/pyguide.html].

The TensorFlow C++ code base adheres to the
Google C++ style guide [http://google.github.io/styleguide/cppguide.html].

(* With one exception: we use 2-space indentation instead of 4-space
indentation.)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.learn.run_feeds.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.learn.run_feeds(*args, **kwargs) {#run_feeds}

See run_feeds_iter(). Returns a list instead of an iterator.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.learn.RunConfig.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 This class specifies the specific configurations for the run.

If you’re a Google-internal user using command line flags with learn_runner.py
(for instance, to do distributed training or to use parameter servers), you
probably want to use learn_runner.EstimatorConfig instead.

tf.contrib.learn.RunConfig.__init__(master=None, task=None, num_ps_replicas=None, num_cores=0, log_device_placement=False, gpu_memory_fraction=1, cluster_spec=None, tf_random_seed=None, save_summary_steps=100, save_checkpoints_secs=600, keep_checkpoint_max=5, keep_checkpoint_every_n_hours=10000, job_name=None, is_chief=None, evaluation_master='') {#RunConfig.init}

Constructor.

If set to None, master, task, num_ps_replicas, cluster_spec,
job_name, and is_chief are set based on the TF_CONFIG environment
variable, if the pertinent information is present; otherwise, the defaults
listed in the Args section apply.

The TF_CONFIG environment variable is a JSON object with two relevant
attributes: task and cluster_spec. cluster_spec is a JSON serialized
version of the Python dict described in server_lib.py. task has two
attributes: type and index, where type can be any of the task types
in the cluster_spec. When TF_CONFIG contains said information, the
following properties are set on this class:

		job_name is set to [task][type]

		task is set to [task][index]

		cluster_spec is parsed from [cluster]

		‘master’ is determined by looking up job_name and task in the
cluster_spec.

		num_ps_replicas is set by counting the number of nodes listed
in the ps job of cluster_spec.

		is_chief: true when job_name == “master” and task == 0.

Example:

 cluster = {'ps': ['host1:2222', 'host2:2222'],
 'worker': ['host3:2222', 'host4:2222', 'host5:2222']}
 os.environ['TF_CONFIG'] = json.dumps({
 {'cluster': cluster,
 'task': {'type': 'worker', 'index': 1}}})
 config = RunConfig()
 assert config.master == 'host4:2222'
 assert config.task == 1
 assert config.num_ps_replicas == 2
 assert config.cluster_spec == server_lib.ClusterSpec(cluster)
 assert config.job_name == 'worker'
 assert not config.is_chief

Args:

		master: TensorFlow master. Defaults to empty string for local.

		task: Task id of the replica running the training (default: 0).

		num_ps_replicas: Number of parameter server tasks to use (default: 0).

		num_cores: Number of cores to be used. If 0, the system picks an
appropriate number (default: 0).

		log_device_placement: Log the op placement to devices (default: False).

		gpu_memory_fraction: Fraction of GPU memory used by the process on
each GPU uniformly on the same machine.

		cluster_spec: a tf.train.ClusterSpec object that describes the cluster
in the case of distributed computation. If missing, reasonable
assumptions are made for the addresses of jobs.

		tf_random_seed: Random seed for TensorFlow initializers.
Setting this value allows consistency between reruns.

		save_summary_steps: Save summaries every this many steps.

		save_checkpoints_secs: Save checkpoints every this many seconds.

		keep_checkpoint_max: The maximum number of recent checkpoint files to
keep. As new files are created, older files are deleted. If None or 0,
all checkpoint files are kept. Defaults to 5 (that is, the 5 most recent
checkpoint files are kept.)

		keep_checkpoint_every_n_hours: Number of hours between each checkpoint
to be saved. The default value of 10,000 hours effectively disables
the feature.

		job_name: the type of task, e.g., ‘ps’, ‘worker’, etc. The job_name
must exist in the cluster_spec.jobs.

		is_chief: whether or not this task (as identified by the other parameters)
should be the chief task.

		evaluation_master: the master on which to perform evaluation.

Raises:

		ValueError: if num_ps_replicas and cluster_spec are set (cluster_spec
may fome from the TF_CONFIG environment variable).

tf.contrib.learn.RunConfig.is_chief {#RunConfig.is_chief}

tf.contrib.learn.RunConfig.job_name {#RunConfig.job_name}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.nn.rnn_cell.OutputProjectionWrapper.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Operator adding an output projection to the given cell.

Note: in many cases it may be more efficient to not use this wrapper,
but instead concatenate the whole sequence of your outputs in time,
do the projection on this batch-concatenated sequence, then split it
if needed or directly feed into a softmax.

tf.nn.rnn_cell.OutputProjectionWrapper.__call__(inputs, state, scope=None) {#OutputProjectionWrapper.call}

Run the cell and output projection on inputs, starting from state.

tf.nn.rnn_cell.OutputProjectionWrapper.__init__(cell, output_size) {#OutputProjectionWrapper.init}

Create a cell with output projection.

Args:

		cell: an RNNCell, a projection to output_size is added to it.

		output_size: integer, the size of the output after projection.

Raises:

		TypeError: if cell is not an RNNCell.

		ValueError: if output_size is not positive.

tf.nn.rnn_cell.OutputProjectionWrapper.output_size {#OutputProjectionWrapper.output_size}

tf.nn.rnn_cell.OutputProjectionWrapper.state_size {#OutputProjectionWrapper.state_size}

tf.nn.rnn_cell.OutputProjectionWrapper.zero_state(batch_size, dtype) {#OutputProjectionWrapper.zero_state}

Return zero-filled state tensor(s).

Args:

		batch_size: int, float, or unit Tensor representing the batch size.

		dtype: the data type to use for the state.

Returns:

If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.nn.ctc_beam_search_decoder.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.ctc_beam_search_decoder(inputs, sequence_length, beam_width=100, top_paths=1, merge_repeated=True) {#ctc_beam_search_decoder}

Performs beam search decoding on the logits given in input.

Note The ctc_greedy_decoder is a special case of the
ctc_beam_search_decoder with top_paths=1 (but that decoder is faster
for this special case).

If merge_repeated is True, merge repeated classes in the output beams.
This means that if consecutive entries in a beam are the same,
only the first of these is emitted. That is, when the top path
is A B B B B, the return value is:

		A B if merge_repeated = True.

		A B B B B if merge_repeated = False.

Args:

		inputs: 3-D float Tensor, size
[max_time x batch_size x num_classes]. The logits.

		sequence_length: 1-D int32 vector containing sequence lengths,
having size [batch_size].

		beam_width: An int scalar >= 0 (beam search beam width).

		top_paths: An int scalar >= 0, <= beam_width (controls output size).

		merge_repeated: Boolean. Default: True.

Returns:

A tuple (decoded, log_probabilities) where

		decoded: A list of length top_paths, where decoded[j]
is a SparseTensor containing the decoded outputs:
decoded[j].indices: Indices matrix (total_decoded_outputs[j] x 2)
The rows store: [batch, time].
decoded[j].values: Values vector, size (total_decoded_outputs[j]).
The vector stores the decoded classes for beam j.
decoded[j].shape: Shape vector, size (2).
The shape values are: [batch_size, max_decoded_length[j]].

		log_probability: A float matrix (batch_size x top_paths) containing
sequence log-probabilities.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.Assert.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.Assert(condition, data, summarize=None, name=None) {#Assert}

Asserts that the given condition is true.

If condition evaluates to false, print the list of tensors in data.
summarize determines how many entries of the tensors to print.

NOTE: To ensure that Assert executes, one usually attaches a dependency:

 # Ensure maximum element of x is smaller or equal to 1
assert_op = tf.Assert(tf.less_equal(tf.reduce_max(x), 1.), [x])
x = tf.with_dependencies([assert_op], x)

Args:

		condition: The condition to evaluate.

		data: The tensors to print out when condition is false.

		summarize: Print this many entries of each tensor.

		name: A name for this operation (optional).

Returns:

		assert_op: An Operation that, when executed, raises a
tf.errors.InvalidArgumentError if condition is not true.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.learn.TensorFlowRNNRegressor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 TensorFlow RNN Regressor model.

tf.contrib.learn.TensorFlowRNNRegressor.__init__(rnn_size, cell_type='gru', num_layers=1, input_op_fn=null_input_op_fn, initial_state=None, bidirectional=False, sequence_length=None, attn_length=None, attn_size=None, attn_vec_size=None, n_classes=0, batch_size=32, steps=50, optimizer='Adagrad', learning_rate=0.1, clip_gradients=5.0, continue_training=False, config=None, verbose=1) {#TensorFlowRNNRegressor.init}

Initializes a TensorFlowRNNRegressor instance.

Args:

		rnn_size: The size for rnn cell, e.g. size of your word embeddings.

		cell_type: The type of rnn cell, including rnn, gru, and lstm.

		num_layers: The number of layers of the rnn model.

		input_op_fn: Function that will transform the input tensor, such as
creating word embeddings, byte list, etc. This takes
an argument x for input and returns transformed x.

		bidirectional: boolean, Whether this is a bidirectional rnn.

		sequence_length: If sequence_length is provided, dynamic calculation
is performed. This saves computational time when unrolling past max
sequence length.

		attn_length: integer, the size of attention vector attached to rnn cells.

		attn_size: integer, the size of an attention window attached to rnn cells.

		attn_vec_size: integer, the number of convolutional features calculated on
attention state and the size of the hidden layer built from base cell state.

		initial_state: An initial state for the RNN. This must be a tensor of
appropriate type and shape [batch_size x cell.state_size].

		batch_size: Mini batch size.

		steps: Number of steps to run over data.

		optimizer: Optimizer name (or class), for example “SGD”, “Adam”,
“Adagrad”.

		learning_rate: If this is constant float value, no decay function is
used. Instead, a customized decay function can be passed that accepts
global_step as parameter and returns a Tensor.
e.g. exponential decay function:

def exp_decay(global_step):
 return tf.train.exponential_decay(
 learning_rate=0.1, global_step,
 decay_steps=2, decay_rate=0.001)

		continue_training: when continue_training is True, once initialized
model will be continuely trained on every call of fit.

		config: RunConfig object that controls the configurations of the
session, e.g. num_cores, gpu_memory_fraction, etc.

		verbose: Controls the verbosity, possible values:
		0: the algorithm and debug information is muted.

		1: trainer prints the progress.

		2: log device placement is printed.

tf.contrib.learn.TensorFlowRNNRegressor.__repr__() {#TensorFlowRNNRegressor.repr}

tf.contrib.learn.TensorFlowRNNRegressor.bias_ {#TensorFlowRNNRegressor.bias_}

Returns bias of the rnn layer.

tf.contrib.learn.TensorFlowRNNRegressor.config {#TensorFlowRNNRegressor.config}

tf.contrib.learn.TensorFlowRNNRegressor.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) {#TensorFlowRNNRegressor.evaluate}

Evaluates given model with provided evaluation data.

See superclass Estimator for more details.

Args:

		x: features.

		y: targets.

		input_fn: Input function.

		feed_fn: Function creating a feed dict every time it is called.

		batch_size: minibatch size to use on the input.

		steps: Number of steps for which to evaluate model.

		metrics: Dict of metric ops to run. If None, the default metrics are used.

		name: Name of the evaluation.

Returns:

Returns dict with evaluation results.

tf.contrib.learn.TensorFlowRNNRegressor.export(*args, **kwargs) {#TensorFlowRNNRegressor.export}

Exports inference graph into given dir. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23.
Instructions for updating:
The signature of the input_fn accepted by export is changing to be consistent with what’s used by tf.Learn Estimator’s train/evaluate. input_fn and input_feature_key will become required args, and use_deprecated_input_fn will default to False and be removed altogether.

Args:
 export_dir: A string containing a directory to write the exported graph
 and checkpoints.
 input_fn: If `use_deprecated_input_fn` is true, then a function that given
 `Tensor` of `Example` strings, parses it into features that are then
 passed to the model. Otherwise, a function that takes no argument and
 returns a tuple of (features, targets), where features is a dict of
 string key to `Tensor` and targets is a `Tensor` that's currently not
 used (and so can be `None`).
 input_feature_key: Only used if `use_deprecated_input_fn` is false. String
 key into the features dict returned by `input_fn` that corresponds toa
 the raw `Example` strings `Tensor` that the exported model will take as
 input.
 use_deprecated_input_fn: Determines the signature format of `input_fn`.
 signature_fn: Function that returns a default signature and a named
 signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s
 for features and `Tensor` or `dict` of `Tensor`s for predictions.
 prediction_key: The key for a tensor in the `predictions` dict (output
 from the `model_fn`) to use as the `predictions` input to the
 `signature_fn`. Optional. If `None`, predictions will pass to
 `signature_fn` without filtering.
 default_batch_size: Default batch size of the `Example` placeholder.
 exports_to_keep: Number of exports to keep.

Returns:
 The string path to the exported directory. NB: this functionality was
 added ca. 2016/09/25; clients that depend on the return value may need
 to handle the case where this function returns None because subclasses
 are not returning a value.

tf.contrib.learn.TensorFlowRNNRegressor.fit(x, y, steps=None, monitors=None, logdir=None) {#TensorFlowRNNRegressor.fit}

Neural network model from provided model_fn and training data.

Note: called first time constructs the graph and initializers
variables. Consecutives times it will continue training the same model.
This logic follows partial_fit() interface in scikit-learn.
To restart learning, create new estimator.

Args:

		x: matrix or tensor of shape [n_samples, n_features...]. Can be
iterator that returns arrays of features. The training input
samples for fitting the model.

		y: vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of targets. The training target values
(class labels in classification, real numbers in regression).

		steps: int, number of steps to train.
If None or 0, train for self.steps.

		monitors: List of BaseMonitor objects to print training progress and
invoke early stopping.

		logdir: the directory to save the log file that can be used for
optional visualization.

Returns:

Returns self.

tf.contrib.learn.TensorFlowRNNRegressor.get_params(deep=True) {#TensorFlowRNNRegressor.get_params}

Get parameters for this estimator.

Args:

		deep: boolean, optional

If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns:

params : mapping of string to any
Parameter names mapped to their values.

tf.contrib.learn.TensorFlowRNNRegressor.get_tensor(name) {#TensorFlowRNNRegressor.get_tensor}

Returns tensor by name.

Args:

		name: string, name of the tensor.

Returns:

Tensor.

tf.contrib.learn.TensorFlowRNNRegressor.get_variable_names() {#TensorFlowRNNRegressor.get_variable_names}

Returns list of all variable names in this model.

Returns:

List of names.

tf.contrib.learn.TensorFlowRNNRegressor.get_variable_value(name) {#TensorFlowRNNRegressor.get_variable_value}

Returns value of the variable given by name.

Args:

		name: string, name of the tensor.

Returns:

Numpy array - value of the tensor.

tf.contrib.learn.TensorFlowRNNRegressor.model_dir {#TensorFlowRNNRegressor.model_dir}

tf.contrib.learn.TensorFlowRNNRegressor.partial_fit(x, y) {#TensorFlowRNNRegressor.partial_fit}

Incremental fit on a batch of samples.

This method is expected to be called several times consecutively
on different or the same chunks of the dataset. This either can
implement iterative training or out-of-core/online training.
This is especially useful when the whole dataset is too big to
fit in memory at the same time. Or when model is taking long time
to converge, and you want to split up training into subparts.

Args:

		x: matrix or tensor of shape [n_samples, n_features...]. Can be
iterator that returns arrays of features. The training input
samples for fitting the model.

		y: vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of targets. The training target values
(class label in classification, real numbers in regression).

Returns:

Returns self.

tf.contrib.learn.TensorFlowRNNRegressor.predict(x, axis=1, batch_size=None) {#TensorFlowRNNRegressor.predict}

Predict class or regression for x.

For a classification model, the predicted class for each sample in x is
returned. For a regression model, the predicted value based on x is
returned.

Args:

		x: array-like matrix, [n_samples, n_features...] or iterator.

		axis: Which axis to argmax for classification.
By default axis 1 (next after batch) is used.
Use 2 for sequence predictions.

		batch_size: If test set is too big, use batch size to split
it into mini batches. By default the batch_size member
variable is used.

Returns:

		y: array of shape [n_samples]. The predicted classes or predicted
value.

tf.contrib.learn.TensorFlowRNNRegressor.predict_proba(x, batch_size=None) {#TensorFlowRNNRegressor.predict_proba}

Predict class probability of the input samples x.

Args:

		x: array-like matrix, [n_samples, n_features...] or iterator.

		batch_size: If test set is too big, use batch size to split
it into mini batches. By default the batch_size member variable is used.

Returns:

		y: array of shape [n_samples, n_classes]. The predicted
probabilities for each class.

tf.contrib.learn.TensorFlowRNNRegressor.restore(cls, path, config=None) {#TensorFlowRNNRegressor.restore}

Restores model from give path.

Args:

		path: Path to the checkpoints and other model information.

		config: RunConfig object that controls the configurations of the session,
e.g. num_cores, gpu_memory_fraction, etc. This is allowed to be
reconfigured.

Returns:

Estimator, object of the subclass of TensorFlowEstimator.

Raises:

		ValueError: if path does not contain a model definition.

tf.contrib.learn.TensorFlowRNNRegressor.save(path) {#TensorFlowRNNRegressor.save}

Saves checkpoints and graph to given path.

Args:

		path: Folder to save model to.

tf.contrib.learn.TensorFlowRNNRegressor.set_params(**params) {#TensorFlowRNNRegressor.set_params}

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.

Args:

		**params: Parameters.

Returns:

self

Raises:

		ValueError: If params contain invalid names.

tf.contrib.learn.TensorFlowRNNRegressor.weights_ {#TensorFlowRNNRegressor.weights_}

Returns weights of the rnn layer.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.graph_editor.OpMatcher.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Graph match class.

tf.contrib.graph_editor.OpMatcher.__call__(op) {#OpMatcher.call}

Evaluate if the op matches or not.

tf.contrib.graph_editor.OpMatcher.__init__(positive_filter) {#OpMatcher.init}

Graph match constructor.

tf.contrib.graph_editor.OpMatcher.control_input_ops(*args) {#OpMatcher.control_input_ops}

Add input matches.

tf.contrib.graph_editor.OpMatcher.input_ops(*args) {#OpMatcher.input_ops}

Add input matches.

tf.contrib.graph_editor.OpMatcher.output_ops(*args) {#OpMatcher.output_ops}

Add output matches.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/cc/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow C++ Session API reference documentation

TensorFlow’s public C++ API includes only the API for executing graphs, as of
version 0.5. To control the execution of a graph from C++:

		Build the computation graph using the Python API.

		Use tf.train.write_graph() to
write the graph to a file.

		Load the graph using the C++ Session API. For example:

// Reads a model graph definition from disk, and creates a session object you
// can use to run it.
Status LoadGraph(string graph_file_name, Session** session) {
 GraphDef graph_def;
 TF_RETURN_IF_ERROR(
 ReadBinaryProto(Env::Default(), graph_file_name, &graph_def));
 TF_RETURN_IF_ERROR(NewSession(SessionOptions(), session));
 TF_RETURN_IF_ERROR((*session)->Create(graph_def));
 return Status::OK();
}

		Run the graph with a call to session->Run()

Env

		tensorflow::Env

		tensorflow::RandomAccessFile

		tensorflow::WritableFile

		tensorflow::EnvWrapper

Session

		tensorflow::Session

		tensorflow::SessionOptions

Status

		tensorflow::Status

		tensorflow::Status::State

Tensor

		tensorflow::Tensor

		tensorflow::TensorShape

		tensorflow::TensorShapeDim

		tensorflow::TensorShapeUtils

		tensorflow::PartialTensorShape

		tensorflow::PartialTensorShapeUtils

Thread

		tensorflow::Thread

		tensorflow::ThreadOptions

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/cc/ClassPartialTensorShape.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

class tensorflow::PartialTensorShape

Manages the partially known dimensions of a Tensor and their sizes.

###Member Details

tensorflow::PartialTensorShape::PartialTensorShape() {#tensorflow_PartialTensorShape_PartialTensorShape}

Construct an unknown PartialTensorShape.

tensorflow::PartialTensorShape::PartialTensorShape(gtl::ArraySlice< int64 > dim_sizes) {#tensorflow_PartialTensorShape_PartialTensorShape}

Construct a PartialTensorShape from the provided sizes. REQUIRES: dim_sizes[i] >= 0

tensorflow::PartialTensorShape::PartialTensorShape(std::initializer_list< int64 > dim_sizes) {#tensorflow_PartialTensorShape_PartialTensorShape}

tensorflow::PartialTensorShape::PartialTensorShape(const TensorShapeProto &proto) {#tensorflow_PartialTensorShape_PartialTensorShape}

REQUIRES: IsValid(proto)

PartialTensorShape tensorflow::PartialTensorShape::Concatenate(int64 size) const {#PartialTensorShape_tensorflow_PartialTensorShape_Concatenate}

Add a dimension to the end (“inner-most”), returns a new PartialTensorShape . REQUIRES: size >= -1, where -1 means unknown

PartialTensorShape tensorflow::PartialTensorShape::Concatenate(const PartialTensorShape &shape) const {#PartialTensorShape_tensorflow_PartialTensorShape_Concatenate}

Appends all the dimensions from shape. Returns a new PartialTensorShape .

Status tensorflow::PartialTensorShape::MergeWith(const PartialTensorShape &shape, PartialTensorShape *result) const {#Status_tensorflow_PartialTensorShape_MergeWith}

Merges all the dimensions from shape. Returns InvalidArgument error if either shape has a different rank or if any of the dimensions are incompatible.

int tensorflow::PartialTensorShape::dims() const {#int_tensorflow_PartialTensorShape_dims}

Return the number of dimensions in the tensor. If the number of dimensions is unknown, return -1.

bool tensorflow::PartialTensorShape::IsFullyDefined() const {#bool_tensorflow_PartialTensorShape_IsFullyDefined}

Return true iff the rank and all of the dimensions are well defined.

bool tensorflow::PartialTensorShape::IsCompatibleWith(const PartialTensorShape &shape) const {#bool_tensorflow_PartialTensorShape_IsCompatibleWith}

Return true iff the ranks match, and if the dimensions all either match or one is unknown.

bool tensorflow::PartialTensorShape::IsCompatibleWith(const TensorShape &shape) const {#bool_tensorflow_PartialTensorShape_IsCompatibleWith}

Return true iff the dimensions of shape are compatible with *this.

int64 tensorflow::PartialTensorShape::dim_size(int d) const {#int64_tensorflow_PartialTensorShape_dim_size}

Returns the number of elements in dimension d. REQUIRES: 0 <= d < dims()

gtl::ArraySlice<int64> tensorflow::PartialTensorShape::dim_sizes() const {#gtl_ArraySlice_int64_tensorflow_PartialTensorShape_dim_sizes}

Returns sizes of all dimensions.

void tensorflow::PartialTensorShape::AsProto(TensorShapeProto *proto) const {#void_tensorflow_PartialTensorShape_AsProto}

Fill *proto from *this.

bool tensorflow::PartialTensorShape::AsTensorShape(TensorShape *tensor_shape) const {#bool_tensorflow_PartialTensorShape_AsTensorShape}

string tensorflow::PartialTensorShape::DebugString() const {#string_tensorflow_PartialTensorShape_DebugString}

For error messages.

bool tensorflow::PartialTensorShape::IsValid(const TensorShapeProto &proto) {#bool_tensorflow_PartialTensorShape_IsValid}

Returns true iff proto is a valid partial tensor shape.

Status tensorflow::PartialTensorShape::IsValidShape(const TensorShapeProto &proto) {#Status_tensorflow_PartialTensorShape_IsValidShape}

Returns OK iff proto is a valid tensor shape, and a descriptive error status otherwise.

string tensorflow::PartialTensorShape::DebugString(const TensorShapeProto &proto) {#string_tensorflow_PartialTensorShape_DebugString}

static Status tensorflow::PartialTensorShape::MakePartialShape(const int32 *dims, int n, PartialTensorShape *out) {#static_Status_tensorflow_PartialTensorShape_MakePartialShape}

Returns a PartialTensorShape whose dimensions are dims[0], dims[1], ..., dims[n-1]. Values of -1 are considered “unknown”.

static Status tensorflow::PartialTensorShape::MakePartialShape(const int64 *dims, int n, PartialTensorShape *out) {#static_Status_tensorflow_PartialTensorShape_MakePartialShape}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/cc/ClassSession.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

class tensorflow::Session

A Session instance lets a caller drive a TensorFlow graph computation.

When a Session is created with a given target, a new Session object is bound to the universe of resources specified by that target. Those resources are available to this session to perform computation described in the GraphDef. After extending the session with a graph, the caller uses the Run() API to perform the computation and potentially fetch outputs as Tensors.

Example:

// ... Create or load graph into "graph".

// This example uses the default options which connects
// to a local runtime.
tensorflow::SessionOptions options;
std::unique_ptr<tensorflow::Session>
session(tensorflow::NewSession(options));

// Create the session with this graph.
tensorflow::Status s = session->Create(graph);
if (!s.ok()) { ... }

// Run the graph and fetch the first output of the "output"
// operation, and also run to but do not return anything
// for the "update_state" operation.
std::vector<tensorflow::Tensor> outputs;
s = session->Run({}, {"output:0"}, {"update_state"}, &outputs);
if (!s.ok()) { ... }

// Map the output as a flattened float tensor, and do something
// with it.
auto output_tensor = outputs[0].flat<float>();
if (output_tensor(0) > 0.5) { ... }

// Close the session to release the resources associated with
// this session.
session->Close();

A Session allows concurrent calls to Run() , though a Session must be created / extended by a single thread.

Only one thread must call Close() , and Close() must only be called after all other calls to Run() have returned.

###Member Details

tensorflow::Session::Session() {#tensorflow_Session_Session}

virtual tensorflow::Session::~Session() {#virtual_tensorflow_Session_Session}

virtual Status tensorflow::Session::Create(const GraphDef &graph)=0 {#virtual_Status_tensorflow_Session_Create}

Create the graph to be used for the session.

Returns an error if this session has already been created with a graph. To re-use the session with a different graph, the caller must Close() the session first.

virtual Status tensorflow::Session::Extend(const GraphDef &graph)=0 {#virtual_Status_tensorflow_Session_Extend}

Adds operations to the graph that is already registered with the Session .

The names of new operations in “graph” must not exist in the graph that is already registered.

virtual Status tensorflow::Session::Run(const std::vector< std::pair< string, Tensor > > &inputs, const std::vector< string > &output_tensor_names, const std::vector< string > &target_node_names, std::vector< Tensor > *outputs)=0 {#virtual_Status_tensorflow_Session_Run}

Runs the graph with the provided input tensors and fills outputs for the endpoints specified in output_tensor_names. Runs to but does not return Tensors for the nodes in target_node_names.

The order of tensors in outputs will match the order provided by output_tensor_names.

If Run returns OK(), then outputs->size() will be equal to output_tensor_names.size(). If Run does not return OK(), the state of outputs is undefined.

REQUIRES: The name of each Tensor of the input or output must match a “Tensor endpoint” in the GraphDef passed to Create().

REQUIRES: At least one of output_tensor_names and target_node_names must be non-empty.

REQUIRES: outputs is not nullptr if output_tensor_names is non-empty.

virtual Status tensorflow::Session::Create(const RunOptions &run_options, const GraphDef &graph) {#virtual_Status_tensorflow_Session_Create}

Implementations which support RunOptions.

NOTE: This API is still experimental and may change.

virtual Status tensorflow::Session::Extend(const RunOptions &run_options, const GraphDef &graph) {#virtual_Status_tensorflow_Session_Extend}

virtual Status tensorflow::Session::Close(const RunOptions &run_options) {#virtual_Status_tensorflow_Session_Close}

virtual Status tensorflow::Session::Run(const RunOptions &run_options, const std::vector< std::pair< string, Tensor > > &inputs, const std::vector< string > &output_tensor_names, const std::vector< string > &target_node_names, std::vector< Tensor > *outputs, RunMetadata *run_metadata) {#virtual_Status_tensorflow_Session_Run}

Like Run, but allows users to pass in a RunOptions proto and to retrieve non-Tensor metadata output via a RunMetadata proto for this step. run_metadata may be nullptr, in which case any metadata output is discarded. NOTE: This API is still experimental and may change.

virtual Status tensorflow::Session::PRunSetup(const std::vector< string > &input_names, const std::vector< string > &output_names, const std::vector< string > &target_nodes, string *handle) {#virtual_Status_tensorflow_Session_PRunSetup}

Sets up a graph for partial execution. All future feeds and fetches are specified by input_names and output_names. Returns handle that can be used to perform a sequence of partial feeds and fetches. NOTE: This API is still experimental and may change.

virtual Status tensorflow::Session::PRun(const string &handle, const std::vector< std::pair< string, Tensor > > &inputs, const std::vector< string > &output_names, std::vector< Tensor > *outputs) {#virtual_Status_tensorflow_Session_PRun}

Continues the pending execution specified by handle with the provided input tensors and fills outputs for the endpoints specified in output_names. NOTE: This API is still experimental and may change.

virtual Status tensorflow::Session::Close()=0 {#virtual_Status_tensorflow_Session_Close}

Closes this session.

Closing a session releases the resources used by this session on the TensorFlow runtime (specified during session creation by the SessionOptions::target field).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/cc/StructTensorShapeDim.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

struct tensorflow::TensorShapeDim

###Member Details

int64 tensorflow::TensorShapeDim::size {#int64_tensorflow_TensorShapeDim_size}

tensorflow::TensorShapeDim::TensorShapeDim(int64 s) {#tensorflow_TensorShapeDim_TensorShapeDim}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/cc/ClassWritableFile.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

class tensorflow::WritableFile

A file abstraction for sequential writing.

The implementation must provide buffering since callers may append small fragments at a time to the file.

###Member Details

tensorflow::WritableFile::WritableFile() {#tensorflow_WritableFile_WritableFile}

tensorflow::WritableFile::~WritableFile() {#tensorflow_WritableFile_WritableFile}

virtual Status tensorflow::WritableFile::Append(const StringPiece &data)=0 {#virtual_Status_tensorflow_WritableFile_Append}

virtual Status tensorflow::WritableFile::Close()=0 {#virtual_Status_tensorflow_WritableFile_Close}

virtual Status tensorflow::WritableFile::Flush()=0 {#virtual_Status_tensorflow_WritableFile_Flush}

virtual Status tensorflow::WritableFile::Sync()=0 {#virtual_Status_tensorflow_WritableFile_Sync}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/resources/data_versions.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow Data Versioning: GraphDefs and Checkpoints

As described in Compatibility for Graphs and Checkpoints,
TensorFlow marks each kind of data with version information in order to maintain
backwards compatibility even across major releases in some cases.

This document describes the versioning mechanism in more detail, and explains
how to use it to change data formats safely.

Goals: backwards and partial forwards compatibility

Consider the case of TensorFlow graphs serialized via the GraphDef protobuf. We
have a number of competing constraints:

		We would like to be able to evolve TensorFlow in eventually incompatible ways:
removing ops, adding or removing attrs, etc.

		GraphDefs produced by TensorFlow may live for months after they are generated,
so we want backwards compatibility: new versions of TensorFlow should be
able to read old data.

		Sometimes a producer of a GraphDef is upgraded to a new version of TensorFlow
before the consumer of that data is updated, so we would like forwards
compatibility: new versions of TensorFlow should generate GraphDefs readable
by older versions of TensorFlow. Unfortunately, forwards compatibility is
much more intrusive than backwards compatibility, so we support it only in
limited situations within Google and across patch releases for open source.

For GraphDefs, we support backwards compatibility for 6 months and forwards
compatibility for 3 weeks in limited situations. For backwards compatibility,
this means that we can only remove functionality 6 months after we stop
producing data using that functionality. Similarly, in the limited situations
where we support forwards compatibility, we can add functionality only 3 weeks
after TensorFlow can consume data using that functionality.

In order to implement these semantics, we need to know when data is produced so
that we can know when to enforce changes in formats. The versioning system
described below achieves that goal in a manner that supports both backwards and
forwards compatibility (when they apply).

For checkpoints, we have no plans to make either backwards or forwards
incompatible changes, but still attach versions to checkpoints in case we ever
do have to make a change.

Each type of data has separate version scheme

Since different data formats evolve at different rates, we have a separate
integer versioning scheme for each kind of data, and these schemes are separate
from the overall version of TensorFlow.

For now, there are data versions for GraphDefs (serialized computation graphs)
and checkpoints (serialized variable state). Both versioning schemes are
defined in
core/public/version.h [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/public/version.h].
Whenever a new version is added, a note should be made in that header recording
what changed and when.

Data, producers, and consumers

In the discussion below, we consider version information for data, binaries
that produce that data (producers), and binaries that consume that data
(consumers):

		Producer binaries have a version (producer) and a minimum consumer version
that they are compatible with (min_consumer).

		Consumer binaries have a version (consumer) and a minimum producer version
that they are compatible with (min_producer).

		Each piece of versioned data has a VersionDef versions [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/versions.proto]
field which records the producer that made the data, the min_consumer that
it is compatible with, and a list of bad_consumers versions that are
disallowed.

By default, when a producer makes some data, the data inherits the producer’s
producer and min_consumer versions. bad_consumers can be set if specific
consumer versions are known to contain bugs and must be avoided. A consumer
can accept a piece of data if

		consumer >= data’s min_consumer

		data’s producer >= consumer’s min_producer

		consumer not in data’s bad_consumers

Since both producers and consumers come from the same TensorFlow code base,
core/public/version.h [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/public/version.h]
contains a main binary version which is treated as either producer or
consumer depending on context and both min_consumer and min_producer
(needed by producers and consumers, respectively). Specifically,

		For GraphDef versions, we have TF_GRAPH_DEF_VERSION,
TF_GRAPH_DEF_VERSION_MIN_CONSUMER, and TF_GRAPH_DEF_VERSION_MIN_PRODUCER.

		For checkpoint versions, we have TF_CHECKPOINT_VERSION,
TF_CHECKPOINT_VERSION_MIN_CONSUMER, and
TF_CHECKPOINT_VERSION_MIN_PRODUCER.

Evolving GraphDef versions

We now discuss examples of using this versioning mechanism to make various
changes to the GraphDef format. Our goal is to be backwards compatible for six
months, which means that data produced by TensorFlow at time T must be
consumable by TensorFlow at time T + 6 months. If forwards compatibility is
desired, the data must be consumable at time T - 3 weeks.

Adding a new op:

		Add the new op to both consumers and producers at the same time, and do not
change any GraphDef versions. This type of change is automatically backwards
compatible, and is outside our forwards compatibility plan since existing
producer scripts will not suddenly use the new functionality.

Adding a new op and switching existing Python wrappers to use it:

		Implement new consumer functionality and increment the binary version.

		If it is possible to make the wrappers use the new functionality only in
cases that did not work before, the wrappers can be updated now.

		If forwards compatibility is necessary, wait 3 weeks.

		Change Python wrappers to use the new functionality. Do not increment
min_consumer, since models which do not use this op should not break.

Removing an op or restricting the functionality of an op:

		Fix all producer scripts (not TensorFlow itself) to not use the banned op or
functionality.

		Increment the binary version and implement new consumer functionality that
bans the removed op or functionality for GraphDefs at the new version and
above. If possible, make TensorFlow stop producing GraphDefs with the banned
functionality. This can be done with
REGISTER_OP(...).Deprecated(deprecated_at_version, message) [https://github.com/tensorflow/tensorflow/blob/b289bc7a50fc0254970c60aaeba01c33de61a728/tensorflow/core/ops/array_ops.cc#L1009].

		Wait 6 months for backwards compatibility purposes.

		Increase min_producer to the GraphDef version from (2) and remove the
functionality entirely.

Changing the functionality of an op:

		Add a new similar op named SomethingV2 or similar and go through the
process of adding it and switching existing Python wrappers to use it (may
take 3 weeks if forwards compatibility is desired).

		Remove the old op (takes 6 months due to backwards compatibility).

		Increase min_consumer to rule out consumers with the old op, add back the
old op as an alias for SomethingV2, and go through the process to switch
existing Python wrappers to use it (may take 3 weeks).

		Go through the process to remove SomethingV2.

Banning a single consumer version that cannot run safely:

		Bump the binary version and add the bad version to bad_consumers for all
new GraphDefs. If possible, add to bad_consumers only for GraphDefs which
contain a certain op or similar.

		If existing consumers have the bad version, push them out as soon as
possible.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/resources/versions.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow Version Semantics

Semantic Versioning 2.0

Once we reach version 1.0, TensorFlow will follow Semantic Versioning 2.0
(semver). For details, see http://semver.org. Each release version of
TensorFlow has the form MAJOR.MINOR.PATCH. Changes to the each number have
the following meaning:

		MAJOR: Backwards incompatible changes. Code and data that worked with
a previous major release will not necessarily work with a new release.
However, in some cases existing TensorFlow data (graphs, checkpoints, and
other protobufs) may be migratable to the newer release; see below for details
on data compatibility.

		MINOR: Backwards compatible features, speed improvements, etc. Code and
data that worked with a previous minor release and which depends only the
public API will continue to work unchanged. For details on what is and is
not the public API, see below.

		PATCH: Backwards compatible bug fixes.

Before 1.0, semver allows backwards incompatible changes at any time. However,
to support users now, we will use the format 0.MAJOR.MINOR (shifted one step
to the right). Thus 0.5.0 to 0.6.0 may be backwards incompatible, but 0.6.0 to
0.6.1 will include only backwards compatible features and bug fixes.

At some point (especially as we approach 1.0) we will likely use prerelease
versions such as X.Y.Z-alpha.1, but we do not yet have specific plans (beyond
the restrictions of semver).

Public API

Only the public API of TensorFlow is backwards compatible across minor and patch
versions. The public API consists of

		The documented C++ and Python APIs.

		The following protocol buffer files:
attr_value [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/attr_value.proto],
config [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/protobuf/config.proto],
event [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/util/event.proto],
graph [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/graph.proto],
op_def [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/op_def.proto],
reader_base [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/reader_base.proto],
summary [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/summary.proto],
tensor [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/tensor.proto],
tensor_shape [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/tensor_shape.proto],
and types [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/types.proto].

The public C++ API is exposed through the header files in
tensorflow/core/public [https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/public].
The public Python API is unfortunately not everything available through the
tensorflow python module and its submodules, since we do not yet use __all__
everywhere (#421 [https://github.com/tensorflow/tensorflow/issues/421]).
 Please refer to the documentation to determine whether a given Python feature
is part of the public API. For now, the protocol buffers are defined in
tensorflow/core/framework/*.proto [https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/framework]
(#484 [https://github.com/tensorflow/tensorflow/issues/484]).

Details That Are Not Public

The following are specifically not part of the public API: they are allowed
to change without notice across minor releases and even patch releases if bug
fixes require it:

		Details of composite ops: Many public functions in Python expand to
several primitive ops in the graph, and these details will be part of any
graphs saved to disk as GraphDefs. These details are allowed to change for
minor releases. In particular, regressions tests that check for exact
matching between graphs are likely to break across minor releases, even though
the behavior of the graph should be unchanged and existing checkpoints will
still work.

		Floating point numerical details: The specific floating point values
computed by ops may change at any time: users should rely only on approximate
accuracy and numerical stability, not on the specific bits computed. Changes
to numerical formulas in minor and patch releases should result in comparable
or improved accuracy, with the caveat that in machine learning improved
accuracy of specific formulas may result in worse accuracy for the overall
system.

		Random numbers: The specific random numbers computed by the random
ops may change at any
time: users should rely only on approximately correct distributions and
statistical strength, not the specific bits computed. However, we will make
changes to random bits rarely and ideally never for patch releases, and all
such intended changes will be documented.

Compatibility for Graphs and Checkpoints {#graphs}

Many users of TensorFlow will be saving graphs and trained models to disk for
later evaluation or more training, often changing versions of TensorFlow in the
process. First, following semver, any graph or checkpoint written out with one
version of TensorFlow can be loaded and evaluated with a later version of
TensorFlow with the same major release. However, we will endeavour to preserve
backwards compatibility even across major releases when possible, so that the
serialized files are usable over long periods of time.

There are two main classes of saved TensorFlow data: graphs and checkpoints.
Graphs describe the data flow graphs of ops to be run during training and
inference, and checkpoints contain the saved tensor values of variables in a
graph.

Graphs are serialized via the GraphDef protocol buffer. To facilitate (rare)
backwards incompatible changes to graphs, each GraphDef has an integer version
separate from the TensorFlow version. The semantics are:

		Each version of TensorFlow supports an interval of GraphDef versions. This
interval with be constant across patch releases, and will only grow across
minor releases. Dropping support for a GraphDef version will only occur
for a major release of TensorFlow.

		Newly created graphs use the newest GraphDef version.

		If a given version of TensorFlow supports the GraphDef version of a graph,
it will load and evaluate with the same behavior as when it was written out
(except for floating point numerical details and random numbers), regardless
of the major version of TensorFlow. In particular, all checkpoint files will
be compatible.

		If the GraphDef upper bound is increased to X in a (minor) release, there
will be at least six months before the lower bound is increased to X.

For example (numbers and versions hypothetical), TensorFlow 1.2 might support
GraphDef versions 4 to 7. TensorFlow 1.3 could add GraphDef version 8 and
support versions 4 to 8. At least six months later, TensorFlow 2.0.0 could drop
support for versions 4 to 7, leaving version 8 only.

Finally, when support for a GraphDef version is dropped, we will attempt to
provide tools for automatically converting graphs to a newer supported
GraphDef version.

For developer-level details about GraphDef versioning, including how to evolve
the versions to account for changes, see TensorFlow Data
Versioning.

C++ API Compatibility

Only patch releases will be binary compatible at the C++ level. That is, minor
releases are backwards compatible in terms of behavior but may require a
recompile for downstream C++ code. As always, backwards compatibility is only
provided for the public C++ API.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.train.match_filenames_once.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.match_filenames_once(pattern, name=None) {#match_filenames_once}

Save the list of files matching pattern, so it is only computed once.

Args:

		pattern: A file pattern (glob).

		name: A name for the operations (optional).

Returns:

A variable that is initialized to the list of files matching pattern.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.errors.FailedPreconditionError.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Operation was rejected because the system is not in a state to execute it.

This exception is most commonly raised when running an operation
that reads a tf.Variable
before it has been initialized.

tf.errors.FailedPreconditionError.__init__(node_def, op, message) {#FailedPreconditionError.init}

Creates a FailedPreconditionError.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 InverseGammaTensor is a StochasticTensor backed by the distribution InverseGamma.

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#InverseGammaTensor.init}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.clone(name=None, **dist_args) {#InverseGammaTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.distribution {#InverseGammaTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.dtype {#InverseGammaTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.entropy(name='entropy') {#InverseGammaTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.graph {#InverseGammaTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.input_dict {#InverseGammaTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.loss(final_loss, name='Loss') {#InverseGammaTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.mean(name='mean') {#InverseGammaTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.name {#InverseGammaTensor.name}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.value(name='value') {#InverseGammaTensor.value}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.value_type {#InverseGammaTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.tile.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.tile(input, multiples, name=None) {#tile}

Constructs a tensor by tiling a given tensor.

This operation creates a new tensor by replicating input multiples times.
The output tensor’s i’th dimension has input.dims(i) * multiples[i] elements,
and the values of input are replicated multiples[i] times along the ‘i’th
dimension. For example, tiling [a b c d] by [2] produces
[a b c d a b c d].

Args:

		input: A Tensor. 1-D or higher.

		multiples: A Tensor. Must be one of the following types: int32, int64.
1-D. Length must be the same as the number of dimensions in input

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.layers.unit_norm.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.unit_norm(*args, **kwargs) {#unit_norm}

Normalizes the given input across the specified dimension to unit length.

Note that the rank of input must be known.

Args:

		inputs: A Tensor of arbitrary size.

		dim: The dimension along which the input is normalized.

		epsilon: A small value to add to the inputs to avoid dividing by zero.

		scope: Optional scope for variable_scope.

Returns:

The normalized Tensor.

Raises:

		ValueError: If dim is smaller than the number of dimensions in ‘inputs’.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.nn.softplus.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.softplus(features, name=None) {#softplus}

Computes softplus: log(exp(features) + 1).

Args:

		features: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as features.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.nn.nce_loss.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.nce_loss(weights, biases, inputs, labels, num_sampled, num_classes, num_true=1, sampled_values=None, remove_accidental_hits=False, partition_strategy='mod', name='nce_loss') {#nce_loss}

Computes and returns the noise-contrastive estimation training loss.

See [Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models]
(http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf).
Also see our [Candidate Sampling Algorithms Reference]
(../../extras/candidate_sampling.pdf)

Note: By default this uses a log-uniform (Zipfian) distribution for sampling,
so your labels must be sorted in order of decreasing frequency to achieve
good results. For more details, see
log_uniform_candidate_sampler.

Note: In the case where num_true > 1, we assign to each target class
the target probability 1 / num_true so that the target probabilities
sum to 1 per-example.

Note: It would be useful to allow a variable number of target classes per
example. We hope to provide this functionality in a future release.
For now, if you have a variable number of target classes, you can pad them
out to a constant number by either repeating them or by padding
with an otherwise unused class.

Args:

		weights: A Tensor of shape [num_classes, dim], or a list of Tensor
objects whose concatenation along dimension 0 has shape
[num_classes, dim]. The (possibly-partitioned) class embeddings.

		biases: A Tensor of shape [num_classes]. The class biases.

		inputs: A Tensor of shape [batch_size, dim]. The forward
activations of the input network.

		labels: A Tensor of type int64 and shape [batch_size, num_true]. The target classes.

		num_sampled: An int. The number of classes to randomly sample per batch.

		num_classes: An int. The number of possible classes.

		num_true: An int. The number of target classes per training example.

		sampled_values: a tuple of (sampled_candidates, true_expected_count,
sampled_expected_count) returned by a *_candidate_sampler function.
(if None, we default to log_uniform_candidate_sampler)

		remove_accidental_hits: A bool. Whether to remove “accidental hits”
where a sampled class equals one of the target classes. If set to
True, this is a “Sampled Logistic” loss instead of NCE, and we are
learning to generate log-odds instead of log probabilities. See
our [Candidate Sampling Algorithms Reference]
(../../extras/candidate_sampling.pdf).
Default is False.

		partition_strategy: A string specifying the partitioning strategy, relevant
if len(weights) > 1. Currently "div" and "mod" are supported.
Default is "mod". See tf.nn.embedding_lookup for more details.

		name: A name for the operation (optional).

Returns:

A batch_size 1-D tensor of per-example NCE losses.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.layers.avg_pool2d.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.avg_pool2d(*args, **kwargs) {#avg_pool2d}

Adds a 2D average pooling op.

It is assumed that the pooling is done per image but not in batch or channels.

Args:

		inputs: A Tensor of size [batch_size, height, width, channels].

		kernel_size: A list of length 2: [kernel_height, kernel_width] of the
pooling kernel over which the op is computed. Can be an int if both
values are the same.

		stride: A list of length 2: [stride_height, stride_width].
Can be an int if both strides are the same. Note that presently
both strides must have the same value.

		padding: The padding method, either ‘VALID’ or ‘SAME’.

		outputs_collections: The collections to which the outputs are added.

		scope: Optional scope for name_scope.

Returns:

A Tensor representing the results of the pooling operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 StochasticTensor is a BaseStochasticTensor backed by a distribution.

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.__init__(dist_cls, name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#StochasticTensor.init}

Construct a StochasticTensor.

StochasticTensor will instantiate a distribution from dist_cls and
dist_args and its value method will return the same value each time
it is called. What value is returned is controlled by the
dist_value_type (defaults to SampleAndReshapeValue).

Some distributions’ sample functions are not differentiable (e.g. a sample
from a discrete distribution like a Bernoulli) and so to differentiate
wrt parameters upstream of the sample requires a gradient estimator like
the score function estimator. This is accomplished by passing a
differentiable loss_fn to the StochasticTensor, which
defaults to a function whose derivative is the score function estimator.
Calling stochastic_graph.surrogate_loss(final_losses) will call
loss() on every StochasticTensor upstream of final losses.

loss() will return None for StochasticTensors backed by
reparameterized distributions; it will also return None if the value type is
MeanValueType or if loss_fn=None.

Args:

		dist_cls: a Distribution class.

		name: a name for this StochasticTensor and its ops.

		dist_value_type: a _StochasticValueType, which will determine what the
value of this StochasticTensor will be. If not provided, the
value type set with the value_type context manager will be used.

		loss_fn: callable that takes (dt, dt.value(), influenced_loss), where
dt is this StochasticTensor, and returns a Tensor loss. By
default, loss_fn is the score_function, or more precisely, the
integral of the score function, such that when the gradient is taken,
the score function results. See the stochastic_gradient_estimators
module for additional loss functions and baselines.

		**dist_args: keyword arguments to be passed through to dist_cls on
construction.

Raises:

		TypeError: if dist_cls is not a Distribution.

		TypeError: if loss_fn is not callable.

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.clone(name=None, **dist_args) {#StochasticTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.distribution {#StochasticTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.dtype {#StochasticTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.entropy(name='entropy') {#StochasticTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.graph {#StochasticTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.input_dict {#StochasticTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.loss(final_loss, name='Loss') {#StochasticTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.mean(name='mean') {#StochasticTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.name {#StochasticTensor.name}

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.value(name='value') {#StochasticTensor.value}

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.value_type {#StochasticTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.initialize_variables.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.initialize_variables(var_list, name='init') {#initialize_variables}

Returns an Op that initializes a list of variables.

After you launch the graph in a session, you can run the returned Op to
initialize all the variables in var_list. This Op runs all the
initializers of the variables in var_list in parallel.

Calling initialize_variables() is equivalent to passing the list of
initializers to Group().

If var_list is empty, however, the function still returns an Op that can
be run. That Op just has no effect.

Args:

		var_list: List of Variable objects to initialize.

		name: Optional name for the returned operation.

Returns:

An Op that run the initializers of all the specified variables.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.reduce_min.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.reduce_min(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_min}

Computes the minimum of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

Args:

		input_tensor: The tensor to reduce. Should have numeric type.

		reduction_indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

		keep_dims: If true, retains reduced dimensions with length 1.

		name: A name for the operation (optional).

Returns:

The reduced tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.image.random_saturation.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.random_saturation(image, lower, upper, seed=None) {#random_saturation}

Adjust the saturation of an RGB image by a random factor.

Equivalent to adjust_saturation() but uses a saturation_factor randomly
picked in the interval [lower, upper].

Args:

		image: RGB image or images. Size of the last dimension must be 3.

		lower: float. Lower bound for the random saturation factor.

		upper: float. Upper bound for the random saturation factor.

		seed: An operation-specific seed. It will be used in conjunction
with the graph-level seed to determine the real seeds that will be
used in this operation. Please see the documentation of
set_random_seed for its interaction with the graph-level random seed.

Returns:

Adjusted image(s), same shape and DType as image.

Raises:

		ValueError: if upper <= lower or if lower < 0.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.layers.variance_scaling_initializer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.variance_scaling_initializer(factor=2.0, mode='FAN_IN', uniform=False, seed=None, dtype=tf.float32) {#variance_scaling_initializer}

Returns an initializer that generates tensors without scaling variance.

When initializing a deep network, it is in principle advantageous to keep
the scale of the input variance constant, so it does not explode or diminish
by reaching the final layer. This initializer use the following formula:
if mode=’FAN_IN’: # Count only number of input connections.
n = fan_in
elif mode=’FAN_OUT’: # Count only number of output connections.
n = fan_out
elif mode=’FAN_AVG’: # Average number of inputs and output connections.
n = (fan_in + fan_out)/2.0

truncated_normal(shape, 0.0, stddev=sqrt(factor / n))

To get http://arxiv.org/pdf/1502.01852v1.pdf use (Default):

		factor=2.0 mode=’FAN_IN’ uniform=False
To get http://arxiv.org/abs/1408.5093 use:

		factor=1.0 mode=’FAN_IN’ uniform=True
To get http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf use:

		factor=1.0 mode=’FAN_AVG’ uniform=True.
To get xavier_initializer use either:

		factor=1.0 mode=’FAN_AVG’ uniform=True.

		factor=1.0 mode=’FAN_AVG’ uniform=False.

Args:

		factor: Float. A multiplicative factor.

		mode: String. ‘FAN_IN’, ‘FAN_OUT’, ‘FAN_AVG’.

		uniform: Whether to use uniform or normal distributed random initialization.

		seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

		dtype: The data type. Only floating point types are supported.

Returns:

An initializer that generates tensors with unit variance.

Raises:

		ValueError: if dtype is not a floating point type.

		TypeError: if mode is not in [‘FAN_IN’, ‘FAN_OUT’, ‘FAN_AVG’].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.group.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.group(*inputs, **kwargs) {#group}

Create an op that groups multiple operations.

When this op finishes, all ops in input have finished. This op has no
output.

See also tuple and with_dependencies.

Args:

		*inputs: Zero or more tensors to group.

		**kwargs: Optional parameters to pass when constructing the NodeDef.

		name: A name for this operation (optional).

Returns:

An Operation that executes all its inputs.

Raises:

		ValueError: If an unknown keyword argument is provided.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.unique_with_counts.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.unique_with_counts(x, out_idx=None, name=None) {#unique_with_counts}

Finds unique elements in a 1-D tensor.

This operation returns a tensor y containing all of the unique elements of x
sorted in the same order that they occur in x. This operation also returns a
tensor idx the same size as x that contains the index of each value of x
in the unique output y. Finally, it returns a third tensor count that
contains the count of each element of y in x. In other words:

y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]

For example:

tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]
y, idx, count = unique_with_counts(x)
y ==> [1, 2, 4, 7, 8]
idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]
count ==> [2, 1, 3, 1, 2]

Args:

		x: A Tensor. 1-D.

		out_idx: An optional tf.DType from: tf.int32, tf.int64. Defaults to tf.int32.

		name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (y, idx, count).

		y: A Tensor. Has the same type as x. 1-D.

		idx: A Tensor of type out_idx. 1-D.

		count: A Tensor of type out_idx. 1-D.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.decode_raw.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.decode_raw(bytes, out_type, little_endian=None, name=None) {#decode_raw}

Reinterpret the bytes of a string as a vector of numbers.

Args:

		bytes: A Tensor of type string.
All the elements must have the same length.

		out_type: A tf.DType from: tf.float32, tf.float64, tf.int32, tf.uint8, tf.int16, tf.int8, tf.int64.

		little_endian: An optional bool. Defaults to True.
Whether the input bytes are in little-endian order.
Ignored for out_type values that are stored in a single byte like
uint8.

		name: A name for the operation (optional).

Returns:

A Tensor of type out_type.
A Tensor with one more dimension than the input bytes. The
added dimension will have size equal to the length of the elements
of bytes divided by the number of bytes to represent out_type.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.placeholder.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.placeholder(dtype, shape=None, name=None) {#placeholder}

Inserts a placeholder for a tensor that will be always fed.

Important: This tensor will produce an error if evaluated. Its value must
be fed using the feed_dict optional argument to Session.run(),
Tensor.eval(), or Operation.run().

For example:

x = tf.placeholder(tf.float32, shape=(1024, 1024))
y = tf.matmul(x, x)

with tf.Session() as sess:
 print(sess.run(y)) # ERROR: will fail because x was not fed.

 rand_array = np.random.rand(1024, 1024)
 print(sess.run(y, feed_dict={x: rand_array})) # Will succeed.

Args:

		dtype: The type of elements in the tensor to be fed.

		shape: The shape of the tensor to be fed (optional). If the shape is not
specified, you can feed a tensor of any shape.

		name: A name for the operation (optional).

Returns:

A Tensor that may be used as a handle for feeding a value, but not
evaluated directly.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.convert_to_tensor_or_indexed_slices.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.convert_to_tensor_or_indexed_slices(value, dtype=None, name=None, as_ref=False) {#convert_to_tensor_or_indexed_slices}

Converts the given object to a Tensor or an IndexedSlices.

If value is an IndexedSlices or SparseTensor it is returned
unmodified. Otherwise, it is converted to a Tensor using
convert_to_tensor().

Args:

		value: An IndexedSlices, SparseTensor, or an object that can be consumed
by convert_to_tensor().

		dtype: (Optional.) The required DType of the returned Tensor or
IndexedSlices.

		name: (Optional.) A name to use if a new Tensor is created.

		as_ref: True if the caller wants the results as ref tensors.

Returns:

An Tensor, IndexedSlices, or SparseTensor based on value.

Raises:

		ValueError: If dtype does not match the element type of value.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.train.batch_join.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.batch_join(tensors_list, batch_size, capacity=32, enqueue_many=False, shapes=None, dynamic_pad=False, allow_smaller_final_batch=False, shared_name=None, name=None) {#batch_join}

Runs a list of tensors to fill a queue to create batches of examples.

The tensors_list argument is a list of tuples of tensors, or a list of
dictionaries of tensors. Each element in the list is treated similarly
to the tensors argument of tf.train.batch().

Enqueues a different list of tensors in different threads.
Implemented using a queue – a QueueRunner for the queue
is added to the current Graph‘s QUEUE_RUNNER collection.

len(tensors_list) threads will be started,
with thread i enqueuing the tensors from
tensors_list[i]. tensors_list[i1][j] must match
tensors_list[i2][j] in type and shape, except in the first
dimension if enqueue_many is true.

If enqueue_many is False, each tensors_list[i] is assumed
to represent a single example. An input tensor x will be output as a
tensor with shape [batch_size] + x.shape.

If enqueue_many is True, tensors_list[i] is assumed to
represent a batch of examples, where the first dimension is indexed
by example, and all members of tensors_list[i] should have the
same size in the first dimension. The slices of any input tensor
x are treated as examples, and the output tensors will have shape
[batch_size] + x.shape[1:].

The capacity argument controls the how long the prefetching is allowed to
grow the queues.

The returned operation is a dequeue operation and will throw
tf.errors.OutOfRangeError if the input queue is exhausted. If this
operation is feeding another input queue, its queue runner will catch
this exception, however, if this operation is used in your main thread
you are responsible for catching this yourself.

N.B.: If dynamic_pad is False, you must ensure that either
(i) the shapes argument is passed, or (ii) all of the tensors in
tensors_list must have fully-defined shapes. ValueError will be
raised if neither of these conditions holds.

If dynamic_pad is True, it is sufficient that the rank of the
tensors is known, but individual dimensions may have value None.
In this case, for each enqueue the dimensions with value None
may have a variable length; upon dequeue, the output tensors will be padded
on the right to the maximum shape of the tensors in the current minibatch.
For numbers, this padding takes value 0. For strings, this padding is
the empty string. See PaddingFIFOQueue for more info.

If allow_smaller_final_batch is True, a smaller batch value than
batch_size is returned when the queue is closed and there are not enough
elements to fill the batch, otherwise the pending elements are discarded.
In addition, all output tensors’ static shapes, as accessed via the
get_shape method will have a first Dimension value of None, and
operations that depend on fixed batch_size would fail.

Args:

		tensors_list: A list of tuples or dictionaries of tensors to enqueue.

		batch_size: An integer. The new batch size pulled from the queue.

		capacity: An integer. The maximum number of elements in the queue.

		enqueue_many: Whether each tensor in tensor_list_list is a single
example.

		shapes: (Optional) The shapes for each example. Defaults to the
inferred shapes for tensor_list_list[i].

		dynamic_pad: Boolean. Allow variable dimensions in input shapes.
The given dimensions are padded upon dequeue so that tensors within a
batch have the same shapes.

		allow_smaller_final_batch: (Optional) Boolean. If True, allow the final
batch to be smaller if there are insufficient items left in the queue.

		shared_name: (Optional) If set, this queue will be shared under the given
name across multiple sessions.

		name: (Optional) A name for the operations.

Returns:

A list or dictionary of tensors with the same number and types as
tensors_list[i].

Raises:

		ValueError: If the shapes are not specified, and cannot be
inferred from the elements of tensor_list_list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.nn.softsign.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.softsign(features, name=None) {#softsign}

Computes softsign: features / (abs(features) + 1).

Args:

		features: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as features.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/examples/udacity/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Assignments for Udacity Deep Learning class with TensorFlow

Course information can be found at https://www.udacity.com/course/deep-learning–ud730

Running the Docker container from the Google Cloud repository

docker run -p 8888:8888 --name tensorflow-udacity -it b.gcr.io/tensorflow-udacity/assignments:0.5.0

Note that if you ever exit the container, you can return to it using:

docker start -ai tensorflow-udacity

Accessing the Notebooks

On linux, go to: http://127.0.0.1:8888

On mac, find the virtual machine’s IP using:

docker-machine ip default

Then go to: http://IP:8888 (likely http://192.168.99.100:8888)

FAQ

		I’m getting a MemoryError when loading data in the first notebook.

If you’re using a Mac, Docker works by running a VM locally (which
is controlled by docker-machine). It’s quite likely that you’ll
need to bump up the amount of RAM allocated to the VM beyond the
default (which is 1G).
This Stack Overflow question [http://stackoverflow.com/questions/32834082/how-to-increase-docker-machine-memory-mac]
has two good suggestions; we recommend using 8G.

In addition, you may need to pass --memory=8g as an extra argument to
docker run.

		I want to create a new virtual machine instead of the default one.

docker-machine is a tool to provision and manage docker hosts, it supports multiple platform (ex. aws, gce, azure, virtualbox, ...). To create a new virtual machine locally with built-in docker engine, you can use

docker-machine create -d virtualbox --virtualbox-memory 8196 tensorflow

-d means the driver for the cloud platform, supported drivers listed here [https://docs.docker.com/machine/drivers/]. Here we use virtualbox to create a new virtual machine locally. tensorflow means the name of the virtual machine, feel free to use whatever you like. You can use

docker-machine ip tensorflow

to get the ip of the new virtual machine. To switch from default virtual machine to a new one (here we use tensorflow), type

eval $(docker-machine env tensorflow)

Note that docker-machine env tensorflow outputs some environment variables such like DOCKER_HOST. Then your docker client is now connected to the docker host in virtual machine tensorflow

Notes for anyone needing to build their own containers (mostly instructors)

Building a local Docker container

cd tensorflow/examples/udacity
docker build --pull -t $USER/assignments .

Running the local container

To run a disposable container:

docker run -p 8888:8888 -it --rm $USER/assignments

Note the above command will create an ephemeral container and all data stored in the container will be lost when the container stops.

To avoid losing work between sessions in the container, it is recommended that you mount the tensorflow/examples/udacity directory into the container:

docker run -p 8888:8888 -v </path/to/tensorflow/examples/udacity>:/notebooks -it --rm $USER/assignments

This will allow you to save work and have access to generated files on the host filesystem.

Pushing a Google Cloud release

V=0.5.0
docker tag $USER/assignments b.gcr.io/tensorflow-udacity/assignments:$V
gcloud docker push b.gcr.io/tensorflow-udacity/assignments
docker tag -f $USER/assignments b.gcr.io/tensorflow-udacity/assignments:latest
gcloud docker push b.gcr.io/tensorflow-udacity/assignments

History

		0.1.0: Initial release.

		0.2.0: Many fixes, including lower memory footprint and support for Python 3.

		0.3.0: Use 0.7.1 release.

		0.4.0: Move notMMNIST data for Google Cloud.

		0.5.0: Actually use 0.7.1 release.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/examples/android/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow Android Camera Demo

This folder contains a simple camera-based demo application utilizing TensorFlow.

Description

This demo uses a Google Inception model to classify camera frames in real-time,
displaying the top results in an overlay on the camera image.

To build/install/run

As a prerequisite, Bazel, the Android NDK, and the Android SDK must all be
installed on your system.

		Get the recommended Bazel version listed at:
https://www.tensorflow.org/versions/master/get_started/os_setup.html#source

		The Android NDK may be obtained from:
http://developer.android.com/tools/sdk/ndk/index.html

		The Android SDK and build tools may be obtained from:
https://developer.android.com/tools/revisions/build-tools.html

The Android entries in <workspace_root>/WORKSPACE must be
uncommented with the paths filled in appropriately depending on where you
installed the NDK and SDK. Otherwise an error such as:
“The external label ‘//external:android/sdk’ is not bound to anything” will
be reported.

The TensorFlow GraphDef that contains the model definition and weights
is not packaged in the repo because of its size. Instead, you must
first download the file to the assets directory in the source tree:

$ wget https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip -O /tmp/inception5h.zip

$ unzip /tmp/inception5h.zip -d tensorflow/examples/android/assets/

The labels file describing the possible classification will also be in the
assets directory.

Then, after editing your WORKSPACE file, you must build the APK. Run this from
your workspace root:

$ bazel build //tensorflow/examples/android:tensorflow_demo

If you get build errors about protocol buffers, run
git submodule update --init and build again.

If adb debugging is enabled on your Android 5.0 or later device, you may then
use the following command from your workspace root to install the APK once
built:

$ adb install -r -g bazel-bin/tensorflow/examples/android/tensorflow_demo.apk

Some older versions of adb might complain about the -g option (returning:
“Error: Unknown option: -g”). In this case, if your device runs Android 6.0 or
later, then make sure you update to the latest adb version before trying the
install command again. If your device runs earlier versions of Android, however,
you can issue the install command without the -g option.

Alternatively, a streamlined means of building, installing and running in one
command is:

$ bazel mobile-install //tensorflow/examples/android:tensorflow_demo --start_app

If camera permission errors are encountered (possible on Android Marshmallow or
above), then the adb install command above should be used instead, as it
automatically grants the required camera permissions with -g. The permission
errors may not be obvious if the app halts immediately, so if you installed
with bazel and the app doesn’t come up, then the easiest thing to do is try
installing with adb.

Once the app is installed it will be named “TensorFlow Demo” and have the orange
TensorFlow logo as its icon.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/resources/glossary.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Glossary

Broadcasting operation

An operation that uses numpy-style broadcasting [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]
to make the shapes of its tensor arguments compatible.

Device

A piece of hardware that can run computation and has its own address space,
like a GPU or CPU.

eval

A method of Tensor that returns the value of the Tensor, triggering any
graph computation required to determine the value. You may only call eval()
on a Tensor in a graph that has been launched in a session.

Feed

TensorFlow’s mechanism for patching a tensor directly into any node in a graph
launched in a session. You apply feeds when you trigger the execution of a
graph, not when you build the graph. A feed temporarily replaces a node with a
tensor value. You supply feed data as an argument to a run() or eval() call
that initiates computation. After the run the feed disappears and the original
node definition remains. You usually designate specific nodes to be “feed”
nodes by using tf.placeholder() to create them. See
Basic Usage for more information.

Fetch

TensorFlow’s mechanism for retrieving tensors from a graph launched in a
session. You retrieve fetches when you trigger the execution of a graph, not
when you build the graph. To fetch the tensor value of a node or nodes,
execute the graph with a run() call on the Session object and pass a list of
names of nodes to retrieve. See Basic Usage
for more information.

Graph

Describes a computation as a directed acyclic
graph. Nodes in the graph represent operations that must be
performed. Edges in the graph represent either data or control
dependencies. GraphDef is the proto used to describe a graph to the
system (it is the API), and consists of a collection of NodeDefs (see
below). A GraphDef may be converted to a (C++) Graph object which is
easier to operate on.

IndexedSlices

In the Python API, TensorFlow’s representation of a tensor that is sparse
along only its first dimension. If the tensor is k-dimensional, an
IndexedSlices instance logically represents a collection of
(k-1)-dimensional slices along the tensor’s first dimension. The indices of
the slices are stored concatenated into a single 1-dimensional vector, and the
corresponding slices are concatenated to form a single k-dimensional tensor. Use
SparseTensor if the sparsity is not restricted to the first dimension.

Node

An element of a graph.

Describes how to invoke a specific operation as one node in a specific
computation Graph, including the values for any attrs needed to configure
the operation. For operations that are polymorphic, the attrs include
sufficient information to completely determine the signature of the Node.
See graph.proto for details.

Op (operation)

In the TensorFlow runtime: A type of computation such as add or matmul or
concat. You can add new ops to the runtime as described how to add an
op.

In the Python API: A node in the graph. Ops are represented by instances of
the class tf.Operation. The
type property of an Operation indicates the run operation for the node,
such as add or matmul.

Run

The action of executing ops in a launched graph. Requires that the graph be
launched in a Session.

In the Python API: A method of the Session class:
tf.Session.run. You can pass tensors
to feed and fetch to the run() call.

In the C++ API: A method of the tensorflow::Session.

Session

A runtime object representing a launched graph. Provides methods to execute
ops in the graph.

In the Python API: tf.Session

In the C++ API: class used to launch a graph and run operations
tensorflow::Session.

Shape

The number of dimensions of a tensor and their sizes.

In a launched graph: Property of the tensors that flow between nodes. Some ops
have strong requirements on the shape of their inputs and report errors at
runtime if these are not met.

In the Python API: Attribute of a Python Tensor in the graph construction
API. During constructions the shape of tensors can be only partially known, or
even unknown. See
tf.TensorShape

In the C++ API: class used to represent the shape of tensors
tensorflow::TensorShape.

SparseTensor

In the Python API, TensorFlow’s representation of a tensor that is sparse in
arbitrary positions. A SparseTensor stores only the non-empty values along
with their indices, using a dictionary-of-keys format. In other words, if
there are m non-empty values, it maintains a length-m vector of values and
a matrix with m rows of indices. For efficiency, SparseTensor requires the
indices to be sorted along increasing dimension number, i.e. in row-major
order. Use IndexedSlices if the sparsity is only along the first dimension.

Tensor

A Tensor is a typed multi-dimensional array. For example, a 4-D
array of floating point numbers representing a mini-batch of images with
dimensions [batch, height, width, channel].

In a launched graph: Type of the data that flow between nodes.

In the Python API: class used to represent the output and inputs of ops added
to the graph tf.Tensor. Instances of
this class do not hold data.

In the C++ API: class used to represent tensors returned from a
Session::Run() call
tensorflow::Tensor.
Instances of this class hold data.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/resources/uses.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow Uses

This page describes some of the current uses of the TensorFlow system.

If you are using TensorFlow for research, for education, or for production
usage in some product, we would love to add something about your usage here.
Please feel free to email us a brief description of how you’re using
TensorFlow, or even better, send us a pull request to add an entry to this
file.

Listed below are some of the many uses of TensorFlow.

		RankBrain
		Organization: Google

		Domain: Information Retrieval

		Description: A large-scale deployment of deep neural nets for search ranking on www.google.com.

		More info: “Google Turning Over Its Lucrative Search to AI Machines” [http://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web-search-over-to-ai-machines]

		Inception Image Classification Model
		Organization: Google

		Description: Baseline model and follow on research into highly accurate computer vision models, starting with the model that won the 2014 Imagenet image classification challenge

		More Info: Baseline model described in Arxiv paper [http://arxiv.org/abs/1409.4842]

		SmartReply
		Organization: Google

		Description: Deep LSTM model to automatically generate email responses

		More Info: Google research blog post [http://googleresearch.blogspot.com/2015/11/computer-respond-to-this-email.html]

		Massively Multitask Networks for Drug Discovery
		Organization: Google and Stanford University

		Domain: Drug discovery

		Description: A deep neural network model for identifying promising drug candidates.

		More info: Arxiv paper [http://arxiv.org/abs/1502.02072]

		On-Device Computer Vision for OCR
		Organization: Google

		Description: On-device computer vision model to do optical character recognition to enable real-time translation.

		More info: Google Research blog post [http://googleresearch.blogspot.com/2015/07/how-google-translate-squeezes-deep.html]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/resources/roadmap.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Roadmap

Last updated: June 3, 2016

TensorFlow is a fast moving project. In order for the community to better
understand what the near future will bring, this document shares what we are
working on internally. Many of these features were requested by the community,
and we welcome
contributions [https://github.com/tensorflow/tensorflow/labels/contributions%20welcome].

The features on this list are targeted for the next few months. At this point,
we do not have timelines for these features.

Improve non-Python language support

C and C++ APIs for:

		Graph construction

		Gradients

		Shape Inference

Making TensorFlow easier to use

		Easier setup for distributed training jobs

Performance

		Speed and memory benchmarks

		Performance and memory usage improvements

Core Features

		Repeated partial graph evaluation (#672 [https://github.com/tensorflow/tensorflow/issues/672])

		Automatic op placement (#2126 [https://github.com/tensorflow/tensorflow/issues/2126])

Platforms

		OpenCL support (#22 [https://github.com/tensorflow/tensorflow/issues/22])

		Windows support (#17 [https://github.com/tensorflow/tensorflow/issues/17])

Community

		More educational resources

		Better integration of TensorFlow into the opensource big data ecosystem (#1996 [https://github.com/tensorflow/tensorflow/issues/1996],
#2218 [https://github.com/tensorflow/tensorflow/issues/2218],
#2655 [https://github.com/tensorflow/tensorflow/issues/2655])

		Models benchmarking and comparison tooling

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/resources/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Additional Resources

TensorFlow WhitePaper

Additional details about the TensorFlow programming model and the underlying
implementation can be found in our white paper:

		TensorFlow: Large-scale machine learning on heterogeneous systems [http://download.tensorflow.org/paper/whitepaper2015.pdf]

Citation

If you use TensorFlow in your research and would like to cite the TensorFlow
system, we suggest you cite the paper above.
You can use this BibTeX entry. As the project progresses, we
may update the suggested citation with new papers.

Please only use the TensorFlow name and marks when accurately referencing this
software distribution, and do not use our marks in a way that suggests you are
endorsed by or otherwise affiliated with Google. When referring to our marks,
please include the following attribution statement: “TensorFlow, the TensorFlow
logo and any related marks are trademarks of Google Inc.”

What is TensorFlow used for?

TensorFlow enables researchers to build machine learning models. We collect such
models in our Zoo [https://github.com/tensorflow/models]. If you have built a
model with TensorFlow, you may consider publishing it there.

We keep a list of projects that use TensorFlow here. If you made
something amazing with TensorFlow, we’d like to hear about it!

Community

The TensorFlow community has created many great projects around TensorFlow, including:

		@jtoy’s awesome “Awesome TensorFlow” list of awesome things [https://github.com/jtoy/awesome-tensorflow]

		TensorFlow tutorials [https://github.com/pkmital/tensorflow_tutorials]

		Scikit Flow - Simplified Interface for TensorFlow [https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/learn/python/learn]

		Caffe to TensorFlow model converter [https://github.com/ethereon/caffe-tensorflow]

		Bitfusion’s` GPU-enabled AWS EC2 TensorFlow AMI [https://github.com/bitfusionio/amis/tree/master/awsmrkt-bfboost-ubuntu14-cuda75-tensorflow] (Launch AMI [https://aws.amazon.com/marketplace/pp/B01EYKBEQ0])

		Rust language bindings [https://github.com/google/tensorflow-rust]

Development

The source code for TensorFlow is hosted on GitHub:
https://github.com/tensorflow/tensorflow.

If you are interested in contributing to TensorFlow please
review the contributing guide [https://github.com/tensorflow/tensorflow/blob/master/CONTRIBUTING.md].

Help / Support / How do I?

For help and support, technical or algorithmic questions, please submit
your questions to Stack Overflow:
https://stackoverflow.com/questions/tagged/tensorflow.
You may also find answers in our FAQ, our glossary, or
in the shapes, sizes and types guide. Please do not use the
mailing list or issue tracker for support.

Discussions

For general discussions, please join the TensorFlow discuss mailing list [https://groups.google.com/a/tensorflow.org/d/forum/discuss].
This list is intended for general discussions about TensorFlow development and
directions, not as a help forum. Instead, direct your questions to
Stack Overflow [https://stackoverflow.com/questions/tagged/tensorflow], and
report issues on GitHub [https://github.com/tensorflow/tensorflow/issues].

Report Issues

Please report bugs, feature requests and installation / compatibility issues on
the TensorFlow issues tracker [https://github.com/tensorflow/tensorflow/issues] on GitHub.
If you need help with using TensorFlow, please do not use the issue
tracker for that. Instead, direct your questions to
Stack Overflow [https://stackoverflow.com/questions/tagged/tensorflow].

Versioning

TensorFlow uses Semantic Versioning 2.0 [http://semver.org]. For details on
the versioning of our public API and binary compatibility, see the versioning
document. Additional details for developers are in TensorFlow
Data Versioning.

Roadmap

A roadmap containing what we’re working on at the moment is here.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/get_started/basic_usage.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Basic Usage

To use TensorFlow you need to understand how TensorFlow:

		Represents computations as graphs.

		Executes graphs in the context of Sessions.

		Represents data as tensors.

		Maintains state with Variables.

		Uses feeds and fetches to get data into and out of arbitrary operations.

Overview

TensorFlow is a programming system in which you represent computations as
graphs. Nodes in the graph are called ops (short for operations). An op
takes zero or more Tensors, performs some computation, and produces zero or
more Tensors. A Tensor is a typed multi-dimensional array. For example,
you can represent a mini-batch of images as a 4-D array of floating point
numbers with dimensions [batch, height, width, channels].

A TensorFlow graph is a description of computations. To compute anything,
a graph must be launched in a Session. A Session places the graph ops onto
Devices, such as CPUs or GPUs, and provides methods to execute them. These
methods return tensors produced by ops as numpy [http://www.numpy.org]
ndarray objects in Python, and as tensorflow::Tensor instances in C and
C++.

The computation graph

TensorFlow programs are usually structured into a construction phase, that
assembles a graph, and an execution phase that uses a session to execute ops in
the graph.

For example, it is common to create a graph to represent and train a neural
network in the construction phase, and then repeatedly execute a set of
training ops in the graph in the execution phase.

TensorFlow can be used from C, C++, and Python programs. It is presently much
easier to use the Python library to assemble graphs, as it provides a large set
of helper functions not available in the C and C++ libraries.

The session libraries have equivalent functionalities for the three languages.

Building the graph

To build a graph start with ops that do not need any input (source ops), such as
Constant, and pass their output to other ops that do computation.

The ops constructors in the Python library return objects that stand for the
output of the constructed ops. You can pass these to other ops constructors to
use as inputs.

The TensorFlow Python library has a default graph to which ops constructors
add nodes. The default graph is sufficient for many applications. See the
Graph class documentation for how
to explicitly manage multiple graphs.

import tensorflow as tf

Create a Constant op that produces a 1x2 matrix. The op is
added as a node to the default graph.
#
The value returned by the constructor represents the output
of the Constant op.
matrix1 = tf.constant([[3., 3.]])

Create another Constant that produces a 2x1 matrix.
matrix2 = tf.constant([[2.],[2.]])

Create a Matmul op that takes 'matrix1' and 'matrix2' as inputs.
The returned value, 'product', represents the result of the matrix
multiplication.
product = tf.matmul(matrix1, matrix2)

The default graph now has three nodes: two constant() ops and one matmul()
op. To actually multiply the matrices, and get the result of the multiplication,
you must launch the graph in a session.

Launching the graph in a session

Launching follows construction. To launch a graph, create a Session object.
Without arguments the session constructor launches the default graph.

See the Session class for
the complete session API.

Launch the default graph.
sess = tf.Session()

To run the matmul op we call the session 'run()' method, passing 'product'
which represents the output of the matmul op. This indicates to the call
that we want to get the output of the matmul op back.
#
All inputs needed by the op are run automatically by the session. They
typically are run in parallel.
#
The call 'run(product)' thus causes the execution of three ops in the
graph: the two constants and matmul.
#
The output of the op is returned in 'result' as a numpy `ndarray` object.
result = sess.run(product)
print(result)
==> [[12.]]

Close the Session when we're done.
sess.close()

Sessions should be closed to release resources. You can also enter a Session
with a “with” block. The Session closes automatically at the end of the
with block.

with tf.Session() as sess:
 result = sess.run([product])
 print(result)

The TensorFlow implementation translates the graph definition into executable
operations distributed across available compute resources, such as the CPU or
one of your computer’s GPU cards. In general you do not have to specify CPUs
or GPUs explicitly. TensorFlow uses your first GPU, if you have one, for as
many operations as possible.

If you have more than one GPU available on your machine, to use a GPU beyond
the first you must assign ops to it explicitly. Use with...Device statements
to specify which CPU or GPU to use for operations:

with tf.Session() as sess:
 with tf.device("/gpu:1"):
 matrix1 = tf.constant([[3., 3.]])
 matrix2 = tf.constant([[2.],[2.]])
 product = tf.matmul(matrix1, matrix2)
 ...

Devices are specified with strings. The currently supported devices are:

		"/cpu:0": The CPU of your machine.

		"/gpu:0": The GPU of your machine, if you have one.

		"/gpu:1": The second GPU of your machine, etc.

See Using GPUs for more information about GPUs
and TensorFlow.

Launching the graph in a distributed session

To create a TensorFlow cluster, launch a TensorFlow server on each of the
machines in the cluster. When you instantiate a Session in your client, you
pass it the network location of one of the machines in the cluster:

with tf.Session("grpc://example.org:2222") as sess:
 # Calls to sess.run(...) will be executed on the cluster.
 ...

This machine becomes the master for the session. The master distributes the
graph across other machines in the cluster (workers), much as the local
implementation distributes the graph across available compute resources within
a machine.

You can use “with tf.device():” statements to directly specify workers for
particular parts of the graph:

with tf.device("/job:ps/task:0"):
 weights = tf.Variable(...)
 biases = tf.Variable(...)

See the Distributed TensorFlow How To for more
information about distributed sessions and clusters.

Interactive Usage

The Python examples in the documentation launch the graph with a
Session and use the
Session.run() method to execute
operations.

For ease of use in interactive Python environments, such as
IPython [http://ipython.org] you can instead use the
InteractiveSession class,
and the Tensor.eval() and
Operation.run() methods. This
avoids having to keep a variable holding the session.

Enter an interactive TensorFlow Session.
import tensorflow as tf
sess = tf.InteractiveSession()

x = tf.Variable([1.0, 2.0])
a = tf.constant([3.0, 3.0])

Initialize 'x' using the run() method of its initializer op.
x.initializer.run()

Add an op to subtract 'a' from 'x'. Run it and print the result
sub = tf.sub(x, a)
print(sub.eval())
==> [-2. -1.]

Close the Session when we're done.
sess.close()

Tensors

TensorFlow programs use a tensor data structure to represent all data – only
tensors are passed between operations in the computation graph. You can think
of a TensorFlow tensor as an n-dimensional array or list. A tensor has a
static type, a rank, and a shape. To learn more about how TensorFlow handles
these concepts, see the Rank, Shape, and Type
reference.

Variables

Variables maintain state across executions of the graph. The following example
shows a variable serving as a simple counter. See
Variables for more details.

Create a Variable, that will be initialized to the scalar value 0.
state = tf.Variable(0, name="counter")

Create an Op to add one to `state`.

one = tf.constant(1)
new_value = tf.add(state, one)
update = tf.assign(state, new_value)

Variables must be initialized by running an `init` Op after having
launched the graph. We first have to add the `init` Op to the graph.
init_op = tf.initialize_all_variables()

Launch the graph and run the ops.
with tf.Session() as sess:
 # Run the 'init' op
 sess.run(init_op)
 # Print the initial value of 'state'
 print(sess.run(state))
 # Run the op that updates 'state' and print 'state'.
 for _ in range(3):
 sess.run(update)
 print(sess.run(state))

output:

0
1
2
3

The assign() operation in this code is a part of the expression graph just
like the add() operation, so it does not actually perform the assignment
until run() executes the expression.

You typically represent the parameters of a statistical model as a set of
Variables. For example, you would store the weights for a neural network as a
tensor in a Variable. During training you update this tensor by running a
training graph repeatedly.

Fetches

To fetch the outputs of operations, execute the graph with a run() call on
the Session object and pass in the tensors to retrieve. In the previous
example we fetched the single node state, but you can also fetch multiple
tensors:

input1 = tf.constant([3.0])
input2 = tf.constant([2.0])
input3 = tf.constant([5.0])
intermed = tf.add(input2, input3)
mul = tf.mul(input1, intermed)

with tf.Session() as sess:
 result = sess.run([mul, intermed])
 print(result)

output:
[array([21.], dtype=float32), array([7.], dtype=float32)]

All the ops needed to produce the values of the requested tensors are run once
(not once per requested tensor).

Feeds

The examples above introduce tensors into the computation graph by storing them
in Constants and Variables. TensorFlow also provides a feed mechanism for
patching a tensor directly into any operation in the graph.

A feed temporarily replaces the output of an operation with a tensor value.
You supply feed data as an argument to a run() call. The feed is only used for
the run call to which it is passed. The most common use case involves
designating specific operations to be “feed” operations by using
tf.placeholder() to create them:

input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.mul(input1, input2)

with tf.Session() as sess:
 print(sess.run([output], feed_dict={input1:[7.], input2:[2.]}))

output:
[array([14.], dtype=float32)]

A placeholder() operation generates an error if you do not supply a feed for
it. See the
MNIST fully-connected feed tutorial
(source code [https://www.tensorflow.org/code/tensorflow/examples/tutorials/mnist/fully_connected_feed.py])
for a larger-scale example of feeds.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/get_started/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Introduction

Let’s get you up and running with TensorFlow!

But before we even get started, let’s peek at what TensorFlow
code looks like in the Python API, so you have a sense of where we’re
headed.

Here’s a little Python program that makes up some data in two dimensions, and
then fits a line to it.

import tensorflow as tf
import numpy as np

Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3

Try to find values for W and b that compute y_data = W * x_data + b
(We know that W should be 0.1 and b 0.3, but TensorFlow will
figure that out for us.)
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b

Minimize the mean squared errors.
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

Before starting, initialize the variables. We will 'run' this first.
init = tf.initialize_all_variables()

Launch the graph.
sess = tf.Session()
sess.run(init)

Fit the line.
for step in range(201):
 sess.run(train)
 if step % 20 == 0:
 print(step, sess.run(W), sess.run(b))

Learns best fit is W: [0.1], b: [0.3]

The first part of this code builds the data flow graph. TensorFlow does not
actually run any computation until the session is created and the run
function is called.

To whet your appetite further, we suggest you check out what a classical
machine learning problem looks like in TensorFlow. In the land of neural
networks the most “classic” classical problem is the MNIST handwritten digit
classification. We offer two introductions here, one for machine learning
newbies, and one for pros. If you’ve already trained dozens of MNIST models in
other software packages, please take the red pill. If you’ve never even heard
of MNIST, definitely take the blue pill. If you’re somewhere in between, we
suggest skimming blue, then red.

 [image: MNIST for machine learning beginners tutorial]

 [image: Deep MNIST for machine learning experts tutorial]

Images licensed CC BY-SA 4.0; original by W. Carter

If you’re already sure you want to learn and install TensorFlow you can skip
these and charge ahead. Don’t worry, you’ll still get to see MNIST – we’ll
also use MNIST as an example in our technical tutorial where we elaborate on
TensorFlow features.

Recommended Next Steps

		Download and Setup

		Basic Usage

		TensorFlow Mechanics 101

		Tinker with a neural network in your browser [http://playground.tensorflow.org]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/get_started/os_setup.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Download and Setup

You can install TensorFlow either from our provided binary packages or from the
github source.

Requirements

The TensorFlow Python API supports Python 2.7 and Python 3.3+.

The GPU version works best with Cuda Toolkit 8.0 and
cuDNN v5. Other versions are supported (Cuda toolkit >= 7.0 and
cuDNN >= v3) only when installing from sources.
Please see Cuda installation for
details. For Mac OS X, please see Setup GPU for
Mac.

Overview

We support different ways to install TensorFlow:

		Pip install: Install TensorFlow on your machine,
possibly upgrading previously installed Python packages. May impact existing
Python programs on your machine.

		Virtualenv install: Install TensorFlow in its own
directory, not impacting any existing Python programs on your machine.

		Anaconda install: Install TensorFlow in its own
environment for those running the Anaconda Python distribution. Does not
impact existing Python programs on your machine.

		Docker install: Run TensorFlow in a Docker container
isolated from all other programs on your machine.

		Installing from sources: Install TensorFlow by
building a pip wheel that you then install using pip.

If you are familiar with Pip, Virtualenv, Anaconda, or Docker, please feel free
to adapt the instructions to your particular needs. The names of the pip and
Docker images are listed in the corresponding installation sections.

If you encounter installation errors, see
common problems for some solutions.

Pip Installation

Pip [https://en.wikipedia.org/wiki/Pip_(package_manager)] is a package
management system used to install and manage software packages written in
Python.

The packages that will be installed or upgraded during the pip install are
listed in the REQUIRED_PACKAGES section of
setup.py [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/pip_package/setup.py].

Install pip (or pip3 for python3) if it is not already installed:

Ubuntu/Linux 64-bit
$ sudo apt-get install python-pip python-dev

Mac OS X
$ sudo easy_install pip
$ sudo easy_install --upgrade six

Then, select the correct binary to install:

Ubuntu/Linux 64-bit, CPU only, Python 2.7
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.11.0-cp27-none-linux_x86_64.whl

Ubuntu/Linux 64-bit, GPU enabled, Python 2.7
Requires CUDA toolkit 8.0 and CuDNN v5. For other versions, see "Install from sources" below.
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.11.0-cp27-none-linux_x86_64.whl

Mac OS X, CPU only, Python 2.7:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-0.11.0-py2-none-any.whl

Mac OS X, GPU enabled, Python 2.7:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow-0.11.0-py2-none-any.whl

Ubuntu/Linux 64-bit, CPU only, Python 3.4
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.11.0-cp34-cp34m-linux_x86_64.whl

Ubuntu/Linux 64-bit, GPU enabled, Python 3.4
Requires CUDA toolkit 8.0 and CuDNN v5. For other versions, see "Install from sources" below.
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.11.0-cp34-cp34m-linux_x86_64.whl

Ubuntu/Linux 64-bit, CPU only, Python 3.5
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.11.0-cp35-cp35m-linux_x86_64.whl

Ubuntu/Linux 64-bit, GPU enabled, Python 3.5
Requires CUDA toolkit 8.0 and CuDNN v5. For other versions, see "Install from sources" below.
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.11.0-cp35-cp35m-linux_x86_64.whl

Mac OS X, CPU only, Python 3.4 or 3.5:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-0.11.0-py3-none-any.whl

Mac OS X, GPU enabled, Python 3.4 or 3.5:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow-0.11.0-py3-none-any.whl

Install TensorFlow:

Python 2
$ sudo pip install --upgrade $TF_BINARY_URL

Python 3
$ sudo pip3 install --upgrade $TF_BINARY_URL

NOTE: If you are upgrading from a previous installation of TensorFlow < 0.7.1,
you should uninstall the previous TensorFlow and protobuf using pip uninstall first to make sure you get a clean installation of the updated
protobuf dependency.

You can now test your installation.

Virtualenv installation

Virtualenv [http://docs.python-guide.org/en/latest/dev/virtualenvs/] is a tool
to keep the dependencies required by different Python projects in separate
places. The Virtualenv installation of TensorFlow will not override
pre-existing version of the Python packages needed by TensorFlow.

With Virtualenv [https://pypi.python.org/pypi/virtualenv] the installation is
as follows:

		Install pip and Virtualenv.

		Create a Virtualenv environment.

		Activate the Virtualenv environment and install TensorFlow in it.

		After the install you will activate the Virtualenv environment each time you
want to use TensorFlow.

Install pip and Virtualenv:

Ubuntu/Linux 64-bit
$ sudo apt-get install python-pip python-dev python-virtualenv

Mac OS X
$ sudo easy_install pip
$ sudo pip install --upgrade virtualenv

Create a Virtualenv environment in the directory ~/tensorflow:

$ virtualenv --system-site-packages ~/tensorflow

Activate the environment:

$ source ~/tensorflow/bin/activate # If using bash
$ source ~/tensorflow/bin/activate.csh # If using csh
(tensorflow)$ # Your prompt should change

Now, install TensorFlow just as you would for a regular Pip installation. First select the correct binary to install:

Ubuntu/Linux 64-bit, CPU only, Python 2.7
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.11.0-cp27-none-linux_x86_64.whl

Ubuntu/Linux 64-bit, GPU enabled, Python 2.7
Requires CUDA toolkit 8.0 and CuDNN v5. For other versions, see "Install from sources" below.
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.11.0-cp27-none-linux_x86_64.whl

Mac OS X, CPU only, Python 2.7:
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-0.11.0-py2-none-any.whl

Mac OS X, GPU enabled, Python 2.7:
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow-0.11.0-py2-none-any.whl

Ubuntu/Linux 64-bit, CPU only, Python 3.4
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.11.0-cp34-cp34m-linux_x86_64.whl

Ubuntu/Linux 64-bit, GPU enabled, Python 3.4
Requires CUDA toolkit 8.0 and CuDNN v5. For other versions, see "Install from sources" below.
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.11.0-cp34-cp34m-linux_x86_64.whl

Ubuntu/Linux 64-bit, CPU only, Python 3.5
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.11.0-cp35-cp35m-linux_x86_64.whl

Ubuntu/Linux 64-bit, GPU enabled, Python 3.5
Requires CUDA toolkit 8.0 and CuDNN v5. For other versions, see "Install from sources" below.
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.11.0-cp35-cp35m-linux_x86_64.whl

Mac OS X, CPU only, Python 3.4 or 3.5:
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-0.11.0-py3-none-any.whl

Mac OS X, GPU enabled, Python 3.4 or 3.5:
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow-0.11.0-py3-none-any.whl

Finally install TensorFlow:

Python 2
(tensorflow)$ pip install --upgrade $TF_BINARY_URL

Python 3
(tensorflow)$ pip3 install --upgrade $TF_BINARY_URL

With the Virtualenv environment activated, you can now
test your installation.

When you are done using TensorFlow, deactivate the environment.

(tensorflow)$ deactivate

$ # Your prompt should change back

To use TensorFlow later you will have to activate the Virtualenv environment
again:

$ source ~/tensorflow/bin/activate # If using bash.
$ source ~/tensorflow/bin/activate.csh # If using csh.
(tensorflow)$ # Your prompt should change.
Run Python programs that use TensorFlow.
...
When you are done using TensorFlow, deactivate the environment.
(tensorflow)$ deactivate

Anaconda installation

Anaconda [https://www.continuum.io/why-anaconda] is a Python distribution that
includes a large number of standard numeric and scientific computing packages.
Anaconda uses a package manager called “conda” [http://conda.pydata.org] that
has its own environment system [http://conda.pydata.org/docs/using/envs.html]
similar to Virtualenv.

As with Virtualenv, conda environments keep the dependencies required by
different Python projects in separate places. The Anaconda environment
installation of TensorFlow will not override pre-existing version of the Python
packages needed by TensorFlow.

		Install Anaconda.

		Create a conda environment.

		Activate the conda environment and install TensorFlow in it.

		After the install you will activate the conda environment each time you
want to use TensorFlow.

		Optionally install ipython and other packages into the conda environment

Install Anaconda:

Follow the instructions on the Anaconda download
site [https://www.continuum.io/downloads].

Create a conda environment called tensorflow:

Python 2.7
$ conda create -n tensorflow python=2.7

Python 3.4
$ conda create -n tensorflow python=3.4

Python 3.5
$ conda create -n tensorflow python=3.5

Activate the environment and use conda or pip to install TensorFlow inside it.

Using conda

A community maintained conda package is available from
conda-forge [https://github.com/conda-forge/tensorflow-feedstock].

Only the CPU version of TensorFlow is available at the moment and can be
installed in the conda environment for Python 2 or Python 3.

$ source activate tensorflow
(tensorflow)$ # Your prompt should change

Linux/Mac OS X, Python 2.7/3.4/3.5, CPU only:
(tensorflow)$ conda install -c conda-forge tensorflow

Using pip

If using pip make sure to use the --ignore-installed flag to prevent errors
about easy_install.

$ source activate tensorflow
(tensorflow)$ # Your prompt should change

Now, install TensorFlow just as you would for a regular Pip installation. First
select the correct binary to install:

Ubuntu/Linux 64-bit, CPU only, Python 2.7
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.11.0-cp27-none-linux_x86_64.whl

Ubuntu/Linux 64-bit, GPU enabled, Python 2.7
Requires CUDA toolkit 8.0 and CuDNN v5. For other versions, see "Install from sources" below.
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.11.0-cp27-none-linux_x86_64.whl

Mac OS X, CPU only, Python 2.7:
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-0.11.0-py2-none-any.whl

Mac OS X, GPU enabled, Python 2.7:
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow-0.11.0-py2-none-any.whl

Ubuntu/Linux 64-bit, CPU only, Python 3.4
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.11.0-cp34-cp34m-linux_x86_64.whl

Ubuntu/Linux 64-bit, GPU enabled, Python 3.4
Requires CUDA toolkit 8.0 and CuDNN v5. For other versions, see "Install from sources" below.
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.11.0-cp34-cp34m-linux_x86_64.whl

Ubuntu/Linux 64-bit, CPU only, Python 3.5
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.11.0-cp35-cp35m-linux_x86_64.whl

Ubuntu/Linux 64-bit, GPU enabled, Python 3.5
Requires CUDA toolkit 8.0 and CuDNN v5. For other versions, see "Install from sources" below.
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.11.0-cp35-cp35m-linux_x86_64.whl

Mac OS X, CPU only, Python 3.4 or 3.5:
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-0.11.0-py3-none-any.whl

Mac OS X, GPU enabled, Python 3.4 or 3.5:
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow-0.11.0-py3-none-any.whl

Finally install TensorFlow:

Python 2
(tensorflow)$ pip install --ignore-installed --upgrade $TF_BINARY_URL

Python 3
(tensorflow)$ pip3 install --ignore-installed --upgrade $TF_BINARY_URL

Usage

With the conda environment activated, you can now
test your installation.

When you are done using TensorFlow, deactivate the environment.

(tensorflow)$ source deactivate

$ # Your prompt should change back

To use TensorFlow later you will have to activate the conda environment again:

$ source activate tensorflow
(tensorflow)$ # Your prompt should change.
Run Python programs that use TensorFlow.
...
When you are done using TensorFlow, deactivate the environment.
(tensorflow)$ source deactivate

Install IPython

To use tensorflow with IPython it may be necessary to install IPython into the
tensorflow environment:

$ source activate tensorflow
(tensorflow)$ conda install ipython

Similarly, other Python packages like pandas may need to get installed into the
tensorflow environment before they can be used together with tensorflow.

Docker installation

Docker [http://docker.com/] is a system to build self contained versions of a
Linux operating system running on your machine. When you install and run
TensorFlow via Docker it completely isolates the installation from pre-existing
packages on your machine.

We provide 4 Docker images:

		gcr.io/tensorflow/tensorflow: TensorFlow CPU binary image.

		gcr.io/tensorflow/tensorflow:latest-devel: CPU Binary image plus source
code.

		gcr.io/tensorflow/tensorflow:latest-gpu: TensorFlow GPU binary image.

		gcr.io/tensorflow/tensorflow:latest-devel-gpu: GPU Binary image plus source
code.

We also have tags with latest replaced by a released version (e.g.,
0.11.0-gpu).

With Docker the installation is as follows:

		Install Docker on your machine.

		Create a Docker
group [http://docs.docker.com/engine/installation/ubuntulinux/#create-a-docker-group]
to allow launching containers without sudo.

		Launch a Docker container with the TensorFlow image. The image
gets downloaded automatically on first launch.

See installing Docker [http://docs.docker.com/engine/installation/] for
instructions on installing Docker on your machine.

After Docker is installed, launch a Docker container with the TensorFlow binary
image as follows.

$ docker run -it -p 8888:8888 gcr.io/tensorflow/tensorflow

The option -p 8888:8888 is used to publish the Docker container᾿s internal
port to the host machine, in this case to ensure Jupyter notebook connection.

The format of the port mapping is hostPort:containerPort. You can specify any
valid port number for the host port but have to use 8888 for the container
port portion.

If you’re using a container with GPU support, some additional flags must be
passed to expose the GPU device to the container.

For NVidia GPU support install latest NVidia drivers and
nvidia-docker [https://github.com/NVIDIA/nvidia-docker]. Run with

$ nvidia-docker run -it -p 8888:8888 gcr.io/tensorflow/tensorflow:latest-gpu

If you have a problem running nvidia-docker, then using the default config, we
include a
script [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/docker/docker_run_gpu.sh]
in the repo with these flags, so the command-line would look like

$ path/to/repo/tensorflow/tools/docker/docker_run_gpu.sh -p 8888:8888 gcr.io/tensorflow/tensorflow:latest-gpu

For more details see TensorFlow docker
readme [https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/docker].

You can now test your installation within
the Docker container.

Test the TensorFlow installation

(Optional, Linux) Enable GPU Support

If you installed the GPU version of TensorFlow, you must also install the Cuda
Toolkit 8.0 and cuDNN v5. Please see Cuda
installation.

You also need to set the LD_LIBRARY_PATH and CUDA_HOME environment
variables. Consider adding the commands below to your ~/.bash_profile. These
assume your CUDA installation is in /usr/local/cuda:

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"
export CUDA_HOME=/usr/local/cuda

Run TensorFlow from the Command Line

See common problems if an error happens.

Open a terminal and type the following:

$ python
...
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print(sess.run(hello))
Hello, TensorFlow!
>>> a = tf.constant(10)
>>> b = tf.constant(32)
>>> print(sess.run(a + b))
42
>>>

Run a TensorFlow demo model

All TensorFlow packages, including the demo models, are installed in the Python
library. The exact location of the Python library depends on your system, but
is usually one of:

/usr/local/lib/python2.7/dist-packages/tensorflow
/usr/local/lib/python2.7/site-packages/tensorflow

You can find out the directory with the following command (make sure to use the
Python you installed TensorFlow to, for example, use python3 instead of
python if you installed for Python 3):

$ python -c 'import os; import inspect; import tensorflow; print(os.path.dirname(inspect.getfile(tensorflow)))'

The simple demo model for classifying handwritten digits from the MNIST dataset
is in the sub-directory models/image/mnist/convolutional.py. You can run it
from the command line as follows (make sure to use the Python you installed
TensorFlow with):

Using 'python -m' to find the program in the python search path:
$ python -m tensorflow.models.image.mnist.convolutional
Extracting data/train-images-idx3-ubyte.gz
Extracting data/train-labels-idx1-ubyte.gz
Extracting data/t10k-images-idx3-ubyte.gz
Extracting data/t10k-labels-idx1-ubyte.gz
...etc...

You can alternatively pass the path to the model program file to the python
interpreter (make sure to use the python distribution you installed
TensorFlow to, for example, .../python3.X/... for Python 3).
$ python /usr/local/lib/python2.7/dist-packages/tensorflow/models/image/mnist/convolutional.py
...

Installing from sources

When installing from source you will build a pip wheel that you then install
using pip. You’ll need pip for that, so install it as described
above.

Clone the TensorFlow repository

$ git clone https://github.com/tensorflow/tensorflow

Note that these instructions will install the latest master branch of
tensorflow. If you want to install a specific branch (such as a release branch),
pass -b <branchname> to the git clone command and --recurse-submodules for
r0.8 and earlier to fetch the protobuf library that TensorFlow depends on.

Prepare environment for Linux

Install Bazel

Follow instructions here [http://bazel.io/docs/install.html] to install the
dependencies for bazel. Then download the latest stable bazel version using the
installer for your system [https://github.com/bazelbuild/bazel/releases] and
run the installer as mentioned there:

$ chmod +x PATH_TO_INSTALL.SH
$./PATH_TO_INSTALL.SH --user

Remember to replace PATH_TO_INSTALL.SH with the location where you
downloaded the installer.

Finally, follow the instructions in that script to place bazel into your
binary path.

Install other dependencies

For Python 2.7:
$ sudo apt-get install python-numpy swig python-dev python-wheel
For Python 3.x:
$ sudo apt-get install python3-numpy swig python3-dev python3-wheel

Optional: Install CUDA (GPUs on Linux)

In order to build or run TensorFlow with GPU support, both NVIDIA’s Cuda Toolkit
(>= 7.0) and cuDNN (>= v3) need to be installed.

TensorFlow GPU support requires having a GPU card with NVidia Compute Capability

= 3.0. Supported cards include but are not limited to:

		NVidia Titan

		NVidia Titan X

		NVidia K20

		NVidia K40

Check NVIDIA Compute Capability of your GPU card

https://developer.nvidia.com/cuda-gpus

Download and install Cuda Toolkit

https://developer.nvidia.com/cuda-downloads

Install version 8.0 if using our binary releases.

Install the toolkit into e.g. /usr/local/cuda

Download and install cuDNN

https://developer.nvidia.com/cudnn

Download cuDNN v5.

Uncompress and copy the cuDNN files into the toolkit directory. Assuming the
toolkit is installed in /usr/local/cuda, run the following commands (edited
to reflect the cuDNN version you downloaded):

tar xvzf cudnn-8.0-linux-x64-v5.1-ga.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

Prepare environment for Mac OS X

We recommend using homebrew [http://brew.sh] to install the bazel and SWIG
dependencies, and installing python dependencies using easy_install or pip.

Of course you can also install Swig from source without using homebrew. In that
case, be sure to install its dependency PCRE [http://www.pcre.org] and not
PCRE2.

Dependencies

Follow instructions here [http://bazel.io/docs/install.html] to install the
dependencies for bazel. You can then use homebrew to install bazel and SWIG:

$ brew install bazel swig

You can install the python dependencies using easy_install or pip. Using
easy_install, run

$ sudo easy_install -U six
$ sudo easy_install -U numpy
$ sudo easy_install wheel

We also recommend the ipython [https://ipython.org] enhanced python shell,
which you can install as follows:

$ sudo easy_install ipython

Optional: Setup GPU for Mac

If you plan to build with GPU support you will need to make sure you have
GNU coreutils installed via homebrew:

$ brew install coreutils

Next you will need to make sure you have a recent CUDA
Toolkit [https://developer.nvidia.com/cuda-toolkit] installed by either
downloading the package for your version of OSX directly from
NVIDIA [https://developer.nvidia.com/cuda-downloads] or by using the Homebrew
Cask [https://caskroom.github.io/] extension:

$ brew tap caskroom/cask
$ brew cask install cuda

Once you have the CUDA Toolkit installed you will need to setup the required
environment variables by adding the following to your ~/.bash_profile:

export CUDA_HOME=/usr/local/cuda
export DYLD_LIBRARY_PATH="$DYLD_LIBRARY_PATH:$CUDA_HOME/lib"
export PATH="$CUDA_HOME/bin:$PATH"

Finally, you will also want to install the CUDA Deep Neural
Network [https://developer.nvidia.com/cudnn] (cuDNN v5) library which currently
requires an Accelerated Computing Developer
Program [https://developer.nvidia.com/accelerated-computing-developer] account.
Once you have it downloaded locally, you can unzip and move the header and
libraries to your local CUDA Toolkit folder:

$ sudo mv include/cudnn.h /Developer/NVIDIA/CUDA-8.0/include/
$ sudo mv lib/libcudnn* /Developer/NVIDIA/CUDA-8.0/lib
$ sudo ln -s /Developer/NVIDIA/CUDA-8.0/lib/libcudnn* /usr/local/cuda/lib/

To verify the CUDA installation, you can build and run deviceQuery to make sure
it passes.

$ cp -r /usr/local/cuda/samples ~/cuda-samples
$ pushd ~/cuda-samples
$ make
$ popd
$ ~/cuda-samples/bin/x86_64/darwin/release/deviceQuery

If you want to compile tensorflow and have XCode 7.3 and CUDA 7.5 installed, note that
Xcode 7.3 is not yet compatible with CUDA 7.5. You can either upgrade to CUDA
8.0, or you will need to download Xcode
7.2 and select it as your default:

$ sudo xcode-select -s /Application/Xcode-7.2/Xcode.app

Configure the installation

Run the configure script at the root of the tree. The configure script
asks you for the path to your python interpreter and allows (optional)
configuration of the CUDA libraries.

This step is used to locate the python and numpy header files as well as
enabling GPU support if you have a CUDA enabled GPU and Toolkit installed.
Select the option Y when asked to build TensorFlow with GPU support.

If you have several versions of Cuda or cuDNN installed, you should definitely
select one explicitly instead of relying on the system default.

For example:

$./configure
Please specify the location of python. [Default is /usr/bin/python]:
Do you wish to build TensorFlow with Google Cloud Platform support? [y/N] N
No Google Cloud Platform support will be enabled for TensorFlow
Do you wish to build TensorFlow with GPU support? [y/N] y
GPU support will be enabled for TensorFlow
Please specify which gcc nvcc should use as the host compiler. [Default is /usr/bin/gcc]:
Please specify the Cuda SDK version you want to use, e.g. 7.0. [Leave empty to use system default]: 8.0
Please specify the location where CUDA 8.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]:
Please specify the cuDNN version you want to use. [Leave empty to use system default]: 5
Please specify the location where cuDNN 5 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda]:
Please specify a list of comma-separated Cuda compute capabilities you want to build with.
You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases your build time and binary size.
[Default is: "3.5,5.2"]: 3.0
Setting up Cuda include
Setting up Cuda lib
Setting up Cuda bin
Setting up Cuda nvvm
Setting up CUPTI include
Setting up CUPTI lib64
Configuration finished

This creates a canonical set of symbolic links to the Cuda libraries on your
system. Every time you change the Cuda library paths you need to run this step
again before you invoke the bazel build command. For the cuDNN libraries, use
‘7.0’ for R3, and ‘4.0.7’ for R4.

Known issues

		Although it is possible to build both Cuda and non-Cuda configs under the same
source tree, we recommend to run bazel clean when switching between these two
configs in the same source tree.

		You have to run configure before running bazel build. Otherwise, the build
will fail with a clear error message. In the future, we might consider making
this more convenient by including the configure step in our build process.

Create the pip package and install

When building from source, you will still build a pip package and install that.

Please note that building from sources takes a lot of memory resources by
default and if you want to limit RAM usage you can add --local_resources 2048,.5,1.0 while invoking bazel.

$ bazel build -c opt //tensorflow/tools/pip_package:build_pip_package

To build with GPU support:
$ bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package

$ bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg

The name of the .whl file will depend on your platform.
$ sudo pip install /tmp/tensorflow_pkg/tensorflow-0.11.0-py2-none-any.whl

Setting up TensorFlow for Development

If you’re working on TensorFlow itself, it is useful to be able to test your
changes in an interactive python shell without having to reinstall TensorFlow.

To set up TensorFlow such that all files are linked (instead of copied) from the
system directories, run the following commands inside the TensorFlow root
directory:

bazel build -c opt //tensorflow/tools/pip_package:build_pip_package

To build with GPU support:
bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package

mkdir _python_build
cd _python_build
ln -s ../bazel-bin/tensorflow/tools/pip_package/build_pip_package.runfiles/org_tensorflow/* .
ln -s ../tensorflow/tools/pip_package/* .
python setup.py develop

Note that this setup still requires you to rebuild the
//tensorflow/tools/pip_package:build_pip_package target every time you change
a C++ file; add, delete, or move any python file; or if you change bazel build
rules.

Train your first TensorFlow neural net model

Starting from the root of your source tree, run:

$ cd tensorflow/models/image/mnist
$ python convolutional.py
Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
Extracting data/train-images-idx3-ubyte.gz
Extracting data/train-labels-idx1-ubyte.gz
Extracting data/t10k-images-idx3-ubyte.gz
Extracting data/t10k-labels-idx1-ubyte.gz
Initialized!
Epoch 0.00
Minibatch loss: 12.054, learning rate: 0.010000
Minibatch error: 90.6%
Validation error: 84.6%
Epoch 0.12
Minibatch loss: 3.285, learning rate: 0.010000
Minibatch error: 6.2%
Validation error: 7.0%
...
...

Common Problems

GPU-related issues

If you encounter the following when trying to run a TensorFlow program:

ImportError: libcudart.so.7.0: cannot open shared object file: No such file or directory

Make sure you followed the GPU installation
instructions. If you built from source,
and you left the Cuda or cuDNN version empty, try specifying them explicitly.

Protobuf library related issues

TensorFlow pip package depends on protobuf pip package version
3.0.0b2. Protobuf’s pip package downloaded from PyPI [https://pypi.python.org]
(when running pip install protobuf) is a Python only library, that has
Python implementations of proto serialization/deserialization which can be
10x-50x slower than the C++ implementation. Protobuf also supports a binary
extension for the Python package that contains fast C++ based proto parsing.
This extension is not available in the standard Python only PIP package. We have
created a custom binary pip package for protobuf that contains the binary
extension. Follow these instructions to install the custom binary protobuf pip
package:

Ubuntu/Linux 64-bit:
$ pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/protobuf-3.0.0-cp27-none-linux_x86_64.whl

Mac OS X:
$ pip install --upgrade https://storage.googleapis.com/tensorflow/mac/cpu/protobuf-3.0.0-cp27-cp27m-macosx_10_11_x86_64.whl

And for Python 3:

Ubuntu/Linux 64-bit:
$ pip3 install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/protobuf-3.0.0-cp3-none-linux_x86_64.whl

Mac OS X:
$ pip3 install --upgrade https://storage.googleapis.com/tensorflow/mac/cpu/protobuf-3.0.0-cp3-cp3m-macosx_10_11_x86_64.whl

Install the above package after you have installed TensorFlow via pip, as the
standard pip install tensorflow would install the python only pip package. The
above pip package will over-write the existing protobuf package.
Note that the binary pip package already has support for protobuf larger than
64MB, that should fix errors such as these :

[libprotobuf ERROR google/protobuf/src/google/protobuf/io/coded_stream.cc:207] A
protocol message was rejected because it was too big (more than 67108864 bytes).
To increase the limit (or to disable these warnings), see
CodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h.

Pip installation issues

Cannot import name ‘descriptor’

ImportError: Traceback (most recent call last):
 File "/usr/local/lib/python3.4/dist-packages/tensorflow/core/framework/graph_pb2.py", line 6, in <module>
 from google.protobuf import descriptor as _descriptor
ImportError: cannot import name 'descriptor'

If you the above error when upgrading to a newer version of TensorFlow, try
uninstalling both TensorFlow and protobuf (if installed) and re-installing
TensorFlow (which will also install the correct protobuf dependency).

Can’t find setup.py

If, during pip install, you encounter an error like:

...
IOError: [Errno 2] No such file or directory: '/tmp/pip-o6Tpui-build/setup.py'

Solution: upgrade your version of pip:

pip install --upgrade pip

This may require sudo, depending on how pip is installed.

SSLError: SSL_VERIFY_FAILED

If, during pip install from a URL, you encounter an error like:

...
SSLError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed

Solution: Download the wheel manually via curl or wget, and pip install locally.

Operation not permitted

If, despite using sudo, you encounter an error like:

...
Installing collected packages: setuptools, protobuf, wheel, numpy, tensorflow
Found existing installation: setuptools 1.1.6
Uninstalling setuptools-1.1.6:
Exception:
...
[Errno 1] Operation not permitted: '/tmp/pip-a1DXRT-uninstall/System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python/_markerlib'

Solution: Add an --ignore-installed flag to the pip command.

Linux issues

If you encounter:

...
 "__add__", "__radd__",
 ^
SyntaxError: invalid syntax

Solution: make sure you are using Python 2.7.

Ubuntu build issue on Linux 16.04 when building with –config=cuda: build fail with cuda: identifier “__builtin_ia32_mwaitx” is undefined.

GitHub issue: https://github.com/tensorflow/tensorflow/issues/1066

Solution: Add the following compiler flags to third_party/gpus/crosstool/CROSSTOOL

cxx_flag: “-D_MWAITXINTRIN_H_INCLUDED”
cxx_flag: “-D_FORCE_INLINES”

Mac OS X: ImportError: No module named copyreg

On Mac OS X, you may encounter the following when importing tensorflow.

>>> import tensorflow as tf
...
ImportError: No module named copyreg

Solution: TensorFlow depends on protobuf, which requires the Python package
six-1.10.0. Apple’s default Python installation only provides six-1.4.1.

You can resolve the issue in one of the following ways:

		Upgrade the Python installation with the current version of six:

$ sudo easy_install -U six

		Install TensorFlow with a separate Python library:
		Using Virtualenv.

		Using Docker.

		Install a separate copy of Python via Homebrew [http://brew.sh/] or
MacPorts [https://www.macports.org/] and re-install TensorFlow in that
copy of Python.

Mac OS X: OSError: [Errno 1] Operation not permitted:

On El Capitan, “six” is a special package that can’t be modified, and this
error is reported when “pip install” tried to modify this package. To fix use
“ignore-installed” flag, ie

sudo pip install –ignore-installed six https://storage.googleapis.com/....

Mac OS X: TypeError: __init__() got an unexpected keyword argument ‘syntax’

On Mac OS X, you may encounter the following when importing tensorflow.

>>> import tensorflow as tf
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/local/lib/python2.7/site-packages/tensorflow/__init__.py", line 4, in <module>
 from tensorflow.python import *
 File "/usr/local/lib/python2.7/site-packages/tensorflow/python/__init__.py", line 13, in <module>
 from tensorflow.core.framework.graph_pb2 import *
...
 File "/usr/local/lib/python2.7/site-packages/tensorflow/core/framework/tensor_shape_pb2.py", line 22, in <module>
 serialized_pb=_b('\n,tensorflow/core/framework/tensor_shape.proto\x12\ntensorflow\"d\n\x10TensorShapeProto\x12-\n\x03\x64im\x18\x02 \x03(\x0b\x32 .tensorflow.TensorShapeProto.Dim\x1a!\n\x03\x44im\x12\x0c\n\x04size\x18\x01 \x01(\x03\x12\x0c\n\x04name\x18\x02 \x01(\tb\x06proto3')
TypeError: __init__() got an unexpected keyword argument 'syntax'

This is due to a conflict between protobuf versions (we require protobuf 3.0.0).
The best current solution is to make sure older versions of protobuf are not
installed, such as:

$ pip install --upgrade protobuf

Mac OS X: Segmentation Fault when import tensorflow

On Mac OS X, you might get the following error when importing tensorflow in python:

>>> import tensorflow
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcublas.dylib locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcudnn.dylib locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcufft.dylib locally
"import tensorflow" terminated by signal SIGSEGV (Address boundary error)

This is due to the fact that by default, cuda creates libcuda.dylib, but tensorflow tries to load libcuda.1.dylib.
This can be resolved by create a symbolic link:

ln -sf /usr/local/cuda/lib/libcuda.dylib /usr/local/cuda/lib/libcuda.1.dylib

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/examples/skflow/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Examples of Using skflow

Scikit Flow is high level API that allows to create,
train and use deep learning models easily with well
known Scikit Learn API.

To run these examples, you need to have scikit learn library installed (sudo pip install sklearn).
Some examples use the pandas library for data processing (sudo pip install pandas).

Basics

		Deep Neural Network Regression with Boston Data

		Convolutional Neural Networks with Digits Data

		Deep Neural Network Classification with Iris Data

		Building A Custom Model

		Accessing Weights and Biases in A Custom Model

		Building A Model Using Different GPU Configurations

		Example of Saving and Restoring Models

		Multi-output Deep Neural Network regression

Techniques

		Improving Performance Using Early Stopping with Iris Data

		Using skflow with Pipeline

		Building A Custom Model Using Multiple GPUs

		Grid search and Deep Neural Network Classification

		Deep Neural Network with Customized Decay Function

		Out-of-core Data Classification Using Dask

		Handling Large HDF5 Dataset

Image classification

		Convolutional Neural Networks on MNIST Data

		Recurrent Neural Networks on MNIST Data

		Deep Residual Networks on MNIST Data

Text classification

		Text Classification Using Recurrent Neural Networks on Words
(See also Simplified Version Using Built-in RNN Model using built-in parameters)

		Text Classification Using Convolutional Neural Networks on Words

		Text Classification Using Recurrent Neural Networks on Characters

		Text Classification Using Convolutional Neural Networks on Characters

Language modeling

		Character level language modeling

Text sequence to sequence

		Character level neural language translation

		Word level neural language translation

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.bayesflow.variational_inference.ELBOForms.check_form.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.bayesflow.variational_inference.ELBOForms.check_form(form) {#ELBOForms.check_form}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.graph_editor.matcher.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Graph match class.

tf.contrib.graph_editor.matcher.__call__(op) {#matcher.call}

Evaluate if the op matches or not.

tf.contrib.graph_editor.matcher.__init__(positive_filter) {#matcher.init}

Graph match constructor.

tf.contrib.graph_editor.matcher.control_input_ops(*args) {#matcher.control_input_ops}

Add input matches.

tf.contrib.graph_editor.matcher.input_ops(*args) {#matcher.input_ops}

Add input matches.

tf.contrib.graph_editor.matcher.output_ops(*args) {#matcher.output_ops}

Add output matches.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.train.range_input_producer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.range_input_producer(limit, num_epochs=None, shuffle=True, seed=None, capacity=32, shared_name=None, name=None) {#range_input_producer}

Produces the integers from 0 to limit-1 in a queue.

Args:

		limit: An int32 scalar tensor.

		num_epochs: An integer (optional). If specified, range_input_producer
produces each integer num_epochs times before generating an
OutOfRange error. If not specified, range_input_producer can cycle
through the integers an unlimited number of times.

		shuffle: Boolean. If true, the integers are randomly shuffled within each
epoch.

		seed: An integer (optional). Seed used if shuffle == True.

		capacity: An integer. Sets the queue capacity.

		shared_name: (optional). If set, this queue will be shared under the given
name across multiple sessions.

		name: A name for the operations (optional).

Returns:

A Queue with the output integers. A QueueRunner for the Queue
is added to the current Graph‘s QUEUE_RUNNER collection.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.scatter_mul.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.scatter_mul(ref, indices, updates, use_locking=None, name=None) {#scatter_mul}

Multiplies sparse updates into a variable reference.

This operation computes

Scalar indices
ref[indices, ...] *= updates[...]

Vector indices (for each i)
ref[indices[i], ...] *= updates[i, ...]

High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] *= updates[i, ..., j, ...]

This operation outputs ref after the update is done.
This makes it easier to chain operations that need to use the reset value.

Duplicate entries are handled correctly: if multiple indices reference
the same location, their contributions multiply.

Requires updates.shape = indices.shape + ref.shape[1:].

Args:

		ref: A mutable Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
Should be from a Variable node.

		indices: A Tensor. Must be one of the following types: int32, int64.
A tensor of indices into the first dimension of ref.

		updates: A Tensor. Must have the same type as ref.
A tensor of updated values to multiply to ref.

		use_locking: An optional bool. Defaults to False.
If True, the operation will be protected by a lock;
otherwise the behavior is undefined, but may exhibit less contention.

		name: A name for the operation (optional).

Returns:

Same as ref. Returned as a convenience for operations that want
to use the updated values after the update is done.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/examples/label_image/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow C++ Image Recognition Demo

This example shows how you can load a pre-trained TensorFlow network and use it
to recognize objects in images.

Description

This demo uses a Google Inception model to classify image files that are passed
in on the command line.

To build/install/run

The TensorFlow GraphDef that contains the model definition and weights
is not packaged in the repo because of its size. Instead, you must
first download the file to the data directory in the source tree:

$ wget https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_2015.zip -O tensorflow/examples/label_image/data/inception_dec_2015.zip

$ unzip tensorflow/examples/label_image/data/inception_dec_2015.zip -d tensorflow/examples/label_image/data/

Then, as long as you’ve managed to build the main TensorFlow framework, you
should have everything you need to run this example installed already.

Once extracted, see the labels file in the data directory for the possible
classifications, which are the 1,000 categories used in the Imagenet
competition.

To build it, run this command:

$ bazel build tensorflow/examples/label_image/...

That should build a binary executable that you can then run like this:

$ bazel-bin/tensorflow/examples/label_image/label_image

This uses the default example image that ships with the framework, and should
output something similar to this:

I tensorflow/examples/label_image/main.cc:207] military uniform (866): 0.647299
I tensorflow/examples/label_image/main.cc:207] suit (794): 0.0477195
I tensorflow/examples/label_image/main.cc:207] academic gown (896): 0.0232407
I tensorflow/examples/label_image/main.cc:207] bow tie (817): 0.0157355
I tensorflow/examples/label_image/main.cc:207] bolo tie (940): 0.0145023

In this case, we’re using the default image of Admiral Grace Hopper, and you can
see the network correctly spots she’s wearing a military uniform, with a high
score of 0.6.

Next, try it out on your own images by supplying the –image= argument, e.g.

$ bazel-bin/tensorflow/examples/label_image/label_image --image=my_image.png

For a more detailed look at this code, you can check out the C++ section of the
Inception tutorial [https://tensorflow.org/tutorials/image_recognition/].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.graph_editor.filter_ops_from_regex.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.filter_ops_from_regex(ops, regex) {#filter_ops_from_regex}

Get all the operations that match the given regex.

Args:

		ops: an object convertible to a list of tf.Operation.

		regex: a regular expression matching the operation’s name.
For example, “^foo(/.*)?$” will match all the operations in the “foo”
scope.

Returns:

A list of tf.Operation.

Raises:

		TypeError: if ops cannot be converted to a list of tf.Operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.local_variables.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.local_variables() {#local_variables}

Returns all variables created with collection=[LOCAL_VARIABLES].

Returns:

A list of local Variable objects.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 The multivariate normal distribution on R^k.

Every batch member of this distribution is defined by a mean and a lightweight
covariance matrix C.

Mathematical details

The PDF of this distribution in terms of the mean mu and covariance C is:

f(x) = (2 pi)^(-k/2) |det(C)|^(-1/2) exp(-1/2 (x - mu)^T C^{-1} (x - mu))

For every batch member, this distribution represents k random variables
(X_1,...,X_k), with mean E[X_i] = mu[i], and covariance matrix
C_{ij} := E[(X_i - mu[i])(X_j - mu[j])]

The user initializes this class by providing the mean mu, and a lightweight
definition of C:

C = SS^T = SS = (M + V D V^T) (M + V D V^T)
M is diagonal (k x k)
V = is shape (k x r), typically r << k
D = is diagonal (r x r), optional (defaults to identity).

This allows for O(kr + r^3) pdf evaluation and determinant, and O(kr)
sampling and storage (per batch member).

Examples

A single multi-variate Gaussian distribution is defined by a vector of means
of length k, and square root of the covariance S = M + V D V^T. Extra
leading dimensions, if provided, allow for batches.

Initialize a single 3-variate Gaussian with covariance square root
S = M + V D V^T, where V D V^T is a matrix-rank 2 update.
mu = [1, 2, 3.]
diag_large = [1.1, 2.2, 3.3]
v = ... # shape 3 x 2
diag_small = [4., 5.]
dist = tf.contrib.distributions.MultivariateNormalDiagPlusVDVT(
 mu, diag_large, v, diag_small=diag_small)

Evaluate this on an observation in R^3, returning a scalar.
dist.pdf([-1, 0, 1])

Initialize a batch of two 3-variate Gaussians. This time, don't provide
diag_small. This means S = M + V V^T.
mu = [[1, 2, 3], [11, 22, 33]] # shape 2 x 3
diag_large = ... # shape 2 x 3
v = ... # shape 2 x 3 x 1, a matrix-rank 1 update.
dist = tf.contrib.distributions.MultivariateNormalDiagPlusVDVT(
 mu, diag_large, v)

Evaluate this on a two observations, each in R^3, returning a length two
tensor.
x = [[-1, 0, 1], [-11, 0, 11]] # Shape 2 x 3.
dist.pdf(x)

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.__init__(mu, diag_large, v, diag_small=None, validate_args=False, allow_nan_stats=True, name='MultivariateNormalDiagPlusVDVT') {#MultivariateNormalDiagPlusVDVT.init}

Multivariate Normal distributions on R^k.

For every batch member, this distribution represents k random variables
(X_1,...,X_k), with mean E[X_i] = mu[i], and covariance matrix
C_{ij} := E[(X_i - mu[i])(X_j - mu[j])]

The user initializes this class by providing the mean mu, and a
lightweight definition of C:

C = SS^T = SS = (M + V D V^T) (M + V D V^T)
M is diagonal (k x k)
V = is shape (k x r), typically r << k
D = is diagonal (r x r), optional (defaults to identity).

Args:

		mu: Rank n + 1 floating point tensor with shape [N1,...,Nn, k],
n >= 0. The means.

		diag_large: Optional rank n + 1 floating point tensor, shape
[N1,...,Nn, k] n >= 0. Defines the diagonal matrix M.

		v: Rank n + 1 floating point tensor, shape [N1,...,Nn, k, r]
n >= 0. Defines the matrix V.

		diag_small: Rank n + 1 floating point tensor, shape
[N1,...,Nn, k] n >= 0. Defines the diagonal matrix D. Default
is None, which means D will be the identity matrix.

		validate_args: Boolean, default False. Whether to validate input
with asserts. If validate_args is False,
and the inputs are invalid, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to give Ops created by the initializer.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.allow_nan_stats {#MultivariateNormalDiagPlusVDVT.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.batch_shape(name='batch_shape') {#MultivariateNormalDiagPlusVDVT.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.cdf(value, name='cdf') {#MultivariateNormalDiagPlusVDVT.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.dtype {#MultivariateNormalDiagPlusVDVT.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.entropy(name='entropy') {#MultivariateNormalDiagPlusVDVT.entropy}

Shanon entropy in nats.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.event_shape(name='event_shape') {#MultivariateNormalDiagPlusVDVT.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.get_batch_shape() {#MultivariateNormalDiagPlusVDVT.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.get_event_shape() {#MultivariateNormalDiagPlusVDVT.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.is_continuous {#MultivariateNormalDiagPlusVDVT.is_continuous}

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.is_reparameterized {#MultivariateNormalDiagPlusVDVT.is_reparameterized}

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.log_cdf(value, name='log_cdf') {#MultivariateNormalDiagPlusVDVT.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.log_pdf(value, name='log_pdf') {#MultivariateNormalDiagPlusVDVT.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.log_pmf(value, name='log_pmf') {#MultivariateNormalDiagPlusVDVT.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.log_prob(value, name='log_prob') {#MultivariateNormalDiagPlusVDVT.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.log_sigma_det(name='log_sigma_det') {#MultivariateNormalDiagPlusVDVT.log_sigma_det}

Log of determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.log_survival_function(value, name='log_survival_function') {#MultivariateNormalDiagPlusVDVT.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.mean(name='mean') {#MultivariateNormalDiagPlusVDVT.mean}

Mean.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.mode(name='mode') {#MultivariateNormalDiagPlusVDVT.mode}

Mode.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.mu {#MultivariateNormalDiagPlusVDVT.mu}

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.name {#MultivariateNormalDiagPlusVDVT.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#MultivariateNormalDiagPlusVDVT.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.param_static_shapes(cls, sample_shape) {#MultivariateNormalDiagPlusVDVT.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.parameters {#MultivariateNormalDiagPlusVDVT.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.pdf(value, name='pdf') {#MultivariateNormalDiagPlusVDVT.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.pmf(value, name='pmf') {#MultivariateNormalDiagPlusVDVT.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.prob(value, name='prob') {#MultivariateNormalDiagPlusVDVT.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sample(sample_shape=(), seed=None, name='sample') {#MultivariateNormalDiagPlusVDVT.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sample_n(n, seed=None, name='sample_n') {#MultivariateNormalDiagPlusVDVT.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sigma {#MultivariateNormalDiagPlusVDVT.sigma}

Dense (batch) covariance matrix, if available.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sigma_det(name='sigma_det') {#MultivariateNormalDiagPlusVDVT.sigma_det}

Determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.std(name='std') {#MultivariateNormalDiagPlusVDVT.std}

Standard deviation.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.survival_function(value, name='survival_function') {#MultivariateNormalDiagPlusVDVT.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.validate_args {#MultivariateNormalDiagPlusVDVT.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.variance(name='variance') {#MultivariateNormalDiagPlusVDVT.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.image.decode_png.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.decode_png(contents, channels=None, dtype=None, name=None) {#decode_png}

Decode a PNG-encoded image to a uint8 or uint16 tensor.

The attr channels indicates the desired number of color channels for the
decoded image.

Accepted values are:

		0: Use the number of channels in the PNG-encoded image.

		1: output a grayscale image.

		3: output an RGB image.

		4: output an RGBA image.

If needed, the PNG-encoded image is transformed to match the requested number
of color channels.

Args:

		contents: A Tensor of type string. 0-D. The PNG-encoded image.

		channels: An optional int. Defaults to 0.
Number of color channels for the decoded image.

		dtype: An optional tf.DType from: tf.uint8, tf.uint16. Defaults to tf.uint8.

		name: A name for the operation (optional).

Returns:

A Tensor of type dtype. 3-D with shape [height, width, channels].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.layers.summarize_activation.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.summarize_activation(op) {#summarize_activation}

Summarize an activation.

This applies the given activation and adds useful summaries specific to the
activation.

Args:

		op: The tensor to summarize (assumed to be a layer activation).

Returns:

The summary op created to summarize op.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.framework.local_variable.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.local_variable(initial_value, validate_shape=True, name=None) {#local_variable}

Create variable and add it to GraphKeys.LOCAL_VARIABLES collection.

Args:

		initial_value: See variables.Variable.init.

		validate_shape: See variables.Variable.init.

		name: See variables.Variable.init.

Returns:

New variable.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/models/embedding/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 This directory contains models for unsupervised training of word embeddings
using the model described in:

(Mikolov, et. al.) Efficient Estimation of Word Representations in Vector Space [http://arxiv.org/abs/1301.3781],
ICLR 2013.

Detailed instructions on how to get started and use them are available in the
tutorials. Brief instructions are below.

		Word2Vec Tutorial [http://tensorflow.org/tutorials/word2vec/index.md]

To download the example text and evaluation data:

wget http://mattmahoney.net/dc/text8.zip -O text8.zip
unzip text8.zip
wget https://storage.googleapis.com/google-code-archive-source/v2/code.google.com/word2vec/source-archive.zip
unzip -p source-archive.zip word2vec/trunk/questions-words.txt > questions-words.txt
rm source-archive.zip

Assuming you are using the pip package install and have cloned the git
repository, navigate into this directory and run using:

cd tensorflow/models/embedding
python word2vec_optimized.py \
 --train_data=text8 \
 --eval_data=questions-words.txt \
 --save_path=/tmp/

To run the code from sources using bazel:

bazel run -c opt tensorflow/models/embedding/word2vec_optimized -- \
 --train_data=text8 \
 --eval_data=questions-words.txt \
 --save_path=/tmp/

Here is a short overview of what is in this directory.

File | What’s in it?
— | —
word2vec.py | A version of word2vec implemented using TensorFlow ops and minibatching.
word2vec_test.py | Integration test for word2vec.
word2vec_optimized.py | A version of word2vec implemented using C ops that does no minibatching.
word2vec_optimized_test.py | Integration test for word2vec_optimized.
word2vec_kernels.cc | Kernels for the custom input and training ops.
word2vec_ops.cc | The declarations of the custom ops.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/examples/tutorials/deepdream/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

deepdream

by Alexander Mordvintsev

This directory contains Jupyter notebook that demonstrates a number of Convolutional Neural Network
image generation techniques implemented with TensorFlow:

		visualizing individual feature channels and their combinations to explore the space of patterns learned by the neural network (see GoogLeNet [http://storage.googleapis.com/deepdream/visualz/tensorflow_inception/index.html] and VGG16 [http://storage.googleapis.com/deepdream/visualz/vgg16/index.html] galleries)

		embedding TensorBoard graph visualizations into Jupyter notebooks

		producing high-resolution images with tiled computation (example [http://storage.googleapis.com/deepdream/pilatus_flowers.jpg])

		using Laplacian Pyramid Gradient Normalization to produce smooth and colorful visuals at low cost

		generating DeepDream-like images with TensorFlow

You can view “deepdream.ipynb” directly on GitHub. Note that GitHub Jupyter notebook preview removes
embedded graph visualizations. You can still see them online
using nbviewer [http://nbviewer.jupyter.org/github/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/deepdream/deepdream.ipynb]
service.

In order to run the notebook locally, the following dependencies must be installed:

		Python 2.7 or 3.5

		TensorFlow (>=r0.7)

		NumPy

		Jupyter Notebook

To open the notebook, run ipython notebook command in this directory, and
select ‘deepdream.ipynb’ in the opened browser window.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/core/util/sparse/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

SparseTensor

Sparse Tensors are stored as two dense tensors and a shape:

		indices: a brain::Tensor storing a matrix, typically int64

		values: a brain::Tensor storing a vector with values of type T.

		shape: a TensorShape storing the bounds of the underlying tensor

		order: (optional) a gtl::InlinedVector<int64,8> with the dimensions
along which the indices are ordered.

Let

ix = indices.matrix<int64>()
vals = values.vec<T>()

The shape of ix is N x NDIMS, and each row corresponds to the
index of a single element of the sparse tensor.

The length of vals must be N, and vals(i) corresponds to the
value with index ix(i,:).

Shape must be a TensorShape with dims() == NDIMS.
The shape is the full shape of the dense tensor these indices
represent.

To be specific, the representation (pseudocode) is:

tensor[ix[i,:]] == vals[i] for i = 0, ..., N-1

Ordering

Indices need not be provided in order. For example, the following
index matrix is ordered according to dimension order {0, 1, 2}.

[0 0 1]
[0 1 1]
[2 0 2]

However, you can provide an unordered version:

[2 0 2]
[0 0 1]
[0 1 1]

If the SparseTensor is constructed without a provided order, then a
the default order is {-1, ..., -1}. Certain operations will fail or crash
when the order is not provided.

Resorting the SparseTensor in-place (which resorts the underlying index and
values tensors in-place) will update the order. The cost of reordering the
matrix is O(N*log(N)), and requires O(N) additional temporary space to store
a reordering index. If the default order is not specified and reordering is not
performed, the following will happen:

		group() will raise an assertion failure

		IndicesValid() will raise an assertion failure

To update the internal index ordering after construction, call
Reorder<T>() via, e.g., Reorder<T>({0,1,2}).
After this step, all the above methods should work correctly.

The method IndicesValid() checks to make sure:

		0 <= ix(i, d) < shape.dim_size(d)

		indices do not repeat

		indices are in order

Iterating

group({grouping dims})

		provides an iterator that groups entries according to
dimensions you care about

		may require a sort if your data isn’t presorted in a way that’s
compatible with grouping_dims

		for each group, returns the group index (values of the group
dims for this iteration), the subset of indices in this group,
and the subset of values in this group. these are lazy outputs
so to read them individually, copy them as per the example
below.

NOTE

group({dim0, ..., dimk}) will raise an assertion failure if the
order of the SparseTensor does not match the dimensions you wish to group by.
You must either have your indices in the correct order and construct the
SparseTensor with

order = {dim0, ..., dimk, ...}

or call

Reorder<T>({dim0, .., dimk, ...})

to sort the SparseTensor before grouping.

Example of grouping:

Tensor indices(DT_INT64, TensorShape({N, NDIMS});
Tensor values(DT_STRING, TensorShape({N});
TensorShape shape({dim0,...});
SparseTensor sp(indices, vals, shape);
sp.Reorder<string>({1, 2, 0, 3, ...}); // Must provide NDIMS dims.
// group according to dims 1 and 2
for (const auto& g : sp.group({1, 2})) {
 cout << "vals of ix[:, 1,2] for this group: "
 << g.group()[0] << ", " << g.group()[1];
 cout << "full indices of group:\n" << g.indices();
 cout << "values of group:\n" << g.values();

 TTypes<int64>::UnalignedMatrix g_ix = g.indices();
 TTypes<string>::UnalignedVec g_v = g.values();
 ASSERT(g_ix.dimension(0) == g_v.size()); // number of elements match.
}

ToDense

Converts sparse tensor to dense. You must provide a pointer to the
dense tensor (preallocated). ToDense() will optionally
preinitialize the tensor with zeros.

Shape checking is performed, as is boundary checking.

Tensor indices(DT_INT64, TensorShape({N, NDIMS});
Tensor values(DT_STRING, TensorShape({N});
TensorShape shape({dim0,...});
SparseTensor sp(indices, vals, shape);
ASSERT(sp.IndicesValid()); // checks ordering & index bounds.

Tensor dense(DT_STRING, shape);
// initialize other indices to zero. copy.
ASSERT(sp.ToDense<string>(&dense, true));

Concat

Concatenates multiple SparseTensors and returns a new SparseTensor.
This concatenation is with respect to the “dense” versions of these
SparseTensors. Concatenation is performed along dimension order[0]
of all tensors. As a result, shape[order[0]] may differ across
the inputs, but shape[d] for d != order[0] must match across all inputs.

We call order[0] the primary dimension.

Prerequisites

		The inputs’ ranks must all match.

		The inputs’ order[0] must all match.

		The inputs’ shapes must all match except for dimension order[0].

		The inputs’ values must all be of the same type.

If any of these are false, concat will die with an assertion failure.

Example:
Concatenate two sparse matrices along columns.

Matrix 1:

[0 0 1]
[2 0 0]
[3 0 4]

Matrix 2:

[0 0 0 0 0]
[0 1 0 0 0]
[2 0 0 1 0]

Concatenated Matrix:

[0 0 1 0 0 0 0 0]
[2 0 0 0 1 0 0 0]
[3 0 4 2 0 0 1 0]

Expected input shapes, orders, and nnz():

shape_1 = TensorShape({3, 3})
shape_2 = TensorShape({3, 8})
order_1 = {1, 0} // primary order is 1, columns
order_2 = {1, 0} // primary order is 1, must match
nnz_1 = 4
nnz_2 = 3

Output shapes and orders:

conc_shape = TensorShape({3, 11}) // primary dim increased, others same
conc_order = {1, 0} // Orders match along all inputs
conc_nnz = 7 // Sum of nonzeros of inputs

Coding Example:

Tensor ix1(DT_INT64, TensorShape({N1, 3});
Tensor vals1(DT_STRING, TensorShape({N1, 3});
Tensor ix2(DT_INT64, TensorShape({N2, 3});
Tensor vals2(DT_STRING, TensorShape({N2, 3});
Tensor ix3(DT_INT64, TensorShape({N3, 3});
Tensor vals3(DT_STRING, TensorShape({N3, 3});

SparseTensor st1(ix1, vals1, TensorShape({10, 20, 5}), {1, 0, 2});
SparseTensor st2(ix2, vals2, TensorShape({10, 10, 5}), {1, 0, 2});
// For kicks, st3 indices are out of order, but order[0] matches so we
// can still concatenate along this dimension.
SparseTensor st3(ix3, vals3, TensorShape({10, 30, 5}), {1, 2, 0});

SparseTensor conc = SparseTensor::Concat<string>({st1, st2, st3});
Tensor ix_conc = conc.indices();
Tensor vals_conc = conc.values();
EXPECT_EQ(conc.nnz(), st1.nnz() + st2.nnz() + st3.nnz());
EXPECT_EQ(conc.Shape(), TensorShape({10, 60, 5}));
EXPECT_EQ(conc.Order(), {-1, -1, -1});

// Reorder st3 so all input tensors have the exact same orders.
st3.Reorder<string>({1, 0, 2});
SparseTensor conc2 = SparseTensor::Concat<string>({st1, st2, st3});
EXPECT_EQ(conc2.Order(), {1, 0, 2});
// All indices' orders matched, so output is in order.
EXPECT_TRUE(conc2.IndicesValid());

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/core/distributed_runtime/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Distributed TensorFlow

This directory contains the initial open-source implementation of the
distributed TensorFlow runtime, using gRPC [http://grpc.io] for inter-process
communication.

To learn how to use the distributed runtime to create a TensorFlow cluster,
see the “Distributed TensorFlow” How To, which is available in this
repository, and will be available
on the TensorFlow website after the next version is released.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/core/public/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow

TensorFlow is a computational dataflow graph library.

Getting started

Python API example

The following is an example python code to do a simple matrix multiply
of two constants and get the result from a locally-running TensorFlow
process.

First, bring in tensorflow python dependency

//third_party/py/tensorflow

to get the python TensorFlow API.

Then:

import tensorflow as tf

with tf.Session():
 input1 = tf.constant(1.0, shape=[1, 1], name="input1")
 input2 = tf.constant(2.0, shape=[1, 1], name="input2")
 output = tf.matmul(input1, input2)

 # Run graph and fetch the output
 result = output.eval()
 print result

C++ API Example

If you are running TensorFlow locally, link your binary with

//third_party/tensorflow/core

and link in the operation implementations you want to supported, e.g.,

//third_party/tensorflow/core:kernels

An example program to take a GraphDef and run it using TensorFlow
using the C++ Session API:

#include <memory>
#include <string>
#include <vector>

#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/framework/tensor.h"

int main(int argc, char** argv) {
 // Construct your graph.
 tensorflow::GraphDef graph = ...;

 // Create a Session running TensorFlow locally in process.
 std::unique_ptr<tensorflow::Session> session(tensorflow::NewSession({}));

 // Initialize the session with the graph.
 tensorflow::Status s = session->Create(graph);
 if (!s.ok()) { ... }

 // Specify the 'feeds' of your network if needed.
 std::vector<std::pair<string, tensorflow::Tensor>> inputs;

 // Run the session, asking for the first output of "my_output".
 std::vector<tensorflow::Tensor> outputs;
 s = session->Run(inputs, {"my_output:0"}, {}, &outputs);
 if (!s.ok()) { ... }

 // Do something with your outputs
 auto output_vector = outputs[0].vec<float>();
 if (output_vector(0) > 0.5) { ... }

 // Close the session.
 session->Close();

 return 0;
}

For a more fully-featured C++ example, see
tensorflow/cc/tutorials/example_trainer.cc

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/tensorboard/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorBoard

TensorBoard is a suite of web applications for inspecting and understanding your
TensorFlow runs and graphs. TensorBoard currently supports five visualizations:
scalars, images, audio, histograms, and the graph.

You can play with an interactive demo TensorBoard at
tensorflow.org/tensorboard/ [https://www.tensorflow.org/tensorboard/].

This README gives an overview of key concepts in TensorBoard, as well as how to
interpret the visualizations TensorBoard provides. For an in-depth example of
using TensorBoard, see the tutorial: TensorBoard: Visualizing
Learning [https://www.tensorflow.org/versions/master/how_tos/summaries_and_tensorboard/index.html].
For in-depth information on the Graph Visualizer, see this tutorial: TensorBoard: Graph Visualization [https://www.tensorflow.org/versions/master/how_tos/graph_viz/index.html].

Usage

Before running TensorBoard, make sure you have generated summary data in a log
directory by creating a SummaryWriter:

sess.graph_def is the graph definition; that enables the Graph Visualizer.

summary_writer = tf.train.SummaryWriter('/path/to/logs', sess.graph)

For more details, see this
tutorial [http://www.tensorflow.org/how_tos/summaries_and_tensorboard/index.html#serializing-the-data].
Once you have event files, run TensorBoard and provide the log directory. If
you’re using a precompiled TensorFlow package (e.g. you installed via pip), run:

tensorboard --logdir=path/to/logs

Or, if you are building from source:

bazel build tensorflow/tensorboard:tensorboard
./bazel-bin/tensorflow/tensorboard/tensorboard --logdir=path/to/logs

This should print that TensorBoard has started. Next, connect to http://localhost:6006.

TensorBoard requires a logdir to read logs from. For info on configuring
TensorBoard, run tensorboard --help.

TensorBoard can be used in Google Chrome or Firefox. Other browsers might
work, but there may be bugs or performance issues.

Key Concepts

Summary Ops: How TensorBoard gets data from TensorFlow

The first step in using TensorBoard is acquiring data from your TensorFlow run.
For this, you need summary
ops [https://www.tensorflow.org/versions/r0.11/api_docs/python/train.html#summary-operations].
Summary ops are ops, like
tf.matmul [https://www.tensorflow.org/versions/r0.11/api_docs/python/math_ops.html#matmul]
or
tf.nn.relu [https://www.tensorflow.org/versions/r0.11/api_docs/python/nn.html#relu],
which means they take in tensors, produce tensors, and are evaluated from within
a TensorFlow graph. However, summary ops have a twist: the Tensors they produce
contain serialized protobufs, which are written to disk and sent to TensorBoard.
To visualize the summary data in TensorBoard, you should evaluate the summary
op, retrieve the result, and then write that result to disk using a
SummaryWriter. A full explanation, with examples, is in the
tutorial [https://www.tensorflow.org/versions/r0.11/how_tos/summaries_and_tensorboard/index.html].

Tags: Giving names to data

When you make a summary op, you will also give it a tag. The tag is basically
a name for the data recorded by that op, and will be used to organize the data
in the frontend. The scalar and histogram dashboards organize data by tag, and
group the tags into folders according to a directory/like/hierarchy. If you have
a lot of tags, we recommend grouping them with slashes.

Event Files & LogDirs: How TensorBoard loads the data

SummaryWriters take summary data from TensorFlow, and then write them to a
specified directory, known as the logdir. Specifically, the data is written to
an append-only record dump that will have “tfevents” in the filename.
TensorBoard reads data from a full directory, and organizes it into the history
of a single TensorFlow execution.

Why does it read the whole directory, rather than an individual file? You might
have been using
supervisor.py [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/training/supervisor.py]
to run your model, in which case if TensorFlow crashes, the supervisor will
restart it from a checkpoint. When it restarts, it will start writing to a new
events file, and TensorBoard will stitch the various event files together to
produce a consistent history of what happened.

Runs: Comparing different executions of your model

You may want to visually compare multiple executions of your model; for example,
suppose you’ve changed the hyperparameters and want to see if its converging
faster. TensorBoard enables this through different “runs”. When TensorBoard is
passed a logdir at startup, it recursively walks the directory tree rooted at
logdir looking for subdirectories that contain tfevents data. Every time it
encounters such a subdirectory, it loads it as a new run, and the frontend
will organize the data accordingly.

For example, here is a well-organized TensorBoard log directory, with two runs,
“run1” and “run2”.

/some/path/mnist_experiments/
/some/path/mnist_experiments/run1/
/some/path/mnist_experiments/run1/events.out.tfevents.1456525581.name
/some/path/mnist_experiments/run1/events.out.tfevents.1456525585.name
/some/path/mnist_experiments/run2/
/some/path/mnist_experiments/run2/events.out.tfevents.1456525385.name
/tensorboard --logdir=/some/path/mnist_experiments

You may also pass a comma separated list of log directories, and TensorBoard
will watch each directory. You can also assign names to individual log
directories by putting a colon between the name and the path, as in

tensorboard --logdir=name1:/path/to/logs/1,name2:/path/to/logs/2

The Visualizations

Events Dashboard

TensorBoard’s Events Dashboard visualizes scalar statistics that vary over time;
for example, you might want to track the model’s loss or learning rate. As
described in Key Concepts, you can compare multiple runs, and the data is
organized by tag. The line charts have the following interactions:

		Clicking on the small blue icon in the lower-left corner of each chart will
expand the chart

		Dragging a rectangular region on the chart will zoom in

		Double clicking on the chart will zoom out

		Mousing over the chart will produce crosshairs, with data values recorded in
the run-selector on the left.

Additionally, you can create new folders to organize tags by writing regular
expressions in the box in the top-left of the dashboard.

Histogram Dashboard

The Histogram Dashboard is for visualizing how the statistical distribution of a
Tensor has varied over time. It visualizes data recorded via a
tf.histogram_summary. Right now, its name is a bit of a misnomer, as it doesn’t
show histograms; instead, it shows some high-level statistics on a distribution.
Each line on the chart represents a percentile in the distribution over the
data: for example, the bottom line shows how the minimum value has changed over
time, and the line in the middle shows how the median has changed. Reading from
top to bottom, the lines have the following meaning: [maximum, 93%, 84%, 69%, 50%, 31%, 16%, 7%, minimum]

These percentiles can also be viewed as standard deviation boundaries on a
normal distribution: [maximum, μ+1.5σ, μ+σ, μ+0.5σ, μ, μ-0.5σ, μ-σ, μ-1.5σ, minimum] so that the colored regions, read from inside to outside, have widths
[σ, 2σ, 3σ] respectively.

This histogram visualization is a bit weird, and cannot meaningfully represent
multimodal distributions. We are currently working on a true-histogram
replacement.

Image Dashboard

The Image Dashboard can display pngs that were saved via a tf.image_summary. The
dashboard is set up so that each row corresponds to a different tag, and each
column corresponds to a run. Since the image dashboard supports arbitrary pngs,
you can use this to embed custom visualizations (e.g. matplotlib scatterplots)
into TensorBoard. This dashboard always shows you the latest image for each tag.

Audio Dashboard

The Audio Dashboard can embed playable audio widgets for audio saved via a
tf.audio_summary. The dashboard is set up so that each row corresponds to a
different tag, and each column corresponds to a run. This dashboard always
embeds the latest audio for each tag.

Graph Explorer

The Graph Explorer can visualize a TensorBoard graph, enabling inspection of the
TensorFlow model. To get best use of the graph visualizer, you should use name
scopes to hierarchically group the ops in your graph - otherwise, the graph may
be difficult to decipher. For more information, including examples, see the
graph visualizer
tutorial [https://www.tensorflow.org/versions/r0.11/how_tos/graph_viz/index.html#tensorboard-graph-visualization].

Frequently Asked Questions

My TensorBoard isn’t showing any data! What’s wrong?

The first thing to do is ensure that TensorBoard is properly loading data from
the correct directory. Launch tensorboard --logdir=DIRECTORY_PATH --debug and
look for output of the form

INFO:tensorflow:TensorBoard path_to_run is: {'DIRECTORY_PATH': None}

Verify that the DIRECTORY_PATH TensorBoard is looking at is the path you expect.
(Note: There’s a known issue where TensorBoard does not handle paths starting
in ~ properly [https://github.com/tensorflow/tensorflow/issues/1587]).

If you’re loading from the proper path, make sure that event files are present.
TensorBoard will recursively walk its logdir, it’s fine if the data is nested
under a subdirectory. Try running the command:

find DIRECTORY_PATH | grep tfevents

If you have at least one result, then TensorBoard should be able to load data.

Finally, let’s make sure that the event files actually have data. Run
tensorboard in inspector mode to inspect the contents of your event files.

tensorboard --inspect --logdir=DIRECTORY_PATH

If after running this procedure, it’s still not working, please file an issue
on GitHub [https://github.com/tensorflow/tensorflow/issues]. It will be much
easier for us to debug it if you provide an event file that isn’t working.

TensorBoard is showing only some of my data, or isn’t properly updating!

This issue usually comes about because of how TensorBoard iterates through the
tfevents files: it progresses through the events file in timestamp order, and
only reads one file at a time. Let’s suppose we have files with timestamps a
and b, where a<b. Once TensorBoard has read all the events in a, it will
never return to it, because it assumes any new events are being written in the
more recent file. This could cause an issue if, for example, you have two
SummaryWriters simultaneously writing to the same directory. If you have
multiple summary writers, each one should be writing to a separate directory.

Does TensorBoard support multiple or distributed summary writers?

No. TensorBoard expects that only one events file will be written to at a time,
and multiple summary writers means multiple events files. If you are running a
distributed TensorFlow instance, we encourage you to designate a single worker
as the “chief” that is responsible for all summary processing. See
supervisor.py [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/training/supervisor.py]
for an example.

I’m seeing data overlapped on itself! What gives?

If you are seeing data that seems to travel backwards through time and overlap
with itself, there are a few possible explanations.

		You may have multiple execution of TensorFlow that all wrote to the same log
directory. Please have each TensorFlow run write to its own logdir.

		You may have a have a bug in your code where the global_step variable (passed
to SummaryWriter.add_summary) is being maintained incorrectly.

		It may be that your TensorFlow job crashed, and was restarted from an earlier
checkpoint. See How to handle TensorFlow restarts, below.

As a workaround, try changing the x-axis display in TensorBoard from steps to
wall_time. This will frequently clear up the issue.

How should I handle TensorFlow restarts?

TensorFlow is designed with a mechanism for graceful recovery if a job crashes
or is killed: TensorFlow can periodically write model checkpoint files, which
enable you to restart TensorFlow without losing all your training progress.

However, this can complicate things for TensorBoard; imagine that TensorFlow
wrote a checkpoint at step a, and then continued running until step b, and
then crashed and restarted at timestamp a. All of the events written between
a and b were “orphaned” by the restart event and should be removed.

To facilitate this, we have a SessionLog message in
tensorflow/core/util/event.proto which can record SessionStatus.START as an
event; like all events, it may have a step associated with it. If TensorBoard
detects a SessionStatus.START event with step a, it will assume that every
event with a step greater than a was orphaned, and it will discard those
events. This behavior may be disabled with the flag
--purge_orphaned_data=false (in versions after 0.7).

How can I export data from TensorBoard?

If you’d like to export data to visualize elsewhere (e.g. iPython Notebook),
that’s possible too. You can directly depend on the underlying classes that
TensorBoard uses for loading data: python/summary/event_accumulator.py (for
loading data from a single run) or python/summary/event_multiplexer.py (for
loading data from multiple runs, and keeping it organized). These classes load
groups of event files, discard data that was “orphaned” by TensorFlow crashes,
and organize the data by tag.

As another option, there is a script
(tensorboard/scripts/serialize_tensorboard.py) which will load a logdir just
like TensorBoard does, but write all of the data out to disk as json instead of
starting a server. This script is setup to make “fake TensorBoard backends” for
testing, so it is a bit rough around the edges.

Can I overlap multiple plots?

Right now, you can overlap plots only if they are from different runs, and both
have the same tag name.

Can I create scatterplots (or other custom plots)?

This isn’t yet possible. As a workaround, you could create your custom plot in
your own code (e.g. matplotlib) and then write it into an SummaryProto
(core/framework/summary.proto) and add it to your SummaryWriter. Then, your
custom plot will appear in the TensorBoard image tab.

Is my data being downsampled? Am I really seeing all the data?

TensorBoard uses reservoir
sampling [https://en.wikipedia.org/wiki/Reservoir_sampling] to downsample your
data so that it can be loaded into RAM. You can modify the number of elements it
will keep per tag in
tensorboard/backend/server.py [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tensorboard/backend/server.py].

I get a network security popup every time I run TensorBoard on a mac!

This is because by default, TensorBoard serves on host 0.0.0.0 which is
publicly accessible. You can stop the popups by specifying --host=localhost at
startup.

How can I develop TensorBoard?

See tensorflow/tensorboard/DEVELOPMENT.md [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tensorboard/DEVELOPMENT.md].

I have a different issue that wasn’t addressed here!

First, try searching our GitHub
issues [https://github.com/tensorflow/tensorflow/issues] and Stack
Overflow [https://stackoverflow.com/questions/tagged/tensorboard]. It may be
that someone else has already had the same issue or question.

If you have a bug, please file a GitHub
issue [https://github.com/tensorflow/tensorflow/issues]. If the bug is related
to your specific data (e.g. the events aren’t loading properly), please do both
of the following things to make it easier for us to debug and fix:

		Run tensorboard in –inspect mode and copy paste the debug output.

		Upload some events files that will reproduce the issue.

If you have a feature request, please file a GitHub
issue [https://github.com/tensorflow/tensorflow/issues].

General usage questions should go to Stack
Overflow [http://stackoverflow.com/questions/tagged/tensorflow].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/tensorboard/DEVELOPMENT.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

How to Develop TensorBoard

Launching a Development Instance

The first step is getting a TensorBoard development environment set up. You
should start by making sure you have nodejs [https://nodejs.org/en/] and
npm [https://www.npmjs.com/]. On Ubuntu, sudo apt-get install -y nodejs nodejs-legacy npm.

Next, you’ll want to install gulp [http://gulpjs.com/] and
bower [http://bower.io/], which are used for build tooling and dependency
management respectively. Both must be installed globally: sudo npm install -g gulp bower will do that.

Then, cd into the TensorBoard directory:

cd tensorflow/tensorboard

and install dependencies:

npm run prepare

Then, run gulp: gulp

(Don’t worry if there are some linter errors.)

Now you can navigate to
http://localhost:8000/demo/index.html
and play with the demo TensorBoard instance. If you make changes to the source
code, gulp should detect it, recompile (if Typescript), and reload your
browser.

This demo TensorBoard will have a small amount of demo data generated by
generate_testdata.py [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tensorboard/scripts/generate_testdata.py].
You can use serialize_tensorboard.py [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tensorboard/scripts/serialize_tensorboard.py]
to create a realistic demo directory from your own data files.

Launching TensorBoard with modified source

If you are developing in open source, and have made some changes to TensorBoard
that you’d like to try out on real data, then you need to regenerate
dist/tf-tensorboard.html.

Run gulp regenerate. That will recompile all of the TensorBoard assets, and
produce a new tf-tensorboard.html with your changes.

Now, you can use bazel to launch TensorBoard:

bazel run //tensorflow/tensorboard:tensorboard -- --logdir=/path/to/logs.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/tensorboard/http_api.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Tensorboard client-server HTTP API

Runs, Tags, and Tag Types

TensorBoard data is organized around the concept of a run, which represents
all the related data thrown off by a single execution of TensorFlow, a tag,
which groups values of data that come from the same source within a TensorFlow
run, and tag types, which are our way of distinguishing different types of
data that have fundamentally different representations and should be processed
on different code paths. For example, a “train” run may have a scalars
tag that represents the learning rate, another scalars tag that
represents the value of the objective function, a histograms tag that reveals
information on weights in a particular layer over time, and an images tag that
shows input images flowing into the system. The “eval” run might have an
entirely different set of tag names, or some duplicated tag names.

The currently supported tag types are scalars, images, audio,
histograms, graph and run_metadata. Each tag type corresponds to a route
(documented below) for retrieving tag data of that type.

All of the data provided comes from TensorFlow events files (‘*.tfevents*‘),
which are written using the SummaryWriter class
(tensorflow/python/training/summary_writer.py), and the data is generated by
summary ops (tensorflow/python/ops/summary_ops.py). The scalars come from the
ScalarSummary op, the histograms from the HistogramSummary, the audio
from the AudioSummary, and the images from ImageSummary. The tag type
graph is special in that it is not a collection of tags of that type, but a
boolean denoting if there is a graph definition associated with the run. The tag
is provided to the summary op (usually as a constant).

data/runs

Returns a dictionary mapping from run name (quoted string) to dictionaries
mapping from all available tagTypes to a list of tags of that type available for
the run. Think of this as a comprehensive index of all of the data available
from the TensorBoard server. Here is an example:

{
 "train_run": {
 "histograms": ["foo_histogram", "bar_histogram"],
 "compressedHistograms": ["foo_histogram", "bar_histogram"],
 "scalars": ["xent", "loss", "learning_rate"],
 "images": ["input"],
 "audio": ["input_audio"],
 "graph": true,
 "firstEventTimestamp": 123456.789
 "run_metadata": ["forward prop", "inference"]
 },
 "eval": {
 "histograms": ["foo_histogram", "bar_histogram"],
 "compressedHistograms": ["foo_histogram", "bar_histogram"],
 "scalars": ["precision", "recall"],
 "images": ["input"],
 "audio": ["input_audio"],
 "graph": false,
 "run_metadata": []
 }
 }

The firstEventTimestamp value is in seconds since the epoch.

Note that the same tag may be present for many runs. It is not guaranteed that
they will have the same meaning across runs. It is also not guaranteed that they
will have the same tag type across different runs.

‘/data/scalars?run=foo&tag=bar’

Returns an array of event_accumulator.SimpleValueEvents ([wall_time, step,
value]) for the given run and tag. wall_time is seconds since epoch.

Example:

[
 [1443856985.705543, 1448, 0.7461960315704346], # wall_time, step, value
 [1443857105.704628, 3438, 0.5427092909812927],
 [1443857225.705133, 5417, 0.5457325577735901],
 ...
]

If the format parameter is set to ‘csv’, the response will instead be in CSV
format:

Wall time,step,value
1443856985.705543,1448,0.7461960315704346
1443857105.704628,3438,0.5427092909812927
1443857225.705133,5417,0.5457325577735901

‘/data/scalars?[sample_count=10]‘

Without any parameters, returns a dictionary mapping from run name to a
dictionary mapping from tag name to a sampled list of scalars from that run and
tag. The values are given in the same format as when the run and tag are
specified. For example:

{
 "train_run": {
 "my_tag": [
 [1443856985.705543, 1448, 0.7461960315704346],
 [1443857105.704628, 3438, 0.5427092909812927],
 [1443857225.705133, 5417, 0.5457325577735901]
]
 }
}

The samples are distributed uniformly over the list of values. The sample_count
parameter is optional and defaults to 10; it must be at least 2. The first and
the last value will always be sampled.

‘/data/histograms?run=foo&tag=bar’

Returns an array of event_accumulator.HistogramEvents ([wall_time, step,
HistogramValue]) for the given run and tag. A HistogramValue is [min, max, num,
sum, sum_squares, bucket_limit, bucket]. wall_time is seconds since epoch.

Annotated Example: (note - real data is higher precision)

[
 [
 1443871386.185149, # wall_time
 235166, # step
 [
 -0.66, # minimum value
 0.44, # maximum value
 8.0, # number of items in the histogram
 -0.80, # sum of items in the histogram
 0.73, # sum of squares of items in the histogram
 [-0.68, -0.62, -0.292, -0.26, -0.11, -0.10, -0.08, -0.07, -0.05,
 -0.0525, -0.0434, -0.039, -0.029, -0.026, 0.42, 0.47, 1.8e+308],
 # the right edge of each bucket
 [0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0,
 1.0, 0.0] # the number of elements within each bucket
]
]
]

‘/data/compressedHistograms?run=foo&tag=bar’

Returns an array of event_accumulator.CompressedHistogramEvents ([wall_time,
step, CompressedHistogramValues]) for the given run and tag.

CompressedHistogramValues is a list of namedtuples with each tuple specifying
a basis point (bps) as well as an interpolated value of the histogram value
at that basis point. A basis point is 1/100 of a percent.

The current compression strategy is to choose basis points that correspond to
the median and bands of 1SD, 2SD, and 3SDs around the median. Note that the
current compression strategy does not work well for representing multimodal
data – this is something that will be improved in a later iteration.

Annotated Example: (note - real data is higher precision)

[
 [
 1441154832.580509, # wall_time
 5, # step
 [[0, -3.67], # CompressedHistogramValue for 0th percentile
 [2500, -4.19], # CompressedHistogramValue for 25th percentile
 [5000, 6.29],
 [7500, 1.64],
 [10000, 3.67]
]
],
 ...
]

/data/images?run=foo&tag=bar

Gets a sample of ImageMetadatas for the given run and tag.

Returns an array of objects containing information about available images,
crucially including the query parameter that may be used to retrieve that image.
(See /individualImage for details.)

For example:

 {
 "width": 28, # width in pixels
 "height": 28, # height in pixels
 "wall_time": 1440210599.246, # time in seconds since epoch
 "step": 63702821, # number of steps that have passed
 "query": "index=0&tagname=input%2Fimage%2F2&run=train"
 # param for /individualImage
 }

/data/individualImage?{{query}}

Retrieves an individual image. The image query should not be generated by the
frontend, but instead acquired from calling the /images route (the image
metadata objects contain the query to use). The response is the image itself
with mime-type ‘image/png’.

Note that the query is not guaranteed to always refer to the same image even
within a single run, as images may be removed from the sampling reservoir and
replaced with other images. (See Notes for details on the reservoir sampling.)

An example call to this route would look like this:
/individualImage?index=0&tagname=input%2Fimage%2F2&run=train

/audio?run=foo&tag=bar

Gets a sample of AudioMetadatas for the given run and tag.

Returns an array of objects containing information about available audio,
crucially including the query parameter that may be used to retrieve that audio.
(See /individualAudio for details.)

For example:

 {
 "wall_time": 1440210599.246, # time in seconds since epoch
 "step": 63702821, # number of steps that have passed
 "content_type": "audio/wav" # the MIME-type of the audio
 "query": "index=0&tagname=input%2Faudio%2F2&run=train"
 # param for /individualAudio
 }

/individualAudio?{{query}}

Retrieves an individual audio clip. The audio query should not be generated by
the frontend, but instead acquired from calling the /audio route (the audio
metadata objects contain the query to use). The response is the audio itself
with an appropriate Content-Type header set.

Note that the query is not guaranteed to always refer to the same clip even
within a single run, as audio may be removed from the sampling reservoir and
replaced with other clips. (See Notes for details on the reservoir sampling.)

An example call to this route would look like this:
/individualAudio?index=0&tagname=input%2Faudio%2F2&run=train

/data/graph?run=foo&limit_attr_size=1024&large_attrs_key=key

Returns the graph definition for the given run in gzipped pbtxt format. The
graph is composed of a list of nodes, where each node is a specific TensorFlow
operation which takes as inputs other nodes (operations).

The query parameters limit_attr_size and large_attrs_key are optional.

limit_attr_size specifies the maximum allowed size in bytes, before the
attribute is considered large and filtered out of the graph. If specified,
it must be an int and > 0. If not specified, no filtering is applied.

large_attrs_key is the attribute key that will be used for storing
attributes that are too large. The value of this key (list of strings)
should be used by the client in order to determine which attributes
have been filtered. Must be specified if limit_attr_size is specified.

For the query /graph?run=foo&limit_attr_size=1024&large_attrs_key=_too_large,
here is an example pbtxt response of a graph with 3 nodes, where the second
node had two large attributes “a” and “b” that were filtered out (size > 1024):

node {
 op: "Input"
 name: "A"
}
node {
 op: "Input"
 name: "B"
 attr {
 key: "small_attr"
 value: {
 s: "some string"
 }
 }
 attr {
 key: "_too_large"
 value {
 list {
 s: "a"
 s: "b"
 }
 }
 }
}
node {
 op: "MatMul"
 name: "C"
 input: "A"
 input: "B"
}

Prior to filtering, the original node “B” had the following content:

node {
 op: "Input"
 name: "B"
 attr {
 key: "small_attr"
 value: {
 s: "some string"
 }
 }
 attr {
 key: "a"
 value { Very large object... }
 }
 attr {
 key: "b"
 value { Very large object... }
 }
}

/data/run_metadata?run=foo&tag=bar

Given a run and tag, returns the metadata of a particular
session.run() as a gzipped, pbtxt serialized RunMetadata [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/protobuf/config.proto]
proto. For example:

step_stats {
 dev_stats {
 device: "/job:localhost/replica:0/task:0/cpu:0"
 node_stats {
 node_name: "_SOURCE"
 all_start_micros: 1458337695775395
 op_start_rel_micros: 11
 op_end_rel_micros: 12
 all_end_rel_micros: 38
 memory {
 allocator_name: "cpu"
 }
 timeline_label: "_SOURCE = NoOp()"
 scheduled_micros: 1458337695775363
 }
 }
}

Notes

All returned values, histograms, audio, and images are returned in the order
they were written by TensorFlow (which should correspond to increasing
wall_time order, but may not necessarily correspond to increasing step count
if the process had to restart from a previous checkpoint).

The returned values may be downsampled using reservoir sampling, which is
configurable by the TensorBoard server. When downsampling occurs, the server
guarantees that different tags will all sample at the same sequence of indices,
so that if there are two tags A and B which are related so that A[i] ~ B[i] for all i, then D(A)[i] ~ D(B)[i] for all i, where D represents
the downsampling operation.

The reservoir sampling puts an upper bound on the number of items that will be
returned for a given run-tag combination, and guarantees that all items are
equally likely to be in the final sample (ie it is a uniform distribution over
the values), with the proviso that the most recent individual item is always
included in the sample.

The reservoir sizes are configurable on a per-tag type basis.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/tensorboard/components/tf-imports/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 This file acts as import routers for third party javascript libraries,
e.g. Plottable and D3.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/models/image/cifar10/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 CIFAR-10 is a common benchmark in machine learning for image recognition.

http://www.cs.toronto.edu/~kriz/cifar.html

Code in this directory demonstrates how to use TensorFlow to train and evaluate a convolutional neural network (CNN) on both CPU and GPU. We also demonstrate how to train a CNN over multiple GPUs.

Detailed instructions on how to get started available at:

http://tensorflow.org/tutorials/deep_cnn/

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/models/rnn/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 This directory contains functions for creating recurrent neural networks
and sequence-to-sequence models. Detailed instructions on how to get started
and use them are available in the tutorials.

		RNN Tutorial [http://tensorflow.org/tutorials/recurrent/index.md]

		Sequence-to-Sequence Tutorial [http://tensorflow.org/tutorials/seq2seq/index.md]

Here is a short overview of what is in this directory.

File | What’s in it?
— | —
ptb/ | PTB language model, see the RNN Tutorial [http://tensorflow.org/tutorials/recurrent/]
translate/ | Translation model, see the Sequence-to-Sequence Tutorial [http://tensorflow.org/tutorials/seq2seq/]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/tools/ci_build/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow Builds

This directory contains all the files and setup instructions to run all
the important builds and tests. You can trivially run it yourself! It also
run continuous integration ci.tensorflow.org [https://ci.tensorflow.org].

Run It Yourself

		Install Docker [http://www.docker.com/]. Follow instructions
on the Docker site [https://docs.docker.com/installation/].

You can run all the jobs without docker if you are on mac or on linux
and you just don’t want docker. Just install all the dependencies from
os_setup.md [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/get_started/os_setup.md].
Then run any of the one liners below without the
tensorflow/tools/ci_build/ci_build.sh in them.

		Clone tensorflow repository.

git clone https://github.com/tensorflow/tensorflow.git

3. Go to tensorflow directory

   ```bash
cd tensorflow







		Build what you want, for example















tensorflow/tools/ci_build/ci_build.sh CPU bazel test //tensorflow/...





## Jobs

The jobs run by [ci.tensorflow.org](https://ci.tensorflow.org) include following:

```bash
Note: You can run the following one-liners yourself if you have Docker. Run
without `tensorflow/tools/ci_build/ci_build.sh` on mac or linux without Docker.

build and run cpu tests
tensorflow/tools/ci_build/ci_build.sh CPU bazel test //tensorflow/...

build and run gpu tests (note if you get unstable results you may be running
out of gpu memory - if so add "--jobs=1" argument)
tensorflow/tools/ci_build/ci_build.sh GPU bazel test -c opt --config=cuda //tensorflow/...

build pip with gpu support
tensorflow/tools/ci_build/ci_build.sh GPU tensorflow/tools/ci_build/builds/pip.sh GPU

build and run gpu tests using python 3
CI_DOCKER_EXTRA_PARAMS="-e CI_BUILD_PYTHON=python3" tensorflow/tools/ci_build/ci_build.sh GPU tensorflow/tools/ci_build/builds/pip.sh GPU

build android example app
tensorflow/tools/ci_build/ci_build.sh ANDROID tensorflow/tools/ci_build/builds/android.sh

cmake cpu build and test
tensorflow/tools/ci_build/ci_build.sh CPU tensorflow/tools/ci_build/builds/cmake.sh

run bash inside the container
CI_DOCKER_EXTRA_PARAMS='-it --rm' tensorflow/tools/ci_build/ci_build.sh CPU /bin/bash

Note: The set of jobs and how they are triggered is still evolving.
There are builds for master branch on cpu, gpu and android. There is a build
for incoming gerrit changes. Gpu tests and benchmark are coming soon. Check
ci.tensorflow.org [https://ci.tensorflow.org] for current jobs.

How Does TensorFlow Continuous Integration Work

We use jenkins [https://jenkins-ci.org/] as our continuous integration.
It is running at ci.tensorflow.org [https://ci.tensorflow.org].
All the jobs are run within docker [http://www.docker.com/] containers.

Builds can be triggered by push to master, push a change set or manually.
The build started in jenkins will first pull the git tree. Then jenkins builds
a docker container (using one of those Dockerfile.* files in this directory).
The build itself is run within the container itself.

Source tree lives in jenkins job workspace. Docker container for jenkins
are transient - deleted after the build. Containers build very fast thanks
to docker caching. Individual builds are fast thanks to bazel caching.

Implementation Details

		The ci_build.sh script create and run docker container with all dependencies.
The builds/with_the_same_user together with ci_build.sh creates an environment
which is the same inside the container as it is outside. The same user, group,
path, so that docker symlinks work inside and outside the container. You can
use it for your development. Edit files in your git clone directory. If you
run the ci_build.sh it gets this directory mapped inside the container and
build your tree.

		The unusual bazel-ci_build-cache directory is mapped to docker container
performing the build using docker’s –volume parameter. This way we cache
bazel output between builds.

		The builds directory within this folder contains shell scripts to run within
the container. They essentially contains workarounds for current limitations
of bazel.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/tools/dist_test/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Testing Distributed Runtime in TensorFlow

This folder containers tools and test suites for the GRPC-based distributed
runtime in TensorFlow.

There are three general modes of testing:

1) Launch a docker container and run parameters servers and workers as
separate processes therein.

For example:

./local_test.sh

By default, local_test.sh runs the MNIST-with-replicas model as a test.
However, you can use the –model_name flag to run the tf-learn/wide&deep
cesnsu model:

./local_test.sh --model_name CENSUS_WIDENDEEP

2) Launch a remote k8s cluster on Google Container Engine (GKE) and run the
test suite on it

For example:

export TF_DIST_GCLOUD_PROJECT="tensorflow-testing"
export TF_DIST_GCLOUD_COMPUTE_ZONE="us-central1-f"
export TF_DIST_CONTAINER_CLUSTER="test-cluster-1"
export TF_DIST_GCLOUD_KEY_FILE="/var/gcloud-secrets/my-gcloud-key.json"
./remote_test.sh

Here you specify the Google Compute Engine (GCE) project, compute zone and
container cluster with the first three environment variables, in that order.
The environment variable “TF_DIST_GCLOUD_KEY_FILE_DIR” is a directory in which
the JSON service account key file named “tensorflow-testing.json” is located.
You can use the flag “–setup-cluster-only” to perform only the cluster setup
step and skip the testing step:

./remote_test.sh --setup_cluster_only

3) Run the test suite on an existing k8s TensorFlow cluster

For example:

export TF_DIST_GRPC_SERVER_URL="grpc://11.22.33.44:2222"
./remote_test.sh

The IP address above is a dummy example. Such a cluster may have been set up
using the command described at the end of the previous section.

Asynchronous and synchronous parameter updates

There are two modes for the coordination of the parameters from multiple
workers: asynchronous and synchronous.

In the asynchronous mode, the parameter updates (gradients) from the workers
are applied to the parameters without any explicit coordination. This is the
default mode in the tests.

In the synchronous mode, a certain number of parameter updates are aggregated
from the model replicas before the update is applied to the model parameters.
To use this mode, do:

For remote testing
./remote_test.sh --sync_replicas

For local testing
./local_test.sh --sync_replicas

Specifying the number of workers

You can specify the number of workers by using the –num-workers option flag,
e.g.,

For remote testing
./remote_test.sh --num_workers 4

For local testing
./local_test.sh --num_workers 4

Building the GRPC server Docker image

To build the Docker image for a test server of TensorFlow distributed runtime,
run:

./build_server.sh <docker_image_name>

Using the GRPC server Docker image
To launch a container as a TensorFlow GRPC server, do as the following example:

docker run tensorflow/tf_grpc_server --cluster_spec="worker|localhost:2222;foo:2222,ps|bar:2222;qux:2222" --job_name=worker --task_id=0

Generating configuration file for TensorFlow k8s clusters

The script at “scripts/k8s_tensorflow.py” can be used to generate yaml
configuration files for a TensorFlow k8s cluster consisting of a number of
workers and parameter servers. For example:

scripts/k8s_tensorflow.py \
 --num_workers 2 \
 --num_parameter_servers 2 \
 --grpc_port 2222 \
 --request_load_balancer true \
 --docker_image "tensorflow/tf_grpc_server" \
 > tf-k8s-with-lb.yaml

The yaml configuration file generated in the previous step can be used to a
create a k8s cluster running the specified numbers of worker and parameter
servers. For example:

kubectl create -f tf-k8s-with-lb.yaml

See [Kubernetes kubectl documentation]
(http://kubernetes.io/docs/user-guide/kubectl-overview/) for more details.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/tools/docker/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Using TensorFlow via Docker

This directory contains Dockerfiles to make it easy to get up and running with
TensorFlow via Docker [http://www.docker.com/].

Installing Docker

General installation instructions are
on the Docker site [https://docs.docker.com/installation/], but we give some
quick links here:

		OSX [https://docs.docker.com/installation/mac/]: docker toolbox [https://www.docker.com/toolbox]

		ubuntu [https://docs.docker.com/installation/ubuntulinux/]

Which containers exist?

We currently maintain three Docker container images:

		gcr.io/tensorflow/tensorflow - TensorFlow with all dependencies - CPU only!

		gcr.io/tensorflow/tensorflow:latest-gpu - TensorFlow with all dependencies
and support for Nvidia Cuda

Note: We also publish the same containers into
Docker Hub [https://hub.docker.com/r/tensorflow/tensorflow/tags/].

Running the container

Run non-GPU container using

$ docker run -it -p 8888:8888 gcr.io/tensorflow/tensorflow

For GPU support install NVidia drivers (ideally latest) and
nvidia-docker [https://github.com/NVIDIA/nvidia-docker]. Run using

$ nvidia-docker run -it -p 8888:8888 gcr.io/tensorflow/tensorflow:latest-gpu

Note: If you would have a problem running nvidia-docker you may try the old way
we have used. But it is not recomended. If you find a bug in nvidia-docker report
it there please and try using the nvidia-docker as described above.

$ export CUDA_SO=$(\ls /usr/lib/x86_64-linux-gnu/libcuda.* | xargs -I{} echo '-v {}:{}')
$ export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
$ docker run -it -p 8888:8888 $CUDA_SO $DEVICES gcr.io/tensorflow/tensorflow:latest-gpu

More containers

See all available tags [https://hub.docker.com/r/tensorflow/tensorflow/tags/]
for additional containers like release candidates or nighlty builds.

Rebuilding the containers

Just pick the dockerfile corresponding to the container you want to build, and run

$ docker build --pull -t $USER/tensorflow-suffix -f Dockerfile.suffix .

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/tools/benchmark/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow Model Benchmark Tool

Description

A simple C++ binary to benchmark a compute graph and its individual operators,
both on desktop machines and on Android.

To build/install/run

On Android:

(1) build for your specific platform, e.g.:

$bazel build -c opt \
 --crosstool_top=//external:android/crosstool \
 --cpu=armeabi-v7a \
 --host_crosstool_top=@bazel_tools//tools/cpp:toolchain \
 tensorflow/tools/benchmark:benchmark_model

(2) Connect your phone. Push the binary to your phone with adb push
(make the directory if required):

$adb push bazel-bin/tensorflow/tools/benchmark/benchmark_model /data/local/tmp

(3) Push the compute graph that you need to test. For example:
adb push tensorflow_inception_graph.pb /data/local/tmp

(4) Run the benchmark. For example:

$adb shell "/data/local/tmp/benchmark_model \
 --graph=/data/local/tmp/tensorflow_inception_graph.pb \
 --input_layer="input:0" \
 --input_layer_shape="1,224,224,3" \
 --input_layer_type="float" \
 --output_layer="output:0"

On desktop:

(1) build the binary

$bazel build -c opt tensorflow/tools/benchmark:benchmark_model

(2) Run on your compute graph, similar to the Android case but without the need of adb shell.
For example:

$bazel-bin/tensorflow/tools/benchmark/benchmark_model \
 --graph=tensorflow_inception_graph.pb \
 --input_layer="input:0" \
 --input_layer_shape="1,224,224,3" \
 --input_layer_type="float" \
 --output_layer="output:0"

The Inception graph used as an example here may be downloaded from
https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/up.png

_static/minus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/up-pressed.png

_static/comment.png

_static/down.png

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.report_uninitialized_variables.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.report_uninitialized_variables(var_list=None, name='report_uninitialized_variables') {#report_uninitialized_variables}

Adds ops to list the names of uninitialized variables.

When run, it returns a 1-D tensor containing the names of uninitialized
variables if there are any, or an empty array if there are none.

Args:

		var_list: List of Variable objects to check. Defaults to the
value of all_variables() + local_variables()

		name: Optional name of the Operation.

Returns:

A 1-D tensor containing names of the uninitialized variables, or an empty
1-D tensor if there are no variables or no uninitialized variables.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.space_to_batch_nd.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.space_to_batch_nd(input, block_shape, paddings, name=None) {#space_to_batch_nd}

SpaceToBatch for N-D tensors of type T.

This operation divides “spatial” dimensions [1, ..., M] of the input into a
grid of blocks of shape block_shape, and interleaves these blocks with the
“batch” dimension (0) such that in the output, the spatial dimensions
[1, ..., M] correspond to the position within the grid, and the batch
dimension combines both the position within a spatial block and the original
batch position. Prior to division into blocks, the spatial dimensions of the
input are optionally zero padded according to paddings. See below for a
precise description.

Args:

		input: A Tensor.
N-D with shape input_shape = [batch] + spatial_shape + remaining_shape,
where spatial_shape has M dimensions.

		block_shape: A Tensor. Must be one of the following types: int32, int64.
1-D with shape [M], all values must be >= 1.

		paddings: A Tensor. Must be one of the following types: int32, int64.
2-D with shape [M, 2], all values must be >= 0.
paddings[i] = [pad_start, pad_end] specifies the padding for input dimension
i + 1, which corresponds to spatial dimension i. It is required that
block_shape[i] divides input_shape[i + 1] + pad_start + pad_end.

This operation is equivalent to the following steps:

		Zero-pad the start and end of dimensions [1, ..., M] of the
input according to paddings to produce padded of shape padded_shape.

		Reshape padded to reshaped_padded of shape:
[batch] +
[padded_shape[1] / block_shape[0],
block_shape[0],
...,
padded_shape[M] / block_shape[M-1],
block_shape[M-1]] +
remaining_shape

		Permute dimensions of reshaped_padded to produce
permuted_reshaped_padded of shape:
block_shape +
[batch] +
[padded_shape[1] / block_shape[0],
...,
padded_shape[M] / block_shape[M-1]] +
remaining_shape

		Reshape permuted_reshaped_padded to flatten block_shape into the batch
dimension, producing an output tensor of shape:
[batch * prod(block_shape)] +
[padded_shape[1] / block_shape[0],
...,
padded_shape[M] / block_shape[M-1]] +
remaining_shape

Some examples:

(1) For the following input of shape [1, 2, 2, 1], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:

x = [[[[1], [2]], [[3], [4]]]]

The output tensor has shape [4, 1, 1, 1] and value:

[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]

(2) For the following input of shape [1, 2, 2, 3], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:

x = [[[[1, 2, 3], [4, 5, 6]],
 [[7, 8, 9], [10, 11, 12]]]]

The output tensor has shape [4, 1, 1, 3] and value:

[[[1, 2, 3]], [[4, 5, 6]], [[7, 8, 9]], [[10, 11, 12]]]

(3) For the following input of shape [1, 4, 4, 1], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:

x = [[[[1], [2], [3], [4]],
 [[5], [6], [7], [8]],
 [[9], [10], [11], [12]],
 [[13], [14], [15], [16]]]]

The output tensor has shape [4, 2, 2, 1] and value:

x = [[[[1], [3]], [[5], [7]]],
 [[[2], [4]], [[10], [12]]],
 [[[5], [7]], [[13], [15]]],
 [[[6], [8]], [[14], [16]]]]

(4) For the following input of shape [2, 2, 4, 1], block_shape = [2, 2], and
paddings = [[0, 0], [2, 0]]:

x = [[[[1], [2], [3], [4]],
 [[5], [6], [7], [8]]],
 [[[9], [10], [11], [12]],
 [[13], [14], [15], [16]]]]

The output tensor has shape [8, 1, 3, 1] and value:

x = [[[[0], [1], [3]]], [[[0], [9], [11]]],
 [[[0], [2], [4]]], [[[0], [10], [12]]],
 [[[0], [5], [7]]], [[[0], [13], [15]]],
 [[[0], [6], [8]]], [[[0], [14], [16]]]]

Among others, this operation is useful for reducing atrous convolution into
regular convolution.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.image.crop_and_resize.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.crop_and_resize(image, boxes, box_ind, crop_size, method=None, extrapolation_value=None, name=None) {#crop_and_resize}

Extracts crops from the input image tensor and bilinearly resizes them (possibly

with aspect ratio change) to a common output size specified by crop_size. This
is more general than the crop_to_bounding_box op which extracts a fixed size
slice from the input image and does not allow resizing or aspect ratio change.

Returns a tensor with crops from the input image at positions defined at the
bounding box locations in boxes. The cropped boxes are all resized (with
bilinear interpolation) to a fixed size = [crop_height, crop_width]. The
result is a 4-D tensor [num_boxes, crop_height, crop_width, depth].

Args:

		image: A Tensor. Must be one of the following types: uint8, int8, int16, int32, int64, half, float32, float64.
A 4-D tensor of shape [batch, image_height, image_width, depth].
Both image_height and image_width need to be positive.

		boxes: A Tensor of type float32.
A 2-D tensor of shape [num_boxes, 4]. The i-th row of the tensor
specifies the coordinates of a box in the box_ind[i] image and is specified
in normalized coordinates [y1, x1, y2, x2]. A normalized coordinate value of
y is mapped to the image coordinate at y * (image_height - 1), so as the
[0, 1] interval of normalized image height is mapped to
[0, image_height - 1] in image height coordinates. We do allow y1 > y2, in which case the sampled crop is an up-down flipped version of the original image. The width dimension is treated similarly. Normalized coordinates outside the[0, 1]range are allowed, in which case we useextrapolation_value` to extrapolate the input image values.

		box_ind: A Tensor of type int32.
A 1-D tensor of shape [num_boxes] with int32 values in [0, batch).
The value of box_ind[i] specifies the image that the i-th box refers to.

		crop_size: A Tensor of type int32.
A 1-D tensor of 2 elements, size = [crop_height, crop_width]. All
cropped image patches are resized to this size. The aspect ratio of the image
content is not preserved. Both crop_height and crop_width need to be
positive.

		method: An optional string from: "bilinear". Defaults to "bilinear".
A string specifying the interpolation method. Only ‘bilinear’ is
supported for now.

		extrapolation_value: An optional float. Defaults to 0.
Value used for extrapolation, when applicable.

		name: A name for the operation (optional).

Returns:

A Tensor of type float32.
A 4-D tensor of shape [num_boxes, crop_height, crop_width, depth].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 WishartFullTensor is a StochasticTensor backed by the distribution WishartFull.

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#WishartFullTensor.init}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.clone(name=None, **dist_args) {#WishartFullTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.distribution {#WishartFullTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.dtype {#WishartFullTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.entropy(name='entropy') {#WishartFullTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.graph {#WishartFullTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.input_dict {#WishartFullTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.loss(final_loss, name='Loss') {#WishartFullTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.mean(name='mean') {#WishartFullTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.name {#WishartFullTensor.name}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.value(name='value') {#WishartFullTensor.value}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.value_type {#WishartFullTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.nn.log_uniform_candidate_sampler.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.log_uniform_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, seed=None, name=None) {#log_uniform_candidate_sampler}

Samples a set of classes using a log-uniform (Zipfian) base distribution.

This operation randomly samples a tensor of sampled classes
(sampled_candidates) from the range of integers [0, range_max).

The elements of sampled_candidates are drawn without replacement
(if unique=True) or with replacement (if unique=False) from
the base distribution.

The base distribution for this operation is an approximately log-uniform
or Zipfian distribution:

P(class) = (log(class + 2) - log(class + 1)) / log(range_max + 1)

This sampler is useful when the target classes approximately follow such
a distribution - for example, if the classes represent words in a lexicon
sorted in decreasing order of frequency. If your classes are not ordered by
decreasing frequency, do not use this op.

In addition, this operation returns tensors true_expected_count
and sampled_expected_count representing the number of times each
of the target classes (true_classes) and the sampled
classes (sampled_candidates) is expected to occur in an average
tensor of sampled classes. These values correspond to Q(y|x)
defined in this
document [http://www.tensorflow.org/extras/candidate_sampling.pdf].
If unique=True, then these are post-rejection probabilities and we
compute them approximately.

Args:

		true_classes: A Tensor of type int64 and shape [batch_size, num_true]. The target classes.

		num_true: An int. The number of target classes per training example.

		num_sampled: An int. The number of classes to randomly sample per batch.

		unique: A bool. Determines whether all sampled classes in a batch are
unique.

		range_max: An int. The number of possible classes.

		seed: An int. An operation-specific seed. Default is 0.

		name: A name for the operation (optional).

Returns:

		sampled_candidates: A tensor of type int64 and shape [num_sampled].
The sampled classes.

		true_expected_count: A tensor of type float. Same shape as
true_classes. The expected counts under the sampling distribution
of each of true_classes.

		sampled_expected_count: A tensor of type float. Same shape as
sampled_candidates. The expected counts under the sampling distribution
of each of sampled_candidates.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.distributions.Categorical.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Categorical distribution.

The categorical distribution is parameterized by the log-probabilities
of a set of classes.

tf.contrib.distributions.Categorical.__init__(logits, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='Categorical') {#Categorical.init}

Initialize Categorical distributions using class log-probabilities.

Args:

		logits: An N-D Tensor, N >= 1, representing the log probabilities
of a set of Categorical distributions. The first N - 1 dimensions
index into a batch of independent distributions and the last dimension
indexes into the classes.

		dtype: The type of the event samples (default: int32).

		validate_args: Unused in this distribution.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: A name for this distribution (optional).

tf.contrib.distributions.Categorical.allow_nan_stats {#Categorical.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Categorical.batch_shape(name='batch_shape') {#Categorical.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Categorical.cdf(value, name='cdf') {#Categorical.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Categorical.dtype {#Categorical.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Categorical.entropy(name='entropy') {#Categorical.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Categorical.event_shape(name='event_shape') {#Categorical.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Categorical.get_batch_shape() {#Categorical.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Categorical.get_event_shape() {#Categorical.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Categorical.is_continuous {#Categorical.is_continuous}

tf.contrib.distributions.Categorical.is_reparameterized {#Categorical.is_reparameterized}

tf.contrib.distributions.Categorical.log_cdf(value, name='log_cdf') {#Categorical.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Categorical.log_pdf(value, name='log_pdf') {#Categorical.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Categorical.log_pmf(value, name='log_pmf') {#Categorical.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Categorical.log_prob(value, name='log_prob') {#Categorical.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Categorical.log_survival_function(value, name='log_survival_function') {#Categorical.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Categorical.logits {#Categorical.logits}

tf.contrib.distributions.Categorical.mean(name='mean') {#Categorical.mean}

Mean.

tf.contrib.distributions.Categorical.mode(name='mode') {#Categorical.mode}

Mode.

tf.contrib.distributions.Categorical.name {#Categorical.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Categorical.num_classes {#Categorical.num_classes}

Scalar int32 tensor: the number of classes.

tf.contrib.distributions.Categorical.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Categorical.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Categorical.param_static_shapes(cls, sample_shape) {#Categorical.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Categorical.parameters {#Categorical.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Categorical.pdf(value, name='pdf') {#Categorical.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Categorical.pmf(value, name='pmf') {#Categorical.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Categorical.prob(value, name='prob') {#Categorical.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Categorical.sample(sample_shape=(), seed=None, name='sample') {#Categorical.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Categorical.sample_n(n, seed=None, name='sample_n') {#Categorical.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Categorical.std(name='std') {#Categorical.std}

Standard deviation.

tf.contrib.distributions.Categorical.survival_function(value, name='survival_function') {#Categorical.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Categorical.validate_args {#Categorical.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Categorical.variance(name='variance') {#Categorical.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.metrics.streaming_mean_relative_error.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.streaming_mean_relative_error(predictions, labels, normalizer, weights=None, metrics_collections=None, updates_collections=None, name=None) {#streaming_mean_relative_error}

Computes the mean relative error by normalizing with the given values.

The streaming_mean_relative_error function creates two local variables,
total and count that are used to compute the mean relative absolute error.
This average is weighted by weights, and it is ultimately returned as
mean_relative_error: an idempotent operation that simply divides total by
count.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
mean_reative_error. Internally, a relative_errors operation divides the
absolute value of the differences between predictions and labels by the
normalizer. Then update_op increments total with the reduced sum of the
product of weights and relative_errors, and it increments count with the
reduced sum of weights.

If weights is None, weights default to 1. Use weights of 0 to mask values.

Args:

		predictions: A Tensor of arbitrary shape.

		labels: A Tensor of the same shape as predictions.

		normalizer: A Tensor of the same shape as predictions.

		weights: An optional Tensor whose shape is broadcastable to predictions.

		metrics_collections: An optional list of collections that
mean_relative_error should be added to.

		updates_collections: An optional list of collections that update_op should
be added to.

		name: An optional variable_scope name.

Returns:

		mean_relative_error: A tensor representing the current mean, the value of
total divided by count.

		update_op: An operation that increments the total and count variables
appropriately and whose value matches mean_relative_error.

Raises:

		ValueError: If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn’t match predictions, or if
either metrics_collections or updates_collections are not a list or
tuple.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.train.global_step.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.global_step(sess, global_step_tensor) {#global_step}

Small helper to get the global step.

Creates a variable to hold the global_step.
global_step_tensor = tf.Variable(10, trainable=False, name='global_step')
Creates a session.
sess = tf.Session()
Initializes the variable.
sess.run(global_step_tensor.initializer)
print('global_step: %s' % tf.train.global_step(sess, global_step_tensor))

global_step: 10

Args:

		sess: A TensorFlow Session object.

		global_step_tensor: Tensor or the name of the operation that contains
the global step.

Returns:

The global step value.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.get_variable_scope.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.get_variable_scope() {#get_variable_scope}

Returns the current variable scope.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.train.Saver.from_proto.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.Saver.from_proto(saver_def) {#Saver.from_proto}

Returns a Saver object created from saver_def.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.to_int32.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.to_int32(x, name='ToInt32') {#to_int32}

Casts a tensor to type int32.

Args:

		x: A Tensor or SparseTensor.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x with type int32.

Raises:

		TypeError: If x cannot be cast to the int32.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.image_summary.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image_summary(tag, tensor, max_images=3, collections=None, name=None) {#image_summary}

Outputs a Summary protocol buffer with images.

The summary has up to max_images summary values containing images. The
images are built from tensor which must be 4-D with shape [batch_size, height, width, channels] and where channels can be:

		1: tensor is interpreted as Grayscale.

		3: tensor is interpreted as RGB.

		4: tensor is interpreted as RGBA.

The images have the same number of channels as the input tensor. For float
input, the values are normalized one image at a time to fit in the range
[0, 255]. uint8 values are unchanged. The op uses two different
normalization algorithms:

		If the input values are all positive, they are rescaled so the largest one
is 255.

		If any input value is negative, the values are shifted so input value 0.0
is at 127. They are then rescaled so that either the smallest value is 0,
or the largest one is 255.

The tag argument is a scalar Tensor of type string. It is used to
build the tag of the summary values:

		If max_images is 1, the summary value tag is ‘tag/image’.

		If max_images is greater than 1, the summary value tags are
generated sequentially as ‘tag/image/0’, ‘tag/image/1’, etc.

Args:

		tag: A scalar Tensor of type string. Used to build the tag
of the summary values.

		tensor: A 4-D uint8 or float32 Tensor of shape [batch_size, height, width, channels] where channels is 1, 3, or 4.

		max_images: Max number of batch elements to generate images for.

		collections: Optional list of ops.GraphKeys. The collections to add the
summary to. Defaults to [ops.GraphKeys.SUMMARIES]

		name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized Summary protocol
buffer.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.imag.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.imag(input, name=None) {#imag}

Returns the imaginary part of a complex number.

Given a tensor input of complex numbers, this operation returns a tensor of
type float32 or float64 that is the imaginary part of each element in
input. All elements in input must be complex numbers of the form (a +
bj), where a is the real part and b is the imaginary part returned by
this operation.

For example:

tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.imag(input) ==> [4.75, 5.75]

Args:

		input: A Tensor. Must be one of the following types: complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor of type float32 or float64.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.distributions.Uniform.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Uniform distribution with a and b parameters.

The PDF of this distribution is constant between [a, b], and 0 elsewhere.

tf.contrib.distributions.Uniform.__init__(a=0.0, b=1.0, validate_args=False, allow_nan_stats=True, name='Uniform') {#Uniform.init}

Construct Uniform distributions with a and b.

The parameters a and b must be shaped in a way that supports
broadcasting (e.g. b - a is a valid operation).

Here are examples without broadcasting:

Without broadcasting
u1 = Uniform(3.0, 4.0) # a single uniform distribution [3, 4]
u2 = Uniform([1.0, 2.0], [3.0, 4.0]) # 2 distributions [1, 3], [2, 4]
u3 = Uniform([[1.0, 2.0],
 [3.0, 4.0]],
 [[1.5, 2.5],
 [3.5, 4.5]]) # 4 distributions

And with broadcasting:

u1 = Uniform(3.0, [5.0, 6.0, 7.0]) # 3 distributions

Args:

		a: Floating point tensor, the minimum endpoint.

		b: Floating point tensor, the maximum endpoint. Must be > a.

		validate_args: Boolean, default False. Whether to validate input with
asserts. If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to prefix Ops created by this distribution class.

Raises:

		InvalidArgumentError: if a >= b and validate_args=False.

tf.contrib.distributions.Uniform.a {#Uniform.a}

tf.contrib.distributions.Uniform.allow_nan_stats {#Uniform.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Uniform.b {#Uniform.b}

tf.contrib.distributions.Uniform.batch_shape(name='batch_shape') {#Uniform.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Uniform.cdf(value, name='cdf') {#Uniform.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Uniform.dtype {#Uniform.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Uniform.entropy(name='entropy') {#Uniform.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Uniform.event_shape(name='event_shape') {#Uniform.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Uniform.get_batch_shape() {#Uniform.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Uniform.get_event_shape() {#Uniform.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Uniform.is_continuous {#Uniform.is_continuous}

tf.contrib.distributions.Uniform.is_reparameterized {#Uniform.is_reparameterized}

tf.contrib.distributions.Uniform.log_cdf(value, name='log_cdf') {#Uniform.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Uniform.log_pdf(value, name='log_pdf') {#Uniform.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Uniform.log_pmf(value, name='log_pmf') {#Uniform.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Uniform.log_prob(value, name='log_prob') {#Uniform.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Uniform.log_survival_function(value, name='log_survival_function') {#Uniform.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Uniform.mean(name='mean') {#Uniform.mean}

Mean.

tf.contrib.distributions.Uniform.mode(name='mode') {#Uniform.mode}

Mode.

tf.contrib.distributions.Uniform.name {#Uniform.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Uniform.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Uniform.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Uniform.param_static_shapes(cls, sample_shape) {#Uniform.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Uniform.parameters {#Uniform.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Uniform.pdf(value, name='pdf') {#Uniform.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Uniform.pmf(value, name='pmf') {#Uniform.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Uniform.prob(value, name='prob') {#Uniform.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Uniform.range(name='range') {#Uniform.range}

b - a.

tf.contrib.distributions.Uniform.sample(sample_shape=(), seed=None, name='sample') {#Uniform.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Uniform.sample_n(n, seed=None, name='sample_n') {#Uniform.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Uniform.std(name='std') {#Uniform.std}

Standard deviation.

tf.contrib.distributions.Uniform.survival_function(value, name='survival_function') {#Uniform.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Uniform.validate_args {#Uniform.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Uniform.variance(name='variance') {#Uniform.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.DType.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Represents the type of the elements in a Tensor.

The following DType objects are defined:

		tf.float16: 16-bit half-precision floating-point.

		tf.float32: 32-bit single-precision floating-point.

		tf.float64: 64-bit double-precision floating-point.

		tf.bfloat16: 16-bit truncated floating-point.

		tf.complex64: 64-bit single-precision complex.

		tf.complex128: 128-bit double-precision complex.

		tf.int8: 8-bit signed integer.

		tf.uint8: 8-bit unsigned integer.

		tf.uint16: 16-bit unsigned integer.

		tf.int16: 16-bit signed integer.

		tf.int32: 32-bit signed integer.

		tf.int64: 64-bit signed integer.

		tf.bool: Boolean.

		tf.string: String.

		tf.qint8: Quantized 8-bit signed integer.

		tf.quint8: Quantized 8-bit unsigned integer.

		tf.qint16: Quantized 16-bit signed integer.

		tf.quint16: Quantized 16-bit unsigned integer.

		tf.qint32: Quantized 32-bit signed integer.

In addition, variants of these types with the _ref suffix are
defined for reference-typed tensors.

The tf.as_dtype() function converts numpy types and string type
names to a DType object.

tf.DType.is_compatible_with(other) {#DType.is_compatible_with}

Returns True if the other DType will be converted to this DType.

The conversion rules are as follows:

DType(T) .is_compatible_with(DType(T)) == True
DType(T) .is_compatible_with(DType(T).as_ref) == True
DType(T).as_ref.is_compatible_with(DType(T)) == False
DType(T).as_ref.is_compatible_with(DType(T).as_ref) == True

Args:

		other: A DType (or object that may be converted to a DType).

Returns:

True if a Tensor of the other DType will be implicitly converted to
this DType.

tf.DType.name {#DType.name}

Returns the string name for this DType.

tf.DType.base_dtype {#DType.base_dtype}

Returns a non-reference DType based on this DType.

tf.DType.real_dtype {#DType.real_dtype}

Returns the dtype correspond to this dtype’s real part.

tf.DType.is_ref_dtype {#DType.is_ref_dtype}

Returns True if this DType represents a reference type.

tf.DType.as_ref {#DType.as_ref}

Returns a reference DType based on this DType.

tf.DType.is_floating {#DType.is_floating}

Returns whether this is a (real) floating point type.

tf.DType.is_complex {#DType.is_complex}

Returns whether this is a complex floating point type.

tf.DType.is_integer {#DType.is_integer}

Returns whether this is a (non-quantized) integer type.

tf.DType.is_quantized {#DType.is_quantized}

Returns whether this is a quantized data type.

tf.DType.is_unsigned {#DType.is_unsigned}

Returns whether this type is unsigned.

Non-numeric, unordered, and quantized types are not considered unsigned, and
this function returns False.

Returns:

Whether a DType is unsigned.

tf.DType.as_numpy_dtype {#DType.as_numpy_dtype}

Returns a numpy.dtype based on this DType.

tf.DType.as_datatype_enum {#DType.as_datatype_enum}

Returns a types_pb2.DataType enum value based on this DType.

Other Methods

tf.DType.__eq__(other) {#DType.eq}

Returns True iff this DType refers to the same type as other.

tf.DType.__hash__() {#DType.hash}

tf.DType.__init__(type_enum) {#DType.init}

Creates a new DataType.

NOTE(mrry): In normal circumstances, you should not need to
construct a DataType object directly. Instead, use the
tf.as_dtype() function.

Args:

		type_enum: A types_pb2.DataType enum value.

Raises:

		TypeError: If type_enum is not a value types_pb2.DataType.

tf.DType.__ne__(other) {#DType.ne}

Returns True iff self != other.

tf.DType.__repr__() {#DType.repr}

tf.DType.__str__() {#DType.str}

tf.DType.max {#DType.max}

Returns the maximum representable value in this data type.

Raises:

		TypeError: if this is a non-numeric, unordered, or quantized type.

tf.DType.min {#DType.min}

Returns the minimum representable value in this data type.

Raises:

		TypeError: if this is a non-numeric, unordered, or quantized type.

tf.DType.size {#DType.size}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.minimum.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.minimum(x, y, name=None) {#minimum}

Returns the min of x and y (i.e. x < y ? x : y) element-wise.

NOTE: Minimum supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.rnn.GRUBlockCell.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Block GRU cell implementation.

The implementation is based on: http://arxiv.org/abs/1406.1078
Computes the LSTM cell forward propagation for 1 time step.

This kernel op implements the following mathematical equations:

Baises are initialized with :
b_ru - constant_initializer(1.0)
b_c - constant_initializer(0.0)

x_h_prev = [x, h_prev]

[r_bar u_bar] = x_h_prev * w_ru + b_ru

r = sigmoid(r_bar)
u = sigmoid(u_bar)

h_prevr = h_prev \circ r

x_h_prevr = [x h_prevr]

c_bar = x_h_prevr * w_c + b_c
c = tanh(c_bar)

h = (1-u) \circ c + u \circ h_prev

tf.contrib.rnn.GRUBlockCell.__call__(x, h_prev, scope=None) {#GRUBlockCell.call}

GRU cell.

tf.contrib.rnn.GRUBlockCell.__init__(cell_size) {#GRUBlockCell.init}

Initialize the Block GRU cell.

Args:

		cell_size: int, GRU cell size.

tf.contrib.rnn.GRUBlockCell.output_size {#GRUBlockCell.output_size}

tf.contrib.rnn.GRUBlockCell.state_size {#GRUBlockCell.state_size}

tf.contrib.rnn.GRUBlockCell.zero_state(batch_size, dtype) {#GRUBlockCell.zero_state}

Return zero-filled state tensor(s).

Args:

		batch_size: int, float, or unit Tensor representing the batch size.

		dtype: the data type to use for the state.

Returns:

If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.framework.get_unique_variable.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.get_unique_variable(var_op_name) {#get_unique_variable}

Gets the variable uniquely identified by that var_op_name.

Args:

		var_op_name: the full name of the variable op, including the scope.

Returns:

a tensorflow variable.

Raises:

		ValueError: if no variable uniquely identified by the name exists.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.errors.ResourceExhaustedError.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Some resource has been exhausted.

For example, this error might be raised if a per-user quota is
exhausted, or perhaps the entire file system is out of space.

tf.errors.ResourceExhaustedError.__init__(node_def, op, message) {#ResourceExhaustedError.init}

Creates a ResourceExhaustedError.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.random_uniform.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.random_uniform(shape, minval=0, maxval=None, dtype=tf.float32, seed=None, name=None) {#random_uniform}

Outputs random values from a uniform distribution.

The generated values follow a uniform distribution in the range
[minval, maxval). The lower bound minval is included in the range, while
the upper bound maxval is excluded.

For floats, the default range is [0, 1). For ints, at least maxval must
be specified explicitly.

In the integer case, the random integers are slightly biased unless
maxval - minval is an exact power of two. The bias is small for values of
maxval - minval significantly smaller than the range of the output (either
2**32 or 2**64).

Args:

		shape: A 1-D integer Tensor or Python array. The shape of the output tensor.

		minval: A 0-D Tensor or Python value of type dtype. The lower bound on the
range of random values to generate. Defaults to 0.

		maxval: A 0-D Tensor or Python value of type dtype. The upper bound on
the range of random values to generate. Defaults to 1 if dtype is
floating point.

		dtype: The type of the output: float32, float64, int32, or int64.

		seed: A Python integer. Used to create a random seed for the distribution.
See
set_random_seed
for behavior.

		name: A name for the operation (optional).

Returns:

A tensor of the specified shape filled with random uniform values.

Raises:

		ValueError: If dtype is integral and maxval is not specified.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.betainc.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.betainc(a, b, x, name=None) {#betainc}

Compute the regularized incomplete beta integral \(I_x(a, b)\).

The regularized incomplete beta integral is defined as:

I_x(a, b) = \frac{B(x; a, b)}{B(a, b)}

where

B(x; a, b) = \int_0^x t^{a-1} (1 - t)^{b-1} dt

is the incomplete beta function and \(B(a, b)\) is the complete
beta function.

Args:

		a: A Tensor. Must be one of the following types: float32, float64.

		b: A Tensor. Must have the same type as a.

		x: A Tensor. Must have the same type as a.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as a.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.layers.optimize_loss.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.optimize_loss(loss, global_step, learning_rate, optimizer, gradient_noise_scale=None, gradient_multipliers=None, clip_gradients=None, learning_rate_decay_fn=None, update_ops=None, variables=None, name=None, summaries=None) {#optimize_loss}

Given loss and parameters for optimizer, returns a training op.

Various ways of passing optimizers, include:

		string, name of the optimizer like ‘SGD’, ‘Adam’, see OPTIMIZER_CLS_NAMES
for full list. E.g. optimize_loss(..., optimizer='Adam').

		function, takes learning rate Tensor as argument and must return
Optimizer instance. E.g. optimize_loss(..., optimizer=lambda lr: tf.train.MomentumOptimizer(lr, momentum=0.5)).
Alternatively, if learning_rate is None, the function takes no
arguments. E.g. optimize_loss(..., learning_rate=None, optimizer=lambda: tf.train.MomentumOptimizer(0.5, momentum=0.5)).

		class, subclass of Optimizer that takes only one required argument -
learning rate, such as AdamOptimizer, AdagradOptimizer.
E.g. optimize_loss(..., optimizer=tf.train.AdagradOptimizer).

		object, instance of subclass of Optimizer.
E.g., optimizer_loss(..., optimizer=tf.train.AdagradOptimizer(0.5)).

Args:

		loss: Tensor, 0 dimensional.

		global_step: Tensor, step counter for each update.

		learning_rate: float or Tensor, magnitude of update per each training step.

		optimizer: string, class or optimizer instance, used as trainer.
string should be name of optimizer, like ‘SGD’,
‘Adam’, ‘Adagrad’. Full list in OPTIMIZER_CLS_NAMES constant.
class should be sub-class of tf.Optimizer that implements
compute_gradients and apply_gradients functions.
optimizer instance should be instantion of tf.Optimizer
sub-class and have compute_gradients and apply_gradients
functions.

		gradient_noise_scale: float or None, adds 0-mean normal noise scaled by this
value.

		gradient_multipliers: dict of variables or variable names to floats.
If present, gradients for specified
variables will be multiplied by given constant.

		clip_gradients: float or None, clips gradients by this value.

		learning_rate_decay_fn: function, takes learning_rate and global_step
Tensors, returns Tensor.
Can be used to implement any learning rate decay
functions.
For example: tf.train.exponential_decay.

		update_ops: list of update Operations to execute at each step. If None,
uses elements of UPDATE_OPS collection. The order of execution
between update_ops and loss is non-deterministic.

		variables: list of variables to optimize or
None to use all trainable variables.

		name: The name for this operation is used to scope operations and summaries.

		summaries: List of internal quantities to visualize on tensorboard. If not
set only the loss and the learning rate will be reported. The
complete list is in OPTIMIZER_SUMMARIES.

Returns:

Training op.

Raises:

		ValueError: if optimizer is wrong type.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.learn.monitors.ExportMonitor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Monitor that exports Estimator every N steps.

tf.contrib.learn.monitors.ExportMonitor.__init__(*args, **kwargs) {#ExportMonitor.init}

Initializes ExportMonitor. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23.
Instructions for updating:
The signature of the input_fn accepted by export is changing to be consistent with what’s used by tf.Learn Estimator’s train/evaluate. input_fn and input_feature_key will both become required args.

Args:
 every_n_steps: Run monitor every N steps.
 export_dir: str, folder to export.
 input_fn: A function that takes no argument and returns a tuple of
 (features, targets), where features is a dict of string key to `Tensor`
 and targets is a `Tensor` that's currently not used (and so can be
 `None`).
 input_feature_key: String key into the features dict returned by
 `input_fn` that corresponds to the raw `Example` strings `Tensor` that
 the exported model will take as input.
 exports_to_keep: int, number of exports to keep.
 signature_fn: Function that returns a default signature and a named
 signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s
 for features and `dict` of `Tensor`s for predictions.
 default_batch_size: Default batch size of the `Example` placeholder.

Raises:
 ValueError: If `input_fn` and `input_feature_key` are not both defined or
 are not both `None`.

tf.contrib.learn.monitors.ExportMonitor.begin(max_steps=None) {#ExportMonitor.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.ExportMonitor.end(session=None) {#ExportMonitor.end}

tf.contrib.learn.monitors.ExportMonitor.epoch_begin(epoch) {#ExportMonitor.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.ExportMonitor.epoch_end(epoch) {#ExportMonitor.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.ExportMonitor.every_n_post_step(step, session) {#ExportMonitor.every_n_post_step}

Callback after a step is finished or end() is called.

Args:

		step: int, the current value of the global step.

		session: Session object.

tf.contrib.learn.monitors.ExportMonitor.every_n_step_begin(step) {#ExportMonitor.every_n_step_begin}

Callback before every n’th step begins.

Args:

		step: int, the current value of the global step.

Returns:

A list of tensors that will be evaluated at this step.

tf.contrib.learn.monitors.ExportMonitor.every_n_step_end(step, outputs) {#ExportMonitor.every_n_step_end}

tf.contrib.learn.monitors.ExportMonitor.export_dir {#ExportMonitor.export_dir}

tf.contrib.learn.monitors.ExportMonitor.exports_to_keep {#ExportMonitor.exports_to_keep}

tf.contrib.learn.monitors.ExportMonitor.last_export_dir {#ExportMonitor.last_export_dir}

Returns the directory containing the last completed export.

Returns:

The string path to the exported directory. NB: this functionality was
added on 2016/09/25; clients that depend on the return value may need
to handle the case where this function returns None because the
estimator being fitted does not yet return a value during export.

tf.contrib.learn.monitors.ExportMonitor.post_step(step, session) {#ExportMonitor.post_step}

tf.contrib.learn.monitors.ExportMonitor.run_on_all_workers {#ExportMonitor.run_on_all_workers}

tf.contrib.learn.monitors.ExportMonitor.set_estimator(estimator) {#ExportMonitor.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.ExportMonitor.signature_fn {#ExportMonitor.signature_fn}

tf.contrib.learn.monitors.ExportMonitor.step_begin(step) {#ExportMonitor.step_begin}

Overrides BaseMonitor.step_begin.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

Returns:

A list, the result of every_n_step_begin, if that was called this step,
or an empty list otherwise.

Raises:

		ValueError: if called more than once during a step.

tf.contrib.learn.monitors.ExportMonitor.step_end(step, output) {#ExportMonitor.step_end}

Overrides BaseMonitor.step_end.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool, the result of every_n_step_end, if that was called this step,
or False otherwise.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 PoissonTensor is a StochasticTensor backed by the distribution Poisson.

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#PoissonTensor.init}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.clone(name=None, **dist_args) {#PoissonTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.distribution {#PoissonTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.dtype {#PoissonTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.entropy(name='entropy') {#PoissonTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.graph {#PoissonTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.input_dict {#PoissonTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.loss(final_loss, name='Loss') {#PoissonTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.mean(name='mean') {#PoissonTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.name {#PoissonTensor.name}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.value(name='value') {#PoissonTensor.value}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.value_type {#PoissonTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.split.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.split(split_dim, num_split, value, name='split') {#split}

Splits a tensor into num_split tensors along one dimension.

Splits value along dimension split_dim into num_split smaller tensors.
Requires that num_split evenly divide value.shape[split_dim].

For example:

'value' is a tensor with shape [5, 30]
Split 'value' into 3 tensors along dimension 1
split0, split1, split2 = tf.split(1, 3, value)
tf.shape(split0) ==> [5, 10]

Note: If you are splitting along an axis by the length of that axis, consider
using unpack, e.g.

num_items = t.get_shape()[axis].value
[tf.squeeze(s, [axis]) for s in tf.split(axis, num_items, t)]

can be rewritten as

tf.unpack(t, axis=axis)

Args:

		split_dim: A 0-D int32 Tensor. The dimension along which to split.
Must be in the range [0, rank(value)).

		num_split: A Python integer. The number of ways to split.

		value: The Tensor to split.

		name: A name for the operation (optional).

Returns:

num_split Tensor objects resulting from splitting value.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.crf.crf_binary_score.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.crf.crf_binary_score(tag_indices, sequence_lengths, transition_params) {#crf_binary_score}

Computes the binary scores of tag sequences.

Args:

		tag_indices: A [batch_size, max_seq_len] matrix of tag indices.

		sequence_lengths: A [batch_size] vector of true sequence lengths.

		transition_params: A [num_tags, num_tags] matrix of binary potentials.

Returns:

		binary_scores: A [batch_size] vector of binary scores.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.image.per_image_whitening.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.per_image_whitening(image) {#per_image_whitening}

Linearly scales image to have zero mean and unit norm.

This op computes (x - mean) / adjusted_stddev, where mean is the average
of all values in image, and
adjusted_stddev = max(stddev, 1.0/sqrt(image.NumElements())).

stddev is the standard deviation of all values in image. It is capped
away from zero to protect against division by 0 when handling uniform images.

Note that this implementation is limited:

		It only whitens based on the statistics of an individual image.

		It does not take into account the covariance structure.

Args:

		image: 3-D tensor of shape [height, width, channels].

Returns:

The whitened image with same shape as image.

Raises:

		ValueError: if the shape of ‘image’ is incompatible with this function.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.graph_editor.keep_t_if_possible_handler.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.keep_t_if_possible_handler(info, t) {#keep_t_if_possible_handler}

Transform a tensor into itself (identity) if possible.

This handler transform a tensor into itself if the source and destination
graph are the same. Otherwise it will create a placeholder.
This handler is typically used to transform a hidden input tensors.

Args:

		info: Transform._Info instance.

		t: tensor whose input must be transformed into a place holder.

Returns:

The tensor generated by the newly created place holder.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.graph_editor.copy.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.copy(sgv, dst_graph=None, dst_scope='', src_scope='', reuse_dst_scope=False) {#copy}

Copy a subgraph.

Args:

		sgv: the source subgraph-view. This argument is converted to a subgraph
using the same rules than the function subgraph.make_view.

		dst_graph: the destination graph.

		dst_scope: the destination scope.

		src_scope: the source scope.

		reuse_dst_scope: if True the dst_scope is re-used if it already exists.
Otherwise, the scope is given a unique name based on the one given
by appending an underscore followed by a digit (default).

Returns:

A tuple (sgv, info) where:
sgv is the transformed subgraph view;
info is an instance of Transformer.ResultInfo containing
information about the transform, including mapping between
original and transformed tensors and operations.

Raises:

		TypeError: if dst_graph is not a tf.Graph.

		StandardError: if sgv cannot be converted to a SubGraphView using
the same rules than the function subgraph.make_view.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.copy_graph.get_copied_op.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.copy_graph.get_copied_op(org_instance, graph, scope='') {#get_copied_op}

Given an Operation instance from some Graph, returns
its namesake from graph, under the specified scope
(default "").

If a copy of org_instance is present in graph under the given
scope, it will be returned.

Args:
org_instance: An Operation from some Graph.
graph: The Graph to be searched for a copr of org_instance.
scope: The scope org_instance is present in.

Returns:

The `Operation` copy from `graph`.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.graph_editor.SubGraphView.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A subgraph view on an existing tf.Graph.

An instance of this class is a subgraph view on an existing tf.Graph.
“subgraph” means that it can represent part of the whole tf.Graph.
“view” means that it only provides a passive observation and do not to act
on the tf.Graph. Note that in this documentation, the term “subgraph” is often
used as substitute to “subgraph view”.

A subgraph contains:

		a list of input tensors, accessible via the “inputs” property.

		a list of output tensors, accessible via the “outputs” property.

		and the operations in between, accessible via the “ops” property.

An subgraph can be seen as a function F(i0, i1, ...) -> o0, o1, ... It is a
function which takes as input some input tensors and returns as output some
output tensors. The computation that the function performs is encoded in the
operations of the subgraph.

The tensors (input or output) can be of two kinds:

		connected: a connected tensor connects to at least one operation contained
in the subgraph. One example is a subgraph representing a single operation
and its inputs and outputs: all the input and output tensors of the op
are “connected”.

		passthrough: a passthrough tensor does not connect to any operation
contained in the subgraph. One example is a subgraph representing a
single tensor: this tensor is passthrough. By default a passthrough tensor is
present both in the input and output tensors of the subgraph. It can however
be remapped to only appear as an input (or output) only.

The input and output tensors can be remapped. For instance, some input tensor
can be ommited. For instance, a subgraph representing an operation with two
inputs can be remapped to only take one input. Note that this does not change
at all the underlying tf.Graph (remember, it is a view). It means that
the other input is being ignored, or is being treated as “given”.
The analogy with functions can be extended like this: F(x,y) is the original
function. Remapping the inputs from [x, y] to just [x] means that the subgraph
now represent the function F_y(x) (y is “given”).

The output tensors can also be remapped. For instance, some output tensor can
be ommited. Other output tensor can be duplicated as well. As mentioned
before, this does not change at all the underlying tf.Graph.
The analogy with functions can be extended like this: F(...)->x,y is the
original function. Remapping the outputs from [x, y] to just [y,y] means that
the subgraph now represent the function M(F(...)) where M is the function
M(a,b)->b,b.

It is useful to describe three other kind of tensors:

		internal: an internal tensor is a tensor connecting operations contained
in the subgraph. One example in the subgraph representing the two
operations A and B connected sequentially: -> A -> B ->. The middle arrow
is an internal tensor.

		actual input: an input tensor of the subgraph, regardless of whether it is
listed in “inputs” or not (masked-out).

		actual output: an output tensor of the subgraph, regardless of whether it is
listed in “outputs” or not (masked-out).

		hidden input: an actual input which has been masked-out using an
input remapping. In other word, a hidden input is a non-internal tensor
not listed as a input tensor and one of whose consumers belongs to
the subgraph.

		hidden output: a actual output which has been masked-out using an output
remapping. In other word, a hidden output is a non-internal tensor
not listed as an output and one of whose generating operations belongs to
the subgraph.

Here are some usefull guarantees about an instance of a SubGraphView:

		the input (or output) tensors are not internal.

		the input (or output) tensors are either “connected” or “passthrough”.

		the passthrough tensors are not connected to any of the operation of
the subgraph.

Note that there is no guarantee that an operation in a subgraph contributes
at all to its inputs or outputs. For instance, remapping both the inputs and
outputs to empty lists will produce a subgraph which still contains all the
original operations. However, the remove_unused_ops function can be used to
make a new subgraph view whose operations are connected to at least one of
the input or output tensors.

An instance of this class is meant to be a lightweight object which is not
modified in-place by the user. Rather, the user can create new modified
instances of a given subgraph. In that sense, the class SubGraphView is meant
to be used like an immutable python object.

A common problem when using views is that they can get out-of-sync with the
data they observe (in this case, a tf.Graph). This is up to the user to insure
that this doesn’t happen. To keep on the safe sife, it is recommended that
the life time of subgraph views are kept very short. One way to achieve this
is to use subgraphs within a “with make_sgv(...) as sgv:” Python context.

To alleviate the out-of-sync problem, some functions are granted the right to
modified subgraph in place. This is typically the case of graph manipulation
functions which, given some subgraphs as arguments, can modify the underlying
tf.Graph. Since this modification is likely to render the subgraph view
invalid, those functions can modify the argument in place to reflect the
change. For instance, calling the function swap_inputs(svg0, svg1) will modify
svg0 and svg1 in place to reflect the fact that their inputs have now being
swapped.

tf.contrib.graph_editor.SubGraphView.__bool__() {#SubGraphView.bool}

Allows for implicit boolean conversion.

tf.contrib.graph_editor.SubGraphView.__copy__() {#SubGraphView.copy}

Create a copy of this subgraph.

Note that this class is a “view”, copying it only create another view and
does not copy the underlying part of the tf.Graph.

Returns:

A new identical instance of the original subgraph view.

tf.contrib.graph_editor.SubGraphView.__enter__() {#SubGraphView.enter}

Allow Python context to minize the life time of a subgraph view.

A subgraph view is meant to be a lightweight and transient object. A short
lifetime will alleviate the “out-of-sync” issue mentioned earlier. For that
reason, a SubGraphView instance can be used within a Python context. For
example:

from tensorflow.contrib import graph_editor as ge
with ge.make_sgv(...) as sgv:
print(sgv)

Returns:

Itself.

tf.contrib.graph_editor.SubGraphView.__exit__(exc_type, exc_value, traceback) {#SubGraphView.exit}

tf.contrib.graph_editor.SubGraphView.__init__(inside_ops=(), passthrough_ts=()) {#SubGraphView.init}

Create a subgraph containing the given ops and the “passthrough” tensors.

Args:

		inside_ops: an object convertible to a list of tf.Operation. This list
defines all the operations in the subgraph.

		passthrough_ts: an object convertible to a list of tf.Tensor. This list
define all the “passthrough” tensors. A passthrough tensor is a tensor
which goes directly from the input of the subgraph to it output, without
any intermediate operations. All the non passthrough tensors are
silently ignored.

Raises:

		TypeError: if inside_ops cannot be converted to a list of tf.Operation or
if passthrough_ts cannot be converted to a list of tf.Tensor.

tf.contrib.graph_editor.SubGraphView.__nonzero__() {#SubGraphView.nonzero}

Allows for implicit boolean conversion.

tf.contrib.graph_editor.SubGraphView.__str__() {#SubGraphView.str}

tf.contrib.graph_editor.SubGraphView.connected_inputs {#SubGraphView.connected_inputs}

The connected input tensors of this subgraph view.

tf.contrib.graph_editor.SubGraphView.connected_outputs {#SubGraphView.connected_outputs}

The connected output tensors of this subgraph view.

tf.contrib.graph_editor.SubGraphView.consumers() {#SubGraphView.consumers}

Return a Python set of all the consumers of this subgraph view.

tf.contrib.graph_editor.SubGraphView.copy() {#SubGraphView.copy}

Return a copy of itself.

Note that this class is a “view”, copying it only create another view and
does not copy the underlying part of the tf.Graph.

Returns:

A new instance identical to the original one.

tf.contrib.graph_editor.SubGraphView.find_op_by_name(op_name) {#SubGraphView.find_op_by_name}

Return the op named op_name.

Args:

		op_name: the name to search for

Returns:

The op named op_name.

Raises:

		ValueError: if the op_name could not be found.

		AssertionError: if the name was found multiple time.

tf.contrib.graph_editor.SubGraphView.graph {#SubGraphView.graph}

The underlying tf.Graph.

tf.contrib.graph_editor.SubGraphView.input_index(t) {#SubGraphView.input_index}

Find the input index corresponding to the given input tensor t.

Args:

		t: the input tensor of this subgraph view.

Returns:

The index in the self.inputs list.

Raises:

		Error: if t in not an input tensor.

tf.contrib.graph_editor.SubGraphView.inputs {#SubGraphView.inputs}

The input tensors of this subgraph view.

tf.contrib.graph_editor.SubGraphView.is_passthrough(t) {#SubGraphView.is_passthrough}

Check whether a tensor is passthrough.

tf.contrib.graph_editor.SubGraphView.op(op_id) {#SubGraphView.op}

Get an op by its index.

tf.contrib.graph_editor.SubGraphView.ops {#SubGraphView.ops}

The operations in this subgraph view.

tf.contrib.graph_editor.SubGraphView.output_index(t) {#SubGraphView.output_index}

Find the output index corresponding to given output tensor t.

Args:

		t: the output tensor of this subgraph view.

Returns:

The index in the self.outputs list.

Raises:

		Error: if t in not an output tensor.

tf.contrib.graph_editor.SubGraphView.outputs {#SubGraphView.outputs}

The output tensors of this subgraph view.

tf.contrib.graph_editor.SubGraphView.passthroughs {#SubGraphView.passthroughs}

The passthrough tensors, going straight from input to output.

tf.contrib.graph_editor.SubGraphView.remap(new_input_indices=None, new_output_indices=None) {#SubGraphView.remap}

Remap the inputs and outputs of the subgraph.

Note that this is only modifying the view: the underlying tf.Graph is not
affected.

Args:

		new_input_indices: an iterable of integers representing a mapping between
the old inputs and the new ones. This mapping can be under-complete and
must be without repetitions.

		new_output_indices: an iterable of integers representing a mapping between
the old outputs and the new ones. This mapping can be under-complete and
can have repetitions.

Returns:

A new modified instance of the original subgraph view with remapped
inputs and outputs.

tf.contrib.graph_editor.SubGraphView.remap_default(remove_input_map=True, remove_output_map=True) {#SubGraphView.remap_default}

Remap the inputs and/or outputs to the default mapping.

Args:

		remove_input_map: if True the input map is reset to the default one.

		remove_output_map: if True the output map is reset to the default one.

Returns:

A new modified instance of the original subgraph view with its
input and/or output mapping reset to the default one.

tf.contrib.graph_editor.SubGraphView.remap_inputs(new_input_indices) {#SubGraphView.remap_inputs}

Remap the inputs of the subgraph.

If the inputs of the original subgraph are [t0, t1, t2], remapping to [2,0]
will create a new instance whose inputs is [t2, t0].

Note that this is only modifying the view: the underlying tf.Graph is not
affected.

Args:

		new_input_indices: an iterable of integers representing a mapping between
the old inputs and the new ones. This mapping can be under-complete and
must be without repetitions.

Returns:

A new modified instance of the original subgraph view with remapped
inputs.

tf.contrib.graph_editor.SubGraphView.remap_outputs(new_output_indices) {#SubGraphView.remap_outputs}

Remap the output of the subgraph.

If the output of the original subgraph are [t0, t1, t2], remapping to
[1,1,0] will create a new instance whose outputs is [t1, t1, t0].

Note that this is only modifying the view: the underlying tf.Graph is not
affected.

Args:

		new_output_indices: an iterable of integers representing a mapping between
the old outputs and the new ones. This mapping can be under-complete and
can have repetitions.

Returns:

A new modified instance of the original subgraph view with remapped
outputs.

tf.contrib.graph_editor.SubGraphView.remap_outputs_make_unique() {#SubGraphView.remap_outputs_make_unique}

Remap the outputs so that all the tensors appears only once.

tf.contrib.graph_editor.SubGraphView.remap_outputs_to_consumers() {#SubGraphView.remap_outputs_to_consumers}

Remap the outputs to match the number of consumers.

tf.contrib.graph_editor.SubGraphView.remove_unused_ops(control_inputs=True) {#SubGraphView.remove_unused_ops}

Remove unused ops.

Args:

		control_inputs: if True, control inputs are used to detect used ops.

Returns:

A new subgraph view which only contains used operations.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.gather_nd.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.gather_nd(params, indices, name=None) {#gather_nd}

Gather values or slices from params according to indices.

params is a Tensor of rank R and indices is a Tensor of rank M.

indices must be integer tensor, containing indices into params.
It must be shape [d_0, ..., d_N, R] where 0 < R <= M.

The innermost dimension of indices (with length R) corresponds to
indices into elements (if R = M) or slices (if R < M) along the Nth
dimension of params.

Produces an output tensor with shape

[d_0, ..., d_{n-1}, params.shape[R], ..., params.shape[M-1]].

Some examples below.

Simple indexing into a matrix:

indices = [[0, 0], [1, 1]]
params = [['a', 'b'], ['c', 'd']]
output = ['a', 'd']

Slice indexing into a matrix:

indices = [[1], [0]]
params = [['a', 'b'], ['c', 'd']]
output = [['c', 'd'], ['a', 'b']]

Indexing into a 3-tensor:

indices = [[1]]
params = [[['a0', 'b0'], ['c0', 'd0']],
 [['a1', 'b1'], ['c1', 'd1']]]
output = [[['a1', 'b1'], ['c1', 'd1']]]

indices = [[0, 1], [1, 0]]
params = [[['a0', 'b0'], ['c0', 'd0']],
 [['a1', 'b1'], ['c1', 'd1']]]
output = [['c0', 'd0'], ['a1', 'b1']]

indices = [[0, 0, 1], [1, 0, 1]]
params = [[['a0', 'b0'], ['c0', 'd0']],
 [['a1', 'b1'], ['c1', 'd1']]]
output = ['b0', 'b1']

Batched indexing into a matrix:

indices = [[[0, 0]], [[0, 1]]]
params = [['a', 'b'], ['c', 'd']]
output = [['a'], ['b']]

Batched slice indexing into a matrix:

indices = [[[1]], [[0]]]
params = [['a', 'b'], ['c', 'd']]
output = [[['c', 'd']], [['a', 'b']]]

Batched indexing into a 3-tensor:

indices = [[[1]], [[0]]]
params = [[['a0', 'b0'], ['c0', 'd0']],
 [['a1', 'b1'], ['c1', 'd1']]]
output = [[[['a1', 'b1'], ['c1', 'd1']]],
 [[['a0', 'b0'], ['c0', 'd0']]]]

indices = [[[0, 1], [1, 0]], [[0, 0], [1, 1]]]
params = [[['a0', 'b0'], ['c0', 'd0']],
 [['a1', 'b1'], ['c1', 'd1']]]
output = [[['c0', 'd0'], ['a1', 'b1']],
 [['a0', 'b0'], ['c1', 'd1']]]

indices = [[[0, 0, 1], [1, 0, 1]], [[0, 1, 1], [1, 1, 0]]]
params = [[['a0', 'b0'], ['c0', 'd0']],
 [['a1', 'b1'], ['c1', 'd1']]]
output = [['b0', 'b1'], ['d0', 'c1']]

Args:

		params: A Tensor. M-D. The tensor from which to gather values.

		indices: A Tensor. Must be one of the following types: int32, int64.
(N+1)-D. Index tensor having shape [d_0, ..., d_N, R].

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as params.
(N+M-R)-D. Values from params gathered from indices given by
indices.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.framework.arg_scope.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.arg_scope(list_ops_or_scope, **kwargs) {#arg_scope}

Stores the default arguments for the given set of list_ops.

For usage, please see examples at top of the file.

Args:

		list_ops_or_scope: List or tuple of operations to set argument scope for or
a dictionary containg the current scope. When list_ops_or_scope is a dict,
kwargs must be empty. When list_ops_or_scope is a list or tuple, then
every op in it need to be decorated with @add_arg_scope to work.

		**kwargs: keyword=value that will define the defaults for each op in
list_ops. All the ops need to accept the given set of arguments.

Yields:

the current_scope, which is a dictionary of {op: {arg: value}}

Raises:

		TypeError: if list_ops is not a list or a tuple.

		ValueError: if any op in list_ops has not be decorated with @add_arg_scope.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.learn.monitors.NanLoss.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 NaN Loss monitor.

Monitors loss and stops training if loss is NaN.
Can either fail with exception or just stop training.

tf.contrib.learn.monitors.NanLoss.__init__(loss_tensor, every_n_steps=100, fail_on_nan_loss=True) {#NanLoss.init}

Initializes NanLoss monitor.

Args:

		loss_tensor: Tensor, the loss tensor.

		every_n_steps: int, run check every this many steps.

		fail_on_nan_loss: bool, whether to raise exception when loss is NaN.

tf.contrib.learn.monitors.NanLoss.begin(max_steps=None) {#NanLoss.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.NanLoss.end(session=None) {#NanLoss.end}

tf.contrib.learn.monitors.NanLoss.epoch_begin(epoch) {#NanLoss.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.NanLoss.epoch_end(epoch) {#NanLoss.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.NanLoss.every_n_post_step(step, session) {#NanLoss.every_n_post_step}

Callback after a step is finished or end() is called.

Args:

		step: int, the current value of the global step.

		session: Session object.

tf.contrib.learn.monitors.NanLoss.every_n_step_begin(step) {#NanLoss.every_n_step_begin}

tf.contrib.learn.monitors.NanLoss.every_n_step_end(step, outputs) {#NanLoss.every_n_step_end}

tf.contrib.learn.monitors.NanLoss.post_step(step, session) {#NanLoss.post_step}

tf.contrib.learn.monitors.NanLoss.run_on_all_workers {#NanLoss.run_on_all_workers}

tf.contrib.learn.monitors.NanLoss.set_estimator(estimator) {#NanLoss.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.NanLoss.step_begin(step) {#NanLoss.step_begin}

Overrides BaseMonitor.step_begin.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

Returns:

A list, the result of every_n_step_begin, if that was called this step,
or an empty list otherwise.

Raises:

		ValueError: if called more than once during a step.

tf.contrib.learn.monitors.NanLoss.step_end(step, output) {#NanLoss.step_end}

Overrides BaseMonitor.step_end.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool, the result of every_n_step_end, if that was called this step,
or False otherwise.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.framework.assert_global_step.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.assert_global_step(global_step_tensor) {#assert_global_step}

Asserts global_step_tensor is a scalar int Variable or Tensor.

Args:

		global_step_tensor: Tensor to test.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.metrics.set_difference.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.set_difference(a, b, aminusb=True, validate_indices=True) {#set_difference}

Compute set difference of elements in last dimension of a and b.

All but the last dimension of a and b must match.

Args:

		a: Tensor or SparseTensor of the same type as b. If sparse, indices
must be sorted in row-major order.

		b: Tensor or SparseTensor of the same type as a. Must be
SparseTensor if a is SparseTensor. If sparse, indices must be
sorted in row-major order.

		aminusb: Whether to subtract b from a, vs vice versa.

		validate_indices: Whether to validate the order and range of sparse indices
in a and b.

Returns:

A SparseTensor with the same rank as a and b, and all but the last
dimension the same. Elements along the last dimension contain the
differences.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.identity.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.identity(input, name=None) {#identity}

Return a tensor with the same shape and contents as the input tensor or value.

Args:

		input: A Tensor.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.initialize_local_variables.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.initialize_local_variables() {#initialize_local_variables}

Returns an Op that initializes all local variables.

This is just a shortcut for initialize_variables(local_variables())

Returns:

An Op that initializes all local variables in the graph.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.uniform_unit_scaling_initializer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.uniform_unit_scaling_initializer(factor=1.0, seed=None, dtype=tf.float32) {#uniform_unit_scaling_initializer}

Returns an initializer that generates tensors without scaling variance.

When initializing a deep network, it is in principle advantageous to keep
the scale of the input variance constant, so it does not explode or diminish
by reaching the final layer. If the input is x and the operation x * W,
and we want to initialize W uniformly at random, we need to pick W from

[-sqrt(3) / sqrt(dim), sqrt(3) / sqrt(dim)]

to keep the scale intact, where dim = W.shape[0] (the size of the input).
A similar calculation for convolutional networks gives an analogous result
with dim equal to the product of the first 3 dimensions. When
nonlinearities are present, we need to multiply this by a constant factor.
See Sussillo et al., 2014 [https://arxiv.org/abs/1412.6558]
(pdf [http://arxiv.org/pdf/1412.6558.pdf]) for deeper motivation, experiments
and the calculation of constants. In section 2.3 there, the constants were
numerically computed: for a linear layer it’s 1.0, relu: ~1.43, tanh: ~1.15.

Args:

		factor: Float. A multiplicative factor by which the values will be scaled.

		seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

		dtype: The data type. Only floating point types are supported.

Returns:

An initializer that generates tensors with unit variance.

Raises:

		ValueError: if dtype is not a floating point type.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.string_split.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.string_split(source, delimiter=' ') {#string_split}

Split elements of source based on delimiter into a SparseTensor.

Let N be the size of source (typically N will be the batch size). Split each
element of source based on delimiter and return a SparseTensor
containing the splitted tokens. Empty tokens are ignored.

If delimiter is an empty string, each element of the source is split
into individual 1 character strings.

For example:
N = 2, source[0] is ‘hello world’ and source[1] is ‘a b c’, then the output
will be

st.indices = [0, 0;
0, 1;
1, 0;
1, 1;
1, 2]
st.shape = [2, 3]
st.values = [‘hello’, ‘world’, ‘a’, ‘b’, ‘c’]

Args:

		source: 1-D string Tensor, the strings to split.

		delimiter: 0-D string Tensor, the delimiter character, the string should
be length 0 or 1.

Returns:

A SparseTensor of rank 2, the strings split according to the delimiter.
The first column of the indices corresponds to the row in source and the
second column corresponds to the index of the split component in this row.

Raises:

		ValueError: If delimiter is not a character.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.real.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.real(input, name=None) {#real}

Returns the real part of a complex number.

Given a tensor input of complex numbers, this operation returns a tensor of
type float32 or float64 that is the real part of each element in input.
All elements in input must be complex numbers of the form (a + bj),
where a is the real part returned by this operation and b is the
imaginary part.

For example:

tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.real(input) ==> [-2.25, 3.25]

If input is already real, it is returned unchanged.

Args:

		input: A Tensor. Must have numeric type.

		name: A name for the operation (optional).

Returns:

A Tensor of type float32 or float64.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.train.latest_checkpoint.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.latest_checkpoint(checkpoint_dir, latest_filename=None) {#latest_checkpoint}

Finds the filename of latest saved checkpoint file.

Args:

		checkpoint_dir: Directory where the variables were saved.

		latest_filename: Optional name for the protocol buffer file that
contains the list of most recent checkpoint filenames.
See the corresponding argument to Saver.save().

Returns:

The full path to the latest checkpoint or None if no checkpoint was found.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.test.main.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.test.main() {#main}

Runs all unit tests.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.model_variables.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.model_variables() {#model_variables}

Returns all variables in the MODEL_VARIABLES collection.

Returns:

A list of local Variable objects.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.digamma.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.digamma(x, name=None) {#digamma}

Computes Psi, the derivative of Lgamma (the log of the absolute value of

Gamma(x)), element-wise.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.image.rot90.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.rot90(image, k=1, name=None) {#rot90}

Rotate an image counter-clockwise by 90 degrees.

Args:

		image: A 3-D tensor of shape [height, width, channels].

		k: A scalar integer. The number of times the image is rotated by 90 degrees.

		name: A name for this operation (optional).

Returns:

A rotated 3-D tensor of the same type and shape as image.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.bayesflow.monte_carlo.expectation.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.bayesflow.monte_carlo.expectation(f, p, z=None, n=None, seed=None, name='expectation') {#expectation}

Monte Carlo estimate of an expectation: E_p[f(Z)] with sample mean.

This Op returns

n^{-1} sum_{i=1}^n f(z_i), where z_i ~ p
\approx E_p[f(Z)]

User supplies either Tensor of samples z, or number of samples to draw n

Args:

		f: Callable mapping samples from p to Tensors.

		p: tf.contrib.distributions.BaseDistribution.

		z: Tensor of samples from p, produced by p.sample_n.

		n: Integer Tensor. Number of samples to generate if z is not provided.

		seed: Python integer to seed the random number generator.

		name: A name to give this Op.

Returns:

A Tensor with the same dtype as p.

		Example:

N_samples = 10000

distributions = tf.contrib.distributions

dist = distributions.Uniform([0.0, 0.0], [1.0, 2.0])
elementwise_mean = lambda x: x
mean_sum = lambda x: tf.reduce_sum(x, 1)

estimate_elementwise_mean_tf = monte_carlo.expectation(elementwise_mean,
 dist,
 n=N_samples)
estimate_mean_sum_tf = monte_carlo.expectation(mean_sum,
 dist,
 n=N_samples)

with tf.Session() as sess:
 estimate_elementwise_mean, estimate_mean_sum = (
 sess.run([estimate_elementwise_mean_tf, estimate_mean_sum_tf]))
print estimate_elementwise_mean
>>> np.array([0.50018013 1.00097895], dtype=np.float32)
print estimate_mean_sum
>>> 1.49571

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.OpError.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A generic error that is raised when TensorFlow execution fails.

Whenever possible, the session will raise a more specific subclass
of OpError from the tf.errors module.

tf.OpError.op {#OpError.op}

The operation that failed, if known.

N.B. If the failed op was synthesized at runtime, e.g. a Send
or Recv op, there will be no corresponding
Operation
object. In that case, this will return None, and you should
instead use the OpError.node_def to
discover information about the op.

Returns:

The Operation that failed, or None.

tf.OpError.node_def {#OpError.node_def}

The NodeDef proto representing the op that failed.

Other Methods

tf.OpError.__init__(node_def, op, message, error_code) {#OpError.init}

Creates a new OpError indicating that a particular op failed.

Args:

		node_def: The node_def_pb2.NodeDef proto representing the op that
failed, if known; otherwise None.

		op: The ops.Operation that failed, if known; otherwise None.

		message: The message string describing the failure.

		error_code: The error_codes_pb2.Code describing the error.

tf.OpError.__str__() {#OpError.str}

tf.OpError.error_code {#OpError.error_code}

The integer error code that describes the error.

tf.OpError.message {#OpError.message}

The error message that describes the error.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.distributions.WishartCholesky.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 The matrix Wishart distribution on positive definite matrices.

This distribution is defined by a scalar degrees of freedom df and a
lower, triangular Cholesky factor which characterizes the scale matrix.

Using WishartCholesky is a constant-time improvement over WishartFull. It
saves an O(nbk^3) operation, i.e., a matrix-product operation for sampling
and a Cholesky factorization in log_prob. For most use-cases it often saves
another O(nbk^3) operation since most uses of Wishart will also use the
Cholesky factorization.

Mathematical details.

The PDF of this distribution is,

f(X) = det(X)^(0.5 (df-k-1)) exp(-0.5 tr[inv(scale) X]) / B(scale, df)

where df >= k denotes the degrees of freedom, scale is a symmetric, pd,
k x k matrix, and the normalizing constant B(scale, df) is given by:

B(scale, df) = 2^(0.5 df k) |det(scale)|^(0.5 df) Gamma_k(0.5 df)

where Gamma_k is the multivariate Gamma function.

Examples

Initialize a single 3x3 Wishart with Cholesky factored scale matrix and 5
degrees-of-freedom.(*)
df = 5
chol_scale = tf.cholesky(...) # Shape is [3, 3].
dist = tf.contrib.distributions.WishartCholesky(df=df, scale=chol_scale)

Evaluate this on an observation in R^3, returning a scalar.
x = ... # A 3x3 positive definite matrix.
dist.pdf(x) # Shape is [], a scalar.

Evaluate this on a two observations, each in R^{3x3}, returning a length two
Tensor.
x = [x0, x1] # Shape is [2, 3, 3].
dist.pdf(x) # Shape is [2].

Initialize two 3x3 Wisharts with Cholesky factored scale matrices.
df = [5, 4]
chol_scale = tf.cholesky(...) # Shape is [2, 3, 3].
dist = tf.contrib.distributions.WishartCholesky(df=df, scale=chol_scale)

Evaluate this on four observations.
x = [[x0, x1], [x2, x3]] # Shape is [2, 2, 3, 3].
dist.pdf(x) # Shape is [2, 2].

(*) - To efficiently create a trainable covariance matrix, see the example
in tf.contrib.distributions.matrix_diag_transform.

tf.contrib.distributions.WishartCholesky.__init__(df, scale, cholesky_input_output_matrices=False, validate_args=False, allow_nan_stats=True, name='WishartCholesky') {#WishartCholesky.init}

Construct Wishart distributions.

Args:

		df: float or double Tensor. Degrees of freedom, must be greater than
or equal to dimension of the scale matrix.

		scale: float or double Tensor. The Cholesky factorization of
the symmetric positive definite scale matrix of the distribution.

		cholesky_input_output_matrices: Boolean. Any function which whose input
or output is a matrix assumes the input is Cholesky and returns a
Cholesky factored matrix. Examplelog_pdf input takes a Cholesky and
sample_n returns a Cholesky when
cholesky_input_output_matrices=True.

		validate_args: Boolean, default False. Whether to validate input
with asserts. If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g., mean, mode) is undefined for any batch
member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name scope to give class member ops.

tf.contrib.distributions.WishartCholesky.allow_nan_stats {#WishartCholesky.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.WishartCholesky.batch_shape(name='batch_shape') {#WishartCholesky.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.WishartCholesky.cdf(value, name='cdf') {#WishartCholesky.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.WishartCholesky.cholesky_input_output_matrices {#WishartCholesky.cholesky_input_output_matrices}

Boolean indicating if Tensor input/outputs are Cholesky factorized.

tf.contrib.distributions.WishartCholesky.df {#WishartCholesky.df}

Wishart distribution degree(s) of freedom.

tf.contrib.distributions.WishartCholesky.dimension {#WishartCholesky.dimension}

Dimension of underlying vector space. The p in R^(p*p).

tf.contrib.distributions.WishartCholesky.dtype {#WishartCholesky.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.WishartCholesky.entropy(name='entropy') {#WishartCholesky.entropy}

Shanon entropy in nats.

tf.contrib.distributions.WishartCholesky.event_shape(name='event_shape') {#WishartCholesky.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.WishartCholesky.get_batch_shape() {#WishartCholesky.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.WishartCholesky.get_event_shape() {#WishartCholesky.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.WishartCholesky.is_continuous {#WishartCholesky.is_continuous}

tf.contrib.distributions.WishartCholesky.is_reparameterized {#WishartCholesky.is_reparameterized}

tf.contrib.distributions.WishartCholesky.log_cdf(value, name='log_cdf') {#WishartCholesky.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.WishartCholesky.log_normalizing_constant(name='log_normalizing_constant') {#WishartCholesky.log_normalizing_constant}

Computes the log normalizing constant, log(Z).

tf.contrib.distributions.WishartCholesky.log_pdf(value, name='log_pdf') {#WishartCholesky.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.WishartCholesky.log_pmf(value, name='log_pmf') {#WishartCholesky.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.WishartCholesky.log_prob(value, name='log_prob') {#WishartCholesky.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.WishartCholesky.log_survival_function(value, name='log_survival_function') {#WishartCholesky.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.WishartCholesky.mean(name='mean') {#WishartCholesky.mean}

Mean.

tf.contrib.distributions.WishartCholesky.mean_log_det(name='mean_log_det') {#WishartCholesky.mean_log_det}

Computes E[log(det(X))] under this Wishart distribution.

tf.contrib.distributions.WishartCholesky.mode(name='mode') {#WishartCholesky.mode}

Mode.

tf.contrib.distributions.WishartCholesky.name {#WishartCholesky.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.WishartCholesky.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#WishartCholesky.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.WishartCholesky.param_static_shapes(cls, sample_shape) {#WishartCholesky.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.WishartCholesky.parameters {#WishartCholesky.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.WishartCholesky.pdf(value, name='pdf') {#WishartCholesky.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.WishartCholesky.pmf(value, name='pmf') {#WishartCholesky.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.WishartCholesky.prob(value, name='prob') {#WishartCholesky.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.WishartCholesky.sample(sample_shape=(), seed=None, name='sample') {#WishartCholesky.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.WishartCholesky.sample_n(n, seed=None, name='sample_n') {#WishartCholesky.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.WishartCholesky.scale() {#WishartCholesky.scale}

Wishart distribution scale matrix.

tf.contrib.distributions.WishartCholesky.scale_operator_pd {#WishartCholesky.scale_operator_pd}

Wishart distribution scale matrix as an OperatorPD.

tf.contrib.distributions.WishartCholesky.std(name='std') {#WishartCholesky.std}

Standard deviation.

tf.contrib.distributions.WishartCholesky.survival_function(value, name='survival_function') {#WishartCholesky.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.WishartCholesky.validate_args {#WishartCholesky.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.WishartCholesky.variance(name='variance') {#WishartCholesky.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.graph_editor.reroute_a2b.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.reroute_a2b(sgv0, sgv1) {#reroute_a2b}

Re-route the inputs and outputs of sgv0 to sgv1 (see _reroute).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.edit_distance.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.edit_distance(hypothesis, truth, normalize=True, name='edit_distance') {#edit_distance}

Computes the Levenshtein distance between sequences.

This operation takes variable-length sequences (hypothesis and truth),
each provided as a SparseTensor, and computes the Levenshtein distance.
You can normalize the edit distance by length of truth by setting
normalize to true.

For example, given the following input:

'hypothesis' is a tensor of shape `[2, 1]` with variable-length values:
(0,0) = ["a"]
(1,0) = ["b"]
hypothesis = tf.SparseTensor(
 [[0, 0, 0],
 [1, 0, 0]],
 ["a", "b"]
 (2, 1, 1))

'truth' is a tensor of shape `[2, 2]` with variable-length values:
(0,0) = []
(0,1) = ["a"]
(1,0) = ["b", "c"]
(1,1) = ["a"]
truth = tf.SparseTensor(
 [[0, 1, 0],
 [1, 0, 0],
 [1, 0, 1],
 [1, 1, 0]]
 ["a", "b", "c", "a"],
 (2, 2, 2))

normalize = True

This operation would return the following:

'output' is a tensor of shape `[2, 2]` with edit distances normalized
by 'truth' lengths.
output ==> [[inf, 1.0], # (0,0): no truth, (0,1): no hypothesis
 [0.5, 1.0]] # (1,0): addition, (1,1): no hypothesis

Args:

		hypothesis: A SparseTensor containing hypothesis sequences.

		truth: A SparseTensor containing truth sequences.

		normalize: A bool. If True, normalizes the Levenshtein distance by
length of truth.

		name: A name for the operation (optional).

Returns:

A dense Tensor with rank R - 1, where R is the rank of the
SparseTensor inputs hypothesis and truth.

Raises:

		TypeError: If either hypothesis or truth are not a SparseTensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.image.sample_distorted_bounding_box.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.sample_distorted_bounding_box(image_size, bounding_boxes, seed=None, seed2=None, min_object_covered=None, aspect_ratio_range=None, area_range=None, max_attempts=None, use_image_if_no_bounding_boxes=None, name=None) {#sample_distorted_bounding_box}

Generate a single randomly distorted bounding box for an image.

Bounding box annotations are often supplied in addition to ground-truth labels
in image recognition or object localization tasks. A common technique for
training such a system is to randomly distort an image while preserving
its content, i.e. data augmentation. This Op outputs a randomly distorted
localization of an object, i.e. bounding box, given an image_size,
bounding_boxes and a series of constraints.

The output of this Op is a single bounding box that may be used to crop the
original image. The output is returned as 3 tensors: begin, size and
bboxes. The first 2 tensors can be fed directly into tf.slice to crop the
image. The latter may be supplied to tf.image.draw_bounding_box to visualize
what the bounding box looks like.

Bounding boxes are supplied and returned as [y_min, x_min, y_max, x_max]. The
bounding box coordinates are floats in [0.0, 1.0] relative to the width and
height of the underlying image.

For example,

Generate a single distorted bounding box.
begin, size, bbox_for_draw = tf.image.sample_distorted_bounding_box(
 tf.shape(image),
 bounding_boxes=bounding_boxes)

Draw the bounding box in an image summary.
image_with_box = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0),
 bbox_for_draw)
tf.image_summary('images_with_box', image_with_box)

Employ the bounding box to distort the image.
distorted_image = tf.slice(image, begin, size)

Note that if no bounding box information is available, setting
use_image_if_no_bounding_boxes = true will assume there is a single implicit
bounding box covering the whole image. If use_image_if_no_bounding_boxes is
false and no bounding boxes are supplied, an error is raised.

Args:

		image_size: A Tensor. Must be one of the following types: uint8, int8, int16, int32, int64.
1-D, containing [height, width, channels].

		bounding_boxes: A Tensor of type float32.
3-D with shape [batch, N, 4] describing the N bounding boxes
associated with the image.

		seed: An optional int. Defaults to 0.
If either seed or seed2 are set to non-zero, the random number
generator is seeded by the given seed. Otherwise, it is seeded by a random
seed.

		seed2: An optional int. Defaults to 0.
A second seed to avoid seed collision.

		min_object_covered: An optional float. Defaults to 0.1.
The cropped area of the image must contain at least this
fraction of any bounding box supplied.

		aspect_ratio_range: An optional list of floats. Defaults to [0.75, 1.33].
The cropped area of the image must have an aspect ratio =
width / height within this range.

		area_range: An optional list of floats. Defaults to [0.05, 1].
The cropped area of the image must contain a fraction of the
supplied image within in this range.

		max_attempts: An optional int. Defaults to 100.
Number of attempts at generating a cropped region of the image
of the specified constraints. After max_attempts failures, return the entire
image.

		use_image_if_no_bounding_boxes: An optional bool. Defaults to False.
Controls behavior if no bounding boxes supplied.
If true, assume an implicit bounding box covering the whole input. If false,
raise an error.

		name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (begin, size, bboxes).

		begin: A Tensor. Has the same type as image_size. 1-D, containing [offset_height, offset_width, 0]. Provide as input to
tf.slice.

		size: A Tensor. Has the same type as image_size. 1-D, containing [target_height, target_width, -1]. Provide as input to
tf.slice.

		bboxes: A Tensor of type float32. 3-D with shape [1, 1, 4] containing the distorted bounding box.
Provide as input to tf.image.draw_bounding_boxes.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.is_variable_initialized.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.is_variable_initialized(variable) {#is_variable_initialized}

Tests if a variable has been initialized.

Args:

		variable: A Variable.

Returns:

Returns a scalar boolean Tensor, True if the variable has been
initialized, False otherwise.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.learn.monitors.RunHookAdapterForMonitors.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Wraps monitors into a SessionRunHook.

tf.contrib.learn.monitors.RunHookAdapterForMonitors.__init__(monitors) {#RunHookAdapterForMonitors.init}

tf.contrib.learn.monitors.RunHookAdapterForMonitors.after_run(run_context, run_values) {#RunHookAdapterForMonitors.after_run}

tf.contrib.learn.monitors.RunHookAdapterForMonitors.before_run(run_context) {#RunHookAdapterForMonitors.before_run}

tf.contrib.learn.monitors.RunHookAdapterForMonitors.begin() {#RunHookAdapterForMonitors.begin}

tf.contrib.learn.monitors.RunHookAdapterForMonitors.end(session) {#RunHookAdapterForMonitors.end}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.cholesky_solve.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.cholesky_solve(chol, rhs, name=None) {#cholesky_solve}

Solves systems of linear eqns A X = RHS, given Cholesky factorizations.

Solve 10 separate 2x2 linear systems:
A = ... # shape 10 x 2 x 2
RHS = ... # shape 10 x 2 x 1
chol = tf.cholesky(A) # shape 10 x 2 x 2
X = tf.cholesky_solve(chol, RHS) # shape 10 x 2 x 1
tf.matmul(A, X) ~ RHS
X[3, :, 0] # Solution to the linear system A[3, :, :] x = RHS[3, :, 0]

Solve five linear systems (K = 5) for every member of the length 10 batch.
A = ... # shape 10 x 2 x 2
RHS = ... # shape 10 x 2 x 5
...
X[3, :, 2] # Solution to the linear system A[3, :, :] x = RHS[3, :, 2]

Args:

		chol: A Tensor. Must be float32 or float64, shape is [..., M, M].
Cholesky factorization of A, e.g. chol = tf.cholesky(A).
For that reason, only the lower triangular parts (including the diagonal)
of the last two dimensions of chol are used. The strictly upper part is
assumed to be zero and not accessed.

		rhs: A Tensor, same type as chol, shape is [..., M, K].

		name: A name to give this Op. Defaults to cholesky_solve.

Returns:

Solution to A x = rhs, shape [..., M, K].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.layers.fully_connected.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.fully_connected(*args, **kwargs) {#fully_connected}

Adds a fully connected layer.

fully_connected creates a variable called weights, representing a fully
connected weight matrix, which is multiplied by the inputs to produce a
Tensor of hidden units. If a normalizer_fn is provided (such as
batch_norm), it is then applied. Otherwise, if normalizer_fn is
None and a biases_initializer is provided then a biases variable would be
created and added the hidden units. Finally, if activation_fn is not None,
it is applied to the hidden units as well.

Note: that if inputs have a rank greater than 2, then inputs is flattened
prior to the initial matrix multiply by weights.

Args:

		inputs: A tensor of with at least rank 2 and value for the last dimension,
i.e. [batch_size, depth], [None, None, None, channels].

		num_outputs: Integer or long, the number of output units in the layer.

		activation_fn: activation function, set to None to skip it and maintain
a linear activation.

		normalizer_fn: normalization function to use instead of biases. If
normalizer_fn is provided then biases_initializer and
biases_regularizer are ignored and biases are not created nor added.
default set to None for no normalizer function

		normalizer_params: normalization function parameters.

		weights_initializer: An initializer for the weights.

		weights_regularizer: Optional regularizer for the weights.

		biases_initializer: An initializer for the biases. If None skip biases.

		biases_regularizer: Optional regularizer for the biases.

		reuse: whether or not the layer and its variables should be reused. To be
able to reuse the layer scope must be given.

		variables_collections: Optional list of collections for all the variables or
a dictionary containing a different list of collections per variable.

		outputs_collections: collection to add the outputs.

		trainable: If True also add variables to the graph collection
GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

		scope: Optional scope for variable_scope.

Returns:

the tensor variable representing the result of the series of operations.

Raises:

		ValueError: if x has rank less than 2 or if its last dimension is not set.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.WholeFileReader.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A Reader that outputs the entire contents of a file as a value.

To use, enqueue filenames in a Queue. The output of Read will
be a filename (key) and the contents of that file (value).

See ReaderBase for supported methods.

tf.WholeFileReader.__init__(name=None) {#WholeFileReader.init}

Create a WholeFileReader.

Args:

		name: A name for the operation (optional).

tf.WholeFileReader.num_records_produced(name=None) {#WholeFileReader.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.WholeFileReader.num_work_units_completed(name=None) {#WholeFileReader.num_work_units_completed}

Returns the number of work units this reader has finished processing.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.WholeFileReader.read(queue, name=None) {#WholeFileReader.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

		key: A string scalar Tensor.

		value: A string scalar Tensor.

tf.WholeFileReader.read_up_to(queue, num_records, name=None) {#WholeFileReader.read_up_to}

Returns up to num_records (key, value pairs) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g., when the
Reader needs to start reading from a new file since it has
finished with the previous file).
It may return less than num_records even before the last batch.

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		num_records: Number of records to read.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (keys, values).

		keys: A 1-D string Tensor.

		values: A 1-D string Tensor.

tf.WholeFileReader.reader_ref {#WholeFileReader.reader_ref}

Op that implements the reader.

tf.WholeFileReader.reset(name=None) {#WholeFileReader.reset}

Restore a reader to its initial clean state.

Args:

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.WholeFileReader.restore_state(state, name=None) {#WholeFileReader.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

		state: A string Tensor.
Result of a SerializeState of a Reader with matching type.

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.WholeFileReader.serialize_state(name=None) {#WholeFileReader.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

		name: A name for the operation (optional).

Returns:

A string Tensor.

tf.WholeFileReader.supports_serialize {#WholeFileReader.supports_serialize}

Whether the Reader implementation can serialize its state.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.train.FtrlOptimizer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Optimizer that implements the FTRL algorithm.

See this paper [https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf].

tf.train.FtrlOptimizer.__init__(learning_rate, learning_rate_power=-0.5, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0, use_locking=False, name='Ftrl') {#FtrlOptimizer.init}

Construct a new FTRL optimizer.

Args:

		learning_rate: A float value or a constant float Tensor.

		learning_rate_power: A float value, must be less or equal to zero.

		initial_accumulator_value: The starting value for accumulators.
Only positive values are allowed.

		l1_regularization_strength: A float value, must be greater than or
equal to zero.

		l2_regularization_strength: A float value, must be greater than or
equal to zero.

		use_locking: If True use locks for update operations.

		name: Optional name prefix for the operations created when applying
gradients. Defaults to “Ftrl”.

Raises:

		ValueError: If one of the arguments is invalid.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 MultivariateNormalDiagWithSoftplusStDevTensor is a StochasticTensor backed by the distribution MultivariateNormalDiagWithSoftplusStDev.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#MultivariateNormalDiagWithSoftplusStDevTensor.init}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.clone(name=None, **dist_args) {#MultivariateNormalDiagWithSoftplusStDevTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.distribution {#MultivariateNormalDiagWithSoftplusStDevTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.dtype {#MultivariateNormalDiagWithSoftplusStDevTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.entropy(name='entropy') {#MultivariateNormalDiagWithSoftplusStDevTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.graph {#MultivariateNormalDiagWithSoftplusStDevTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.input_dict {#MultivariateNormalDiagWithSoftplusStDevTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.loss(final_loss, name='Loss') {#MultivariateNormalDiagWithSoftplusStDevTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.mean(name='mean') {#MultivariateNormalDiagWithSoftplusStDevTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.name {#MultivariateNormalDiagWithSoftplusStDevTensor.name}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.value(name='value') {#MultivariateNormalDiagWithSoftplusStDevTensor.value}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.value_type {#MultivariateNormalDiagWithSoftplusStDevTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.losses.sigmoid_cross_entropy.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.losses.sigmoid_cross_entropy(logits, multi_class_labels, weight=1.0, label_smoothing=0, scope=None) {#sigmoid_cross_entropy}

Creates a cross-entropy loss using tf.nn.sigmoid_cross_entropy_with_logits.

weight acts as a coefficient for the loss. If a scalar is provided,
then the loss is simply scaled by the given value. If weight is a
tensor of size [batch_size], then the loss weights apply to each
corresponding sample.

If label_smoothing is nonzero, smooth the labels towards 1/2:
new_multiclass_labels = multiclass_labels * (1 - label_smoothing)
+ 0.5 * label_smoothing

Args:

		logits: [batch_size, num_classes] logits outputs of the network .

		multi_class_labels: [batch_size, num_classes] target labels in (0, 1).

		weight: Coefficients for the loss. The tensor must be a scalar, a tensor of
shape [batch_size] or shape [batch_size, num_classes].

		label_smoothing: If greater than 0 then smooth the labels.

		scope: The scope for the operations performed in computing the loss.

Returns:

A scalar Tensor representing the loss value.

Raises:

		ValueError: If the shape of predictions doesn’t match that of targets or
if the shape of weight is invalid or if weight is None.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.graph_editor.filter_ts_from_regex.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.filter_ts_from_regex(ops, regex) {#filter_ts_from_regex}

Get all the tensors linked to ops that match the given regex.

Args:

		ops: an object convertible to a list of tf.Operation.

		regex: a regular expression matching the tensors’ name.
For example, “^foo(/.*)?:\d+$” will match all the tensors in the “foo”
scope.

Returns:

A list of tf.Tensor.

Raises:

		TypeError: if ops cannot be converted to a list of tf.Operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.encode_base64.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.encode_base64(input, pad=None, name=None) {#encode_base64}

Encode strings into web-safe base64 format.

Refer to the following article for more information on base64 format:
en.wikipedia.org/wiki/Base64. Base64 strings may have padding with ‘=’ at the
end so that the encoded has length multiple of 4. See Padding section of the
link above.

Web-safe means that the encoder uses - and _ instead of + and /.

Args:

		input: A Tensor of type string. Strings to be encoded.

		pad: An optional bool. Defaults to False.
Bool whether padding is applied at the ends.

		name: A name for the operation (optional).

Returns:

A Tensor of type string. Input strings encoded in base64.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.train.replica_device_setter.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.replica_device_setter(ps_tasks=0, ps_device='/job:ps', worker_device='/job:worker', merge_devices=True, cluster=None, ps_ops=None) {#replica_device_setter}

Return a device function to use when building a Graph for replicas.

Device Functions are used in with tf.device(device_function): statement to
automatically assign devices to Operation objects as they are constructed,
Device constraints are added from the inner-most context first, working
outwards. The merging behavior adds constraints to fields that are yet unset
by a more inner context. Currently the fields are (job, task, cpu/gpu).

If cluster is None, and ps_tasks is 0, the returned function is a no-op.

For example,

To build a cluster with two ps jobs on hosts ps0 and ps1, and 3 worker
jobs on hosts worker0, worker1 and worker2.
cluster_spec = {
 "ps": ["ps0:2222", "ps1:2222"],
 "worker": ["worker0:2222", "worker1:2222", "worker2:2222"]}
with tf.device(tf.replica_device_setter(cluster=cluster_spec)):
 # Build your graph
 v1 = tf.Variable(...) # assigned to /job:ps/task:0
 v2 = tf.Variable(...) # assigned to /job:ps/task:1
 v3 = tf.Variable(...) # assigned to /job:ps/task:0
Run compute

Args:

		ps_tasks: Number of tasks in the ps job.

		ps_device: String. Device of the ps job. If empty no ps job is used.
Defaults to ps.

		worker_device: String. Device of the worker job. If empty no worker
job is used.

		merge_devices: Boolean. If True, merges or only sets a device if the
device constraint is completely unset. merges device specification rather
than overriding them.

		cluster: ClusterDef proto or ClusterSpec.

		ps_ops: List of Operation objects that need to be placed on ps devices.

Returns:

A function to pass to tf.device().

Raises:

TypeError if cluster is not a dictionary or ClusterDef protocol buffer.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.summary.tensor_summary.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.summary.tensor_summary(display_name, tensor, description='', labels=None, collections=None, name=None) {#tensor_summary}

Outputs a Summary protocol buffer with a serialized tensor.proto.

The generated
Summary [https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto]
has one summary value containing the input tensor.

Args:

		display_name: A name to associate with the data series. Will be used to
organize output data and as a name in visualizers.

		tensor: A tensor of any type and shape to serialize.

		description: An optional long description of the data being output.

		labels: a list of strings used to specify how the data can be interpreted,
for example:
		'encoding:image/jpg' for a string tensor containing jpg images

		'encoding:proto/X/Y/foo.proto' for a string tensor containing Foos

		'group:$groupName/$roleInGroup' for a tensor that is related to
other tensors that are all in a group. (e.g. bounding boxes and images)

		collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to [GraphKeys.SUMMARIES].

		name: An optional name for the generated node (optional).

Returns:

A scalar Tensor of type string. The serialized Summary protocol
buffer.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.floordiv.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.floordiv(x, y, name=None) {#floordiv}

Divides x / y elementwise, rounding down for floating point.

The same as tf.div(x,y) for integers, but uses tf.floor(tf.div(x,y)) for
floating point arguments so that the result is always an integer (though
possibly an integer represented as floating point). This op is generated by
x // y floor division in Python 3 and in Python 2.7 with
from __future__ import division.

Note that for efficiency, floordiv uses C semantics for negative numbers
(unlike Python and Numpy).

x and y must have the same type, and the result will have the same type
as well.

Args:

		x: Tensor numerator of real numeric type.

		y: Tensor denominator of real numeric type.

		name: A name for the operation (optional).

Returns:

x / y rounded down (except possibly towards zero for negative integers).

Raises:

		TypeError: If the inputs are complex.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.register_tensor_conversion_function.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.register_tensor_conversion_function(base_type, conversion_func, priority=100) {#register_tensor_conversion_function}

Registers a function for converting objects of base_type to Tensor.

The conversion function must have the following signature:

def conversion_func(value, dtype=None, name=None, as_ref=False):
 # ...

It must return a Tensor with the given dtype if specified. If the
conversion function creates a new Tensor, it should use the given
name if specified. All exceptions will be propagated to the caller.

The conversion function may return NotImplemented for some
inputs. In this case, the conversion process will continue to try
subsequent conversion functions.

If as_ref is true, the function must return a Tensor reference,
such as a Variable.

NOTE: The conversion functions will execute in order of priority,
followed by order of registration. To ensure that a conversion function
F runs before another conversion function G, ensure that F is
registered with a smaller priority than G.

Args:

		base_type: The base type or tuple of base types for all objects that
conversion_func accepts.

		conversion_func: A function that converts instances of base_type to
Tensor.

		priority: Optional integer that indicates the priority for applying this
conversion function. Conversion functions with smaller priority values
run earlier than conversion functions with larger priority values.
Defaults to 100.

Raises:

		TypeError: If the arguments do not have the appropriate type.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.boolean_mask.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.boolean_mask(tensor, mask, name='boolean_mask') {#boolean_mask}

Apply boolean mask to tensor. Numpy equivalent is tensor[mask].

1-D example
tensor = [0, 1, 2, 3]
mask = [True, False, True, False]
boolean_mask(tensor, mask) ==> [0, 2]

In general, 0 < dim(mask) = K <= dim(tensor), and mask‘s shape must match
the first K dimensions of tensor‘s shape. We then have:
boolean_mask(tensor, mask)[i, j1,...,jd] = tensor[i1,...,iK,j1,...,jd]
where (i1,...,iK) is the ith True entry of mask (row-major order).

Args:

		tensor: N-D tensor.

		mask: K-D boolean tensor, K <= N and K must be known statically.

		name: A name for this operation (optional).

Returns:

Tensor populated by entries in tensor corresponding to True values in
mask.

Raises:

		ValueError: If shapes do not conform.

		Examples:

2-D example
tensor = [[1, 2], [3, 4], [5, 6]]
mask = [True, False, True]
boolean_mask(tensor, mask) ==> [[1, 2], [5, 6]]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.image.flip_left_right.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.flip_left_right(image) {#flip_left_right}

Flip an image horizontally (left to right).

Outputs the contents of image flipped along the second dimension, which is
width.

See also reverse().

Args:

		image: A 3-D tensor of shape [height, width, channels].

Returns:

A 3-D tensor of the same type and shape as image.

Raises:

		ValueError: if the shape of image not supported.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.train.shuffle_batch.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.shuffle_batch(tensors, batch_size, capacity, min_after_dequeue, num_threads=1, seed=None, enqueue_many=False, shapes=None, allow_smaller_final_batch=False, shared_name=None, name=None) {#shuffle_batch}

Creates batches by randomly shuffling tensors.

This function adds the following to the current Graph:

		A shuffling queue into which tensors from tensors are enqueued.

		A dequeue_many operation to create batches from the queue.

		A QueueRunner to QUEUE_RUNNER collection, to enqueue the tensors
from tensors.

If enqueue_many is False, tensors is assumed to represent a
single example. An input tensor with shape [x, y, z] will be output
as a tensor with shape [batch_size, x, y, z].

If enqueue_many is True, tensors is assumed to represent a
batch of examples, where the first dimension is indexed by example,
and all members of tensors should have the same size in the
first dimension. If an input tensor has shape [*, x, y, z], the
output will have shape [batch_size, x, y, z].

The capacity argument controls the how long the prefetching is allowed to
grow the queues.

The returned operation is a dequeue operation and will throw
tf.errors.OutOfRangeError if the input queue is exhausted. If this
operation is feeding another input queue, its queue runner will catch
this exception, however, if this operation is used in your main thread
you are responsible for catching this yourself.

For example:

Creates batches of 32 images and 32 labels.
image_batch, label_batch = tf.train.shuffle_batch(
 [single_image, single_label],
 batch_size=32,
 num_threads=4,
 capacity=50000,
 min_after_dequeue=10000)

N.B.: You must ensure that either (i) the shapes argument is
passed, or (ii) all of the tensors in tensors must have
fully-defined shapes. ValueError will be raised if neither of
these conditions holds.

If allow_smaller_final_batch is True, a smaller batch value than
batch_size is returned when the queue is closed and there are not enough
elements to fill the batch, otherwise the pending elements are discarded.
In addition, all output tensors’ static shapes, as accessed via the
get_shape method will have a first Dimension value of None, and
operations that depend on fixed batch_size would fail.

Args:

		tensors: The list or dictionary of tensors to enqueue.

		batch_size: The new batch size pulled from the queue.

		capacity: An integer. The maximum number of elements in the queue.

		min_after_dequeue: Minimum number elements in the queue after a
dequeue, used to ensure a level of mixing of elements.

		num_threads: The number of threads enqueuing tensor_list.

		seed: Seed for the random shuffling within the queue.

		enqueue_many: Whether each tensor in tensor_list is a single example.

		shapes: (Optional) The shapes for each example. Defaults to the
inferred shapes for tensor_list.

		allow_smaller_final_batch: (Optional) Boolean. If True, allow the final
batch to be smaller if there are insufficient items left in the queue.

		shared_name: (Optional) If set, this queue will be shared under the given
name across multiple sessions.

		name: (Optional) A name for the operations.

Returns:

A list or dictionary of tensors with the types as tensors.

Raises:

		ValueError: If the shapes are not specified, and cannot be
inferred from the elements of tensors.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.train.Saver.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Saves and restores variables.

See Variables
for an overview of variables, saving and restoring.

The Saver class adds ops to save and restore variables to and from
checkpoints. It also provides convenience methods to run these ops.

Checkpoints are binary files in a proprietary format which map variable names
to tensor values. The best way to examine the contents of a checkpoint is to
load it using a Saver.

Savers can automatically number checkpoint filenames with a provided counter.
This lets you keep multiple checkpoints at different steps while training a
model. For example you can number the checkpoint filenames with the training
step number. To avoid filling up disks, savers manage checkpoint files
automatically. For example, they can keep only the N most recent files, or
one checkpoint for every N hours of training.

You number checkpoint filenames by passing a value to the optional
global_step argument to save():

saver.save(sess, 'my-model', global_step=0) ==> filename: 'my-model-0'
...
saver.save(sess, 'my-model', global_step=1000) ==> filename: 'my-model-1000'

Additionally, optional arguments to the Saver() constructor let you control
the proliferation of checkpoint files on disk:

		max_to_keep indicates the maximum number of recent checkpoint files to
keep. As new files are created, older files are deleted. If None or 0,
all checkpoint files are kept. Defaults to 5 (that is, the 5 most recent
checkpoint files are kept.)

		keep_checkpoint_every_n_hours: In addition to keeping the most recent
max_to_keep checkpoint files, you might want to keep one checkpoint file
for every N hours of training. This can be useful if you want to later
analyze how a model progressed during a long training session. For
example, passing keep_checkpoint_every_n_hours=2 ensures that you keep
one checkpoint file for every 2 hours of training. The default value of
10,000 hours effectively disables the feature.

Note that you still have to call the save() method to save the model.
Passing these arguments to the constructor will not save variables
automatically for you.

A training program that saves regularly looks like:

...
Create a saver.
saver = tf.train.Saver(...variables...)
Launch the graph and train, saving the model every 1,000 steps.
sess = tf.Session()
for step in xrange(1000000):
 sess.run(..training_op..)
 if step % 1000 == 0:
 # Append the step number to the checkpoint name:
 saver.save(sess, 'my-model', global_step=step)

In addition to checkpoint files, savers keep a protocol buffer on disk with
the list of recent checkpoints. This is used to manage numbered checkpoint
files and by latest_checkpoint(), which makes it easy to discover the path
to the most recent checkpoint. That protocol buffer is stored in a file named
‘checkpoint’ next to the checkpoint files.

If you create several savers, you can specify a different filename for the
protocol buffer file in the call to save().

tf.train.Saver.__init__(var_list=None, reshape=False, sharded=False, max_to_keep=5, keep_checkpoint_every_n_hours=10000.0, name=None, restore_sequentially=False, saver_def=None, builder=None, defer_build=False, allow_empty=False, write_version=1) {#Saver.init}

Creates a Saver.

The constructor adds ops to save and restore variables.

var_list specifies the variables that will be saved and restored. It can
be passed as a dict or a list:

		A dict of names to variables: The keys are the names that will be
used to save or restore the variables in the checkpoint files.

		A list of variables: The variables will be keyed with their op name in
the checkpoint files.

For example:

v1 = tf.Variable(..., name='v1')
v2 = tf.Variable(..., name='v2')

Pass the variables as a dict:
saver = tf.train.Saver({'v1': v1, 'v2': v2})

Or pass them as a list.
saver = tf.train.Saver([v1, v2])
Passing a list is equivalent to passing a dict with the variable op names
as keys:
saver = tf.train.Saver({v.op.name: v for v in [v1, v2]})

The optional reshape argument, if True, allows restoring a variable from
a save file where the variable had a different shape, but the same number
of elements and type. This is useful if you have reshaped a variable and
want to reload it from an older checkpoint.

The optional sharded argument, if True, instructs the saver to shard
checkpoints per device.

Args:

		var_list: A list of Variable/SaveableObject, or a dictionary mapping
names to SaveableObjects. If None, defaults to the list of all
saveable objects.

		reshape: If True, allows restoring parameters from a checkpoint
where the variables have a different shape.

		sharded: If True, shard the checkpoints, one per device.

		max_to_keep: Maximum number of recent checkpoints to keep.
Defaults to 5.

		keep_checkpoint_every_n_hours: How often to keep checkpoints.
Defaults to 10,000 hours.

		name: String. Optional name to use as a prefix when adding operations.

		restore_sequentially: A Bool, which if true, causes restore of different
variables to happen sequentially within each device. This can lower
memory usage when restoring very large models.

		saver_def: Optional SaverDef proto to use instead of running the
builder. This is only useful for specialty code that wants to recreate
a Saver object for a previously built Graph that had a Saver.
The saver_def proto should be the one returned by the
as_saver_def() call of the Saver that was created for that Graph.

		builder: Optional SaverBuilder to use if a saver_def was not provided.
Defaults to BaseSaverBuilder().

		defer_build: If True, defer adding the save and restore ops to the
build() call. In that case build() should be called before
finalizing the graph or using the saver.

		allow_empty: If False (default) raise an error if there are no
variables in the graph. Otherwise, construct the saver anyway and make
it a no-op.

		write_version: controls what format to use when saving checkpoints. It
also affects certain filepath matching logic. Defaults to V1
currently, and will be switched to the more memory-efficient V2 format
in the future. If set to V2, the Saver is still able to restore from
old V1 checkpoints.

Raises:

		TypeError: If var_list is invalid.

		ValueError: If any of the keys or values in var_list are not unique.

tf.train.Saver.save(sess, save_path, global_step=None, latest_filename=None, meta_graph_suffix='meta', write_meta_graph=True) {#Saver.save}

Saves variables.

This method runs the ops added by the constructor for saving variables.
It requires a session in which the graph was launched. The variables to
save must also have been initialized.

The method returns the path of the newly created checkpoint file. This
path can be passed directly to a call to restore().

Args:

		sess: A Session to use to save the variables.

		save_path: String. Path to the checkpoint filename. If the saver is
sharded, this is the prefix of the sharded checkpoint filename.

		global_step: If provided the global step number is appended to
save_path to create the checkpoint filename. The optional argument
can be a Tensor, a Tensor name or an integer.

		latest_filename: Optional name for the protocol buffer file that will
contains the list of most recent checkpoint filenames. That file,
kept in the same directory as the checkpoint files, is automatically
managed by the saver to keep track of recent checkpoints. Defaults to
‘checkpoint’.

		meta_graph_suffix: Suffix for MetaGraphDef file. Defaults to ‘meta’.

		write_meta_graph: Boolean indicating whether or not to write the meta
graph file.

Returns:

A string: path at which the variables were saved. If the saver is
sharded, this string ends with: ‘-?????-of-nnnnn’ where ‘nnnnn’
is the number of shards created.
If the saver is empty, returns None.

Raises:

		TypeError: If sess is not a Session.

		ValueError: If latest_filename contains path components, or if it
collides with save_path.

		RuntimeError: If save and restore ops weren’t built.

tf.train.Saver.restore(sess, save_path) {#Saver.restore}

Restores previously saved variables.

This method runs the ops added by the constructor for restoring variables.
It requires a session in which the graph was launched. The variables to
restore do not have to have been initialized, as restoring is itself a way
to initialize variables.

The save_path argument is typically a value previously returned from a
save() call, or a call to latest_checkpoint().

Args:

		sess: A Session to use to restore the parameters.

		save_path: Path where parameters were previously saved.

Raises:

		ValueError: If the given save_path does not point to a file.

Other utility methods.

tf.train.Saver.last_checkpoints {#Saver.last_checkpoints}

List of not-yet-deleted checkpoint filenames.

You can pass any of the returned values to restore().

Returns:

A list of checkpoint filenames, sorted from oldest to newest.

tf.train.Saver.set_last_checkpoints_with_time(last_checkpoints_with_time) {#Saver.set_last_checkpoints_with_time}

Sets the list of old checkpoint filenames and timestamps.

Args:

		last_checkpoints_with_time: A list of tuples of checkpoint filenames and
timestamps.

Raises:

		AssertionError: If last_checkpoints_with_time is not a list.

tf.train.Saver.recover_last_checkpoints(checkpoint_paths) {#Saver.recover_last_checkpoints}

Recovers the internal saver state after a crash.

This method is useful for recovering the “self._last_checkpoints” state.

Globs for the checkpoints pointed to by checkpoint_paths. If the files
exist, use their mtime as the checkpoint timestamp.

Args:

		checkpoint_paths: a list of checkpoint paths.

tf.train.Saver.as_saver_def() {#Saver.as_saver_def}

Generates a SaverDef representation of this saver.

Returns:

A SaverDef proto.

Other Methods

tf.train.Saver.build() {#Saver.build}

Builds saver_def.

tf.train.Saver.export_meta_graph(filename=None, collection_list=None, as_text=False) {#Saver.export_meta_graph}

Writes MetaGraphDef to save_path/filename.

Args:

		filename: Optional meta_graph filename including the path.

		collection_list: List of string keys to collect.

		as_text: If True, writes the meta_graph as an ASCII proto.

Returns:

A MetaGraphDef proto.

tf.train.Saver.from_proto(saver_def) {#Saver.from_proto}

Returns a Saver object created from saver_def.

tf.train.Saver.set_last_checkpoints(last_checkpoints) {#Saver.set_last_checkpoints}

DEPRECATED: Use set_last_checkpoints_with_time.

Sets the list of old checkpoint filenames.

Args:

		last_checkpoints: A list of checkpoint filenames.

Raises:

		AssertionError: If last_checkpoints is not a list.

tf.train.Saver.to_proto() {#Saver.to_proto}

Converts this Saver to a SaverDef protocol buffer.

Returns:

A SaverDef protocol buffer.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Inverse Gamma with softplus applied to alpha and beta.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.__init__(alpha, beta, validate_args=False, allow_nan_stats=True, name='InverseGammaWithSoftplusAlphaBeta') {#InverseGammaWithSoftplusAlphaBeta.init}

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.allow_nan_stats {#InverseGammaWithSoftplusAlphaBeta.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.alpha {#InverseGammaWithSoftplusAlphaBeta.alpha}

Shape parameter.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.batch_shape(name='batch_shape') {#InverseGammaWithSoftplusAlphaBeta.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.beta {#InverseGammaWithSoftplusAlphaBeta.beta}

Scale parameter.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.cdf(value, name='cdf') {#InverseGammaWithSoftplusAlphaBeta.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.dtype {#InverseGammaWithSoftplusAlphaBeta.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.entropy(name='entropy') {#InverseGammaWithSoftplusAlphaBeta.entropy}

Shanon entropy in nats.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.event_shape(name='event_shape') {#InverseGammaWithSoftplusAlphaBeta.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.get_batch_shape() {#InverseGammaWithSoftplusAlphaBeta.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.get_event_shape() {#InverseGammaWithSoftplusAlphaBeta.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.is_continuous {#InverseGammaWithSoftplusAlphaBeta.is_continuous}

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.is_reparameterized {#InverseGammaWithSoftplusAlphaBeta.is_reparameterized}

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.log_cdf(value, name='log_cdf') {#InverseGammaWithSoftplusAlphaBeta.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.log_pdf(value, name='log_pdf') {#InverseGammaWithSoftplusAlphaBeta.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.log_pmf(value, name='log_pmf') {#InverseGammaWithSoftplusAlphaBeta.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.log_prob(value, name='log_prob') {#InverseGammaWithSoftplusAlphaBeta.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.log_survival_function(value, name='log_survival_function') {#InverseGammaWithSoftplusAlphaBeta.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.mean(name='mean') {#InverseGammaWithSoftplusAlphaBeta.mean}

Mean.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.mode(name='mode') {#InverseGammaWithSoftplusAlphaBeta.mode}

Mode.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.name {#InverseGammaWithSoftplusAlphaBeta.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#InverseGammaWithSoftplusAlphaBeta.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.param_static_shapes(cls, sample_shape) {#InverseGammaWithSoftplusAlphaBeta.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.parameters {#InverseGammaWithSoftplusAlphaBeta.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.pdf(value, name='pdf') {#InverseGammaWithSoftplusAlphaBeta.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.pmf(value, name='pmf') {#InverseGammaWithSoftplusAlphaBeta.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.prob(value, name='prob') {#InverseGammaWithSoftplusAlphaBeta.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.sample(sample_shape=(), seed=None, name='sample') {#InverseGammaWithSoftplusAlphaBeta.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.sample_n(n, seed=None, name='sample_n') {#InverseGammaWithSoftplusAlphaBeta.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.std(name='std') {#InverseGammaWithSoftplusAlphaBeta.std}

Standard deviation.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.survival_function(value, name='survival_function') {#InverseGammaWithSoftplusAlphaBeta.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.validate_args {#InverseGammaWithSoftplusAlphaBeta.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.variance(name='variance') {#InverseGammaWithSoftplusAlphaBeta.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.nn.rnn_cell.LSTMCell.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Long short-term memory unit (LSTM) recurrent network cell.

The default non-peephole implementation is based on:

http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf

S. Hochreiter and J. Schmidhuber.
“Long Short-Term Memory”. Neural Computation, 9(8):1735-1780, 1997.

The peephole implementation is based on:

https://research.google.com/pubs/archive/43905.pdf

Hasim Sak, Andrew Senior, and Francoise Beaufays.
“Long short-term memory recurrent neural network architectures for
large scale acoustic modeling.” INTERSPEECH, 2014.

The class uses optional peep-hole connections, optional cell clipping, and
an optional projection layer.

tf.nn.rnn_cell.LSTMCell.__call__(inputs, state, scope=None) {#LSTMCell.call}

Run one step of LSTM.

Args:

		inputs: input Tensor, 2D, batch x num_units.

		state: if state_is_tuple is False, this must be a state Tensor,
2-D, batch x state_size. If state_is_tuple is True, this must be a
tuple of state Tensors, both 2-D, with column sizes c_state and
m_state.

		scope: VariableScope for the created subgraph; defaults to “LSTMCell”.

Returns:

A tuple containing:

		A 2-D, [batch x output_dim], Tensor representing the output of the
LSTM after reading inputs when previous state was state.
Here output_dim is:
num_proj if num_proj was set,
num_units otherwise.

		Tensor(s) representing the new state of LSTM after reading inputs when
the previous state was state. Same type and shape(s) as state.

Raises:

		ValueError: If input size cannot be inferred from inputs via
static shape inference.

tf.nn.rnn_cell.LSTMCell.__init__(num_units, input_size=None, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=1, num_proj_shards=1, forget_bias=1.0, state_is_tuple=True, activation=tanh) {#LSTMCell.init}

Initialize the parameters for an LSTM cell.

Args:

		num_units: int, The number of units in the LSTM cell

		input_size: Deprecated and unused.

		use_peepholes: bool, set True to enable diagonal/peephole connections.

		cell_clip: (optional) A float value, if provided the cell state is clipped
by this value prior to the cell output activation.

		initializer: (optional) The initializer to use for the weight and
projection matrices.

		num_proj: (optional) int, The output dimensionality for the projection
matrices. If None, no projection is performed.

		proj_clip: (optional) A float value. If num_proj > 0 and proj_clip is
provided, then the projected values are clipped elementwise to within
[-proj_clip, proj_clip].

		num_unit_shards: How to split the weight matrix. If >1, the weight
matrix is stored across num_unit_shards.

		num_proj_shards: How to split the projection matrix. If >1, the
projection matrix is stored across num_proj_shards.

		forget_bias: Biases of the forget gate are initialized by default to 1
in order to reduce the scale of forgetting at the beginning of
the training.

		state_is_tuple: If True, accepted and returned states are 2-tuples of
the c_state and m_state. If False, they are concatenated
along the column axis. This latter behavior will soon be deprecated.

		activation: Activation function of the inner states.

tf.nn.rnn_cell.LSTMCell.output_size {#LSTMCell.output_size}

tf.nn.rnn_cell.LSTMCell.state_size {#LSTMCell.state_size}

tf.nn.rnn_cell.LSTMCell.zero_state(batch_size, dtype) {#LSTMCell.zero_state}

Return zero-filled state tensor(s).

Args:

		batch_size: int, float, or unit Tensor representing the batch size.

		dtype: the data type to use for the state.

Returns:

If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.framework.deprecated_arg_values.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.deprecated_arg_values(date, instructions, **deprecated_kwargs) {#deprecated_arg_values}

Decorator for marking specific function argument values as deprecated.

This decorator logs a deprecation warning whenever the decorated function is
called with the deprecated argument values. It has the following format:

Calling (from) with = is deprecated and
will be removed after . Instructions for updating:

 will include the class name if it is a method.

It also edits the docstring of the function: ‘ (deprecated arguments)’ is
appended to the first line of the docstring and a deprecation notice is
prepended to the rest of the docstring.

Args:

		date: String. The date the function is scheduled to be removed. Must be
ISO 8601 (YYYY-MM-DD).

		instructions: String. Instructions on how to update code using the
deprecated function.

		**deprecated_kwargs: The deprecated argument values.

Returns:

Decorated function or method.

Raises:

		ValueError: If date is not in ISO 8601 format, or instructions are empty.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.nn.state_saving_rnn.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.state_saving_rnn(cell, inputs, state_saver, state_name, sequence_length=None, scope=None) {#state_saving_rnn}

RNN that accepts a state saver for time-truncated RNN calculation.

Args:

		cell: An instance of RNNCell.

		inputs: A length T list of inputs, each a Tensor of shape
[batch_size, input_size].

		state_saver: A state saver object with methods state and save_state.

		state_name: Python string or tuple of strings. The name to use with the
state_saver. If the cell returns tuples of states (i.e.,
cell.state_size is a tuple) then state_name should be a tuple of
strings having the same length as cell.state_size. Otherwise it should
be a single string.

		sequence_length: (optional) An int32/int64 vector size [batch_size].
See the documentation for rnn() for more details about sequence_length.

		scope: VariableScope for the created subgraph; defaults to “RNN”.

Returns:

A pair (outputs, state) where:
outputs is a length T list of outputs (one for each input)
states is the final state

Raises:

		TypeError: If cell is not an instance of RNNCell.

		ValueError: If inputs is None or an empty list, or if the arity and
type of state_name does not match that of cell.state_size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.metrics.streaming_mean.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.streaming_mean(values, weights=None, metrics_collections=None, updates_collections=None, name=None) {#streaming_mean}

Computes the (weighted) mean of the given values.

The streaming_mean function creates two local variables, total and count
that are used to compute the average of values. This average is ultimately
returned as mean which is an idempotent operation that simply divides
total by count.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the mean.
update_op increments total with the reduced sum of the product of values
and weights, and it increments count with the reduced sum of weights.

If weights is None, weights default to 1. Use weights of 0 to mask values.

Args:

		values: A Tensor of arbitrary dimensions.

		weights: An optional Tensor whose shape is broadcastable to values.

		metrics_collections: An optional list of collections that mean
should be added to.

		updates_collections: An optional list of collections that update_op
should be added to.

		name: An optional variable_scope name.

Returns:

		mean: A tensor representing the current mean, the value of total divided
by count.

		update_op: An operation that increments the total and count variables
appropriately and whose value matches mean_value.

Raises:

		ValueError: If weights is not None and its shape doesn’t match values,
or if either metrics_collections or updates_collections are not a list
or tuple.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.cos.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.cos(x, name=None) {#cos}

Computes cos of x element-wise.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.pack.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.pack(values, axis=0, name='pack') {#pack}

Packs a list of rank-R tensors into one rank-(R+1) tensor.

Packs the list of tensors in values into a tensor with rank one higher than
each tensor in values, by packing them along the axis dimension.
Given a list of length N of tensors of shape (A, B, C);

if axis == 0 then the output tensor will have the shape (N, A, B, C).
if axis == 1 then the output tensor will have the shape (A, N, B, C).
Etc.

For example:

'x' is [1, 4]
'y' is [2, 5]
'z' is [3, 6]
pack([x, y, z]) => [[1, 4], [2, 5], [3, 6]] # Pack along first dim.
pack([x, y, z], axis=1) => [[1, 2, 3], [4, 5, 6]]

This is the opposite of unpack. The numpy equivalent is

tf.pack([x, y, z]) = np.asarray([x, y, z])

Args:

		values: A list of Tensor objects with the same shape and type.

		axis: An int. The axis to pack along. Defaults to the first dimension.
Supports negative indexes.

		name: A name for this operation (optional).

Returns:

		output: A packed Tensor with the same type as values.

Raises:

		ValueError: If axis is out of the range [-(R+1), R+1).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.merge_summary.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.merge_summary(inputs, collections=None, name=None) {#merge_summary}

Merges summaries.

This op creates a
Summary [https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto]
protocol buffer that contains the union of all the values in the input
summaries.

When the Op is run, it reports an InvalidArgument error if multiple values
in the summaries to merge use the same tag.

Args:

		inputs: A list of string Tensor objects containing serialized Summary
protocol buffers.

		collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to [GraphKeys.SUMMARIES].

		name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized Summary protocol
buffer resulting from the merging.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.sparse_tensor_dense_matmul.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_tensor_dense_matmul(sp_a, b, adjoint_a=False, adjoint_b=False, name=None) {#sparse_tensor_dense_matmul}

Multiply SparseTensor (of rank 2) “A” by dense matrix “B”.

No validity checking is performed on the indices of A. However, the following
input format is recommended for optimal behavior:

if adjoint_a == false:
A should be sorted in lexicographically increasing order. Use
sparse_reorder if you’re not sure.
if adjoint_a == true:
A should be sorted in order of increasing dimension 1 (i.e., “column major”
order instead of “row major” order).

Deciding when to use sparse_tensor_dense_matmul vs. matmul(sp_a=True):

There are a number of questions to ask in the decision process, including:

		Will the SparseTensor A fit in memory if densified?

		Is the column count of the product large (>> 1)?

		Is the density of A larger than approximately 15%?

If the answer to several of these questions is yes, consider
converting the SparseTensor to a dense one and using tf.matmul with sp_a=True.

This operation tends to perform well when A is more sparse, if the column size
of the product is small (e.g. matrix-vector multiplication), if sp_a.shape
takes on large values.

Below is a rough speed comparison between sparse_tensor_dense_matmul,
labelled ‘sparse’, and matmul(sp_a=True), labelled ‘dense’. For purposes of
the comparison, the time spent converting from a SparseTensor to a dense
Tensor is not included, so it is overly conservative with respect to
the time ratio.

Benchmark system:
CPU: Intel Ivybridge with HyperThreading (6 cores) dL1:32KB dL2:256KB dL3:12MB
GPU: NVidia Tesla k40c

Compiled with:
-c opt –config=cuda –copt=-mavx

A sparse [m, k] with % nonzero values between 1% and 80%
B dense [k, n]

% nnz n gpu m k dt(dense) dt(sparse) dt(sparse)/dt(dense)
0.01 1 True 100 100 0.000221166 0.00010154 0.459112
0.01 1 True 100 1000 0.00033858 0.000109275 0.322745
0.01 1 True 1000 100 0.000310557 9.85661e-05 0.317385
0.01 1 True 1000 1000 0.0008721 0.000100875 0.115669
0.01 1 False 100 100 0.000208085 0.000107603 0.51711
0.01 1 False 100 1000 0.000327112 9.51118e-05 0.290762
0.01 1 False 1000 100 0.000308222 0.00010345 0.335635
0.01 1 False 1000 1000 0.000865721 0.000101397 0.117124
0.01 10 True 100 100 0.000218522 0.000105537 0.482958
0.01 10 True 100 1000 0.000340882 0.000111641 0.327506
0.01 10 True 1000 100 0.000315472 0.000117376 0.372064
0.01 10 True 1000 1000 0.000905493 0.000123263 0.136128
0.01 10 False 100 100 0.000221529 9.82571e-05 0.44354
0.01 10 False 100 1000 0.000330552 0.000112615 0.340687
0.01 10 False 1000 100 0.000341277 0.000114097 0.334324
0.01 10 False 1000 1000 0.000819944 0.000120982 0.147549
0.01 25 True 100 100 0.000207806 0.000105977 0.509981
0.01 25 True 100 1000 0.000322879 0.00012921 0.400181
0.01 25 True 1000 100 0.00038262 0.000141583 0.370035
0.01 25 True 1000 1000 0.000865438 0.000202083 0.233504
0.01 25 False 100 100 0.000209401 0.000104696 0.499979
0.01 25 False 100 1000 0.000321161 0.000130737 0.407076
0.01 25 False 1000 100 0.000377012 0.000136801 0.362856
0.01 25 False 1000 1000 0.000861125 0.00020272 0.235413
0.2 1 True 100 100 0.000206952 9.69219e-05 0.46833
0.2 1 True 100 1000 0.000348674 0.000147475 0.422959
0.2 1 True 1000 100 0.000336908 0.00010122 0.300439
0.2 1 True 1000 1000 0.001022 0.000203274 0.198898
0.2 1 False 100 100 0.000207532 9.5412e-05 0.459746
0.2 1 False 100 1000 0.000356127 0.000146824 0.41228
0.2 1 False 1000 100 0.000322664 0.000100918 0.312764
0.2 1 False 1000 1000 0.000998987 0.000203442 0.203648
0.2 10 True 100 100 0.000211692 0.000109903 0.519165
0.2 10 True 100 1000 0.000372819 0.000164321 0.440753
0.2 10 True 1000 100 0.000338651 0.000144806 0.427596
0.2 10 True 1000 1000 0.00108312 0.000758876 0.70064
0.2 10 False 100 100 0.000215727 0.000110502 0.512231
0.2 10 False 100 1000 0.000375419 0.0001613 0.429653
0.2 10 False 1000 100 0.000336999 0.000145628 0.432132
0.2 10 False 1000 1000 0.00110502 0.000762043 0.689618
0.2 25 True 100 100 0.000218705 0.000129913 0.594009
0.2 25 True 100 1000 0.000394794 0.00029428 0.745402
0.2 25 True 1000 100 0.000404483 0.0002693 0.665788
0.2 25 True 1000 1000 0.0012002 0.00194494 1.62052
0.2 25 False 100 100 0.000221494 0.0001306 0.589632
0.2 25 False 100 1000 0.000396436 0.000297204 0.74969
0.2 25 False 1000 100 0.000409346 0.000270068 0.659754
0.2 25 False 1000 1000 0.00121051 0.00193737 1.60046
0.5 1 True 100 100 0.000214981 9.82111e-05 0.456836
0.5 1 True 100 1000 0.000415328 0.000223073 0.537101
0.5 1 True 1000 100 0.000358324 0.00011269 0.314492
0.5 1 True 1000 1000 0.00137612 0.000437401 0.317851
0.5 1 False 100 100 0.000224196 0.000101423 0.452386
0.5 1 False 100 1000 0.000400987 0.000223286 0.556841
0.5 1 False 1000 100 0.000368825 0.00011224 0.304318
0.5 1 False 1000 1000 0.00136036 0.000429369 0.31563
0.5 10 True 100 100 0.000222125 0.000112308 0.505608
0.5 10 True 100 1000 0.000461088 0.00032357 0.701753
0.5 10 True 1000 100 0.000394624 0.000225497 0.571422
0.5 10 True 1000 1000 0.00158027 0.00190898 1.20801
0.5 10 False 100 100 0.000232083 0.000114978 0.495418
0.5 10 False 100 1000 0.000454574 0.000324632 0.714146
0.5 10 False 1000 100 0.000379097 0.000227768 0.600817
0.5 10 False 1000 1000 0.00160292 0.00190168 1.18638
0.5 25 True 100 100 0.00023429 0.000151703 0.647501
0.5 25 True 100 1000 0.000497462 0.000598873 1.20386
0.5 25 True 1000 100 0.000460778 0.000557038 1.20891
0.5 25 True 1000 1000 0.00170036 0.00467336 2.74845
0.5 25 False 100 100 0.000228981 0.000155334 0.678371
0.5 25 False 100 1000 0.000496139 0.000620789 1.25124
0.5 25 False 1000 100 0.00045473 0.000551528 1.21287
0.5 25 False 1000 1000 0.00171793 0.00467152 2.71927
0.8 1 True 100 100 0.000222037 0.000105301 0.47425
0.8 1 True 100 1000 0.000410804 0.000329327 0.801664
0.8 1 True 1000 100 0.000349735 0.000131225 0.375212
0.8 1 True 1000 1000 0.00139219 0.000677065 0.48633
0.8 1 False 100 100 0.000214079 0.000107486 0.502085
0.8 1 False 100 1000 0.000413746 0.000323244 0.781261
0.8 1 False 1000 100 0.000348983 0.000131983 0.378193
0.8 1 False 1000 1000 0.00136296 0.000685325 0.50282
0.8 10 True 100 100 0.000229159 0.00011825 0.516017
0.8 10 True 100 1000 0.000498845 0.000532618 1.0677
0.8 10 True 1000 100 0.000383126 0.00029935 0.781336
0.8 10 True 1000 1000 0.00162866 0.00307312 1.88689
0.8 10 False 100 100 0.000230783 0.000124958 0.541452
0.8 10 False 100 1000 0.000493393 0.000550654 1.11606
0.8 10 False 1000 100 0.000377167 0.000298581 0.791642
0.8 10 False 1000 1000 0.00165795 0.00305103 1.84024
0.8 25 True 100 100 0.000233496 0.000175241 0.75051
0.8 25 True 100 1000 0.00055654 0.00102658 1.84458
0.8 25 True 1000 100 0.000463814 0.000783267 1.68875
0.8 25 True 1000 1000 0.00186905 0.00755344 4.04132
0.8 25 False 100 100 0.000240243 0.000175047 0.728625
0.8 25 False 100 1000 0.000578102 0.00104499 1.80763
0.8 25 False 1000 100 0.000485113 0.000776849 1.60138
0.8 25 False 1000 1000 0.00211448 0.00752736 3.55992

Args:

		sp_a: SparseTensor A, of rank 2.

		b: A dense Matrix with the same dtype as sp_a.

		adjoint_a: Use the adjoint of A in the matrix multiply. If A is complex,
this is transpose(conj(A)). Otherwise it’s transpose(A).

		adjoint_b: Use the adjoint of B in the matrix multiply. If B is complex,
this is transpose(conj(B)). Otherwise it’s transpose(B).

		name: A name prefix for the returned tensors (optional)

Returns:

A dense matrix (pseudo-code in dense np.matrix notation):
A = A.H if adjoint_a else A
B = B.H if adjoint_b else B
return A*B

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.nn.dropout.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None) {#dropout}

Computes dropout.

With probability keep_prob, outputs the input element scaled up by
1 / keep_prob, otherwise outputs 0. The scaling is so that the expected
sum is unchanged.

By default, each element is kept or dropped independently. If noise_shape
is specified, it must be
broadcastable [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]
to the shape of x, and only dimensions with noise_shape[i] == shape(x)[i]
will make independent decisions. For example, if shape(x) = [k, l, m, n]
and noise_shape = [k, 1, 1, n], each batch and channel component will be
kept independently and each row and column will be kept or not kept together.

Args:

		x: A tensor.

		keep_prob: A scalar Tensor with the same type as x. The probability
that each element is kept.

		noise_shape: A 1-D Tensor of type int32, representing the
shape for randomly generated keep/drop flags.

		seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

		name: A name for this operation (optional).

Returns:

A Tensor of the same shape of x.

Raises:

		ValueError: If keep_prob is not in (0, 1].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.train.Optimizer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Base class for optimizers.

This class defines the API to add Ops to train a model. You never use this
class directly, but instead instantiate one of its subclasses such as
GradientDescentOptimizer, AdagradOptimizer, or MomentumOptimizer.

Usage

Create an optimizer with the desired parameters.
opt = GradientDescentOptimizer(learning_rate=0.1)
Add Ops to the graph to minimize a cost by updating a list of variables.
"cost" is a Tensor, and the list of variables contains tf.Variable
objects.
opt_op = opt.minimize(cost, var_list=<list of variables>)

In the training program you will just have to run the returned Op.

Execute opt_op to do one step of training:
opt_op.run()

Processing gradients before applying them.

Calling minimize() takes care of both computing the gradients and
applying them to the variables. If you want to process the gradients
before applying them you can instead use the optimizer in three steps:

		Compute the gradients with compute_gradients().

		Process the gradients as you wish.

		Apply the processed gradients with apply_gradients().

Example:

Create an optimizer.
opt = GradientDescentOptimizer(learning_rate=0.1)

Compute the gradients for a list of variables.
grads_and_vars = opt.compute_gradients(loss, <list of variables>)

grads_and_vars is a list of tuples (gradient, variable). Do whatever you
need to the 'gradient' part, for example cap them, etc.
capped_grads_and_vars = [(MyCapper(gv[0]), gv[1]) for gv in grads_and_vars]

Ask the optimizer to apply the capped gradients.
opt.apply_gradients(capped_grads_and_vars)

tf.train.Optimizer.__init__(use_locking, name) {#Optimizer.init}

Create a new Optimizer.

This must be called by the constructors of subclasses.

Args:

		use_locking: Bool. If True apply use locks to prevent concurrent updates
to variables.

		name: A non-empty string. The name to use for accumulators created
for the optimizer.

Raises:

		ValueError: If name is malformed.

tf.train.Optimizer.minimize(loss, global_step=None, var_list=None, gate_gradients=1, aggregation_method=None, colocate_gradients_with_ops=False, name=None, grad_loss=None) {#Optimizer.minimize}

Add operations to minimize loss by updating var_list.

This method simply combines calls compute_gradients() and
apply_gradients(). If you want to process the gradient before applying
them call compute_gradients() and apply_gradients() explicitly instead
of using this function.

Args:

		loss: A Tensor containing the value to minimize.

		global_step: Optional Variable to increment by one after the
variables have been updated.

		var_list: Optional list of Variable objects to update to minimize
loss. Defaults to the list of variables collected in the graph
under the key GraphKeys.TRAINABLE_VARIABLES.

		gate_gradients: How to gate the computation of gradients. Can be
GATE_NONE, GATE_OP, or GATE_GRAPH.

		aggregation_method: Specifies the method used to combine gradient terms.
Valid values are defined in the class AggregationMethod.

		colocate_gradients_with_ops: If True, try colocating gradients with
the corresponding op.

		name: Optional name for the returned operation.

		grad_loss: Optional. A Tensor holding the gradient computed for loss.

Returns:

An Operation that updates the variables in var_list. If global_step
was not None, that operation also increments global_step.

Raises:

		ValueError: If some of the variables are not Variable objects.

tf.train.Optimizer.compute_gradients(loss, var_list=None, gate_gradients=1, aggregation_method=None, colocate_gradients_with_ops=False, grad_loss=None) {#Optimizer.compute_gradients}

Compute gradients of loss for the variables in var_list.

This is the first part of minimize(). It returns a list
of (gradient, variable) pairs where “gradient” is the gradient
for “variable”. Note that “gradient” can be a Tensor, an
IndexedSlices, or None if there is no gradient for the
given variable.

Args:

		loss: A Tensor containing the value to minimize.

		var_list: Optional list of tf.Variable to update to minimize
loss. Defaults to the list of variables collected in the graph
under the key GraphKey.TRAINABLE_VARIABLES.

		gate_gradients: How to gate the computation of gradients. Can be
GATE_NONE, GATE_OP, or GATE_GRAPH.

		aggregation_method: Specifies the method used to combine gradient terms.
Valid values are defined in the class AggregationMethod.

		colocate_gradients_with_ops: If True, try colocating gradients with
the corresponding op.

		grad_loss: Optional. A Tensor holding the gradient computed for loss.

Returns:

A list of (gradient, variable) pairs.

Raises:

		TypeError: If var_list contains anything else than Variable objects.

		ValueError: If some arguments are invalid.

tf.train.Optimizer.apply_gradients(grads_and_vars, global_step=None, name=None) {#Optimizer.apply_gradients}

Apply gradients to variables.

This is the second part of minimize(). It returns an Operation that
applies gradients.

Args:

		grads_and_vars: List of (gradient, variable) pairs as returned by
compute_gradients().

		global_step: Optional Variable to increment by one after the
variables have been updated.

		name: Optional name for the returned operation. Default to the
name passed to the Optimizer constructor.

Returns:

An Operation that applies the specified gradients. If global_step
was not None, that operation also increments global_step.

Raises:

		TypeError: If grads_and_vars is malformed.

		ValueError: If none of the variables have gradients.

Gating Gradients

Both minimize() and compute_gradients() accept a gate_gradients
argument that controls the degree of parallelism during the application of
the gradients.

The possible values are: GATE_NONE, GATE_OP, and GATE_GRAPH.

GATE_NONE: Compute and apply gradients in parallel. This provides
the maximum parallelism in execution, at the cost of some non-reproducibility
in the results. For example the two gradients of matmul depend on the input
values: With GATE_NONE one of the gradients could be applied to one of the
inputs before the other gradient is computed resulting in non-reproducible
results.

GATE_OP: For each Op, make sure all gradients are computed before
they are used. This prevents race conditions for Ops that generate gradients
for multiple inputs where the gradients depend on the inputs.

GATE_GRAPH: Make sure all gradients for all variables are computed
before any one of them is used. This provides the least parallelism but can
be useful if you want to process all gradients before applying any of them.

Slots

Some optimizer subclasses, such as MomentumOptimizer and AdagradOptimizer
allocate and manage additional variables associated with the variables to
train. These are called Slots. Slots have names and you can ask the
optimizer for the names of the slots that it uses. Once you have a slot name
you can ask the optimizer for the variable it created to hold the slot value.

This can be useful if you want to log debug a training algorithm, report stats
about the slots, etc.

tf.train.Optimizer.get_slot_names() {#Optimizer.get_slot_names}

Return a list of the names of slots created by the Optimizer.

See get_slot().

Returns:

A list of strings.

tf.train.Optimizer.get_slot(var, name) {#Optimizer.get_slot}

Return a slot named name created for var by the Optimizer.

Some Optimizer subclasses use additional variables. For example
Momentum and Adagrad use variables to accumulate updates. This method
gives access to these Variable objects if for some reason you need them.

Use get_slot_names() to get the list of slot names created by the
Optimizer.

Args:

		var: A variable passed to minimize() or apply_gradients().

		name: A string.

Returns:

The Variable for the slot if it was created, None otherwise.

Other Methods

tf.train.Optimizer.get_name() {#Optimizer.get_name}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.reduce_max.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.reduce_max(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_max}

Computes the maximum of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

Args:

		input_tensor: The tensor to reduce. Should have numeric type.

		reduction_indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

		keep_dims: If true, retains reduced dimensions with length 1.

		name: A name for the operation (optional).

Returns:

The reduced tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.framework.add_model_variable.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.add_model_variable(var) {#add_model_variable}

Adds a variable to the GraphKeys.MODEL_VARIABLES collection.

Args:

		var: a variable.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.framework.variable.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.variable(*args, **kwargs) {#variable}

Gets an existing variable with these parameters or creates a new one.

Args:

		name: the name of the new or existing variable.

		shape: shape of the new or existing variable.

		dtype: type of the new or existing variable (defaults to DT_FLOAT).

		initializer: initializer for the variable if one is created.

		regularizer: a (Tensor -> Tensor or None) function; the result of
applying it on a newly created variable will be added to the collection
GraphKeys.REGULARIZATION_LOSSES and can be used for regularization.

		trainable: If True also add the variable to the graph collection
GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

		collections: A list of collection names to which the Variable will be added.
If None it would default to tf.GraphKeys.VARIABLES.

		caching_device: Optional device string or function describing where the
Variable should be cached for reading. Defaults to the Variable’s
device.

		device: Optional device to place the variable. It can be an string or a
function that is called to get the device for the variable.

Returns:

The created or existing variable.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.sparse_split.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_split(split_dim, num_split, sp_input, name=None) {#sparse_split}

Split a SparseTensor into num_split tensors along split_dim.

If the sp_input.shape[split_dim] is not an integer multiple of num_split
each slice starting from 0:shape[split_dim] % num_split gets extra one
dimension. For example, if split_dim = 1 and num_split = 2 and the
input is:

input_tensor = shape = [2, 7]
[a d e]
[b c]

Graphically the output tensors are:

output_tensor[0] =
[a]
[b c]

output_tensor[1] =
[d e]
[]

Args:

		split_dim: A 0-D int32 Tensor. The dimension along which to split.

		num_split: A Python integer. The number of ways to split.

		sp_input: The SparseTensor to split.

		name: A name for the operation (optional).

Returns:

num_split SparseTensor objects resulting from splitting value.

Raises:

		TypeError: If sp_input is not a SparseTensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.histogram_summary.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.histogram_summary(tag, values, collections=None, name=None) {#histogram_summary}

Outputs a Summary protocol buffer with a histogram.

The generated
Summary [https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto]
has one summary value containing a histogram for values.

This op reports an InvalidArgument error if any value is not finite.

Args:

		tag: A string Tensor. 0-D. Tag to use for the summary value.

		values: A real numeric Tensor. Any shape. Values to use to
build the histogram.

		collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to [GraphKeys.SUMMARIES].

		name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized Summary protocol
buffer.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.control_dependencies.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.control_dependencies(control_inputs) {#control_dependencies}

Wrapper for Graph.control_dependencies() using the default graph.

See Graph.control_dependencies()
for more details.

Args:

		control_inputs: A list of Operation or Tensor objects which
must be executed or computed before running the operations
defined in the context. Can also be None to clear the control
dependencies.

Returns:

A context manager that specifies control dependencies for all
operations constructed within the context.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.train.Server.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 An in-process TensorFlow server, for use in distributed training.

A tf.train.Server instance encapsulates a set of devices and a
tf.Session target that
can participate in distributed training. A server belongs to a
cluster (specified by a tf.train.ClusterSpec), and
corresponds to a particular task in a named job. The server can
communicate with any other server in the same cluster.

tf.train.Server.__init__(server_or_cluster_def, job_name=None, task_index=None, protocol=None, config=None, start=True) {#Server.init}

Creates a new server with the given definition.

The job_name, task_index, and protocol arguments are optional, and
override any information provided in server_or_cluster_def.

Args:

		server_or_cluster_def: A tf.train.ServerDef or
tf.train.ClusterDef protocol buffer, or a
tf.train.ClusterSpec object, describing the server to be
created and/or the cluster of which it is a member.

		job_name: (Optional.) Specifies the name of the job of which the server
is a member. Defaults to the value in server_or_cluster_def, if
specified.

		task_index: (Optional.) Specifies the task index of the server in its
job. Defaults to the value in server_or_cluster_def, if specified.
Otherwise defaults to 0 if the server’s job has only one task.

		protocol: (Optional.) Specifies the protocol to be used by the server.
Acceptable values include "grpc". Defaults to the value in
server_or_cluster_def, if specified. Otherwise defaults to "grpc".

		config: (Options.) A tf.ConfigProto that specifies default
configuration options for all sessions that run on this server.

		start: (Optional.) Boolean, indicating whether to start the server
after creating it. Defaults to True.

Raises:

tf.errors.OpError: Or one of its subclasses if an error occurs while
creating the TensorFlow server.

tf.train.Server.create_local_server(config=None, start=True) {#Server.create_local_server}

Creates a new single-process cluster running on the local host.

This method is a convenience wrapper for creating a
tf.train.Server with a tf.train.ServerDef that specifies a
single-process cluster containing a single task in a job called
"local".

Args:

		config: (Options.) A tf.ConfigProto that specifies default
configuration options for all sessions that run on this server.

		start: (Optional.) Boolean, indicating whether to start the server after
creating it. Defaults to True.

Returns:

A local tf.train.Server.

tf.train.Server.target {#Server.target}

Returns the target for a tf.Session to connect to this server.

To create a
tf.Session that
connects to this server, use the following snippet:

server = tf.train.Server(...)
with tf.Session(server.target):
 # ...

Returns:

A string containing a session target for this server.

tf.train.Server.server_def {#Server.server_def}

Returns the tf.train.ServerDef for this server.

Returns:

A tf.train.ServerDef protocol buffer that describes the configuration
of this server.

tf.train.Server.start() {#Server.start}

Starts this server.

Raises:

tf.errors.OpError: Or one of its subclasses if an error occurs while
starting the TensorFlow server.

tf.train.Server.join() {#Server.join}

Blocks until the server has shut down.

This method currently blocks forever.

Raises:

tf.errors.OpError: Or one of its subclasses if an error occurs while
joining the TensorFlow server.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.div.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.div(x, y, name=None) {#div}

Returns x / y element-wise.

NOTE: Div supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.batch_matmul.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.batch_matmul(x, y, adj_x=None, adj_y=None, name=None) {#batch_matmul}

Multiplies slices of two tensors in batches.

Multiplies all slices of Tensor x and y (each slice can be
viewed as an element of a batch), and arranges the individual results
in a single output tensor of the same batch size. Each of the
individual slices can optionally be adjointed (to adjoint a matrix
means to transpose and conjugate it) before multiplication by setting
the adj_x or adj_y flag to True, which are by default False.

The input tensors x and y are 3-D or higher with shape [..., r_x, c_x]
and [..., r_y, c_y].

The output tensor is 3-D or higher with shape [..., r_o, c_o], where:

r_o = c_x if adj_x else r_x
c_o = r_y if adj_y else c_y

It is computed as:

output[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :])

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, complex64, complex128.
3-D or higher with shape [..., r_x, c_x].

		y: A Tensor. Must have the same type as x.
3-D or higher with shape [..., r_y, c_y].

		adj_x: An optional bool. Defaults to False.
If True, adjoint the slices of x. Defaults to False.

		adj_y: An optional bool. Defaults to False.
If True, adjoint the slices of y. Defaults to False.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.
3-D or higher with shape [..., r_o, c_o]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.scatter_update.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.scatter_update(ref, indices, updates, use_locking=None, name=None) {#scatter_update}

Applies sparse updates to a variable reference.

This operation computes

Scalar indices
ref[indices, ...] = updates[...]

Vector indices (for each i)
ref[indices[i], ...] = updates[i, ...]

High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] = updates[i, ..., j, ...]

This operation outputs ref after the update is done.
This makes it easier to chain operations that need to use the reset value.

If values in ref is to be updated more than once, because there are
duplicate entires in indices, the order at which the updates happen
for each value is undefined.

Requires updates.shape = indices.shape + ref.shape[1:].

[image:]

Args:

		ref: A mutable Tensor. Should be from a Variable node.

		indices: A Tensor. Must be one of the following types: int32, int64.
A tensor of indices into the first dimension of ref.

		updates: A Tensor. Must have the same type as ref.
A tensor of updated values to store in ref.

		use_locking: An optional bool. Defaults to True.
If True, the assignment will be protected by a lock;
otherwise the behavior is undefined, but may exhibit less contention.

		name: A name for the operation (optional).

Returns:

Same as ref. Returned as a convenience for operations that want
to use the updated values after the update is done.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.make_template.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.make_template(name_, func_, create_scope_now_=False, unique_name_=None, **kwargs) {#make_template}

Given an arbitrary function, wrap it so that it does variable sharing.

This wraps func_ in a Template and partially evaluates it. Templates are
functions that create variables the first time they are called and reuse them
thereafter. In order for func_ to be compatible with a Template it must
have the following properties:

		The function should create all trainable variables and any variables that
should be reused by calling tf.get_variable. If a trainable variable is
created using tf.Variable, then a ValueError will be thrown. Variables
that are intended to be locals can be created by specifying
tf.Variable(..., trainable=false).

		The function may use variable scopes and other templates internally to
create and reuse variables, but it shouldn’t use tf.get_variables to
capture variables that are defined outside of the scope of the function.

		Internal scopes and variable names should not depend on any arguments that
are not supplied to make_template. In general you will get a ValueError
telling you that you are trying to reuse a variable that doesn’t exist
if you make a mistake.

In the following example, both z and w will be scaled by the same y. It
is important to note that if we didn’t assign scalar_name and used a
different name for z and w that a ValueError would be thrown because it
couldn’t reuse the variable.

def my_op(x, scalar_name):
 var1 = tf.get_variable(scalar_name,
 shape=[],
 initializer=tf.constant_initializer(1))
 return x * var1

scale_by_y = tf.make_template('scale_by_y', my_op, scalar_name='y')

z = scale_by_y(input1)
w = scale_by_y(input2)

As a safe-guard, the returned function will raise a ValueError after the
first call if trainable variables are created by calling tf.Variable.

If all of these are true, then 2 properties are enforced by the template:

		Calling the same template multiple times will share all non-local
variables.

		Two different templates are guaranteed to be unique, unless you reenter the
same variable scope as the initial definition of a template and redefine
it. An examples of this exception:

def my_op(x, scalar_name):
 var1 = tf.get_variable(scalar_name,
 shape=[],
 initializer=tf.constant_initializer(1))
 return x * var1

with tf.variable_scope('scope') as vs:
 scale_by_y = tf.make_template('scale_by_y', my_op, scalar_name='y')
 z = scale_by_y(input1)
 w = scale_by_y(input2)

Creates a template that reuses the variables above.
with tf.variable_scope(vs, reuse=True):
 scale_by_y2 = tf.make_template('scale_by_y', my_op, scalar_name='y')
 z2 = scale_by_y2(input1)
 w2 = scale_by_y2(input2)

Depending on the value of create_scope_now_, the full variable scope may be
captured either at the time of first call or at the time of construction. If
this option is set to True, then all Tensors created by repeated calls to the
template will have an extra trailing _N+1 to their name, as the first time the
scope is entered in the Template constructor no Tensors are created.

Note: name_, func_ and create_scope_now_ have a trailing underscore to
reduce the likelihood of collisions with kwargs.

Args:

		name_: A name for the scope created by this template. If necessary, the name
will be made unique by appending _N to the name.

		func_: The function to wrap.

		create_scope_now_: Boolean controlling whether the scope should be created
when the template is constructed or when the template is called. Default
is False, meaning the scope is created when the template is called.

		unique_name_: When used, it overrides name_ and is not made unique. If a
template of the same scope/unique_name already exists and reuse is false,
an error is raised. Defaults to None.

		**kwargs: Keyword arguments to apply to func_.

Returns:

A function to encapsulate a set of variables which should be created once
and reused. An enclosing scope will created, either where make_template
is called, or wherever the result is called, depending on the value of
create_scope_now_. Regardless of the value, the first time the template
is called it will enter the scope with no reuse, and call func_ to create
variables, which are guaranteed to be unique. All subsequent calls will
re-enter the scope and reuse those variables.

Raises:

		ValueError: if the name is None.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.learn.BaseEstimator.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Abstract BaseEstimator class to train and evaluate TensorFlow models.

Concrete implementation of this class should provide the following functions:

		_get_train_ops

		_get_eval_ops

		_get_predict_ops

Estimator implemented below is a good example of how to use this class.

tf.contrib.learn.BaseEstimator.__init__(model_dir=None, config=None) {#BaseEstimator.init}

Initializes a BaseEstimator instance.

Args:

		model_dir: Directory to save model parameters, graph and etc. This can
also be used to load checkpoints from the directory into a estimator to
continue training a previously saved model.

		config: A RunConfig instance.

tf.contrib.learn.BaseEstimator.__repr__() {#BaseEstimator.repr}

tf.contrib.learn.BaseEstimator.config {#BaseEstimator.config}

tf.contrib.learn.BaseEstimator.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) {#BaseEstimator.evaluate}

See Evaluable.

Raises:

		ValueError: If at least one of x or y is provided, and at least one of
input_fn or feed_fn is provided.
Or if metrics is not None or dict.

tf.contrib.learn.BaseEstimator.export(*args, **kwargs) {#BaseEstimator.export}

Exports inference graph into given dir. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23.
Instructions for updating:
The signature of the input_fn accepted by export is changing to be consistent with what’s used by tf.Learn Estimator’s train/evaluate. input_fn and input_feature_key will become required args, and use_deprecated_input_fn will default to False and be removed altogether.

Args:
 export_dir: A string containing a directory to write the exported graph
 and checkpoints.
 input_fn: If `use_deprecated_input_fn` is true, then a function that given
 `Tensor` of `Example` strings, parses it into features that are then
 passed to the model. Otherwise, a function that takes no argument and
 returns a tuple of (features, targets), where features is a dict of
 string key to `Tensor` and targets is a `Tensor` that's currently not
 used (and so can be `None`).
 input_feature_key: Only used if `use_deprecated_input_fn` is false. String
 key into the features dict returned by `input_fn` that corresponds toa
 the raw `Example` strings `Tensor` that the exported model will take as
 input.
 use_deprecated_input_fn: Determines the signature format of `input_fn`.
 signature_fn: Function that returns a default signature and a named
 signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s
 for features and `Tensor` or `dict` of `Tensor`s for predictions.
 prediction_key: The key for a tensor in the `predictions` dict (output
 from the `model_fn`) to use as the `predictions` input to the
 `signature_fn`. Optional. If `None`, predictions will pass to
 `signature_fn` without filtering.
 default_batch_size: Default batch size of the `Example` placeholder.
 exports_to_keep: Number of exports to keep.

Returns:
 The string path to the exported directory. NB: this functionality was
 added ca. 2016/09/25; clients that depend on the return value may need
 to handle the case where this function returns None because subclasses
 are not returning a value.

tf.contrib.learn.BaseEstimator.fit(x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None) {#BaseEstimator.fit}

See Trainable.

Raises:

		ValueError: If x or y are not None while input_fn is not None.

		ValueError: If both steps and max_steps are not None.

tf.contrib.learn.BaseEstimator.get_params(deep=True) {#BaseEstimator.get_params}

Get parameters for this estimator.

Args:

		deep: boolean, optional

If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns:

params : mapping of string to any
Parameter names mapped to their values.

tf.contrib.learn.BaseEstimator.get_variable_names() {#BaseEstimator.get_variable_names}

Returns list of all variable names in this model.

Returns:

List of names.

tf.contrib.learn.BaseEstimator.get_variable_value(name) {#BaseEstimator.get_variable_value}

Returns value of the variable given by name.

Args:

		name: string, name of the tensor.

Returns:

Numpy array - value of the tensor.

tf.contrib.learn.BaseEstimator.model_dir {#BaseEstimator.model_dir}

tf.contrib.learn.BaseEstimator.partial_fit(x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None) {#BaseEstimator.partial_fit}

Incremental fit on a batch of samples.

This method is expected to be called several times consecutively
on different or the same chunks of the dataset. This either can
implement iterative training or out-of-core/online training.

This is especially useful when the whole dataset is too big to
fit in memory at the same time. Or when model is taking long time
to converge, and you want to split up training into subparts.

Args:

		x: Matrix of shape [n_samples, n_features...]. Can be iterator that
returns arrays of features. The training input samples for fitting the
model. If set, input_fn must be None.

		y: Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of targets. The training target values
(class labels in classification, real numbers in regression). If set,
input_fn must be None.

		input_fn: Input function. If set, x, y, and batch_size must be
None.

		steps: Number of steps for which to train model. If None, train forever.

		batch_size: minibatch size to use on the input, defaults to first
dimension of x. Must be None if input_fn is provided.

		monitors: List of BaseMonitor subclass instances. Used for callbacks
inside the training loop.

Returns:

self, for chaining.

Raises:

		ValueError: If at least one of x and y is provided, and input_fn is
provided.

tf.contrib.learn.BaseEstimator.predict(*args, **kwargs) {#BaseEstimator.predict}

Returns predictions for given features. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-15.
Instructions for updating:
The default behavior of predict() is changing. The default value for
as_iterable will change to True, and then the flag will be removed
altogether. The behavior of this flag is described below.

Args:
 x: Matrix of shape [n_samples, n_features...]. Can be iterator that
 returns arrays of features. The training input samples for fitting the
 model. If set, `input_fn` must be `None`.
 input_fn: Input function. If set, `x` and 'batch_size' must be `None`.
 batch_size: Override default batch size. If set, 'input_fn' must be
 'None'.
 outputs: list of `str`, name of the output to predict.
 If `None`, returns all.
 as_iterable: If True, return an iterable which keeps yielding predictions
 for each example until inputs are exhausted. Note: The inputs must
 terminate if you want the iterable to terminate (e.g. be sure to pass
 num_epochs=1 if you are using something like read_batch_features).

Returns:
 A numpy array of predicted classes or regression values if the
 constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict`
 of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of
 predictions if as_iterable is True.

Raises:
 ValueError: If x and input_fn are both provided or both `None`.

tf.contrib.learn.BaseEstimator.set_params(**params) {#BaseEstimator.set_params}

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.

Args:

		**params: Parameters.

Returns:

self

Raises:

		ValueError: If params contain invalid names.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.layers.summarize_collection.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.summarize_collection(collection, name_filter=None, summarizer=summarize_tensor) {#summarize_collection}

Summarize a graph collection of tensors, possibly filtered by name.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.metrics.streaming_auc.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.streaming_auc(predictions, labels, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, curve='ROC', name=None) {#streaming_auc}

Computes the approximate AUC via a Riemann sum.

The streaming_auc function creates four local variables, true_positives,
true_negatives, false_positives and false_negatives that are used to
compute the AUC. To discretize the AUC curve, a linearly spaced set of
thresholds is used to compute pairs of recall and precision values. The area
under the ROC-curve is therefore computed using the height of the recall
values by the false positive rate, while the area under the PR-curve is the
computed using the height of the precision values by the recall.

This value is ultimately returned as auc, an idempotent operation that
computes the area under a discretized curve of precision versus recall values
(computed using the afformentioned variables). The num_thresholds variable
controls the degree of discretization with larger numbers of thresholds more
closely approximating the true AUC.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the auc.

If weights is None, weights default to 1. Use weights of 0 to mask values.

Args:

		predictions: A floating point Tensor of arbitrary shape and whose values
are in the range [0, 1].

		labels: A bool Tensor whose shape matches predictions.

		weights: An optional Tensor whose shape is broadcastable to predictions.

		num_thresholds: The number of thresholds to use when discretizing the roc
curve.

		metrics_collections: An optional list of collections that auc should be
added to.

		updates_collections: An optional list of collections that update_op should
be added to.

		curve: Specifies the name of the curve to be computed, ‘ROC’ [default] or
‘PR’ for the Precision-Recall-curve.

		name: An optional variable_scope name.

Returns:

		auc: A scalar tensor representing the current area-under-curve.

		update_op: An operation that increments the true_positives,
true_negatives, false_positives and false_negatives variables
appropriately and whose value matches auc.

Raises:

		ValueError: If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn’t match predictions, or if
either metrics_collections or updates_collections are not a list or
tuple.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.nn.rnn_cell.BasicRNNCell.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 The most basic RNN cell.

tf.nn.rnn_cell.BasicRNNCell.__call__(inputs, state, scope=None) {#BasicRNNCell.call}

Most basic RNN: output = new_state = activation(W * input + U * state + B).

tf.nn.rnn_cell.BasicRNNCell.__init__(num_units, input_size=None, activation=tanh) {#BasicRNNCell.init}

tf.nn.rnn_cell.BasicRNNCell.output_size {#BasicRNNCell.output_size}

tf.nn.rnn_cell.BasicRNNCell.state_size {#BasicRNNCell.state_size}

tf.nn.rnn_cell.BasicRNNCell.zero_state(batch_size, dtype) {#BasicRNNCell.zero_state}

Return zero-filled state tensor(s).

Args:

		batch_size: int, float, or unit Tensor representing the batch size.

		dtype: the data type to use for the state.

Returns:

If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.train.start_queue_runners.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.start_queue_runners(sess=None, coord=None, daemon=True, start=True, collection='queue_runners') {#start_queue_runners}

Starts all queue runners collected in the graph.

This is a companion method to add_queue_runner(). It just starts
threads for all queue runners collected in the graph. It returns
the list of all threads.

Args:

		sess: Session used to run the queue ops. Defaults to the
default session.

		coord: Optional Coordinator for coordinating the started threads.

		daemon: Whether the threads should be marked as daemons, meaning
they don’t block program exit.

		start: Set to False to only create the threads, not start them.

		collection: A GraphKey specifying the graph collection to
get the queue runners from. Defaults to GraphKeys.QUEUE_RUNNERS.

Returns:

A list of threads.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.graph_editor.get_walks_intersection_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.get_walks_intersection_ops(forward_seed_ops, backward_seed_ops, forward_inclusive=True, backward_inclusive=True, within_ops=None, control_inputs=False, control_outputs=None, control_ios=None) {#get_walks_intersection_ops}

Return the intersection of a foward and a backward walk.

Args:

		forward_seed_ops: an iterable of operations from which the forward graph
walk starts. If a list of tensors is given instead, the seed_ops are set
to be the consumers of those tensors.

		backward_seed_ops: an iterable of operations from which the backward graph
walk starts. If a list of tensors is given instead, the seed_ops are set
to be the generators of those tensors.

		forward_inclusive: if True the given forward_seed_ops are also part of the
resulting set.

		backward_inclusive: if True the given backward_seed_ops are also part of the
resulting set.

		within_ops: an iterable of tf.Operation whithin which the search is
restricted. If within_ops is None, the search is performed within
the whole graph.

		control_inputs: A boolean indicating whether control inputs are enabled.

		control_outputs: An instance of util.ControlOutputs or None. If not None,
control outputs are enabled.

		control_ios: An instance of util.ControlOutputs or None. If not None, both
control inputs and control outputs are enabled. This is equivalent to set
control_inputs to True and control_outputs to the util.ControlOutputs
instance.

Returns:

A Python set of all the tf.Operation in the intersection of a foward and a
backward walk.

Raises:

		TypeError: if forward_seed_ops or backward_seed_ops or within_ops cannot be
converted to a list of tf.Operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.test.is_built_with_cuda.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.test.is_built_with_cuda() {#is_built_with_cuda}

Returns whether TensorFlow was built with CUDA (GPU) support.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.clip_by_norm.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.clip_by_norm(t, clip_norm, axes=None, name=None) {#clip_by_norm}

Clips tensor values to a maximum L2-norm.

Given a tensor t, and a maximum clip value clip_norm, this operation
normalizes t so that its L2-norm is less than or equal to clip_norm,
along the dimensions given in axes. Specifically, in the default case
where all dimensions are used for calculation, if the L2-norm of t is
already less than or equal to clip_norm, then t is not modified. If
the L2-norm is greater than clip_norm, then this operation returns a
tensor of the same type and shape as t with its values set to:

t * clip_norm / l2norm(t)

In this case, the L2-norm of the output tensor is clip_norm.

As another example, if t is a matrix and axes == [1], then each row
of the output will have L2-norm equal to clip_norm. If axes == [0]
instead, each column of the output will be clipped.

This operation is typically used to clip gradients before applying them with
an optimizer.

Args:

		t: A Tensor.

		clip_norm: A 0-D (scalar) Tensor > 0. A maximum clipping value.

		axes: A 1-D (vector) Tensor of type int32 containing the dimensions
to use for computing the L2-norm. If None (the default), uses all
dimensions.

		name: A name for the operation (optional).

Returns:

A clipped Tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 MultivariateNormalDiagTensor is a StochasticTensor backed by the distribution MultivariateNormalDiag.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#MultivariateNormalDiagTensor.init}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.clone(name=None, **dist_args) {#MultivariateNormalDiagTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.distribution {#MultivariateNormalDiagTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.dtype {#MultivariateNormalDiagTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.entropy(name='entropy') {#MultivariateNormalDiagTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.graph {#MultivariateNormalDiagTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.input_dict {#MultivariateNormalDiagTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.loss(final_loss, name='Loss') {#MultivariateNormalDiagTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.mean(name='mean') {#MultivariateNormalDiagTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.name {#MultivariateNormalDiagTensor.name}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.value(name='value') {#MultivariateNormalDiagTensor.value}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.value_type {#MultivariateNormalDiagTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.variable_op_scope.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.variable_op_scope(values, name_or_scope, default_name=None, initializer=None, regularizer=None, caching_device=None, partitioner=None, custom_getter=None, reuse=None, dtype=None) {#variable_op_scope}

Deprecated: context manager for defining an op that creates variables.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.assert_non_negative.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.assert_non_negative(x, data=None, summarize=None, message=None, name=None) {#assert_non_negative}

Assert the condition x >= 0 holds element-wise.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_non_negative(x)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_non_negative(x)], x)

Non-negative means, for every element x[i] of x, we have x[i] >= 0.
If x is empty this is trivially satisfied.

Args:

		x: Numeric Tensor.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional).
Defaults to “assert_non_negative”.

Returns:

Op raising InvalidArgumentError unless x is all non-negative.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.metrics.streaming_mean_cosine_distance.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.streaming_mean_cosine_distance(predictions, labels, dim, weights=None, metrics_collections=None, updates_collections=None, name=None) {#streaming_mean_cosine_distance}

Computes the cosine distance between the labels and predictions.

The streaming_mean_cosine_distance function creates two local variables,
total and count that are used to compute the average cosine distance
between predictions and labels. This average is weighted by weights,
and it is ultimately returned as mean_distance, which is an idempotent
operation that simply divides total by count.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
mean_distance.

If weights is None, weights default to 1. Use weights of 0 to mask values.

Args:

		predictions: A Tensor of the same shape as labels.

		labels: A Tensor of arbitrary shape.

		dim: The dimension along which the cosine distance is computed.

		weights: An optional Tensor whose shape is broadcastable to predictions,
and whose dimension dim is 1.

		metrics_collections: An optional list of collections that the metric
value variable should be added to.

		updates_collections: An optional list of collections that the metric update
ops should be added to.

		name: An optional variable_scope name.

Returns:

		mean_distance: A tensor representing the current mean, the value of total
divided by count.

		update_op: An operation that increments the total and count variables
appropriately.

Raises:

		ValueError: If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn’t match predictions, or if
either metrics_collections or updates_collections are not a list or
tuple.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.required_space_to_batch_paddings.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.required_space_to_batch_paddings(input_shape, block_shape, base_paddings=None, name=None) {#required_space_to_batch_paddings}

Calculate padding required to make block_shape divide input_shape.

This function can be used to calculate a suitable paddings argument for use
with space_to_batch_nd and batch_to_space_nd.

Args:

		input_shape: int32 Tensor of shape [N].

		block_shape: int32 Tensor of shape [N].

		base_paddings: Optional int32 Tensor of shape [N, 2]. Specifies the minimum
amount of padding to use. All elements must be >= 0. If not specified,
defaults to 0.

		name: string. Optional name prefix.

Returns:

(paddings, crops), where:

paddings and crops are int32 Tensors of rank 2 and shape [N, 2]

		satisfying:

paddings[i, 0] = base_paddings[i, 0].
0 <= paddings[i, 1] - base_paddings[i, 1] < block_shape[i]
(input_shape[i] + paddings[i, 0] + paddings[i, 1]) % block_shape[i] == 0

crops[i, 0] = 0
crops[i, 1] = paddings[i, 1] - base_paddings[i, 1]

		Raises: ValueError if called with incompatible shapes.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.inv.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.inv(x, name=None) {#inv}

Computes the reciprocal of x element-wise.

I.e., \(y = 1 / x\).

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.learn.ModeKeys.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Standard names for model modes.

The following standard keys are defined:

		TRAIN: training mode.

		EVAL: evaluation mode.

		INFER: inference mode.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.Graph.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A TensorFlow computation, represented as a dataflow graph.

A Graph contains a set of
Operation objects,
which represent units of computation; and
Tensor objects, which represent
the units of data that flow between operations.

A default Graph is always registered, and accessible by calling
tf.get_default_graph().
To add an operation to the default graph, simply call one of the functions
that defines a new Operation:

c = tf.constant(4.0)
assert c.graph is tf.get_default_graph()

Another typical usage involves the
Graph.as_default()
context manager, which overrides the current default graph for the
lifetime of the context:

g = tf.Graph()
with g.as_default():
 # Define operations and tensors in `g`.
 c = tf.constant(30.0)
 assert c.graph is g

Important note: This class is not thread-safe for graph construction. All
operations should be created from a single thread, or external
synchronization must be provided. Unless otherwise specified, all methods
are not thread-safe.

tf.Graph.__init__() {#Graph.init}

Creates a new, empty Graph.

tf.Graph.as_default() {#Graph.as_default}

Returns a context manager that makes this Graph the default graph.

This method should be used if you want to create multiple graphs
in the same process. For convenience, a global default graph is
provided, and all ops will be added to this graph if you do not
create a new graph explicitly. Use this method with the with keyword
to specify that ops created within the scope of a block should be
added to this graph.

The default graph is a property of the current thread. If you
create a new thread, and wish to use the default graph in that
thread, you must explicitly add a with g.as_default(): in that
thread’s function.

The following code examples are equivalent:

1. Using Graph.as_default():
g = tf.Graph()
with g.as_default():
 c = tf.constant(5.0)
 assert c.graph is g

2. Constructing and making default:
with tf.Graph().as_default() as g:
 c = tf.constant(5.0)
 assert c.graph is g

Returns:

A context manager for using this graph as the default graph.

tf.Graph.as_graph_def(from_version=None, add_shapes=False) {#Graph.as_graph_def}

Returns a serialized GraphDef representation of this graph.

The serialized GraphDef can be imported into another Graph
(using import_graph_def()) or used with the
C++ Session API.

This method is thread-safe.

Args:

		from_version: Optional. If this is set, returns a GraphDef
containing only the nodes that were added to this graph since
its version property had the given value.

		add_shapes: If true, adds an “_output_shapes” list attr to each
node with the inferred shapes of each of its outputs.

Returns:

A GraphDef [https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto]
protocol buffer.

Raises:

		ValueError: If the graph_def would be too large.

tf.Graph.finalize() {#Graph.finalize}

Finalizes this graph, making it read-only.

After calling g.finalize(), no new operations can be added to
g. This method is used to ensure that no operations are added
to a graph when it is shared between multiple threads, for example
when using a QueueRunner.

tf.Graph.finalized {#Graph.finalized}

True if this graph has been finalized.

tf.Graph.control_dependencies(control_inputs) {#Graph.control_dependencies}

Returns a context manager that specifies control dependencies.

Use with the with keyword to specify that all operations constructed
within the context should have control dependencies on
control_inputs. For example:

with g.control_dependencies([a, b, c]):
 # `d` and `e` will only run after `a`, `b`, and `c` have executed.
 d = ...
 e = ...

Multiple calls to control_dependencies() can be nested, and in
that case a new Operation will have control dependencies on the union
of control_inputs from all active contexts.

with g.control_dependencies([a, b]):
 # Ops constructed here run after `a` and `b`.
 with g.control_dependencies([c, d]):
 # Ops constructed here run after `a`, `b`, `c`, and `d`.

You can pass None to clear the control dependencies:

with g.control_dependencies([a, b]):
 # Ops constructed here run after `a` and `b`.
 with g.control_dependencies(None):
 # Ops constructed here run normally, not waiting for either `a` or `b`.
 with g.control_dependencies([c, d]):
 # Ops constructed here run after `c` and `d`, also not waiting
 # for either `a` or `b`.

N.B. The control dependencies context applies only to ops that
are constructed within the context. Merely using an op or tensor
in the context does not add a control dependency. The following
example illustrates this point:

WRONG
def my_func(pred, tensor):
 t = tf.matmul(tensor, tensor)
 with tf.control_dependencies([pred]):
 # The matmul op is created outside the context, so no control
 # dependency will be added.
 return t

RIGHT
def my_func(pred, tensor):
 with tf.control_dependencies([pred]):
 # The matmul op is created in the context, so a control dependency
 # will be added.
 return tf.matmul(tensor, tensor)

Args:

		control_inputs: A list of Operation or Tensor objects which
must be executed or computed before running the operations
defined in the context. Can also be None to clear the control
dependencies.

Returns:

A context manager that specifies control dependencies for all
operations constructed within the context.

Raises:

		TypeError: If control_inputs is not a list of Operation or
Tensor objects.

tf.Graph.device(device_name_or_function) {#Graph.device}

Returns a context manager that specifies the default device to use.

The device_name_or_function argument may either be a device name
string, a device function, or None:

		If it is a device name string, all operations constructed in
this context will be assigned to the device with that name, unless
overridden by a nested device() context.

		If it is a function, it will be treated as a function from
Operation objects to device name strings, and invoked each time
a new Operation is created. The Operation will be assigned to
the device with the returned name.

		If it is None, all device() invocations from the enclosing context
will be ignored.

For information about the valid syntax of device name strings, see
the documentation in
DeviceNameUtils [https://www.tensorflow.org/code/tensorflow/core/util/device_name_utils.h].

For example:

with g.device('/gpu:0'):
 # All operations constructed in this context will be placed
 # on GPU 0.
 with g.device(None):
 # All operations constructed in this context will have no
 # assigned device.

Defines a function from `Operation` to device string.
def matmul_on_gpu(n):
 if n.type == "MatMul":
 return "/gpu:0"
 else:
 return "/cpu:0"

with g.device(matmul_on_gpu):
 # All operations of type "MatMul" constructed in this context
 # will be placed on GPU 0; all other operations will be placed
 # on CPU 0.

N.B. The device scope may be overridden by op wrappers or
other library code. For example, a variable assignment op
v.assign() must be colocated with the tf.Variable v, and
incompatible device scopes will be ignored.

Args:

		device_name_or_function: The device name or function to use in
the context.

Returns:

A context manager that specifies the default device to use for newly
created ops.

tf.Graph.name_scope(name) {#Graph.name_scope}

Returns a context manager that creates hierarchical names for operations.

A graph maintains a stack of name scopes. A with name_scope(...):
statement pushes a new name onto the stack for the lifetime of the context.

The name argument will be interpreted as follows:

		A string (not ending with ‘/’) will create a new name scope, in which
name is appended to the prefix of all operations created in the
context. If name has been used before, it will be made unique by
calling self.unique_name(name).

		A scope previously captured from a with g.name_scope(...) as scope: statement will be treated as an “absolute” name scope, which
makes it possible to re-enter existing scopes.

		A value of None or the empty string will reset the current name scope
to the top-level (empty) name scope.

For example:

with tf.Graph().as_default() as g:
 c = tf.constant(5.0, name="c")
 assert c.op.name == "c"
 c_1 = tf.constant(6.0, name="c")
 assert c_1.op.name == "c_1"

 # Creates a scope called "nested"
 with g.name_scope("nested") as scope:
 nested_c = tf.constant(10.0, name="c")
 assert nested_c.op.name == "nested/c"

 # Creates a nested scope called "inner".
 with g.name_scope("inner"):
 nested_inner_c = tf.constant(20.0, name="c")
 assert nested_inner_c.op.name == "nested/inner/c"

 # Create a nested scope called "inner_1".
 with g.name_scope("inner"):
 nested_inner_1_c = tf.constant(30.0, name="c")
 assert nested_inner_1_c.op.name == "nested/inner_1/c"

 # Treats `scope` as an absolute name scope, and
 # switches to the "nested/" scope.
 with g.name_scope(scope):
 nested_d = tf.constant(40.0, name="d")
 assert nested_d.op.name == "nested/d"

 with g.name_scope(""):
 e = tf.constant(50.0, name="e")
 assert e.op.name == "e"

The name of the scope itself can be captured by with g.name_scope(...) as scope:, which stores the name of the scope
in the variable scope. This value can be used to name an
operation that represents the overall result of executing the ops
in a scope. For example:

inputs = tf.constant(...)
with g.name_scope('my_layer') as scope:
 weights = tf.Variable(..., name="weights")
 biases = tf.Variable(..., name="biases")
 affine = tf.matmul(inputs, weights) + biases
 output = tf.nn.relu(affine, name=scope)

NOTE: This constructor validates the given name. Valid scope
names match one of the following regular expressions:

[A-Za-z0-9.][A-Za-z0-9_.\\-/]* (for scopes at the root)
[A-Za-z0-9_.\\-/]* (for other scopes)

Args:

		name: A name for the scope.

Returns:

A context manager that installs name as a new name scope.

Raises:

		ValueError: If name is not a valid scope name. The rules are the

A Graph instance supports an arbitrary number of “collections”
that are identified by name. For convenience when building a large
graph, collections can store groups of related objects: for
example, the tf.Variable uses a collection (named
tf.GraphKeys.VARIABLES) for
all variables that are created during the construction of a graph. The caller
may define additional collections by specifying a new name.

tf.Graph.add_to_collection(name, value) {#Graph.add_to_collection}

Stores value in the collection with the given name.

Note that collections are not sets, so it is possible to add a value to
a collection several times.

Args:

		name: The key for the collection. The GraphKeys class
contains many standard names for collections.

		value: The value to add to the collection.

tf.Graph.add_to_collections(names, value) {#Graph.add_to_collections}

Stores value in the collections given by names.

Note that collections are not sets, so it is possible to add a value to
a collection several times. This function makes sure that duplicates in
names are ignored, but it will not check for pre-existing membership of
value in any of the collections in names.

names can be any iterable, but if names is a string, it is treated as a
single collection name.

Args:

		names: The keys for the collections to add to. The GraphKeys class
contains many standard names for collections.

		value: The value to add to the collections.

tf.Graph.get_collection(name, scope=None) {#Graph.get_collection}

Returns a list of values in the collection with the given name.

This is different from get_collection_ref() which always returns the
actual collection list if it exists in that it returns a new list each time
it is called.

Args:

		name: The key for the collection. For example, the GraphKeys class
contains many standard names for collections.

		scope: (Optional.) If supplied, the resulting list is filtered to include
only items whose name attribute matches using re.match. Items
without a name attribute are never returned if a scope is supplied and
the choice or re.match means that a scope without special tokens
filters by prefix.

Returns:

The list of values in the collection with the given name, or
an empty list if no value has been added to that collection. The
list contains the values in the order under which they were
collected.

tf.Graph.get_collection_ref(name) {#Graph.get_collection_ref}

Returns a list of values in the collection with the given name.

If the collection exists, this returns the list itself, which can
be modified in place to change the collection. If the collection does
not exist, it is created as an empty list and the list is returned.

This is different from get_collection() which always returns a copy of
the collection list if it exists and never creates an empty collection.

Args:

		name: The key for the collection. For example, the GraphKeys class
contains many standard names for collections.

Returns:

The list of values in the collection with the given name, or an empty
list if no value has been added to that collection.

tf.Graph.as_graph_element(obj, allow_tensor=True, allow_operation=True) {#Graph.as_graph_element}

Returns the object referred to by obj, as an Operation or Tensor.

This function validates that obj represents an element of this
graph, and gives an informative error message if it is not.

This function is the canonical way to get/validate an object of
one of the allowed types from an external argument reference in the
Session API.

This method may be called concurrently from multiple threads.

Args:

		obj: A Tensor, an Operation, or the name of a tensor or operation.
Can also be any object with an _as_graph_element() method that returns
a value of one of these types.

		allow_tensor: If true, obj may refer to a Tensor.

		allow_operation: If true, obj may refer to an Operation.

Returns:

The Tensor or Operation in the Graph corresponding to obj.

Raises:

		TypeError: If obj is not a type we support attempting to convert
to types.

		ValueError: If obj is of an appropriate type but invalid. For
example, an invalid string.

		KeyError: If obj is not an object in the graph.

tf.Graph.get_operation_by_name(name) {#Graph.get_operation_by_name}

Returns the Operation with the given name.

This method may be called concurrently from multiple threads.

Args:

		name: The name of the Operation to return.

Returns:

The Operation with the given name.

Raises:

		TypeError: If name is not a string.

		KeyError: If name does not correspond to an operation in this graph.

tf.Graph.get_tensor_by_name(name) {#Graph.get_tensor_by_name}

Returns the Tensor with the given name.

This method may be called concurrently from multiple threads.

Args:

		name: The name of the Tensor to return.

Returns:

The Tensor with the given name.

Raises:

		TypeError: If name is not a string.

		KeyError: If name does not correspond to a tensor in this graph.

tf.Graph.get_operations() {#Graph.get_operations}

Return the list of operations in the graph.

You can modify the operations in place, but modifications
to the list such as inserts/delete have no effect on the
list of operations known to the graph.

This method may be called concurrently from multiple threads.

Returns:

A list of Operations.

tf.Graph.seed {#Graph.seed}

The graph-level random seed of this graph.

tf.Graph.unique_name(name, mark_as_used=True) {#Graph.unique_name}

Return a unique operation name for name.

Note: You rarely need to call unique_name() directly. Most of
the time you just need to create with g.name_scope() blocks to
generate structured names.

unique_name is used to generate structured names, separated by
"/", to help identify operations when debugging a graph.
Operation names are displayed in error messages reported by the
TensorFlow runtime, and in various visualization tools such as
TensorBoard.

If mark_as_used is set to True, which is the default, a new
unique name is created and marked as in use. If it’s set to False,
the unique name is returned without actually being marked as used.
This is useful when the caller simply wants to know what the name
to be created will be.

Args:

		name: The name for an operation.

		mark_as_used: Whether to mark this name as being used.

Returns:

A string to be passed to create_op() that will be used
to name the operation being created.

tf.Graph.version {#Graph.version}

Returns a version number that increases as ops are added to the graph.

Note that this is unrelated to the
GraphDef version.

tf.Graph.graph_def_versions {#Graph.graph_def_versions}

The GraphDef version information of this graph.

For details on the meaning of each version, see [GraphDef]
(https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto).

Returns:

A VersionDef.

tf.Graph.create_op(op_type, inputs, dtypes, input_types=None, name=None, attrs=None, op_def=None, compute_shapes=True, compute_device=True) {#Graph.create_op}

Creates an Operation in this graph.

This is a low-level interface for creating an Operation. Most
programs will not call this method directly, and instead use the
Python op constructors, such as tf.constant(), which add ops to
the default graph.

Args:

		op_type: The Operation type to create. This corresponds to the
OpDef.name field for the proto that defines the operation.

		inputs: A list of Tensor objects that will be inputs to the Operation.

		dtypes: A list of DType objects that will be the types of the tensors
that the operation produces.

		input_types: (Optional.) A list of DTypes that will be the types of
the tensors that the operation consumes. By default, uses the base
DType of each input in inputs. Operations that expect
reference-typed inputs must specify input_types explicitly.

		name: (Optional.) A string name for the operation. If not specified, a
name is generated based on op_type.

		attrs: (Optional.) A dictionary where the key is the attribute name (a
string) and the value is the respective attr attribute of the
NodeDef proto that will represent the operation (an AttrValue
proto).

		op_def: (Optional.) The OpDef proto that describes the op_type that
the operation will have.

		compute_shapes: (Optional.) If True, shape inference will be performed
to compute the shapes of the outputs.

		compute_device: (Optional.) If True, device functions will be executed
to compute the device property of the Operation.

Raises:

		TypeError: if any of the inputs is not a Tensor.

		ValueError: if colocation conflicts with existing device assignment.

Returns:

An Operation object.

tf.Graph.gradient_override_map(op_type_map) {#Graph.gradient_override_map}

EXPERIMENTAL: A context manager for overriding gradient functions.

This context manager can be used to override the gradient function
that will be used for ops within the scope of the context.

For example:

@tf.RegisterGradient("CustomSquare")
def _custom_square_grad(op, grad):
 # ...

with tf.Graph().as_default() as g:
 c = tf.constant(5.0)
 s_1 = tf.square(c) # Uses the default gradient for tf.square.
 with g.gradient_override_map({"Square": "CustomSquare"}):
 s_2 = tf.square(s_2) # Uses _custom_square_grad to compute the
 # gradient of s_2.

Args:

		op_type_map: A dictionary mapping op type strings to alternative op
type strings.

Returns:

A context manager that sets the alternative op type to be used for one
or more ops created in that context.

Raises:

		TypeError: If op_type_map is not a dictionary mapping strings to
strings.

Other Methods

tf.Graph.colocate_with(op, ignore_existing=False) {#Graph.colocate_with}

Returns a context manager that specifies an op to colocate with.

Note: this function is not for public use, only for internal libraries.

For example:

a = tf.Variable([1.0])
with g.colocate_with(a):
 b = tf.constant(1.0)
 c = tf.add(a, b)

b and c will always be colocated with a, no matter where a
is eventually placed.

Args:

		op: The op to colocate all created ops with.

		ignore_existing: If true, only applies colocation of this op within
the context, rather than applying all colocation properties
on the stack.

Raises:

		ValueError: if op is None.

Yields:

A context manager that specifies the op with which to colocate
newly created ops.

tf.Graph.container(container_name) {#Graph.container}

Returns a context manager that specifies the resource container to use.

Stateful operations, such as variables and queues, can maintain their
states on devices so that they can be shared by multiple processes.
A resource container is a string name under which these stateful
operations are tracked. These resources can be released or cleared
with tf.Session.reset().

For example:

with g.container('experiment0'):
 # All stateful Operations constructed in this context will be placed
 # in resource container "experiment0".
 v1 = tf.Variable([1.0])
 v2 = tf.Variable([2.0])
 with g.container("experiment1"):
 # All stateful Operations constructed in this context will be
 # placed in resource container "experiment1".
 v3 = tf.Variable([3.0])
 q1 = tf.FIFOQueue(10, tf.float32)
 # All stateful Operations constructed in this context will be
 # be created in the "experiment0".
 v4 = tf.Variable([4.0])
 q1 = tf.FIFOQueue(20, tf.float32)
 with g.container(""):
 # All stateful Operations constructed in this context will be
 # be placed in the default resource container.
 v5 = tf.Variable([5.0])
 q3 = tf.FIFOQueue(30, tf.float32)

Resets container "experiment0", after which the state of v1, v2, v4, q1
will become undefined (such as uninitialized).
tf.Session.reset(target, ["experiment0"])

Args:

		container_name: container name string.

Returns:

A context manager for defining resource containers for stateful ops,
yields the container name.

tf.Graph.get_all_collection_keys() {#Graph.get_all_collection_keys}

Returns a list of collections used in this graph.

tf.Graph.is_feedable(tensor) {#Graph.is_feedable}

Returns True if and only if tensor is feedable.

tf.Graph.is_fetchable(tensor_or_op) {#Graph.is_fetchable}

Returns True if and only if tensor_or_op is fetchable.

tf.Graph.prevent_feeding(tensor) {#Graph.prevent_feeding}

Marks the given tensor as unfeedable in this graph.

tf.Graph.prevent_fetching(op) {#Graph.prevent_fetching}

Marks the given op as unfetchable in this graph.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.nn.conv3d.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.conv3d(input, filter, strides, padding, name=None) {#conv3d}

Computes a 3-D convolution given 5-D input and filter tensors.

In signal processing, cross-correlation is a measure of similarity of
two waveforms as a function of a time-lag applied to one of them. This
is also known as a sliding dot product or sliding inner-product.

Our Conv3D implements a form of cross-correlation.

Args:

		input: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
Shape [batch, in_depth, in_height, in_width, in_channels].

		filter: A Tensor. Must have the same type as input.
Shape [filter_depth, filter_height, filter_width, in_channels, out_channels]. in_channels must match between input and filter.

		strides: A list of ints that has length >= 5.
1-D tensor of length 5. The stride of the sliding window for each
dimension of input. Must have strides[0] = strides[4] = 1.

		padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.nn.relu.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.relu(features, name=None) {#relu}

Computes rectified linear: max(features, 0).

Args:

		features: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as features.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.load_file_system_library.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.load_file_system_library(library_filename) {#load_file_system_library}

Loads a TensorFlow plugin, containing file system implementation.

Pass library_filename to a platform-specific mechanism for dynamically
loading a library. The rules for determining the exact location of the
library are platform-specific and are not documented here.

Args:

		library_filename: Path to the plugin.
Relative or absolute filesystem path to a dynamic library file.

Returns:

None.

Raises:

		RuntimeError: when unable to load the library.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.SparseTensorValue.__new__.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.SparseTensorValue.__new__(_cls, indices, values, shape) {#SparseTensorValue.new}

Create new instance of SparseTensorValue(indices, values, shape)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.asin.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.asin(x, name=None) {#asin}

Computes asin of x element-wise.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.graph_editor.detach_control_outputs.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.detach_control_outputs(sgv, control_outputs) {#detach_control_outputs}

Detach all the external control outputs of the subgraph sgv.

Args:

		sgv: the subgraph view to be detached. This argument is converted to a
subgraph using the same rules as the function subgraph.make_view.

		control_outputs: a util.ControlOutputs instance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.initialize_all_variables.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.initialize_all_variables() {#initialize_all_variables}

Returns an Op that initializes all variables.

This is just a shortcut for initialize_variables(all_variables())

Returns:

An Op that initializes all variables in the graph.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.logical_and.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.logical_and(x, y, name=None) {#logical_and}

Returns the truth value of x AND y element-wise.

NOTE: LogicalAnd supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor of type bool.

		y: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.metrics.streaming_covariance.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.streaming_covariance(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None) {#streaming_covariance}

Computes the unbiased sample covariance between predictions and labels.

The streaming_covariance function creates four local variables,
comoment, mean_prediction, mean_label, and count, which are used to
compute the sample covariance between predictions and labels across multiple
batches of data. The covariance is ultimately returned as an idempotent
operation that simply divides comoment by count - 1. We use count - 1
in order to get an unbiased estimate.

The algorithm used for this online computation is described in
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
Specifically, the formula used to combine two sample comoments is
C_AB = C_A + C_B + (E[x_A] - E[x_B]) * (E[y_A] - E[y_B]) * n_A * n_B / n_AB
The comoment for a single batch of data is simply
sum((x - E[x]) * (y - E[y])), optionally weighted.

If weights is not None, then it is used to compute weighted comoments,
means, and count. NOTE: these weights are treated as “frequency weights”, as
opposed to “reliability weights”. See discussion of the difference on
https://wikipedia.org/wiki/Weighted_arithmetic_mean#Weighted_sample_variance

To facilitate the computation of covariance across multiple batches of data,
the function creates an update_op operation, which updates underlying
variables and returns the updated covariance.

Args:

		predictions: A Tensor of arbitrary size.

		labels: A Tensor of the same size as predictions.

		weights: An optional set of weights which indicates the frequency with which
an example is sampled. Must be broadcastable with labels.

		metrics_collections: An optional list of collections that the metric
value variable should be added to.

		updates_collections: An optional list of collections that the metric update
ops should be added to.

		name: An optional variable_scope name.

Returns:

		covariance: A Tensor representing the current unbiased sample covariance,
comoment / (count - 1).

		update_op: An operation that updates the local variables appropriately.

Raises:

		ValueError: If labels and predictions are of different sizes or if either
metrics_collections or updates_collections are not a list or tuple.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.range.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.range(start, limit=None, delta=1, name='range') {#range}

Creates a sequence of integers.

Creates a sequence of integers that begins at start and extends by
increments of delta up to but not including limit.

Like the Python builtin range, start defaults to 0, so that
range(n) = range(0, n).

For example:

'start' is 3
'limit' is 18
'delta' is 3
tf.range(start, limit, delta) ==> [3, 6, 9, 12, 15]

'limit' is 5
tf.range(limit) ==> [0, 1, 2, 3, 4]

Args:

		start: A 0-D (scalar) of type int32. Acts as first entry in the range if
limit is not None; otherwise, acts as range limit and first entry
defaults to 0.

		limit: A 0-D (scalar) of type int32. Upper limit of sequence,
exclusive. If None, defaults to the value of start while the first
entry of the range defaults to 0.

		delta: A 0-D Tensor (scalar) of type int32. Number that increments
start. Defaults to 1.

		name: A name for the operation. Defaults to “range”.

Returns:

An 1-D int32 Tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.TFRecordReader.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A Reader that outputs the records from a TFRecords file.

See ReaderBase for supported methods.

tf.TFRecordReader.__init__(name=None, options=None) {#TFRecordReader.init}

Create a TFRecordReader.

Args:

		name: A name for the operation (optional).

		options: A TFRecordOptions object (optional).

tf.TFRecordReader.num_records_produced(name=None) {#TFRecordReader.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.TFRecordReader.num_work_units_completed(name=None) {#TFRecordReader.num_work_units_completed}

Returns the number of work units this reader has finished processing.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.TFRecordReader.read(queue, name=None) {#TFRecordReader.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

		key: A string scalar Tensor.

		value: A string scalar Tensor.

tf.TFRecordReader.read_up_to(queue, num_records, name=None) {#TFRecordReader.read_up_to}

Returns up to num_records (key, value pairs) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g., when the
Reader needs to start reading from a new file since it has
finished with the previous file).
It may return less than num_records even before the last batch.

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		num_records: Number of records to read.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (keys, values).

		keys: A 1-D string Tensor.

		values: A 1-D string Tensor.

tf.TFRecordReader.reader_ref {#TFRecordReader.reader_ref}

Op that implements the reader.

tf.TFRecordReader.reset(name=None) {#TFRecordReader.reset}

Restore a reader to its initial clean state.

Args:

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.TFRecordReader.restore_state(state, name=None) {#TFRecordReader.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

		state: A string Tensor.
Result of a SerializeState of a Reader with matching type.

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.TFRecordReader.serialize_state(name=None) {#TFRecordReader.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

		name: A name for the operation (optional).

Returns:

A string Tensor.

tf.TFRecordReader.supports_serialize {#TFRecordReader.supports_serialize}

Whether the Reader implementation can serialize its state.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.listdiff.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.listdiff(x, y, out_idx=None, name=None) {#listdiff}

Computes the difference between two lists of numbers or strings.

Given a list x and a list y, this operation returns a list out that
represents all values that are in x but not in y. The returned list out
is sorted in the same order that the numbers appear in x (duplicates are
preserved). This operation also returns a list idx that represents the
position of each out element in x. In other words:

out[i] = x[idx[i]] for i in [0, 1, ..., len(out) - 1]

For example, given this input:

x = [1, 2, 3, 4, 5, 6]
y = [1, 3, 5]

This operation would return:

out ==> [2, 4, 6]
idx ==> [1, 3, 5]

Args:

		x: A Tensor. 1-D. Values to keep.

		y: A Tensor. Must have the same type as x. 1-D. Values to remove.

		out_idx: An optional tf.DType from: tf.int32, tf.int64. Defaults to tf.int32.

		name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (out, idx).

		out: A Tensor. Has the same type as x. 1-D. Values present in x but not in y.

		idx: A Tensor of type out_idx. 1-D. Positions of x values preserved in out.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.crf.CrfForwardRnnCell.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Computes the alpha values in a linear-chain CRF.

See http://www.cs.columbia.edu/~mcollins/fb.pdf for reference.

tf.contrib.crf.CrfForwardRnnCell.__call__(inputs, state, scope=None) {#CrfForwardRnnCell.call}

Build the CrfForwardRnnCell.

Args:

		inputs: A [batch_size, num_tags] matrix of unary potentials.

		state: A [batch_size, num_tags] matrix containing the previous alpha
values.

		scope: Unused variable scope of this cell.

Returns:

new_alphas, new_alphas: A pair of [batch_size, num_tags] matrices
values containing the new alpha values.

tf.contrib.crf.CrfForwardRnnCell.__init__(transition_params) {#CrfForwardRnnCell.init}

Initialize the CrfForwardRnnCell.

Args:

		transition_params: A [num_tags, num_tags] matrix of binary potentials.
This matrix is expanded into a [1, num_tags, num_tags] in preparation
for the broadcast summation occurring within the cell.

tf.contrib.crf.CrfForwardRnnCell.output_size {#CrfForwardRnnCell.output_size}

tf.contrib.crf.CrfForwardRnnCell.state_size {#CrfForwardRnnCell.state_size}

tf.contrib.crf.CrfForwardRnnCell.zero_state(batch_size, dtype) {#CrfForwardRnnCell.zero_state}

Return zero-filled state tensor(s).

Args:

		batch_size: int, float, or unit Tensor representing the batch size.

		dtype: the data type to use for the state.

Returns:

If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.RandomShuffleQueue.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A queue implementation that dequeues elements in a random order.

See tf.QueueBase for a description of the methods on
this class.

tf.RandomShuffleQueue.__init__(capacity, min_after_dequeue, dtypes, shapes=None, names=None, seed=None, shared_name=None, name='random_shuffle_queue') {#RandomShuffleQueue.init}

Create a queue that dequeues elements in a random order.

A RandomShuffleQueue has bounded capacity; supports multiple
concurrent producers and consumers; and provides exactly-once
delivery.

A RandomShuffleQueue holds a list of up to capacity
elements. Each element is a fixed-length tuple of tensors whose
dtypes are described by dtypes, and whose shapes are optionally
described by the shapes argument.

If the shapes argument is specified, each component of a queue
element must have the respective fixed shape. If it is
unspecified, different queue elements may have different shapes,
but the use of dequeue_many is disallowed.

The min_after_dequeue argument allows the caller to specify a
minimum number of elements that will remain in the queue after a
dequeue or dequeue_many operation completes, to ensure a
minimum level of mixing of elements. This invariant is maintained
by blocking those operations until sufficient elements have been
enqueued. The min_after_dequeue argument is ignored after the
queue has been closed.

Args:

		capacity: An integer. The upper bound on the number of elements
that may be stored in this queue.

		min_after_dequeue: An integer (described above).

		dtypes: A list of DType objects. The length of dtypes must equal
the number of tensors in each queue element.

		shapes: (Optional.) A list of fully-defined TensorShape objects
with the same length as dtypes, or None.

		names: (Optional.) A list of string naming the components in the queue
with the same length as dtypes, or None. If specified the dequeue
methods return a dictionary with the names as keys.

		seed: A Python integer. Used to create a random seed. See
set_random_seed
for behavior.

		shared_name: (Optional.) If non-empty, this queue will be shared under
the given name across multiple sessions.

		name: Optional name for the queue operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.learn.monitors.CaptureVariable.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Captures a variable’s values into a collection.

This monitor is useful for unit testing. You should exercise caution when
using this monitor in production, since it never discards values.

This is an EveryN monitor and has consistent semantic for every_n
and first_n.

tf.contrib.learn.monitors.CaptureVariable.__init__(var_name, every_n=100, first_n=1) {#CaptureVariable.init}

Initializes a CaptureVariable monitor.

Args:

		var_name: string. The variable name, including suffix (typically ”:0”).

		every_n: int, print every N steps. See PrintN.

		first_n: int, also print the first N steps. See PrintN.

tf.contrib.learn.monitors.CaptureVariable.begin(max_steps=None) {#CaptureVariable.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.CaptureVariable.end(session=None) {#CaptureVariable.end}

tf.contrib.learn.monitors.CaptureVariable.epoch_begin(epoch) {#CaptureVariable.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.CaptureVariable.epoch_end(epoch) {#CaptureVariable.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.CaptureVariable.every_n_post_step(step, session) {#CaptureVariable.every_n_post_step}

Callback after a step is finished or end() is called.

Args:

		step: int, the current value of the global step.

		session: Session object.

tf.contrib.learn.monitors.CaptureVariable.every_n_step_begin(step) {#CaptureVariable.every_n_step_begin}

tf.contrib.learn.monitors.CaptureVariable.every_n_step_end(step, outputs) {#CaptureVariable.every_n_step_end}

tf.contrib.learn.monitors.CaptureVariable.post_step(step, session) {#CaptureVariable.post_step}

tf.contrib.learn.monitors.CaptureVariable.run_on_all_workers {#CaptureVariable.run_on_all_workers}

tf.contrib.learn.monitors.CaptureVariable.set_estimator(estimator) {#CaptureVariable.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.CaptureVariable.step_begin(step) {#CaptureVariable.step_begin}

Overrides BaseMonitor.step_begin.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

Returns:

A list, the result of every_n_step_begin, if that was called this step,
or an empty list otherwise.

Raises:

		ValueError: if called more than once during a step.

tf.contrib.learn.monitors.CaptureVariable.step_end(step, output) {#CaptureVariable.step_end}

Overrides BaseMonitor.step_end.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool, the result of every_n_step_end, if that was called this step,
or False otherwise.

tf.contrib.learn.monitors.CaptureVariable.values {#CaptureVariable.values}

Returns the values captured so far.

Returns:

dict mapping int step numbers to that values of the variable at the
respective step.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 BernoulliWithSigmoidPTensor is a StochasticTensor backed by the distribution BernoulliWithSigmoidP.

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#BernoulliWithSigmoidPTensor.init}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.clone(name=None, **dist_args) {#BernoulliWithSigmoidPTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.distribution {#BernoulliWithSigmoidPTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.dtype {#BernoulliWithSigmoidPTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.entropy(name='entropy') {#BernoulliWithSigmoidPTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.graph {#BernoulliWithSigmoidPTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.input_dict {#BernoulliWithSigmoidPTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.loss(final_loss, name='Loss') {#BernoulliWithSigmoidPTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.mean(name='mean') {#BernoulliWithSigmoidPTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.name {#BernoulliWithSigmoidPTensor.name}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.value(name='value') {#BernoulliWithSigmoidPTensor.value}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.value_type {#BernoulliWithSigmoidPTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.test.assert_equal_graph_def.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.test.assert_equal_graph_def(actual, expected) {#assert_equal_graph_def}

Asserts that two GraphDefs are (mostly) the same.

Compares two GraphDef protos for equality, ignoring versions and ordering of
nodes, attrs, and control inputs. Node names are used to match up nodes
between the graphs, so the naming of nodes must be consistent.

Args:

		actual: The GraphDef we have.

		expected: The GraphDef we expected.

Raises:

		AssertionError: If the GraphDefs do not match.

		TypeError: If either argument is not a GraphDef.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.learn.run_n.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.learn.run_n(output_dict, feed_dict=None, restore_checkpoint_path=None, n=1) {#run_n}

Run output_dict tensors n times, with the same feed_dict each run.

Args:

		output_dict: A dict mapping string names to tensors to run. Must all be
from the same graph.

		feed_dict: dict of input values to feed each run.

		restore_checkpoint_path: A string containing the path to a checkpoint to
restore.

		n: Number of times to repeat.

Returns:

A list of n dict objects, each containing values read from output_dict
tensors.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.TextLineReader.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A Reader that outputs the lines of a file delimited by newlines.

Newlines are stripped from the output.
See ReaderBase for supported methods.

tf.TextLineReader.__init__(skip_header_lines=None, name=None) {#TextLineReader.init}

Create a TextLineReader.

Args:

		skip_header_lines: An optional int. Defaults to 0. Number of lines
to skip from the beginning of every file.

		name: A name for the operation (optional).

tf.TextLineReader.num_records_produced(name=None) {#TextLineReader.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.TextLineReader.num_work_units_completed(name=None) {#TextLineReader.num_work_units_completed}

Returns the number of work units this reader has finished processing.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.TextLineReader.read(queue, name=None) {#TextLineReader.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

		key: A string scalar Tensor.

		value: A string scalar Tensor.

tf.TextLineReader.read_up_to(queue, num_records, name=None) {#TextLineReader.read_up_to}

Returns up to num_records (key, value pairs) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g., when the
Reader needs to start reading from a new file since it has
finished with the previous file).
It may return less than num_records even before the last batch.

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		num_records: Number of records to read.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (keys, values).

		keys: A 1-D string Tensor.

		values: A 1-D string Tensor.

tf.TextLineReader.reader_ref {#TextLineReader.reader_ref}

Op that implements the reader.

tf.TextLineReader.reset(name=None) {#TextLineReader.reset}

Restore a reader to its initial clean state.

Args:

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.TextLineReader.restore_state(state, name=None) {#TextLineReader.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

		state: A string Tensor.
Result of a SerializeState of a Reader with matching type.

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.TextLineReader.serialize_state(name=None) {#TextLineReader.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

		name: A name for the operation (optional).

Returns:

A string Tensor.

tf.TextLineReader.supports_serialize {#TextLineReader.supports_serialize}

Whether the Reader implementation can serialize its state.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.errors.UnavailableError.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Raised when the runtime is currently unavailable.

This exception is not currently used.

tf.errors.UnavailableError.__init__(node_def, op, message) {#UnavailableError.init}

Creates an UnavailableError.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.layers.repeat.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.repeat(inputs, repetitions, layer, *args, **kwargs) {#repeat}

Applies the same layer with the same arguments repeatedly.

 y = repeat(x, 3, conv2d, 64, [3, 3], scope='conv1')
 # It is equivalent to:

 x = conv2d(x, 64, [3, 3], scope='conv1/conv1_1')
 x = conv2d(x, 64, [3, 3], scope='conv1/conv1_2')
 y = conv2d(x, 64, [3, 3], scope='conv1/conv1_3')

If the scope argument is not given in kwargs, it is set to
layer.__name__, or layer.func.__name__ (for functools.partial
objects). If neither __name__ nor func.__name__ is available, the
layers are called with scope='stack'.

Args:

		inputs: A Tensor suitable for layer.

		repetitions: Int, number of repetitions.

		layer: A layer with arguments (inputs, *args, **kwargs)

		*args: Extra args for the layer.

		**kwargs: Extra kwargs for the layer.

Returns:

a tensor result of applying the layer, repetitions times.

Raises:

		ValueError: if the op is unknown or wrong.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.tan.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.tan(x, name=None) {#tan}

Computes tan of x element-wise.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.distributions.Chi2.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 The Chi2 distribution with degrees of freedom df.

The PDF of this distribution is:

pdf(x) = (x^(df/2 - 1)e^(-x/2))/(2^(df/2)Gamma(df/2)), x > 0

Note that the Chi2 distribution is a special case of the Gamma distribution,
with Chi2(df) = Gamma(df/2, 1/2).

tf.contrib.distributions.Chi2.__init__(df, validate_args=False, allow_nan_stats=True, name='Chi2') {#Chi2.init}

Construct Chi2 distributions with parameter df.

Args:

		df: Floating point tensor, the degrees of freedom of the
distribution(s). df must contain only positive values.

		validate_args: Boolean, default False. Whether to assert that
df > 0, and that x > 0 in the methods prob(x) and log_prob(x).
If validate_args is False and the inputs are invalid, correct
behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to prepend to all ops created by this distribution.

tf.contrib.distributions.Chi2.allow_nan_stats {#Chi2.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Chi2.alpha {#Chi2.alpha}

Shape parameter.

tf.contrib.distributions.Chi2.batch_shape(name='batch_shape') {#Chi2.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Chi2.beta {#Chi2.beta}

Inverse scale parameter.

tf.contrib.distributions.Chi2.cdf(value, name='cdf') {#Chi2.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Chi2.df {#Chi2.df}

tf.contrib.distributions.Chi2.dtype {#Chi2.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Chi2.entropy(name='entropy') {#Chi2.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Chi2.event_shape(name='event_shape') {#Chi2.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Chi2.get_batch_shape() {#Chi2.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Chi2.get_event_shape() {#Chi2.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Chi2.is_continuous {#Chi2.is_continuous}

tf.contrib.distributions.Chi2.is_reparameterized {#Chi2.is_reparameterized}

tf.contrib.distributions.Chi2.log_cdf(value, name='log_cdf') {#Chi2.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Chi2.log_pdf(value, name='log_pdf') {#Chi2.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Chi2.log_pmf(value, name='log_pmf') {#Chi2.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Chi2.log_prob(value, name='log_prob') {#Chi2.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Chi2.log_survival_function(value, name='log_survival_function') {#Chi2.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Chi2.mean(name='mean') {#Chi2.mean}

Mean.

tf.contrib.distributions.Chi2.mode(name='mode') {#Chi2.mode}

Mode.

tf.contrib.distributions.Chi2.name {#Chi2.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Chi2.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Chi2.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Chi2.param_static_shapes(cls, sample_shape) {#Chi2.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Chi2.parameters {#Chi2.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Chi2.pdf(value, name='pdf') {#Chi2.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Chi2.pmf(value, name='pmf') {#Chi2.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Chi2.prob(value, name='prob') {#Chi2.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Chi2.sample(sample_shape=(), seed=None, name='sample') {#Chi2.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Chi2.sample_n(n, seed=None, name='sample_n') {#Chi2.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Chi2.std(name='std') {#Chi2.std}

Standard deviation.

tf.contrib.distributions.Chi2.survival_function(value, name='survival_function') {#Chi2.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Chi2.validate_args {#Chi2.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Chi2.variance(name='variance') {#Chi2.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.expand_dims.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.expand_dims(input, dim, name=None) {#expand_dims}

Inserts a dimension of 1 into a tensor’s shape.

Given a tensor input, this operation inserts a dimension of 1 at the
dimension index dim of input‘s shape. The dimension index dim starts at
zero; if you specify a negative number for dim it is counted backward from
the end.

This operation is useful if you want to add a batch dimension to a single
element. For example, if you have a single image of shape [height, width, channels], you can make it a batch of 1 image with expand_dims(image, 0),
which will make the shape [1, height, width, channels].

Other examples:

't' is a tensor of shape [2]
shape(expand_dims(t, 0)) ==> [1, 2]
shape(expand_dims(t, 1)) ==> [2, 1]
shape(expand_dims(t, -1)) ==> [2, 1]

't2' is a tensor of shape [2, 3, 5]
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]

This operation requires that:

-1-input.dims() <= dim <= input.dims()

This operation is related to squeeze(), which removes dimensions of
size 1.

Args:

		input: A Tensor.

		dim: A Tensor. Must be one of the following types: int32, int64.
0-D (scalar). Specifies the dimension index at which to
expand the shape of input.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
Contains the same data as input, but its shape has an additional
dimension of size 1 added.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/contrib/metrics/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow evaluation metrics and summary statistics

Evaluation metrics

Metrics are used in evaluation to assess the quality of a model. Most are
“streaming” ops, meaning they create variables to accumulate a running total,
and return an update tensor to update these variables, and a value tensor to
read the accumulated value. Example:

value, update_op = metrics.streaming_mean_squared_error(
predictions, targets, weight)

Most metric functions take a pair of tensors, predictions and ground truth
targets (streaming_mean is an exception, it takes a single value tensor,
usually a loss). It is assumed that the shape of both these tensors is of the
form [batch_size, d1, ... dN] where batch_size is the number of samples in
the batch and d1 ... dN are the remaining dimensions.

The weight parameter can be used to adjust the relative weight of samples
within the batch. The result of each loss is a scalar average of all sample
losses with non-zero weights.

The result is 2 tensors that should be used like the following for each eval
run:

predictions = ...
labels = ...
value, update_op = some_metric(predictions, labels)

for step_num in range(max_steps):
 update_op.run()

print "evaluation score: ", value.eval()

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/contrib/makefile/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow Makefile

The recommended way to build TensorFlow from source is using the Bazel
open-source build system. Sometimes this isn’t possible.

		The build system may not have the RAM or processing power to support Bazel.

		Bazel or its dependencies may not be available.

		You may want to cross-compile for an unsupported target system.

This experimental project supplies a Makefile automatically derived from the
dependencies listed in the Bazel project that can be used with GNU’s make tool.
With it, you can compile the core C++ runtime into a static library.

This static library will not contain:

		Python or other language bindings

		GPU support

You can target:

		iOS

		OS X (macOS)

		Android

		Raspberry-PI

You will compile tensorflow and protobuf libraries that you can link into other
applications. You will also compile the benchmark
application that will let you check your application.

Before you start (all platforms)

First, clone this TensorFlow repository.

You will need to download all dependencies as well. We have provided a script
that does so, to be run (as with all commands) at the root of the repository:

tensorflow/contrib/makefile/download_dependencies.sh

You should only need to do this step once. It downloads the required libraries
like Eigen in the tensorflow/contrib/makefile/downloads/ folder.

You should download the example graph from https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip.

Building on Linux

Note: This has only been tested on Ubuntu.

As a first step, you need to make sure the required packages are installed:

sudo apt-get install autoconf automake libtool curl make g++ unzip zlib1g-dev \
git python

You should then be able to run the build_all_linux.sh script to compile:

tensorflow/contrib/makefile/build_all_linux.sh

This should compile a static library in
tensorflow/contrib/makefile/gen/lib/tf_lib.a, and create an example executable
at tensorflow/contrib/makefile/gen/bin/benchmark.

Get the graph file, if you have not already:

mkdir -p ~/graphs
curl -o ~/graphs/inception.zip \
 https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip \
 && unzip ~/graphs/inception.zip -d ~/graphs/inception

To run the executable, use:

tensorflow/contrib/makefile/gen/bin/benchmark \
 --graph=~/graphs/inception/tensorflow_inception_graph.pb

Android

First, you will need to download and unzip the
Native Development Kit (NDK) [https://developer.android.com/ndk/]. You will not
need to install the standalone toolchain, however.

Assign your NDK location to $NDK_ROOT:

export NDK_ROOT=/absolute/path/to/NDK/android-ndk-rxxx/

Download the graph if you haven’t already:

mkdir -p ~/graphs
curl -o ~/graphs/inception.zip \
 https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip \
 && unzip ~/graphs/inception.zip -d ~/graphs/inception

Then, execute the following:

tensorflow/contrib/makefile/download_dependencies.sh
tensorflow/contrib/makefile/compile_android_protobuf.sh -c
make -f tensorflow/contrib/makefile/Makefile TARGET=ANDROID

At this point, you will have compiled libraries in gen/lib/* and the
benchmark app compiled for Android.

Run the benchmark by pushing both the benchmark and the graph file to your
attached Android device:

adb push ~/graphs/inception/tensorflow_inception_graph.pb /data/local/tmp/
adb push tensorflow/contrib/makefile/gen/bin/benchmark /data/local/tmp/
adb shell '/data/local/tmp/benchmark \
 --graph=/data/local/tmp/classify_image_graph_def.pb \
 --input_layer="input:0" \
 --input_layer_shape="1,224,224,3" \
 --input_layer_type="float" \
 --output_layer="output:0"
'

For more details, see the benchmark documentation.

iOS

Note: To use this library in an iOS application, see related instructions in
the iOS examples directory.

Install XCode 7.3 or more recent. If you have not already, you will need to
install the command-line tools using xcode-select:

xcode-select --install

If this is a new install, you will need to run XCode once to agree to the
license before continuing.

Also, download the graph if you haven’t already:

mkdir -p ~/graphs
curl -o ~/graphs/inception.zip \
 https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip \
 && unzip ~/graphs/inception.zip -d ~/graphs/inception

Building all at once

If you just want to get the libraries compiled in a hurry, you can run this
from the root of your TensorFlow source folder:

tensorflow/contrib/makefile/build_all_ios.sh

This process will take around twenty minutes on a modern MacBook Pro.

When it completes, you will have a library for a single architecture and the
benchmark program. Although successfully compiling the benchmark program is a
sign of success, the program is not a complete iOS app.

To see TensorFlow running on iOS, the example Xcode project in
tensorflow/contrib/ios_examples shows how to use the static
library in a simple app.

Building by hand

This section covers each step of building. For all the code in one place, see
build_all_ios.sh.

If you have not already, you will need to download dependencies:

tensorflow/contrib/makefile/download_dependencies.sh

Next, you will need to compile protobufs for iOS:

compile_ios_protobuf.sh

Then, you can run the makefile specifying iOS as the target, along with the
architecture you want to build for:

make -f tensorflow/contrib/makefile/Makefile \
 TARGET=IOS \
 IOS_ARCH=ARM64

This creates a library in
tensorflow/contrib/makefile/gen/lib/libtensorflow-core.a that you can link any
xcode project against.

At this point, you will have a library for a single architecture and the
benchmark program. Although successfully compiling the benchmark program is a
sign of success, the program is not a complete iOS app.

To see TensorFlow running on iOS, the example Xcode project in
tensorflow/contrib/ios_examples shows how to use the static
library in a simple app.

Universal binaries

In some situations, you will need a universal library. In that case, you will
still need to run compile_ios_protobuf.sh, but this time follow it with:

compile_ios_tensorflow.sh

In XCode, you will need to use -force_load in the linker flags
section of the build settings to pull in the global constructors that are used
to register ops and kernels.

Optimization

The compile_ios_tensorflow.sh script can take optional command-line arguments.
The first argument will be passed as a C++ optimization flag and defaults to
debug mode. If you are concerned about performance or are working on a release
build, you would likely want a higher optimization setting, like so:

compile_ios_tensorflow.sh "-Os"

For other variations of valid optimization flags, see clang optimization levels [http://stackoverflow.com/questions/15548023/clang-optimization-levels].

Raspberry Pi

Building on the Raspberry Pi is similar to a normal Linux system. First
download the dependencies, install the required packages and build protobuf:

tensorflow/contrib/makefile/download_dependencies.sh
sudo apt-get install -y autoconf automake libtool gcc-4.8 g++-4.8
cd tensorflow/contrib/makefile/downloads/protobuf/
./autogen.sh
./configure
make
sudo make install
sudo ldconfig # refresh shared library cache
cd ../../../../..

Once that’s done, you can use make to build the library and example:

make -f tensorflow/contrib/makefile/Makefile HOST_OS=PI TARGET=PI OPTFLAGS="-Os" CXX=g++-4.8

If you’re only interested in building for Raspberry Pi’s 2 and 3, you can supply
some extra optimization flags to give you code that will run faster:

make -f tensorflow/contrib/makefile/Makefile HOST_OS=PI TARGET=PI \
 OPTFLAGS="-Os -mfpu=neon-vfpv4 -funsafe-math-optimizations -ftree-vectorize" CXX=g++-4.8

One thing to be careful of is that the gcc version 4.9 currently installed on
Jessie by default will hit an error mentioning __atomic_compare_exchange. This
is why the examples above specify CXX=g++-4.8 explicitly, and why we install
it using apt-get. If you have partially built using the default gcc 4.9, hit the
error and switch to 4.8, you need to do a
make -f tensorflow/contrib/makefile/Makefile clean before you build. If you
don’t, the build will appear to succeed but you’ll encounter malloc(): memory corruption errors [https://github.com/tensorflow/tensorflow/issues/3442]
when you try to run any programs using the library.

For more examples, look at the tensorflow/contrib/pi_examples folder in the
source tree, which contains code samples aimed at the Raspberry Pi.

Other notes

Supported Systems

The Make script has been tested on Ubuntu and OS X. If you look in the Makefile
itself, you’ll see it’s broken up into host and target sections. If you are
cross-compiling, you should look at customizing the target settings to match
what you need for your desired system.

Dependency Managment

The Makefile loads in a list of dependencies stored in text files. These files
are generated from the main Bazel build by running
tensorflow/contrib/makefile/gen_file_lists.sh. You’ll need to re-run this i
you make changes to the files that are included in the build.

Header dependencies are not automatically tracked by the Makefile, so if you
make header changes you will need to run this command to recompile cleanly:

make -f tensorflow/contrib/makefile/Makefile clean

Cleaning up

In some situations, you may want to completely clean up. The dependencies,
intermediate stages, and generated files are stored in:

tensorflow/contrib/makefile/downloads
tensorflow/contrib/makefile/gen

Those directories can safely be removed, but you will have to start over with
download_dependencies.sh once you delete them.

Fixing Makefile Issues

Because the main development of TensorFlow is done using Bazel, changes to the
codebase can sometimes break the makefile build process. If you find that tests
relying on this makefile are failing with a change you’re involved in, here are
some trouble-shooting steps:

		Try to reproduce the issue on your platform. If you’re on Linux, running
make -f tensorflow/contrib/makefile/Makefile should be enough to recreate
most issues. For other platforms, see the sections earlier in this document.

		The most common cause of breakages are files that have been added to the
Bazel build scripts, but that the makefile isn’t aware of. Typical symptoms
of this include linker errors mentioning missing symbols or protobuf headers
that aren’t found. To address these problems, take a look at the *.txt files
in tensorflow/contrib/makefile. If you have a new operator, you may need to
add it to tf_op_files.txt, or for a new proto to tf_proto_files.txt.

		There’s also a wildcard system in Makefile that defines what core C++ files
are included in the library. This is designed to match the equivalent rule in
tensorflow/core/BUILD, so if you change the wildcards there to include new
files you’ll need to also update CORE_CC_ALL_SRCS and CORE_CC_EXCLUDE_SRCS
in the makefile.

		Some of the supported platforms use clang instead of gcc as their compiler,
so if you’re hitting compile errors you may need to tweak your code to be more
friendly to different compilers by avoiding gcc extensions or idioms.

These are the most common reasons for makefile breakages, but it’s also
possible you may hit something unusual, like a platform incompatibility. For
those, you’ll need to see if you can reproduce the issue on that particular
platform and debug it there. You can also reach out to the broader TensorFlow
team by filing a Github issue [https://github.com/tensorflow/tensorflow/issues]
to ask for help.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/newton_compare_experiment.png
Value

0.6530,

0.6000

0.5500

0.5000

0.4500

0.4087
101

2,000

4,000
Step

6,000

tensorflow/contrib/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow contrib

Any code in this directory is not officially supported, and may change or be
removed at any time without notice.

The contrib directory contains project directories, each of which has designated
owners. It is meant to contain features and contributions that eventually should
get merged into core TensorFlow, but whose interfaces may still change, or which
require some testing to see whether they can find broader acceptance. We are
trying to keep duplication within contrib to a minimum, so you may be asked to
refactor code in contrib to use some feature inside core or in another project
in contrib rather than reimplementing the feature.

When adding a project, please stick to the following directory structure:
Create a project directory in contrib/, and mirror the portions of the
TensorFlow tree that your project requires underneath contrib/my_project/.

For example, let’s say you create foo ops in two files: foo_ops.py and
foo_ops_test.py. If you were to merge those files directly into TensorFlow,
they would live in tensorflow/python/ops/foo_ops.py and
tensorflow/python/kernel_tests/foo_ops_test.py. In contrib/, they are part
of project foo, and their full paths are contrib/foo/python/ops/foo_ops.py
and contrib/foo/python/kernel_tests/foo_ops_test.py.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/contrib/learn/python/learn/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TF Learn

TF Learn is a simplified interface for TensorFlow, to get people started on predictive analytics and data mining. The library covers a variety of needs: from linear models to Deep Learning applications like text and image understanding.

Why TensorFlow?

		TensorFlow provides a good backbone for building different shapes of machine learning applications.

		It will continue to evolve both in the distributed direction and as general pipelinining machinery.

Why TensorFlow Learn?

		To smooth the transition from the scikit-learn [http://scikit-learn.org/stable/] world of one-liner machine learning into the more open world of building different shapes of ML models. You can start by using fit/predict and slide into TensorFlow APIs as you are getting comfortable.

		To provide a set of reference models that will be easy to integrate with existing code.

Installation

Install TensorFlow, and then simply import learn via from tensorflow.contrib.learn or use tf.contrib.learn.

Optionally you can install scikit-learn [http://scikit-learn.org/stable/] and pandas [http://pandas.pydata.org/] for additional functionality.

Tutorials

		TF Learn Quickstart. Build, train, and evaluate a neural network with just a few lines of code.

		Linear Model. Learn the basics of building linear models.

		Logging and Monitoring. Use the Monitor API to audit training of a neural network.

		Wide and Deep Learning. Jointly train a linear model and a deep neural network.

		More coming soon.

Community

		Twitter #tensorflow [https://twitter.com/search?q=tensorflow&src=typd].

		StackOverflow with tensorflow tag [http://stackoverflow.com/questions/tagged/tensorflow] for questions and struggles.

		GitHub issues [https://github.com/tensorflow/tensorflow/issues] for technical discussions and feature requests.

Usage

Below are a few simple examples of the API. For more examples, please see examples [https://www.tensorflow.org/code/tensorflow/examples/skflow].

General tips:

		It’s useful to rescale a dataset to 0 mean and unit standard deviation before passing it to an Estimator. Stochastic Gradient Descent [https://en.wikipedia.org/wiki/Stochastic_gradient_descent] doesn’t always do the right thing when variable are at very different scales.

		Categorical variables should be managed before passing input to the estimator.

Linear Classifier

Simple linear classification:

import tensorflow.contrib.learn.python.learn as learn
from sklearn import datasets, metrics

iris = datasets.load_iris()
feature_columns = learn.infer_real_valued_columns_from_input(iris.data)
classifier = learn.LinearClassifier(n_classes=3, feature_columns=feature_columns)
classifier.fit(iris.data, iris.target, steps=200, batch_size=32)
iris_predictions = list(classifier.predict(iris.data, as_iterable=True))
score = metrics.accuracy_score(iris.target, iris_predictions)
print("Accuracy: %f" % score)

Linear Regressor

Simple linear regression:

import tensorflow.contrib.learn.python.learn as learn
from sklearn import datasets, metrics, preprocessing

boston = datasets.load_boston()
x = preprocessing.StandardScaler().fit_transform(boston.data)
feature_columns = learn.infer_real_valued_columns_from_input(x)
regressor = learn.LinearRegressor(feature_columns=feature_columns)
regressor.fit(x, boston.target, steps=200, batch_size=32)
boston_predictions = list(regressor.predict(x, as_iterable=True))
score = metrics.mean_squared_error(boston_predictions, boston.target)
print ("MSE: %f" % score)

Deep Neural Network

Example of 3 layer network with 10, 20 and 10 hidden units respectively:

import tensorflow.contrib.learn.python.learn as learn
from sklearn import datasets, metrics

iris = datasets.load_iris()
feature_columns = learn.infer_real_valued_columns_from_input(iris.data)
classifier = learn.DNNClassifier(hidden_units=[10, 20, 10], n_classes=3, feature_columns=feature_columns)
classifier.fit(iris.data, iris.target, steps=200, batch_size=32)
iris_predictions = list(classifier.predict(iris.data, as_iterable=True))
score = metrics.accuracy_score(iris.target, iris_predictions)
print("Accuracy: %f" % score)

Custom model

Example of how to pass a custom model to the Estimator:

from sklearn import datasets
from sklearn import metrics
import tensorflow as tf
import tensorflow.contrib.layers.python.layers as layers
import tensorflow.contrib.learn.python.learn as learn

iris = datasets.load_iris()

def my_model(features, target):
 """DNN with three hidden layers, and dropout of 0.1 probability."""
 # Convert the target to a one-hot tensor of shape (length of features, 3) and
 # with a on-value of 1 for each one-hot vector of length 3.
 target = tf.one_hot(target, 3, 1, 0)

 # Create three fully connected layers respectively of size 10, 20, and 10 with
 # each layer having a dropout probability of 0.1.
 features = layers.stack(features, layers.fully_connected, [10, 20, 10])

 # Create two tensors respectively for prediction and loss.
 prediction, loss = (
 tf.contrib.learn.models.logistic_regression(features, target)
)

 # Create a tensor for training op.
 train_op = tf.contrib.layers.optimize_loss(
 loss, tf.contrib.framework.get_global_step(), optimizer='Adagrad',
 learning_rate=0.1)

 return {'class': tf.argmax(prediction, 1), 'prob': prediction}, loss, train_op

classifier = learn.Estimator(model_fn=my_model)
classifier.fit(iris.data, iris.target, steps=1000)

y_predicted = [
 p['class'] for p in classifier.predict(iris.data, as_iterable=True)]
score = metrics.accuracy_score(iris.target, y_predicted)
print('Accuracy: {0:f}'.format(score))

Saving / Restoring models

Each estimator supports a model_dir argument, which takes a folder path where all model information will be saved:

classifier = learn.DNNClassifier(..., model_dir="/tmp/my_model")

If you run multiple fit operations on the same Estimator, training will resume where the last operation left off, e.g.:

classifier = learn.DNNClassifier(..., model_dir="/tmp/my_model")
classifier.fit(..., steps=300)
INFO:tensorflow:Create CheckpointSaverHook
INFO:tensorflow:loss = 2.40115, step = 1
INFO:tensorflow:Saving checkpoints for 1 into /tmp/leftoff/model.ckpt.
INFO:tensorflow:loss = 0.338706, step = 101
INFO:tensorflow:loss = 0.159414, step = 201
INFO:tensorflow:Saving checkpoints for 300 into /tmp/leftoff/model.ckpt.
INFO:tensorflow:Loss for final step: 0.0953846.classifier.fit(..., steps=300)
INFO:tensorflow:Create CheckpointSaverHook
INFO:tensorflow:loss = 0.113173, step = 301
INFO:tensorflow:Saving checkpoints for 301 into /tmp/leftoff/model.ckpt.
INFO:tensorflow:loss = 0.175782, step = 401
INFO:tensorflow:loss = 0.119735, step = 501
INFO:tensorflow:Saving checkpoints for 600 into /tmp/leftoff/model.ckpt.
INFO:tensorflow:Loss for final step: 0.0518137.

To restore checkpoints to a new Estimator, just pass it the same model_dir argument, e.g.:

classifier = learn.DNNClassifier(..., model_dir="/tmp/my_model")
classifier.fit(..., steps=300)
INFO:tensorflow:Create CheckpointSaverHook
INFO:tensorflow:loss = 1.16335, step = 1
INFO:tensorflow:Saving checkpoints for 1 into /tmp/leftoff/model.ckpt.
INFO:tensorflow:loss = 0.176995, step = 101
INFO:tensorflow:loss = 0.184573, step = 201
INFO:tensorflow:Saving checkpoints for 300 into /tmp/leftoff/model.ckpt.
INFO:tensorflow:Loss for final step: 0.0512496.classifier2 = learn.DNNClassifier(..., model_dir=”/tmp/my_model”)
classifier2.fit(..., steps=300)
INFO:tensorflow:Create CheckpointSaverHook
INFO:tensorflow:loss = 0.0543797, step = 301
INFO:tensorflow:Saving checkpoints for 301 into /tmp/leftoff/model.ckpt.
INFO:tensorflow:loss = 0.101036, step = 401
INFO:tensorflow:loss = 0.137956, step = 501
INFO:tensorflow:Saving checkpoints for 600 into /tmp/leftoff/model.ckpt.
INFO:tensorflow:Loss for final step: 0.0162506.

Summaries

If you supply a model_dir argument to your Estimators, TensorFlow will write summaries for loss and histograms for variables in this directory. (You can also add custom summaries in your custom model function by calling Summary operations.)

To view the summaries in TensorBoard, run the following command, where logdir is the model_dir for your Estimator:

tensorboard --logdir=/tmp/tf_examples/my_model_1

and then load the reported URL.

Graph visualization

[image: Text classification RNN Graph]

Loss visualization

[image: Text classification RNN Loss]

More examples

See the examples folder [https://www.tensorflow.org/code/tensorflow/examples/skflow] for:

		An easy way to handle categorical variables [https://www.tensorflow.org/code/tensorflow/examples/skflow/text_classification.py] (words are just an example of a categorical variable)

		Text Classification: see examples for RNN [https://www.tensorflow.org/code/tensorflow/examples/skflow/text_classification_character_rnn.py] and CNN [https://www.tensorflow.org/code/tensorflow/examples/skflow/text_classification_character_cnn.py] on characters

		Language modeling and text sequence to sequence [https://www.tensorflow.org/code/tensorflow/examples/skflow/language_model.py]

		Digit recognition using a CNN [https://www.tensorflow.org/code/tensorflow/examples/skflow/digits.py]

		And much more!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/contrib/graph_editor/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow Graph Editor

The TensorFlow Graph Editor library allows for modification of an existing
tf.Graph instance in-place.

The author’s github username is purpledog [https://github.com/purpledog].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/contrib/pi_examples/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow Raspberry Pi Examples

This folder contains examples of how to build applications for the Raspberry Pi using TensorFlow.

Building the Examples

		Follow the Raspberry Pi section of the instructions at tensorflow/contrib/makefile [https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/makefile] to compile a static library containing the core TensorFlow code.

		Install libjpeg, so we can load image files:

sudo apt-get install -y libjpeg-dev

		To download the example model you’ll need, run these commands:

curl https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_2015_stripped.zip \
-o /tmp/inception_dec_2015_stripped.zip
unzip /tmp/inception_dec_2015_stripped.zip \
-d tensorflow/contrib/pi_examples/label_image/data/

		From the root of the TensorFlow source tree, run make -f tensorflow/contrib/pi_examples/label_image/Makefile to build a basic example.

Usage

Run tensorflow/contrib/pi_examples/label_image/gen/bin/label_image to try out image labeling with the default Grace Hopper image. You should several lines of output, with “Military Uniform” shown as the top result, something like this:

I tensorflow/contrib/pi_examples/label_image/label_image.cc:384] Running model succeeded!
I tensorflow/contrib/pi_examples/label_image/label_image.cc:284] military uniform (866): 0.624293
I tensorflow/contrib/pi_examples/label_image/label_image.cc:284] suit (794): 0.0473981
I tensorflow/contrib/pi_examples/label_image/label_image.cc:284] academic gown (896): 0.0280926
I tensorflow/contrib/pi_examples/label_image/label_image.cc:284] bolo tie (940): 0.0156956
I tensorflow/contrib/pi_examples/label_image/label_image.cc:284] bearskin (849): 0.0143348

Once you’ve verified that is working, you can supply your own images with --image=your_image.jpg, or even with graphs you’ve trained yourself with the TensorFlow for Poets tutorial using --graph=your_graph.pb --input=Mul:0 --output=final_result:0.

Camera Example

Once you have the simple example running, you can try out a more complex version that
reads frames from a camera attached to the Pi. You’ll need to install and set up your
camera module first. The example uses Video4Linux, so you’ll need to install that first.
Here’s some commands I found necessary to get that set up, and I found more information
at this blog post: http://www.richardmudhar.com/blog/2015/02/raspberry-pi-camera-and-motion-out-of-the-box-sparrowcam/

sudo bash -c "echo 'bcm2835-v4l2' >> /etc/modules"
sudo apt-get install libv4l-dev

Once that’s working, run the following commands to build and run the camera example:

make -f tensorflow/contrib/pi_examples/camera/Makefile
tensorflow/contrib/pi_examples/camera/gen/bin/camera

You should see it looping over camera frames as they come in, and printing the top labels
to the command line. This is a great starting point for all sorts of fun image recognition
applications, especially when you combine it with a custom model you’ve built using
something like the TensorFlow for Poets tutorial.

The example is designed to work with the Flite speech synthesis tool, so that your Pi
can speak any labels that have a high enough score. To enable this, just install the
Flite package and then pipe the output of the binary you’ve built, like this:

sudo apt-get install flite
tensorflow/contrib/pi_examples/camera/gen/bin/camera | xargs -n1 flite -t

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.nn.rnn.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.rnn(cell, inputs, initial_state=None, dtype=None, sequence_length=None, scope=None) {#rnn}

Creates a recurrent neural network specified by RNNCell cell.

The simplest form of RNN network generated is:

 state = cell.zero_state(...)
 outputs = []
 for input_ in inputs:
 output, state = cell(input_, state)
 outputs.append(output)
 return (outputs, state)

However, a few other options are available:

An initial state can be provided.
If the sequence_length vector is provided, dynamic calculation is performed.
This method of calculation does not compute the RNN steps past the maximum
sequence length of the minibatch (thus saving computational time),
and properly propagates the state at an example’s sequence length
to the final state output.

The dynamic calculation performed is, at time t for batch row b,

 (output, state)(b, t) =
 (t >= sequence_length(b))
 ? (zeros(cell.output_size), states(b, sequence_length(b) - 1))
 : cell(input(b, t), state(b, t - 1))

Args:

		cell: An instance of RNNCell.

		inputs: A length T list of inputs, each a Tensor of shape
[batch_size, input_size], or a nested tuple of such elements.

		initial_state: (optional) An initial state for the RNN.
If cell.state_size is an integer, this must be
a Tensor of appropriate type and shape [batch_size, cell.state_size].
If cell.state_size is a tuple, this should be a tuple of
tensors having shapes [batch_size, s] for s in cell.state_size.

		dtype: (optional) The data type for the initial state and expected output.
Required if initial_state is not provided or RNN state has a heterogeneous
dtype.

		sequence_length: Specifies the length of each sequence in inputs.
An int32 or int64 vector (tensor) size [batch_size], values in [0, T).

		scope: VariableScope for the created subgraph; defaults to “RNN”.

Returns:

A pair (outputs, state) where:
- outputs is a length T list of outputs (one for each input), or a nested
tuple of such elements.
- state is the final state

Raises:

		TypeError: If cell is not an instance of RNNCell.

		ValueError: If inputs is None or an empty list, or if the input depth
(column size) cannot be inferred from inputs via shape inference.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/contrib/ffmpeg/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

FFmpeg TensorFlow integration

Decoding audio files can be done using a new op that uses
FFmpeg [http://www.ffmpeg.org] to convert various audio file formats into
tensors.

tf.audio.decode_audio accepts MP3, WAV, and OGG file formats.

FFmpeg must be installed before these ops can be used. The ops will look for the
ffmpeg binary somewhere in $PATH. When the binary is unavailable, the error
FFmpeg must be installed to run this op. FFmpeg can be found at http://www.ffmpeg.org. will be returned.

Testing

In addition to the regular tests, the integration tests should also be
run on this code. First, install docker. Then run the integration tests:

export TF_BUILD_CONTAINER_TYPE=CPU # or GPU
export TF_BUILD_PYTHON_VERSION=PYTHON2 # or PYTHON3
export TF_BUILD_IS_OPT=OPT
export TF_BUILD_IS_PIP=PIP
export TF_BUILD_INTEGRATION_TESTS=1
tensorflow/tools/ci_build/ci_parameterized_build.sh

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.assert_non_positive.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.assert_non_positive(x, data=None, summarize=None, message=None, name=None) {#assert_non_positive}

Assert the condition x <= 0 holds element-wise.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_non_positive(x)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_non_positive(x)], x)

Non-positive means, for every element x[i] of x, we have x[i] <= 0.
If x is empty this is trivially satisfied.

Args:

		x: Numeric Tensor.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional).
Defaults to “assert_non_positive”.

Returns:

Op raising InvalidArgumentError unless x is all non-positive.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.train.SessionManager.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Training helper that restores from checkpoint and creates session.

This class is a small wrapper that takes care of session creation and
checkpoint recovery. It also provides functions that to facilitate
coordination among multiple training threads or processes.

		Checkpointing trained variables as the training progresses.

		Initializing variables on startup, restoring them from the most recent
checkpoint after a crash, or wait for checkpoints to become available.

Usage:

with tf.Graph().as_default():
 ...add operations to the graph...
 # Create a SessionManager that will checkpoint the model in '/tmp/mydir'.
 sm = SessionManager()
 sess = sm.prepare_session(master, init_op, saver, checkpoint_dir)
 # Use the session to train the graph.
 while True:
 sess.run(<my_train_op>)

prepare_session() initializes or restores a model. It requires init_op
and saver as an argument.

A second process could wait for the model to be ready by doing the following:

with tf.Graph().as_default():
 ...add operations to the graph...
 # Create a SessionManager that will wait for the model to become ready.
 sm = SessionManager()
 sess = sm.wait_for_session(master)
 # Use the session to train the graph.
 while True:
 sess.run(<my_train_op>)

wait_for_session() waits for a model to be initialized by other processes.

tf.train.SessionManager.__init__(local_init_op=None, ready_op=None, ready_for_local_init_op=None, graph=None, recovery_wait_secs=30) {#SessionManager.init}

Creates a SessionManager.

The local_init_op is an Operation that is run always after a new session
was created. If None, this step is skipped.

The ready_op is an Operation used to check if the model is ready. The
model is considered ready if that operation returns an empty string tensor.
If the operation returns non empty string tensor, the elements are
concatenated and used to indicate to the user why the model is not ready.

The ready_for_local_init_op is an Operation used to check if the model
is ready to run local_init_op. The model is considered ready if that
operation returns an empty string tensor. If the operation returns non empty
string tensor, the elements are concatenated and used to indicate to the
user why the model is not ready.

If ready_op is None, the model is not checked for readiness.

recovery_wait_secs is the number of seconds between checks that
the model is ready. It is used by processes to wait for a model to
be initialized or restored. Defaults to 30 seconds.

Args:

		local_init_op: An Operation run immediately after session creation.
Usually used to initialize tables and local variables.

		ready_op: An Operation to check if the model is initialized.

		ready_for_local_init_op: An Operation to check if the model is ready
to run local_init_op.

		graph: The Graph that the model will use.

		recovery_wait_secs: Seconds between checks for the model to be ready.

Raises:

		ValueError: If ready_for_local_init_op is not None but local_init_op is
None

tf.train.SessionManager.prepare_session(master, init_op=None, saver=None, checkpoint_dir=None, wait_for_checkpoint=False, max_wait_secs=7200, config=None, init_feed_dict=None, init_fn=None) {#SessionManager.prepare_session}

Creates a Session. Makes sure the model is ready to be used.

Creates a Session on ‘master’. If a saver object is passed in, and
checkpoint_dir points to a directory containing valid checkpoint
files, then it will try to recover the model from checkpoint. If
no checkpoint files are available, and wait_for_checkpoint is
True, then the process would check every recovery_wait_secs,
up to max_wait_secs, for recovery to succeed.

If the model cannot be recovered successfully then it is initialized by
either running the provided init_op, or calling the provided init_fn.
The local_init_op is also run after init_op and init_fn, regardless of
whether the model was recovered successfully, but only if
ready_for_local_init_op passes.

It is an error if the model cannot be recovered and no init_op
or init_fn or local_init_op are passed.

Args:

		master: String representation of the TensorFlow master to use.

		init_op: Optional Operation used to initialize the model.

		saver: A Saver object used to restore a model.

		checkpoint_dir: Path to the checkpoint files.

		wait_for_checkpoint: Whether to wait for checkpoint to become available.

		max_wait_secs: Maximum time to wait for checkpoints to become available.

		config: Optional ConfigProto proto used to configure the session.

		init_feed_dict: Optional dictionary that maps Tensor objects to feed
values. This feed dictionary is passed to the session run() call when
running the init op.

		init_fn: Optional callable used to initialize the model. Called after the
optional init_op is called. The callable must accept one argument,
the session being initialized.

Returns:

A Session object that can be used to drive the model.

Raises:

		RuntimeError: If the model cannot be initialized or recovered.

tf.train.SessionManager.recover_session(master, saver=None, checkpoint_dir=None, wait_for_checkpoint=False, max_wait_secs=7200, config=None) {#SessionManager.recover_session}

Creates a Session, recovering if possible.

Creates a new session on ‘master’. If the session is not initialized
and can be recovered from a checkpoint, recover it.

Args:

		master: String representation of the TensorFlow master to use.

		saver: A Saver object used to restore a model.

		checkpoint_dir: Path to the checkpoint files.

		wait_for_checkpoint: Whether to wait for checkpoint to become available.

		max_wait_secs: Maximum time to wait for checkpoints to become available.

		config: Optional ConfigProto proto used to configure the session.

Returns:

A pair (sess, initialized) where ‘initialized’ is True if
the session could be recovered and initialized, False otherwise.

tf.train.SessionManager.wait_for_session(master, config=None, max_wait_secs=inf) {#SessionManager.wait_for_session}

Creates a new Session and waits for model to be ready.

Creates a new Session on ‘master’. Waits for the model to be
initialized or recovered from a checkpoint. It’s expected that
another thread or process will make the model ready, and that this
is intended to be used by threads/processes that participate in a
distributed training configuration where a different thread/process
is responsible for initializing or recovering the model being trained.

NB: The amount of time this method waits for the session is bounded
by max_wait_secs. By default, this function will wait indefinitely.

Args:

		master: String representation of the TensorFlow master to use.

		config: Optional ConfigProto proto used to configure the session.

		max_wait_secs: Maximum time to wait for the session to become available.

Returns:

A Session. May be None if the operation exceeds the timeout
specified by config.operation_timeout_in_ms.

Raises:

tf.DeadlineExceededError: if the session is not available after
max_wait_secs.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.learn.LinearRegressor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Linear regressor model.

Train a linear regression model to predict target variable value given
observation of feature values.

Example:

education = sparse_column_with_hash_bucket(column_name="education",
 hash_bucket_size=1000)
occupation = sparse_column_with_hash_bucket(column_name="occupation",
 hash_bucket_size=1000)

education_x_occupation = crossed_column(columns=[education, occupation],
 hash_bucket_size=10000)

estimator = LinearRegressor(
 feature_columns=[occupation, education_x_occupation])

Input builders
def input_fn_train: # returns x, y
 ...
def input_fn_eval: # returns x, y
 ...
estimator.fit(input_fn=input_fn_train)
estimator.evaluate(input_fn=input_fn_eval)
estimator.predict(x=x)

Input of fit and evaluate should have following features,
otherwise there will be a KeyError:

		if weight_column_name is not None:
key=weight_column_name, value=a Tensor

		for column in feature_columns:
		if isinstance(column, SparseColumn):
key=column.name, value=a SparseTensor

		if isinstance(column, WeightedSparseColumn):
{key=id column name, value=a SparseTensor,
key=weight column name, value=a SparseTensor}

		if isinstance(column, RealValuedColumn):
key=column.name, value=a Tensor

tf.contrib.learn.LinearRegressor.__init__(feature_columns, model_dir=None, weight_column_name=None, optimizer=None, gradient_clip_norm=None, enable_centered_bias=None, target_dimension=1, _joint_weights=False, config=None) {#LinearRegressor.init}

Construct a LinearRegressor estimator object.

Args:

		feature_columns: An iterable containing all the feature columns used by
the model. All items in the set should be instances of classes derived
from FeatureColumn.

		model_dir: Directory to save model parameters, graph, etc. This can
also be used to load checkpoints from the directory into a estimator
to continue training a previously saved model.

		weight_column_name: A string defining feature column name representing
weights. It is used to down weight or boost examples during training. It
will be multiplied by the loss of the example.

		optimizer: An instance of tf.Optimizer used to train the model. If
None, will use an Ftrl optimizer.

		gradient_clip_norm: A float > 0. If provided, gradients are clipped
to their global norm with this clipping ratio. See
tf.clip_by_global_norm for more details.

		enable_centered_bias: A bool. If True, estimator will learn a centered
bias variable for each class. Rest of the model structure learns the
residual after centered bias.

		target_dimension: dimension of the target for multilabels.
_joint_weights: If True use a single (possibly partitioned) variable to
store the weights. It’s faster, but requires all feature columns are
sparse and have the ‘sum’ combiner. Incompatible with SDCAOptimizer.

		config: RunConfig object to configure the runtime settings.

Returns:

A LinearRegressor estimator.

tf.contrib.learn.LinearRegressor.__repr__() {#LinearRegressor.repr}

tf.contrib.learn.LinearRegressor.bias_ {#LinearRegressor.bias_}

tf.contrib.learn.LinearRegressor.config {#LinearRegressor.config}

tf.contrib.learn.LinearRegressor.dnn_bias_ {#LinearRegressor.dnn_bias_}

Returns bias of deep neural network part.

tf.contrib.learn.LinearRegressor.dnn_weights_ {#LinearRegressor.dnn_weights_}

Returns weights of deep neural network part.

tf.contrib.learn.LinearRegressor.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) {#LinearRegressor.evaluate}

See Evaluable.

Raises:

		ValueError: If at least one of x or y is provided, and at least one of
input_fn or feed_fn is provided.
Or if metrics is not None or dict.

tf.contrib.learn.LinearRegressor.export(*args, **kwargs) {#LinearRegressor.export}

Exports inference graph into given dir. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23.
Instructions for updating:
The signature of the input_fn accepted by export is changing to be consistent with what’s used by tf.Learn Estimator’s train/evaluate. input_fn and input_feature_key will become required args, and use_deprecated_input_fn will default to False and be removed altogether.

Args:
 export_dir: A string containing a directory to write the exported graph
 and checkpoints.
 input_fn: If `use_deprecated_input_fn` is true, then a function that given
 `Tensor` of `Example` strings, parses it into features that are then
 passed to the model. Otherwise, a function that takes no argument and
 returns a tuple of (features, targets), where features is a dict of
 string key to `Tensor` and targets is a `Tensor` that's currently not
 used (and so can be `None`).
 input_feature_key: Only used if `use_deprecated_input_fn` is false. String
 key into the features dict returned by `input_fn` that corresponds toa
 the raw `Example` strings `Tensor` that the exported model will take as
 input.
 use_deprecated_input_fn: Determines the signature format of `input_fn`.
 signature_fn: Function that returns a default signature and a named
 signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s
 for features and `Tensor` or `dict` of `Tensor`s for predictions.
 prediction_key: The key for a tensor in the `predictions` dict (output
 from the `model_fn`) to use as the `predictions` input to the
 `signature_fn`. Optional. If `None`, predictions will pass to
 `signature_fn` without filtering.
 default_batch_size: Default batch size of the `Example` placeholder.
 exports_to_keep: Number of exports to keep.

Returns:
 The string path to the exported directory. NB: this functionality was
 added ca. 2016/09/25; clients that depend on the return value may need
 to handle the case where this function returns None because subclasses
 are not returning a value.

tf.contrib.learn.LinearRegressor.fit(x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None) {#LinearRegressor.fit}

See Trainable.

Raises:

		ValueError: If x or y are not None while input_fn is not None.

		ValueError: If both steps and max_steps are not None.

tf.contrib.learn.LinearRegressor.get_params(deep=True) {#LinearRegressor.get_params}

Get parameters for this estimator.

Args:

		deep: boolean, optional

If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns:

params : mapping of string to any
Parameter names mapped to their values.

tf.contrib.learn.LinearRegressor.get_variable_names() {#LinearRegressor.get_variable_names}

Returns list of all variable names in this model.

Returns:

List of names.

tf.contrib.learn.LinearRegressor.get_variable_value(name) {#LinearRegressor.get_variable_value}

Returns value of the variable given by name.

Args:

		name: string, name of the tensor.

Returns:

Numpy array - value of the tensor.

tf.contrib.learn.LinearRegressor.linear_bias_ {#LinearRegressor.linear_bias_}

Returns bias of the linear part.

tf.contrib.learn.LinearRegressor.linear_weights_ {#LinearRegressor.linear_weights_}

Returns weights per feature of the linear part.

tf.contrib.learn.LinearRegressor.model_dir {#LinearRegressor.model_dir}

tf.contrib.learn.LinearRegressor.partial_fit(x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None) {#LinearRegressor.partial_fit}

Incremental fit on a batch of samples.

This method is expected to be called several times consecutively
on different or the same chunks of the dataset. This either can
implement iterative training or out-of-core/online training.

This is especially useful when the whole dataset is too big to
fit in memory at the same time. Or when model is taking long time
to converge, and you want to split up training into subparts.

Args:

		x: Matrix of shape [n_samples, n_features...]. Can be iterator that
returns arrays of features. The training input samples for fitting the
model. If set, input_fn must be None.

		y: Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of targets. The training target values
(class labels in classification, real numbers in regression). If set,
input_fn must be None.

		input_fn: Input function. If set, x, y, and batch_size must be
None.

		steps: Number of steps for which to train model. If None, train forever.

		batch_size: minibatch size to use on the input, defaults to first
dimension of x. Must be None if input_fn is provided.

		monitors: List of BaseMonitor subclass instances. Used for callbacks
inside the training loop.

Returns:

self, for chaining.

Raises:

		ValueError: If at least one of x and y is provided, and input_fn is
provided.

tf.contrib.learn.LinearRegressor.predict(*args, **kwargs) {#LinearRegressor.predict}

Returns predictions for given features. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-15.
Instructions for updating:
The default behavior of predict() is changing. The default value for
as_iterable will change to True, and then the flag will be removed
altogether. The behavior of this flag is described below.

Args:
 x: Matrix of shape [n_samples, n_features...]. Can be iterator that
 returns arrays of features. The training input samples for fitting the
 model. If set, `input_fn` must be `None`.
 input_fn: Input function. If set, `x` and 'batch_size' must be `None`.
 batch_size: Override default batch size. If set, 'input_fn' must be
 'None'.
 outputs: list of `str`, name of the output to predict.
 If `None`, returns all.
 as_iterable: If True, return an iterable which keeps yielding predictions
 for each example until inputs are exhausted. Note: The inputs must
 terminate if you want the iterable to terminate (e.g. be sure to pass
 num_epochs=1 if you are using something like read_batch_features).

Returns:
 A numpy array of predicted classes or regression values if the
 constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict`
 of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of
 predictions if as_iterable is True.

Raises:
 ValueError: If x and input_fn are both provided or both `None`.

tf.contrib.learn.LinearRegressor.set_params(**params) {#LinearRegressor.set_params}

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.

Args:

		**params: Parameters.

Returns:

self

Raises:

		ValueError: If params contain invalid names.

tf.contrib.learn.LinearRegressor.weights_ {#LinearRegressor.weights_}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.no_op.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.no_op(name=None) {#no_op}

Does nothing. Only useful as a placeholder for control edges.

Args:

		name: A name for the operation (optional).

Returns:

The created Operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.depth_to_space.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.depth_to_space(input, block_size, name=None) {#depth_to_space}

DepthToSpace for tensors of type T.

Rearranges data from depth into blocks of spatial data.
This is the reverse transformation of SpaceToDepth. More specifically,
this op outputs a copy of the input tensor where values from the depth
dimension are moved in spatial blocks to the height and width dimensions.
The attr block_size indicates the input block size and how the data is moved.

		Chunks of data of size block_size * block_size from depth are rearranged
into non-overlapping blocks of size block_size x block_size

		The width the output tensor is input_depth * block_size, whereas the
height is input_height * block_size.

		The depth of the input tensor must be divisible by
block_size * block_size.

That is, assuming the input is in the shape:
[batch, height, width, depth],
the shape of the output will be:
[batch, height*block_size, width*block_size, depth/(block_size*block_size)]

This operation requires that the input tensor be of rank 4, and that
block_size be >=1 and that block_size * block_size be a divisor of the
input depth.

This operation is useful for resizing the activations between convolutions
(but keeping all data), e.g. instead of pooling. It is also useful for training
purely convolutional models.

For example, given this input of shape [1, 1, 1, 4], and a block size of 2:

x = [[[[1, 2, 3, 4]]]]

This operation will output a tensor of shape [1, 2, 2, 1]:

 [[[[1], [2]],
 [[3], [4]]]]

Here, the input has a batch of 1 and each batch element has shape [1, 1, 4],
the corresponding output will have 2x2 elements and will have a depth of
1 channel (1 = 4 / (block_size * block_size)).
The output element shape is [2, 2, 1].

For an input tensor with larger depth, here of shape [1, 1, 1, 12], e.g.

x = [[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]]

This operation, for block size of 2, will return the following tensor of shape
[1, 2, 2, 3]

 [[[[1, 2, 3], [4, 5, 6]],
 [[7, 8, 9], [10, 11, 12]]]]

Similarly, for the following input of shape [1 2 2 4], and a block size of 2:

x = [[[[1, 2, 3, 4],
 [5, 6, 7, 8]],
 [[9, 10, 11, 12],
 [13, 14, 15, 16]]]]

the operator will return the following tensor of shape [1 4 4 1]:

x = [[[1], [2], [5], [6]],
 [[3], [4], [7], [8]],
 [[9], [10], [13], [14]],
 [[11], [12], [15], [16]]]

Args:

		input: A Tensor.

		block_size: An int that is >= 2.
The size of the spatial block, same as in Space2Depth.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/contrib/opt/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Optimization package

Contains the following experimental optimization functionality:

		Support for controlling a TensorFlow session using external optimization
algorithms.

		L2-norm clipping of weights

Maintainer: joshburkart

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.nn.rnn_cell.GRUCell.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Gated Recurrent Unit cell (cf. http://arxiv.org/abs/1406.1078).

tf.nn.rnn_cell.GRUCell.__call__(inputs, state, scope=None) {#GRUCell.call}

Gated recurrent unit (GRU) with nunits cells.

tf.nn.rnn_cell.GRUCell.__init__(num_units, input_size=None, activation=tanh) {#GRUCell.init}

tf.nn.rnn_cell.GRUCell.output_size {#GRUCell.output_size}

tf.nn.rnn_cell.GRUCell.state_size {#GRUCell.state_size}

tf.nn.rnn_cell.GRUCell.zero_state(batch_size, dtype) {#GRUCell.zero_state}

Return zero-filled state tensor(s).

Args:

		batch_size: int, float, or unit Tensor representing the batch size.

		dtype: the data type to use for the state.

Returns:

If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.case.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.case(pred_fn_pairs, default, exclusive=False, name='case') {#case}

Create a case operation.

The pred_fn_pairs parameter is a dict or list of pairs of size N.
Each pair contains a boolean scalar tensor and a python callable that
creates the tensors to be returned if the boolean evaluates to True.
default is a callable generating a list of tensors. All the callables
in pred_fn_pairs as well as default should return the same number
and types of tensors.

If exclusive==True, all predicates are evaluated, and a logging operation
with an error is returned if more than one of the predicates evaluates to
True. If exclusive==False, execution stops are the first predicate which
evaluates to True, and the tensors generated by the corresponding function
are returned immediately. If none of the predicates evaluate to True, this
operation returns the tensors generated by default.

Example 1:
Pseudocode:

 if (x < y) return 17;
 else return 23;

Expressions:

 f1 = lambda: tf.constant(17)
 f2 = lambda: tf.constant(23)
 r = case([(tf.less(x, y), f1)], default=f2)

Example 2:
Pseudocode:

 if (x < y && x > z) raise OpError("Only one predicate may evaluate true");
 if (x < y) return 17;
 else if (x > z) return 23;
 else return -1;

Expressions:

 x = tf.constant(0)
 y = tf.constant(1)
 z = tf.constant(2)
 def f1(): return tf.constant(17)
 def f2(): return tf.constant(23)
 def f3(): return tf.constant(-1)
 r = case({tf.less(x, y): f1, tf.greater(x, z): f2},
 default=f3, exclusive=True)

Args:

		pred_fn_pairs: Dict or list of pairs of a boolean scalar tensor and a
callable which returns a list of tensors.

		default: A callable that returns a list of tensors.

		exclusive: True iff more than one predicate is allowed to evaluate to True.

		name: A name for this operation (optional).

Returns:

The tensors returned by the first pair whose predicate evaluated to True, or
those returned by default if none does.

Raises:

		TypeError: If pred_fn_pairs is not a list/dictionary.

		TypeError: If pred_fn_pairs is a list but does not contain 2-tuples.

		TypeError: If fns[i] is not callable for any i, or default is not
callable.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/contrib/linear_optimizer/kernels/g3doc/readme.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 $$ \def\a{\alpha} \def\d{\Delta\a} \def\l{\ell} \def\P{\mathcal{P}}$$

Distributed SDCA

We want to minimize on $$K$$ machines the following objective

$$ P(w) = \frac{1}{n}\sum_{i=1}^n \l_i(x_i^T w)+\lambda g(w) $$

By Fenchel duality, this is equivalent to maximizing its dual

$$ D(\a) = \frac{1}{n} \left(\sum_{i=1}^n -\l_i^\star(-\a_i)\right) -\lambda g^\star\left(\tfrac{1}{\lambda n} X\a\right) $$

which can be done very efficiently on a single machine with SDCA [3].

Here, $$f^\star$$ denotes the convex dual of a convex function $$f$$, $$\l_i$$
is the loss for the example $$i$$, $$n$$ is the total number of examples and
$$\lambda n$$ is the L2 parameter.

Following [1,2], we use a data partition $$\P_1,\dots,\P_K$$ of
$${1,2,\dots,n}$$ such that $$\P_k$$ contains the examples on machine $$k$$.
For an $$n$$-dimensional vector $$h$$, we denote by $$h_{[k]}$$ the
$$n$$-dimensional vector restricted to the machine $$k$$: $$(h_{[k]})_i = h_i$$
if $$i\in\P_k$$ and $$0$$ otherwise.

CoCoA+ Local Solver

The local subproblem on machine $$k$$ is [1, 2]

$$ \max_{\d_{[k]}} \mathcal{G}^{\sigma}k (\d{[k]}) $$

with

$$
\mathcal{G}^{\sigma}k (\d{[k]}) =
-\frac{1}{n} \sum_{i\in\P_k}\l_i^\star(-\a_i-(\d_{[k]})i) -\frac{1}{n} w^T X
\d{[k]}- \frac{\lambda}{2}\sigma \left| \frac{1}{\lambda n} X \d_{[k]}
\right|^2 $$

$$\sigma$$ is a parameter the measures the difficulty of the data partition.
CoCoA+ makes the choice

$$ \sigma = K $$

This decision is motivated in [2] and shown to be more efficient than the
previous CoCoA choice ($$\sigma = 1$$).

For one example, the problem is simply

$$ \max_{\d} \left{ D_i(\d) = -\l_i^\star(-(\a_i+\d)) - \bar{y}_i \d - \frac{A}{2} \d^2 \right} $$

where we have defined $$A=\sigma X_i^2/(\lambda n) $$ and $$ \bar{y}_i = w^T X_i
$$.

To take into account example weights, it suffices to replace $$\frac{1}{n}$$ by
$$\frac{s_i}{S}$$ where $$s_i$$ is the weight of the i-th example and $$S=\sum
s_i$$. For our problem, this will only change $$A$$ to $$\sigma
X_i^2s_i/(\lambda S) $$.

Hinge Loss

Hinge loss is given by $$ \l_i(u) = \max(0,1-y u) $$. Its convex dual is $$
\l_i^\star(-a) = -a y $$ with the constraint $$ a y\in [0,1] $$.

The solution for the update is given explicitly in [3]. To derive the CoCoA+
formulation, we replace $$\lambda$$ by $$\frac{\lambda}{\sigma}$$. This gives

$$ \d = \frac{y - \bar{y}}{A} $$

with the restriction that $$y(\a+\d)\in(0,1)$$.

Smooth Hinge Loss

Smooth hinge loss is given by

$$ \l_i(u) =
\begin{cases}
0 ::: & y_i u \geq 1\
1-y_i u -\gamma/2 :::& y_i u \leq1-\gamma \
\frac{(1-y_i u)^2}{2\gamma} & \text{otherwise}
\end{cases} $$

The optimal $$\d$$ is computed to be

$$\d = \frac{y-\bar{y}-\gamma\a}{A+\gamma} $$

with the restriction that $$y(\a+\d)\in(0,1)$$. We see that we recover standard
hinge update for $$\gamma = 0$$. The details of the computation can be found in
Appendix.

Squared Loss

Squared loss is $$ \l_i(u) = \frac{1}{2}(u-y)^2 $$ with dual $$ \l_i^\star(v) =
\frac{1}{2}v^2+y v$$.

The closed form solution for squared loss is given in [4]. By replacing again
$$\lambda$$ by $$\frac{\lambda}{\sigma}$$ we obtain

$$ \d = -\frac{\a + w^T X_i - y}{1 + \frac{\sigma X_i^2}{2 \lambda n}} $$

Logistic loss

Logistic loss is $$ \l_i(u) = \log (1+e^{-uy_i}) $$ and its dual is

$$ \l_i^\star(v) = -vy_i\log(-vy_i) + (1+vy_i)
\log(1+vy_i) $$

The label $$y_i$$ is $$\pm 1$$ and the dual loss is only defined for $$ -y_i
v\in (0,1) $$. We then have the constraint

$$ y_i (\a+\d) \in (0,1) $$

The problem of finding the maximum of $$ D(\d) $$ can be reformulated as the
problem of finding the unique zero of its derivative. Newton method works well
for finding the zero of $$ D’(\d) $$ but can be a bit unstable due to the
constraint requiring $$y_i(\a+\d)$$ be in the range $$(0,1)$$ (more on this
below).

To avoid this problem, we make the following change of variable

$$ y(\a+\d) = \frac{1}{2}(1+\tanh x) $$

This enforces the constraint and is well suited because the objective derivative
has the following simple form:

$$ D’ = H(x) = -2y x - \bar{y} + A\a -\frac{A}{2y}(1+\tanh x) $$

with derivative

$$ H’(x) = -2y - \frac{A}{2y}(1-\tanh^2 x) $$

This function is always positive or always negative so that $$H$$ is strictly
monotonic.

We can start Newton algorithm at $$x_0=0$$ which corresponds to $$ y(\a+\d) =
0.5 $$. A Newton step is given by

$$x_{k+1} = x_k - \frac{H(x_k)}{H’(x_k)} $$

The convergence is very fast with the modified function and 5 Newton steps
should be largely enough.

Plots and experiments

Below is a plot where standard Newton will be unstable. The starting point is
$$x=0.5$$ and we leave the definition interval after the first step (the orange
line is the tangent at the starting point). Newton algorithm will return 0 where
the real zero is at 0.10.

[image: newton]

The same plot for the modified function (with the same parameters) is almost a
straight line. The starting point is $$x=0$$ and we see that the convergence is
fast.

[image: mod_newton]

We see that the result will be $$ \frac{1+\tanh(-1.1)}{2} \sim 0.10$$ as
expected.

On criteo dataset, the usual Newton method goes out of range for a small (but
non negligible) fraction of the examples. The returned dual in these cases will
be $$0$$ or $$\pm 1$$. The modified Newton algorihm always find the true zero
and achieves a better log loss.

The blue lines represent the modified Newton (evaluation and training) and the
orange line is the normal Newton algorithm (training).

[image: experiment]

TODO(vgodet): Update the plot with eval_continuous for Newton

Note: Newton seems to converge faster at the beginning because it is taking more
aggressive steps when going out-of-range.

Proof of convergence

The second derivative of $$H$$

$$ H’‘(x) = \frac{A}{y} \tanh x (1-\tanh^2 x) $$

is bounded and quadratic convergence should be guaranteed if we are close enough
to the solution (see
https://en.wikipedia.org/wiki/Newton%27s_method#Proof_of_quadratic_convergence_for_Newton.27s_iterative_method
for the proof).

However we can’t really know if we are close to the zero. To prove the
convergence in any cases, we can use Kantovitch Theorem (reviewed in [5]). The
sufficient condition to have convergence is that we start at a point $$ x_0 $$
such that

$$
\left|\frac{4A H(x_0)}{H’(x_0)^2} \right|\leq 1
$$

If $$ A$$ is not small, the starting point $$x_0 = 0$$ doesn’t satisfy this
condition and we may solve the above inequality to find a starting point which
does.

However, in practice, convergence with $$x_0 = 0$$ always happens (tested for a
sample of generic values for the parameters).

References

[1] C. Ma et al., Adding vs. Averaging in Distributed Primal-Dual Optimization,
arXiv:1502.03508, 2015

[2] C. Ma et al., Distributed Optimization with Arbitrary Local Solvers,
arxiv:1512.04039, 2015

[3] S. Shalev-Shwartz, T. Zhang, Stochastic Dual Coordinate Ascent Methods for
Regularized Loss Minimization, 2013

[4] S. Shalev-Shwartz, T. Zhang, Accelerated Proximal Stochastic Dual Coordinate
Ascent for Regularized Loss Minimization, 2013

[5] A. Galantai, The theory of Newton’s method, 2000

Appendix

Dual computation for smooth hinge loss

We want to compute $$\l^\star(v) = \max_u [uv-\l(u)] $$ where $$\l$$ is smooth
hinge loss. We thus have to solve $$v=\l’(u)$$. The derivative of smooth hinge
loss is given by

$$ \l’(u) =
\begin{cases}
0 ::: & y_i u \geq 1\
-y :::& y_i u \leq1-\gamma \
\frac{u-y}{\gamma} & \text{otherwise}
\end{cases} $$

By solving for $$v$$, we find the dual of smooth hinge loss as

$$ \l^\star(v) = yv + \frac{\gamma}{2}v^2 $$

with the restriction $$ yv \in (0,1) $$.

Now, we can now minimize the dual objective with respect to $$\d$$

$$ D(\a+\d) = -\l^\star(-\a-\d)-\bar{y}\d-\frac{A}{2} \d^2 $$

which gives the expected result

$$\d = \frac{y-\bar{y}-\gamma\a}{A+\gamma} $$

with the constraint $$ y(\a+\d) \in (0,1)$$.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.transpose.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.transpose(a, perm=None, name='transpose') {#transpose}

Transposes a. Permutes the dimensions according to perm.

The returned tensor’s dimension i will correspond to the input dimension
perm[i]. If perm is not given, it is set to (n-1...0), where n is
the rank of the input tensor. Hence by default, this operation performs a
regular matrix transpose on 2-D input Tensors.

For example:

'x' is [[1 2 3]
[4 5 6]]
tf.transpose(x) ==> [[1 4]
 [2 5]
 [3 6]]

Equivalently
tf.transpose(x, perm=[1, 0]) ==> [[1 4]
 [2 5]
 [3 6]]

'perm' is more useful for n-dimensional tensors, for n > 2
'x' is [[[1 2 3]
[4 5 6]]
[[7 8 9]
[10 11 12]]]
Take the transpose of the matrices in dimension-0
tf.transpose(x, perm=[0, 2, 1]) ==> [[[1 4]
 [2 5]
 [3 6]]

 [[7 10]
 [8 11]
 [9 12]]]

Args:

		a: A Tensor.

		perm: A permutation of the dimensions of a.

		name: A name for the operation (optional).

Returns:

A transposed Tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.TensorShape.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Represents the shape of a Tensor.

A TensorShape represents a possibly-partial shape specification for a
Tensor. It may be one of the following:

		Fully-known shape: has a known number of dimensions and a known size
for each dimension.

		Partially-known shape: has a known number of dimensions, and an unknown
size for one or more dimension.

		Unknown shape: has an unknown number of dimensions, and an unknown
size in all dimensions.

If a tensor is produced by an operation of type "Foo", its shape
may be inferred if there is a registered shape function for
"Foo". See tf.RegisterShape()
for details of shape
functions and how to register them. Alternatively, the shape may be set
explicitly using Tensor.set_shape().

tf.TensorShape.merge_with(other) {#TensorShape.merge_with}

Returns a TensorShape combining the information in self and other.

The dimensions in self and other are merged elementwise,
according to the rules defined for Dimension.merge_with().

Args:

		other: Another TensorShape.

Returns:

A TensorShape containing the combined information of self and
other.

Raises:

		ValueError: If self and other are not compatible.

tf.TensorShape.concatenate(other) {#TensorShape.concatenate}

Returns the concatenation of the dimension in self and other.

N.B. If either self or other is completely unknown,
concatenation will discard information about the other shape. In
future, we might support concatenation that preserves this
information for use with slicing.

Args:

		other: Another TensorShape.

Returns:

A TensorShape whose dimensions are the concatenation of the
dimensions in self and other.

tf.TensorShape.ndims {#TensorShape.ndims}

Returns the rank of this shape, or None if it is unspecified.

tf.TensorShape.dims {#TensorShape.dims}

Returns a list of Dimensions, or None if the shape is unspecified.

tf.TensorShape.as_list() {#TensorShape.as_list}

Returns a list of integers or None for each dimension.

Returns:

A list of integers or None for each dimension.

Raises:

		ValueError: If self is an unknown shape with an unknown rank.

tf.TensorShape.as_proto() {#TensorShape.as_proto}

Returns this shape as a TensorShapeProto.

tf.TensorShape.is_compatible_with(other) {#TensorShape.is_compatible_with}

Returns True iff self is compatible with other.

Two possibly-partially-defined shapes are compatible if there
exists a fully-defined shape that both shapes can represent. Thus,
compatibility allows the shape inference code to reason about
partially-defined shapes. For example:

		TensorShape(None) is compatible with all shapes.

		TensorShape([None, None]) is compatible with all two-dimensional
shapes, such as TensorShape([32, 784]), and also TensorShape(None). It is
not compatible with, for example, TensorShape([None]) or
TensorShape([None, None, None]).

		TensorShape([32, None]) is compatible with all two-dimensional shapes
with size 32 in the 0th dimension, and also TensorShape([None, None])
and TensorShape(None). It is not compatible with, for example,
TensorShape([32]), TensorShape([32, None, 1]) or TensorShape([64, None]).

		TensorShape([32, 784]) is compatible with itself, and also
TensorShape([32, None]), TensorShape([None, 784]), TensorShape([None,
None]) and TensorShape(None). It is not compatible with, for example,
TensorShape([32, 1, 784]) or TensorShape([None]).

The compatibility relation is reflexive and symmetric, but not
transitive. For example, TensorShape([32, 784]) is compatible with
TensorShape(None), and TensorShape(None) is compatible with
TensorShape([4, 4]), but TensorShape([32, 784]) is not compatible with
TensorShape([4, 4]).

Args:

		other: Another TensorShape.

Returns:

True iff self is compatible with other.

tf.TensorShape.is_fully_defined() {#TensorShape.is_fully_defined}

Returns True iff self is fully defined in every dimension.

tf.TensorShape.with_rank(rank) {#TensorShape.with_rank}

Returns a shape based on self with the given rank.

This method promotes a completely unknown shape to one with a
known rank.

Args:

		rank: An integer.

Returns:

A shape that is at least as specific as self with the given rank.

Raises:

		ValueError: If self does not represent a shape with the given rank.

tf.TensorShape.with_rank_at_least(rank) {#TensorShape.with_rank_at_least}

Returns a shape based on self with at least the given rank.

Args:

		rank: An integer.

Returns:

A shape that is at least as specific as self with at least the given
rank.

Raises:

		ValueError: If self does not represent a shape with at least the given
rank.

tf.TensorShape.with_rank_at_most(rank) {#TensorShape.with_rank_at_most}

Returns a shape based on self with at most the given rank.

Args:

		rank: An integer.

Returns:

A shape that is at least as specific as self with at most the given
rank.

Raises:

		ValueError: If self does not represent a shape with at most the given
rank.

tf.TensorShape.assert_has_rank(rank) {#TensorShape.assert_has_rank}

Raises an exception if self is not compatible with the given rank.

Args:

		rank: An integer.

Raises:

		ValueError: If self does not represent a shape with the given rank.

tf.TensorShape.assert_same_rank(other) {#TensorShape.assert_same_rank}

Raises an exception if self and other do not have compatible ranks.

Args:

		other: Another TensorShape.

Raises:

		ValueError: If self and other do not represent shapes with the
same rank.

tf.TensorShape.assert_is_compatible_with(other) {#TensorShape.assert_is_compatible_with}

Raises exception if self and other do not represent the same shape.

This method can be used to assert that there exists a shape that both
self and other represent.

Args:

		other: Another TensorShape.

Raises:

		ValueError: If self and other do not represent the same shape.

tf.TensorShape.assert_is_fully_defined() {#TensorShape.assert_is_fully_defined}

Raises an exception if self is not fully defined in every dimension.

Raises:

		ValueError: If self does not have a known value for every dimension.

Other Methods

tf.TensorShape.__bool__() {#TensorShape.bool}

Returns True if this shape contains non-zero information.

tf.TensorShape.__eq__(other) {#TensorShape.eq}

Returns True if self is equivalent to other.

tf.TensorShape.__getitem__(key) {#TensorShape.getitem}

Returns the value of a dimension or a shape, depending on the key.

Args:

		key: If key is an integer, returns the dimension at that index;
otherwise if key is a slice, returns a TensorShape whose
dimensions are those selected by the slice from self.

Returns:

A dimension if key is an integer, or a TensorShape if key is a
slice.

Raises:

		ValueError: If key is a slice, and any of its elements are negative, or
if self is completely unknown and the step is set.

tf.TensorShape.__init__(dims) {#TensorShape.init}

Creates a new TensorShape with the given dimensions.

Args:

		dims: A list of Dimensions, or None if the shape is unspecified.

		DEPRECATED: A single integer is treated as a singleton list.

Raises:

		TypeError: If dims cannot be converted to a list of dimensions.

tf.TensorShape.__iter__() {#TensorShape.iter}

Returns self.dims if the rank is known, otherwise raises ValueError.

tf.TensorShape.__len__() {#TensorShape.len}

Returns the rank of this shape, or raises ValueError if unspecified.

tf.TensorShape.__ne__(other) {#TensorShape.ne}

Returns True if self is known to be different from other.

tf.TensorShape.__nonzero__() {#TensorShape.nonzero}

Returns True if this shape contains non-zero information.

tf.TensorShape.__repr__() {#TensorShape.repr}

tf.TensorShape.__str__() {#TensorShape.str}

tf.TensorShape.num_elements() {#TensorShape.num_elements}

Returns the total number of elements, or none for incomplete shapes.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.framework.arg_scoped_arguments.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.arg_scoped_arguments(func) {#arg_scoped_arguments}

Returns the list kwargs that arg_scope can set for a func.

Args:

		func: function which has been decorated with @add_arg_scope.

Returns:

a list of kwargs names.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 TransformedDistributionTensor is a StochasticTensor backed by the distribution TransformedDistribution.

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#TransformedDistributionTensor.init}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.clone(name=None, **dist_args) {#TransformedDistributionTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.distribution {#TransformedDistributionTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.dtype {#TransformedDistributionTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.entropy(name='entropy') {#TransformedDistributionTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.graph {#TransformedDistributionTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.input_dict {#TransformedDistributionTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.loss(final_loss, name='Loss') {#TransformedDistributionTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.mean(name='mean') {#TransformedDistributionTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.name {#TransformedDistributionTensor.name}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.value(name='value') {#TransformedDistributionTensor.value}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.value_type {#TransformedDistributionTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.nn.sigmoid_cross_entropy_with_logits.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.sigmoid_cross_entropy_with_logits(logits, targets, name=None) {#sigmoid_cross_entropy_with_logits}

Computes sigmoid cross entropy given logits.

Measures the probability error in discrete classification tasks in which each
class is independent and not mutually exclusive. For instance, one could
perform multilabel classification where a picture can contain both an elephant
and a dog at the same time.

For brevity, let x = logits, z = targets. The logistic loss is

 z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
= z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
= z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
= z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
= (1 - z) * x + log(1 + exp(-x))
= x - x * z + log(1 + exp(-x))

For x < 0, to avoid overflow in exp(-x), we reformulate the above

 x - x * z + log(1 + exp(-x))
= log(exp(x)) - x * z + log(1 + exp(-x))
= - x * z + log(1 + exp(x))

Hence, to ensure stability and avoid overflow, the implementation uses this
equivalent formulation

max(x, 0) - x * z + log(1 + exp(-abs(x)))

logits and targets must have the same type and shape.

Args:

		logits: A Tensor of type float32 or float64.

		targets: A Tensor of the same type and shape as logits.

		name: A name for the operation (optional).

Returns:

A Tensor of the same shape as logits with the componentwise
logistic losses.

Raises:

		ValueError: If logits and targets do not have the same shape.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.learn.read_batch_record_features.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.learn.read_batch_record_features(file_pattern, batch_size, features, randomize_input=True, num_epochs=None, queue_capacity=10000, reader_num_threads=1, parser_num_threads=1, name='dequeue_record_examples') {#read_batch_record_features}

Reads TFRecord, queues, batches and parses Example proto.

See more detailed description in read_examples.

Args:

		file_pattern: List of files or pattern of file paths containing
Example records. See tf.gfile.Glob for pattern rules.

		batch_size: An int or scalar Tensor specifying the batch size to use.

		features: A dict mapping feature keys to FixedLenFeature or
VarLenFeature values.

		randomize_input: Whether the input should be randomized.

		num_epochs: Integer specifying the number of times to read through the
dataset. If None, cycles through the dataset forever. NOTE - If specified,
creates a variable that must be initialized, so call
tf.initialize_local_variables() as shown in the tests.

		queue_capacity: Capacity for input queue.

		reader_num_threads: The number of threads to read examples.

		parser_num_threads: The number of threads to parse examples.

		name: Name of resulting op.

Returns:

A dict of Tensor or SparseTensor objects for each in features.

Raises:

		ValueError: for invalid inputs.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.to_int64.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.to_int64(x, name='ToInt64') {#to_int64}

Casts a tensor to type int64.

Args:

		x: A Tensor or SparseTensor.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x with type int64.

Raises:

		TypeError: If x cannot be cast to the int64.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.get_seed.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.get_seed(op_seed) {#get_seed}

Returns the local seeds an operation should use given an op-specific seed.

Given operation-specific seed, op_seed, this helper function returns two
seeds derived from graph-level and op-level seeds. Many random operations
internally use the two seeds to allow user to change the seed globally for a
graph, or for only specific operations.

For details on how the graph-level seed interacts with op seeds, see
set_random_seed.

Args:

		op_seed: integer.

Returns:

A tuple of two integers that should be used for the local seed of this
operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.learn.monitors.BaseMonitor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Base class for Monitors.

Defines basic interfaces of Monitors.
Monitors can either be run on all workers or, more commonly, restricted
to run exclusively on the elected chief worker.

tf.contrib.learn.monitors.BaseMonitor.__init__() {#BaseMonitor.init}

tf.contrib.learn.monitors.BaseMonitor.begin(max_steps=None) {#BaseMonitor.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.BaseMonitor.end(session=None) {#BaseMonitor.end}

Callback at the end of training/evaluation.

Args:

		session: A tf.Session object that can be used to run ops.

Raises:

		ValueError: if we’ve not begun a run.

tf.contrib.learn.monitors.BaseMonitor.epoch_begin(epoch) {#BaseMonitor.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.BaseMonitor.epoch_end(epoch) {#BaseMonitor.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.BaseMonitor.post_step(step, session) {#BaseMonitor.post_step}

Callback after the step is finished.

Called after step_end and receives session to perform extra session.run
calls. If failure occurred in the process, will be called as well.

Args:

		step: int, global step of the model.

		session: Session object.

tf.contrib.learn.monitors.BaseMonitor.run_on_all_workers {#BaseMonitor.run_on_all_workers}

tf.contrib.learn.monitors.BaseMonitor.set_estimator(estimator) {#BaseMonitor.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.BaseMonitor.step_begin(step) {#BaseMonitor.step_begin}

Callback before training step begins.

You may use this callback to request evaluation of additional tensors
in the graph.

Args:

		step: int, the current value of the global step.

Returns:

List of Tensor objects or string tensor names to be run.

Raises:

		ValueError: if we’ve already begun a step, or step < 0, or
step > max_steps.

tf.contrib.learn.monitors.BaseMonitor.step_end(step, output) {#BaseMonitor.step_end}

Callback after training step finished.

This callback provides access to the tensors/ops evaluated at this step,
including the additional tensors for which evaluation was requested in
step_begin.

In addition, the callback has the opportunity to stop training by returning
True. This is useful for early stopping, for example.

Note that this method is not called if the call to Session.run() that
followed the last call to step_begin() failed.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool. True if training should stop.

Raises:

		ValueError: if we’ve not begun a step, or step number does not match.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A StochasticTensor with an observed value.

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.__init__(dist_cls, value, name=None, **dist_args) {#ObservedStochasticTensor.init}

Construct an ObservedStochasticTensor.

ObservedStochasticTensor will instantiate a distribution from dist_cls
and dist_args but use the provided value instead of sampling from the
distribution. The provided value argument must be appropriately shaped
to have come from the constructed distribution.

Args:

		dist_cls: a Distribution class.

		value: a Tensor containing the observed value

		name: a name for this ObservedStochasticTensor and its ops.

		**dist_args: keyword arguments to be passed through to dist_cls on
construction.

Raises:

		TypeError: if dist_cls is not a Distribution.

		ValueError: if value is not compatible with the distribution.

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.clone(name=None, **dist_args) {#ObservedStochasticTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.distribution {#ObservedStochasticTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.dtype {#ObservedStochasticTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.entropy(name='entropy') {#ObservedStochasticTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.graph {#ObservedStochasticTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.input_dict {#ObservedStochasticTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.loss(final_loss, name=None) {#ObservedStochasticTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.mean(name='mean') {#ObservedStochasticTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.name {#ObservedStochasticTensor.name}

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.value(name='value') {#ObservedStochasticTensor.value}

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.value_type {#ObservedStochasticTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.layers.one_hot_encoding.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.one_hot_encoding(*args, **kwargs) {#one_hot_encoding}

Transform numeric labels into onehot_labels using tf.one_hot.

Args:

		labels: [batch_size] target labels.

		num_classes: total number of classes.

		on_value: A scalar defining the on-value.

		off_value: A scalar defining the off-value.

		outputs_collections: collection to add the outputs.

		scope: Optional scope for name_scope.

Returns:

one hot encoding of the labels.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.diag_part.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.diag_part(input, name=None) {#diag_part}

Returns the diagonal part of the tensor.

This operation returns a tensor with the diagonal part
of the input. The diagonal part is computed as follows:

Assume input has dimensions [D1,..., Dk, D1,..., Dk], then the output is a
tensor of rank k with dimensions [D1,..., Dk] where:

diagonal[i1,..., ik] = input[i1, ..., ik, i1,..., ik].

For example:

'input' is [[1, 0, 0, 0]
 [0, 2, 0, 0]
 [0, 0, 3, 0]
 [0, 0, 0, 4]]

tf.diag_part(input) ==> [1, 2, 3, 4]

Args:

		input: A Tensor. Must be one of the following types: float32, float64, int32, int64, complex64, complex128.
Rank k tensor where k is 2, 4, or 6.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. The extracted diagonal.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.graph_editor.detach_inputs.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.detach_inputs(sgv, control_inputs=False) {#detach_inputs}

Detach the inputs of a subgraph view.

Args:

		sgv: the subgraph view to be detached. This argument is converted to a
subgraph using the same rules as the function subgraph.make_view.
Note that sgv is modified in place.

		control_inputs: if True control_inputs are also detached.

Returns:

A tuple (sgv, input_placeholders) where
sgv is a new subgraph view of the detached subgraph;
input_placeholders is a list of the created input placeholders.

Raises:

		StandardError: if sgv cannot be converted to a SubGraphView using
the same rules than the function subgraph.make_view.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.add.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.add(x, y, name=None) {#add}

Returns x + y element-wise.

NOTE: Add supports broadcasting. AddN does not. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, int16, int32, int64, complex64, complex128, string.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/contrib/losses/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow contrib losses.

losses

Loss operations for use in training models, typically with signature like the
following:

sum_of_squares(predictions, targets, weight, scope) : Tensor

All loss functions take a pair of tensors, predictions and ground truth
targets. It is assumed that the shape of both these tensors is of the form
[batch_size, d1, ... dN] where batch_size is the number
of samples in the batch and d1 ... dN are the remaining dimensions.

THe weight parameter can be used to adjust the relative weight samples within
the batch. The result of each loss is a scalar average of all sample losses with
non-zero weights.

Any parameter named logit should be the raw model outputs, not a normalized
probablility distribution (i.e., [0.0, 1.0]). target for losses taking
logit should be a normalized probability distribution.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/contrib/crf/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

CRF

The CRF module implements a linear-chain CRF layer for learning to predict tag sequences. This variant of the CRF is factored into unary potentials for every element in the sequence and binary potentials for every transition between output tags.

Usage

Below is an example of the API, which learns a CRF for some random data. The linear layer in the example can be replaced by any neural network.

import numpy as np
import tensorflow as tf

Data settings.
num_examples = 10
num_words = 20
num_features = 100
num_tags = 5

Random features.
x = np.random.rand(num_examples, num_words, num_features).astype(np.float32)

Random tag indices representing the gold sequence.
y = np.random.randint(num_tags, size=[num_examples, num_words]).astype(np.int32)

All sequences in this example have the same length, but they can be variable in a real model.
sequence_lengths = np.full(num_examples, num_words - 1, dtype=np.int32)

Train and evaluate the model.
with tf.Graph().as_default():
 with tf.Session() as session:
 # Add the data to the TensorFlow graph.
 x_t = tf.constant(x)
 y_t = tf.constant(y)
 sequence_lengths_t = tf.constant(sequence_lengths)

 # Compute unary scores from a linear layer.
 weights = tf.get_variable("weights", [num_features, num_tags])
 matricized_x_t = tf.reshape(x_t, [-1, num_features])
 matricized_unary_scores = tf.batch_matmul(matricized_x_t, weights)
 unary_scores = tf.reshape(matricized_unary_scores,
 [num_examples, num_words, num_tags])

 # Compute the log-likelihood of the gold sequences and keep the transition
 # params for inference at test time.
 log_likelihood, transition_params = tf.contrib.crf.crf_log_likelihood(
 unary_scores, y_t, sequence_lengths_t)

 # Add a training op to tune the parameters.
 loss = tf.reduce_mean(-log_likelihood)
 train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss)

 # Train for a fixed number of iterations.
 session.run(tf.initialize_all_variables())
 for i in range(1000):
 tf_unary_scores, tf_transition_params, _ = session.run(
 [unary_scores, transition_params, train_op])
 if i % 100 == 0:
 correct_labels = 0
 total_labels = 0
 for tf_unary_scores_, y_, sequence_length_ in zip(tf_unary_scores, y,
 sequence_lengths):
 # Remove padding from the scores and tag sequence.
 tf_unary_scores_ = tf_unary_scores_[:sequence_length_]
 y_ = y_[:sequence_length_]

 # Compute the highest scoring sequence.
 viterbi_sequence, _ = tf.contrib.crf.viterbi_decode(
 tf_unary_scores_, tf_transition_params)

 # Evaluate word-level accuracy.
 correct_labels += np.sum(np.equal(viterbi_sequence, y_))
 total_labels += sequence_length_
 accuracy = 100.0 * correct_labels / float(total_labels)
 print("Accuracy: %.2f%%" % accuracy)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/contrib/avro/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow Avro support

This directory contains code for reading and writing
Apache Avro [https://avro.apache.org/] data in TensorFlow.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/contrib/tfprof/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tfprof: A Profiling Tool for TensorFlow Models

go/tfprof

Author: Xin Pan (xpan@google.com, github: panyx0718)

Consultants: Jon Shlens (shlens@google.com), Pete Warden (petewarden@google.com)

[TOC]

Introduction

tfprof is a profiling tool for TensorFlow that analyzes model architectures
and measures system performance.

###Major Features

		Measure model parameters, float operations, tensor shapes.

		Measure op execution times, requested memory size and device placement.

		Inspect checkpoint tensors’ shapes and their values.

		Explore model based on name scope or graph structure.

		Selectively grouping/filtering/accounting/ordering ops.

Interfaces

CLI Tutorials:
It supports interactive mode for exploration and single-shot mode for
scripts. Outputs can be dumped to files or printed in terminal.

Python API Tutorials: Python API is not released yet.

CLI Tutorials

Tutorials are based on a 32 layers ResNet.
TODO(xpan): Provide graph.pbtxt, model.ckpt, tfprof_log and run_meta download.

Examples

		Start tfprof command line tool

Build the tool.
bazel build -c opt tensorflow/contrib/tfprof/...

Help information, including detail 'option' instructions.
bazel-bin/tensorflow/contrib/tfprof/tools/tfprof/tfprof help
#
The following commands will start tfprof interactive mode.
#
Profile model shapes and parameters only.
bazel-bin/tensorflow/contrib/tfprof/tools/tfprof/tfprof \
 --graph_path=/graph.pbtxt
#
Additionally profile checkpoint statistics and values.
Use '-account_type_regexes _checkpoint_variables' to select
checkpoint tensors.
bazel-bin/tensorflow/contrib/tfprof/tools/tfprof/tfprof \
 --graph_path=graph.pbtxt \
 --checkpoint_path=model.ckpt
#
Additionally profile ops requested memory and timing.
See CLI Input Files section on generating run_meta file.
bazel-bin/tensorflow/contrib/tfprof/tools/tfprof/tfprof \
 --graph_path=graph.pbtxt \
 --run_meta_path=run_meta \
 --checkpoint_path=model.ckpt
#
tfprof_log is used to define customized op types and float ops.
Use tfprof_logger.write_op_log() to create tfprof_log.
See 11) in Examples section on generating tfprof_log file.
bazel-bin/tensorflow/contrib/tfprof/tools/tfprof/tfprof \
 --graph_path=graph.pbtxt \
 --run_meta_path=run_meta \
 --op_log_path=tfprof_log \
 --checkpoint_path=model.ckpt

Note that graph.pbtxt is an ASCII text format.

		Press enter to show the default options

tfprof>
tfprof>
-max_depth 4
-min_bytes 0
-min_micros 0
-min_params 0
-min_float_ops 0
-device_regexes .*
-order_by name
-account_type_regexes Variable
-start_name_regexes .*
-trim_name_regexes
-show_name_regexes .*
-hide_name_regexes IsVariableInitialized_[0-9]+,save\/.*,^zeros[0-9_]*
-account_displayed_op_only false
supported select fileds. Availability depends on --[run_meta|checkpoint|op_log]_path.
[bytes|micros|params|float_ops|num_hidden_ops|tensor_value|device|op_types]
-select params
-viz false
-dump_to_file

		I want to see the BatchNorm‘s gamma value in checkpoint.

Requires --graph_path, --checkpoint_path.
tfprof> scope -show_name_regexes unit_1_0.*gamma -select tensor_value -max_depth 5
_TFProfRoot ()
 unit_1_0/shared_activation/init_bn/gamma ()
[1.80 2.10 2.06 1.91 2.26 1.86 1.81 1.37 1.78 1.85 1.96 1.54 2.04 2.34 2.22 1.99],
 unit_1_0/sub2/bn2/gamma ()
[1.57 1.83 1.30 1.25 1.59 1.14 1.26 0.82 1.19 1.10 1.48 1.01 0.82 1.23 1.21 1.14],

		I want to see my checkpoint tensors shape and number of parameters.

Requires --graph_path, --checkpoint_path.
Increase -max_depth to see all tensors.
tfprof> scope -account_type_regexes _checkpoint_variables -select params -max_depth 4
_TFProfRoot (--/930.58k params)
 global_step (0/0 params)
 init/init_conv/DW (3x3x3x16, 432/864 params)
 pool_logit/DW (64x10, 640/1.28k params)
 pool_logit/DW/Momentum (64x10, 640/640 params)
 pool_logit/biases (10, 10/20 params)
 pool_logit/biases/Momentum (10, 10/10 params)
 unit_last/final_bn/beta (64, 64/128 params)
 unit_last/final_bn/gamma (64, 64/128 params)
 unit_last/final_bn/moving_mean (64, 64/64 params)
 unit_last/final_bn/moving_variance (64, 64/64 params)

		I defined an op named ‘cost’ to calculate the loss. I want to know what ops
it depends on take a long time to run. Hint: Use the ‘graph’ command to explore
graph dependencies.

Requires --graph_path, --run_meta_path.
tfprof> graph -start_name_regexes cost.* -max_depth 100 -min_micros 10000 -select micros -account_type_regexes .*
_TFProfRoot (0us/3.61sec)
 init/init_conv/Conv2D (11.75ms/3.10sec)
 random_shuffle_queue_DequeueMany (3.09sec/3.09sec)
 unit_1_0/sub2/conv2/Conv2D (74.14ms/3.19sec)
 unit_1_3/sub2/conv2/Conv2D (60.75ms/3.34sec)
 unit_2_4/sub2/conv2/Conv2D (73.58ms/3.54sec)
 unit_3_3/sub2/conv2/Conv2D (10.26ms/3.60sec)

		I want to know the expensive operations during the back propagation.
Hint: tensorflow prepend ‘gradient’ to your defined name scopes. Use the ‘scope’
command to explore based on name scope hierarchies.

Requires --graph_path, --run_meta_path.
tfprof> scope -start_name_regexes gradient.* -max_depth 100 -min_micros 20000 -select micros -account_type_regexes .*
_TFProfRoot (0us/2.29sec)
 gradients/unit_1_0/sub1/conv1/Conv2D_grad/Conv2DBackpropFilter (54.96ms/54.96ms)
 gradients/unit_1_0/sub2/conv2/Conv2D_grad/Conv2DBackpropFilter (83.63ms/83.63ms)
 gradients/unit_1_1/sub1/conv1/Conv2D_grad/Conv2DBackpropFilter (99.25ms/99.25ms)
 gradients/unit_1_2/sub1/conv1/Conv2D_grad/Conv2DBackpropFilter (95.40ms/95.40ms)
 gradients/unit_1_2/sub2/conv2/Conv2D_grad/Conv2DBackpropFilter (99.83ms/99.83ms)
 gradients/unit_1_3/sub1/conv1/Conv2D_grad/Conv2DBackpropFilter (95.39ms/95.39ms)
 ...

		Show the number of float operations in the model.
Note: float operations calculation depends on

		op.RegisterStatistics. If an op doesn’t
have RegisterStatistics defined, its float operations cannot be counted.

		fully defined shape is also necessary in order to calculate flops.
float operations number is provided by tensorflow::tfprof::OpLog logged from
Python API.

Requires --graph_path, --op_log_path.
tfprof> scope -min_float_ops 1 -max_depth 10 -select float_ops -account_type_regexes .*
_TFProfRoot (0/17.63b flops)
 gradients/pool_logit/xw_plus_b/MatMul_grad/MatMul (163.84k/163.84k flops)
 gradients/pool_logit/xw_plus_b/MatMul_grad/MatMul_1 (163.84k/163.84k flops)
 init/init_conv/Conv2D (113.25m/113.25m flops)
 pool_logit/xw_plus_b (1.28k/165.12k flops)
 pool_logit/xw_plus_b/MatMul (163.84k/163.84k flops)
 unit_1_0/sub1/conv1/Conv2D (603.98m/603.98m flops)
 unit_1_0/sub2/conv2/Conv2D (603.98m/603.98m flops)
 unit_1_1/sub1/conv1/Conv2D (603.98m/603.98m flops)
 unit_1_1/sub2/conv2/Conv2D (603.98m/603.98m flops)
 ...

		Show the number of parameters of all tf.trainable_variables() in the model.

Requires --graph_path --op_log_path.
store option for future commands.
tfprof> set -account_type_regexes _trainable_variables
tfprof> scope -max_depth 4 -select params
_TFProfRoot (--/464.15k params)
 init/init_conv/DW (3x3x3x16, 432/432 params)
 pool_logit/DW (64x10, 640/640 params)
 pool_logit/biases (10, 10/10 params)
 unit_last/final_bn/beta (64, 64/64 params)
 unit_last/final_bn/gamma (64, 64/64 params)

Where does “_trainable_variables” come from? It is from the OpLog file
generated by write_op_log() Python API. write_op_log() help users create some
common op types implicitly. Users can define their own op types and log it
through the write_op_log() API.

		What if I’m lazy and don’t want to define op type? I have given my ops
well-defined names in my model’s code. And want to use names to select a group
of ops. Let’s try it!

tfprof> set -account_type_regexes .*
tfprof> scope -show_name_regexes unit_2_1.*DW -max_depth 100 -account_displayed_op_only
_TFProfRoot (0/18.43k params)
 unit_2_1/sub1/conv1/DW (3x3x32x32, 9.22k/9.22k params)
 unit_2_1/sub2/conv2/DW (3x3x32x32, 9.22k/9.22k params)

The above command allows you to filter ops that match specific names.
-account_displayed_op_only asks tfprof to only account ops displayed
in terminal. Otherwise, tfprof accounts all ops matched by
-account_type_regexes recursively even if they are hidden due to some
options such as -max_depth.

		TensorFlow has built-in op types. For example, built-in op type Variable
seems to include Variable's created by your model. However, be careful when
depending on it because TensorFlow creates extra Variable ops implicitly and
the implicitly created ops can have the same prefix as the Variable's you
defined.

In the following example, extra Variables are created and “/Momentum” is
appended to their names. This might cause you “model capacity” calculation
to get wrong.

tfprof> scope -account_type_regexes Variable -max_depth 4 -select params
_TFProfRoot (--/930.58k params)
 global_step (1/1 params)
 init/init_conv/DW (3x3x3x16, 432/864 params)
 pool_logit/DW (64x10, 640/1.28k params)
 pool_logit/DW/Momentum (64x10, 640/640 params)
 pool_logit/biases (10, 10/20 params)
 pool_logit/biases/Momentum (10, 10/10 params)
 unit_last/final_bn/beta (64, 64/128 params)
 unit_last/final_bn/gamma (64, 64/128 params)
 unit_last/final_bn/moving_mean (64, 64/64 params)
 unit_last/final_bn/moving_variance (64, 64/64 params)

		A example of defining extra op type for ops using OpLog

First, in Python code, create an OpLog proto and add op type
information to it:

op_log = tfprof_log_pb2.OpLog()
entry = op_log.log_entries.add()
entry.name = 'pool_logit/DW'
entry.types.append('pool_logit')
entry = op_log.log_entries.add()
entry.name = 'pool_logit/biases'
Alternatively:
var = tf.get_variable(xxx)
entry.name = var.op.name
entry.types.append('pool_logit')

Second, call write_op_log to write the OpLog proto.

tfprof_logger.write_op_log(sess.graph, /tmp/my_op_log_dir, op_log)

Third, when starting the tfprof tool, specify
“–op_log_path /tmp/my_op_log_dir/op_log”

tfprof> scope -account_type_regexes pool_logit -max_depth 4 -select params
_TFProfRoot (--/650 params)
 pool_logit/DW (64x10, 640/640 params)
 pool_logit/biases (10, 10/10 params)

Note that when you call
tfprof_logger.write_op_log(...), the tool adds all Variables inside
tf.trainable_variables() to _trainable_variables.

		Run tfprof in one-shot mode and dump result to file.

Printed to stdout if --dump_to_file is not set.
tfprof scope --graph_path /cns/ij-d/home/xpan/tfprof/graph.pbtxt \
 --max_depth 3 \
 --dump_to_file "/tmp/dump"
Reading Files...
Parsing GraphDef...
Preparing Views...

cat /tmp/dump
_TFProfRoot (--/930.58k params)
 global_step (0/0 params)
 pool_logit/DW (64x10, 640/1.28k params)
 pool_logit/biases (10, 10/20 params)

		Analyze how balanced Variable are on parameter servers.

In this tutorial, I’m going to use a seq2seq model, which are split
on several gpus at workers and several parameter servers.

In tfprof, ‘device’ is an op_type. For example, if op1 and op2 are placed on
gpu0. They share an op_type called ‘gpu0’.

bazel-bin/tensorflow/contrib/tfprof/tools/tfprof/tfprof \
 --graph_path ~/tfprof/textsum/graph.pbtxt \
 --run_meta_path ~/tfprof/textsum/run_meta

Looks like ps task 1 is holding twice more parameters than task 0.
tfprof> scope -select device,params -account_type_regexes .*ps.*task:0.* -max_depth 1
_TFProfRoot (--/25.81m params)
tfprof> scope -select device,params -account_type_regexes .*ps.*task:1.* -max_depth 1
_TFProfRoot (--/58.84m params)

CLI Input Files

tfprof command line inference (CLI) loads dumped files from a tensorflow model.
Convert them into in-memory data structures. To use it, users need to specify
the locations of the dumped files. The following are the dumped files loaded
by tfprof:

–graph_path: GraphDef text file (required). Used to build in-memory
representation of the model. For example, graph.pbtxt written by tf.Supervisor
is a candidate. If you are not using tf.Supervisor, you can easily get GraphDef
using tf.Graph.as_graph_def() or other API.

–run_meta_path: tensorflow::RunMetadata.
Used to get the memory and time consumption of
each op of the model. Users need to enable it. For example, the following code
snippet writes a RunMetadata file:

run_options = config_pb2.RunOptions(trace_level=config_pb2.RunOptions.FULL_TRACE)
run_metadata = config_pb2.RunMetadata()
Once a while, call it the get the RunMeta.
_ = self._sess.run(..., options=run_options, run_metadata=run_metadata)
with gfile.Open(os.path.join(output_dir, "run_meta"), "w") as f:
 f.write(run_metadata.SerializeToString())

–op_log_path:
tensorflow::tfprof::OpLog. A proto used to provide extra op information
for ops. By giving a group of ops a type name, users can easily aggregate the
statistics for those ops without accidently missing or including extra ops.
tfprof exposes the following Python API to add op information and logging.

 def write_op_log(graph, log_dir, op_log=None)

–checkpoint_path:
TensorFlow checkpoint. It defines _checkpoint_variable op type. It also
provides checkpointed tensors’ values.

Design

In-memory representation

Scope: This representation organizes ops based on name scope hierarchy,
similar to filesystem hierarchy. Hence, it is essentially a tree data structure.
For example op1 with name “name1/name2” is a child of op2 with name “name1”.

Graph: The representation organizes ops based on op inputs. Hence it is
a graph structure. The graph is a “directed acyclic graph” (hopefully), with
direction from “output to input”. The direction is design this way so that users
can trace from “result” to its “sources”.

Command line options

tfprof’s major goals are to measure system performance and quicly analyze
model architectures. Hence, its commands and options should allow users to achieve
these 2 goals easily.

graph: It is expected that users will mostly use graph representation to
debug system performance. Hence, tfprof supports graph command, which pulls the
graph in-memory representation described above.

scope: It is expected that some users might want to explore their model
statistics using the name scope information they defined in the Python codes.
Hence, tfprof supports “scope” command, which pulls the tree in-memory
representation.

set: It is used to store the options so that user doesn’t need to
re-type the same option again and again in the follow up command line. Note that
tfprof has traditional terminal’s history and auto-complete support.

help: print help information.

Options: Run “tfprof help” to get detailed explanations.

"-max_depth",
"-min_bytes",
"-min_micros",
"-min_params",
"-min_float_ops",
"-order_by",
"-account_type_regexes",
"-start_name_regexes",
"-trim_name_regexes",
"-show_name_regexes",
"-hide_name_regexes",
"-account_displayed_op_only",
"-select",
"-viz", # Only supported for graph command.
"-dump_to_file",

A key design is that stats are aggregated from descendants up to ancestors.
-account_type_regexes is used to decide which ops stat is accounted. It makes
decision based on op type. Usually set it to .* if no extra type information
is added to the ops using OpLog. Intuitively, only accounted ops are displayed.
-min/max and -show/hide/trim/start options are only used the optionally
displayed or hide ops based on ops’ name and stats. However, they don’t prevent
tfprof from accounting stats of hidden ops. Hence, the stat of a op can be
aggregated by its parent even if it is hidden. -account_displayed_op_only is
an option to break this rule. When it is set, only displayed ops are accounted.

Regexes are all comma-separated, for example -show_name_regexes
regex1.*,regex2.*. It is designed this way because it is convenient and comma
is not expected to show up in op names.

-order_by is used to order displayed ops. Displayed ops at the same hierarchy
(notice the indent printed) are sorted according to order_by.

Future Work

		Load SummaryWriter event logs so that it can show the latest summary value.

		Better sorting and aggregation of outputs. Easier comprehension.

		Currently, shape information is based on graph.pbtxt. When the shape
information is incomplete, tfprof ignores it. See if it can use RunMetadata
and Checkpoint to complete shape information.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/contrib/ios_examples/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow iOS Examples

This folder contains examples of how to build applications for iOS devices using TensorFlow.

Building the Examples

		You’ll need Xcode 7.3 or later, with the command-line tools installed.

		Follow the instructions at
tensorflow/contrib/makefile [https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/makefile]
under “iOS” to compile a static library containing the core TensorFlow code.

		Download
Inception v1 [https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip],
and extract the label and graph files into the data folders inside both the
simple and camera examples:

mkdir -p ~/graphs
curl -o ~/graphs/inception5h.zip \
 https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip \
 && unzip ~/graphs/inception5h.zip -d ~/graphs/inception5h
cp ~/graphs/inception5h/* tensorflow/contrib/ios_examples/benchmark/data/
cp ~/graphs/inception5h/* tensorflow/contrib/ios_examples/camera/data/
cp ~/graphs/inception5h/* tensorflow/contrib/ios_examples/simple/data/

		Load the Xcode project inside the simple subfolder, and press Command-R to
build and run it on the simulator or your connected device.

		You should see a single-screen app with a “Run Model” button. Tap that, and
you should see some debug output appear below indicating that the example
Grace Hopper image has been analyzed, with a military uniform recognized.

		Once you have success there, make sure you have a real device connected and
open up the Xcode project in the camera subfolder. Once you build and run
that, you should get a live camera view that you can point at objects to get
real-time recognition results.

Troubleshooting

If you’re hitting problems, here’s a checklist of common things to investigate:

		Make sure that you’ve run the download_dependencies.sh and
compile_ios_protobuf.sh scripts before you run compile_ios_tensorflow.
(These should be called by build_all_ios.sh if you are using it, but check
if they have run successful.)

		Check that you have version 7.3 of Xcode.

		If there’s a complaint about no Sessions registered, that means that the C++
global constructors that TensorFlow relies on for registration haven’t been
linked in properly. You’ll have to make sure your project uses force_load, as
described below.

Creating your Own App

You’ll need to update various settings in your app to link against
TensorFlow. You can view them in the example projects, but here’s a full
rundown:

		The compile_ios_tensorflow.sh script builds a universal static library in
tensorflow/contrib/makefile/gen/lib/libtensorflow-core.a. You’ll need to add
this to your linking build stage, and in Search Paths add
tensorflow/contrib/makefile/gen/lib to the Library Search Paths setting.

		You’ll also need to add libprotobuf.a and libprotobuf-lite.a from
tensorflow/contrib/makefile/gen/protobuf_ios/lib to your Build Stages and
Library Search Paths.

		The Header Search paths needs to contain:
		the root folder of tensorflow,

		tensorflow/contrib/makefile/downloads/protobuf/src

		tensorflow/contrib/makefile/downloads,

		tensorflow/contrib/makefile/downloads/eigen-latest, and

		tensorflow/contrib/makefile/gen/proto.

		In the Linking section, you need to add -force_load followed by the path to
the TensorFlow static library in the Other Linker Flags section. This ensures
that the global C++ objects that are used to register important classes
inside the library are not stripped out. To the linker, they can appear
unused because no other code references the variables, but in fact their
constructors have the important side effect of registering the class.

		You’ll need to include the Accelerate framework in the “Link Binary with
Libraries” build phase of your project.

		C++11 support (or later) should be enabled by setting C++ Language Dialect to
GNU++11 (or GNU++14), and C++ Standard Library to libc++.

		The library doesn’t currently support bitcode, so you’ll need to disable that
in your project settings.

		Remove any use of the -all_load flag in your project. The protocol buffers
libraries (full and lite versions) contain duplicate symbols, and the -all_load
flag will cause these duplicates to become link errors. If you were using
-all_load to avoid issues with Objective-C categories in static libraries,
you may be able to replace it with the -ObjC flag.

Reducing the binary size

TensorFlow is a comparatively large library for a mobile device, so it will
increase the size of your app. Currently on iOS we see around a 11 MB binary
footprint per CPU architecture, though we’re actively working on reducing that.
It can be tricky to set up the right configuration in your own app to keep the
size minimized, so if you do run into this issue we recommend you start by
looking at the simple example to examine its size. Here’s how you do that:

		Open the Xcode project in tensorflow/contrib/ios_examples/simple.

		Make sure you’ve followed the steps above to get the data files.

		Choose “Generic iOS Device” as the build configuration.

		Select Product->Build.

		Once the build’s complete, open the Report Navigator and select the logs.

		Near the bottom, you’ll see a line saying “Touch tf_ios_makefile_example.app”.

		Expand that line using the icon on the right, and copy the first argument to
the Touch command.

		Go to the terminal, type ls -lah and then paste the path you copied.

		For example it might look like ls -lah /Users/petewarden/Library/Developer/Xcode/DerivedData/tf_ios_makefile_example-etdbksqytcnzeyfgdwiihzkqpxwr/Build/Products/Debug-iphoneos/tf_ios_makefile_example.app

		Running this command will show the size of the executable as the
tf_ios_makefile_example line.

Right now you’ll see a size of around 23 MB, since it’s including two
architectures (armv7 and arm64). As a first step, you should make sure the size
increase you see in your own app is similar, and if it’s larger, look at the
“Other Linker Flags” used in the Simple Xcode project settings to strip the
executable.

After that, you can manually look at modifying the list of kernels
included in tensorflow/contrib/makefile/tf_op_files.txt to reduce the number of
implementations to the ones you’re actually using in your own model. We’re
hoping to automate this step in the future, but for now manually removing them
is the best approach.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/contrib/slim/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow-Slim

TF-Slim is a lightweight library for defining, training and evaluating complex
models in TensorFlow. Components of tf-slim can be freely mixed with native
tensorflow, as well as other frameworks, such as tf.contrib.learn.

Usage

import tensorflow.contrib.slim as slim

Why TF-Slim?

TF-Slim is a library that makes building, training and evaluation neural
networks simple:

		Allows the user to define models much more compactly by eliminating
boilerplate code. This is accomplished through the use of
argument scoping [https://www.tensorflow.org/code/tensorflow/contrib/framework/python/ops/arg_scope.py]
and numerous high level
layers [https://www.tensorflow.org/code/tensorflow/contrib/layers/python/layers/layers.py]
and
variables [https://www.tensorflow.org/code/tensorflow/contrib/framework/python/ops/variables.py].
These tools increase readability and maintainability, reduce the likelihood
of an error from copy-and-pasting hyperparameter values and simplifies
hyperparameter tuning.

		Makes developing models simple by providing commonly used
regularizers [https://www.tensorflow.org/code/tensorflow/contrib/layers/python/layers/regularizers.py].

		Several widely used computer vision models (e.g., VGG, AlexNet) have been
developed in slim, and are
available [https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/nets/]
to users. These can either be used as black boxes, or can be extended in various
ways, e.g., by adding “multiple heads” to different internal layers.

		Slim makes it easy to extend complex models, and to warm start training
algorithms by using pieces of pre-existing model checkpoints.

What are the various components of TF-Slim?

TF-Slim is composed of several parts which were design to exist independently.
These include the following main pieces (explained in detail below).

		arg_scope [https://www.tensorflow.org/code/tensorflow/contrib/framework/python/ops/arg_scope.py]:
provides a new scope named arg_scope that allows a user to define default
arguments for specific operations within that scope.

		data [https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/data/]:
contains TF-slim’s
dataset [https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/data/dataset.py]
definition,
data providers [https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/data/data_provider.py],
parallel_reader [https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/data/parallel_reader.py],
and
decoding [https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/data/data_decoder.py]
utilities.

		evaluation [https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/evaluation.py]:
contains routines for evaluating models.

		layers [https://www.tensorflow.org/code/tensorflow/contrib/layers/python/layers/layers.py]:
contains high level layers for building models using tensorflow.

		learning [https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/learning.py]:
contains routines for training models.

		losses [https://www.tensorflow.org/code/tensorflow/contrib/losses/python/losses/loss_ops.py]:
contains commonly used loss functions.

		metrics [https://www.tensorflow.org/code/tensorflow/contrib/metrics/python/ops/metric_ops.py]:
contains popular evaluation metrics.

		nets [https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/nets/]:
contains popular network definitions such as
VGG [https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/nets/vgg.py]
and
AlexNet [https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/nets/alexnet.py]
models.

		preprocess [https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/preprocess.py]:
is a module with various preprocessing utilities.

		queues [https://www.tensorflow.org/code/tensorflow/contrib/slim/queues.py]:
provides a context manager for easily and safely starting and closing
QueueRunners.

		regularizers [https://www.tensorflow.org/code/tensorflow/contrib/layers/python/layers/regularizers.py]:
contains weight regularizers.

		variables [https://www.tensorflow.org/code/tensorflow/contrib/framework/python/ops/variables.py]:
provides convenience wrappers for variable creation and manipulation.

Defining Models

Models can be succinctly defined using TF-Slim by combining its variables,
layers and scopes. Each of these elements are defined below.

Variables

Creating
Variables [https://www.tensorflow.org/how_tos/variables/index.html]
in native tensorflow requires either a predefined value or an initialization
mechanism (e.g. randomly sampled from a Gaussian). Furthermore, if a variable
needs to be created
on a specific device, such as a GPU, the specification must be
made explicit [https://www.tensorflow.org/how_tos/using_gpu/index.html].
To alleviate the code required for variable creation, TF-Slim provides a set
of thin wrapper functions in
variables.py [https://www.tensorflow.org/code/tensorflow/contrib/framework/python/ops/variables.py]
which allow callers to easily define variables.

For example, to create a weight variable, initialize it using a truncated
normal distribution, regularize it with an l2_loss and place it on the CPU,
one need only declare the following:

weights = variables.variable('weights',
 shape=[10, 10, 3 , 3],
 initializer=tf.truncated_normal_initializer(stddev=0.1),
 regularizer=slim.l2_regularizer(0.05),
 device='/CPU:0')

Note that in native TensorFlow, there are two types of variables: regular
variables and local (transient) variables. The vast majority of variables are
regular variables: once created, they can be saved to disk using a
saver [https://www.tensorflow.org/versions/r0.9/api_docs/python/state_ops.html#Saver].
Local variables are those variables that only exist for the duration of a
session and are not saved to disk.

TF-Slim further differentiates variables by defining model variables, which
are variables that represent parameters of a model. Model variables are
trained or fine-tuned during learning and are loaded
from a checkpoint during evaluation or inference. Examples include the variables
created by a slim.fully_connected or slim.conv2d layer. Non-model variables
are all other variables that are used during learning or evaluation but are not
required for actually performing inference. For example, the global_step is
a variable using during learning and evaluation but it is not actually part of
the model. Similarly, moving average variables might mirror model variables,
but the moving averages are not themselves model variables.

Both model variables and regular variables can be easily created and retrieved
via TF-Slim:

Model Variables
weights = slim.model_variable('weights',
 shape=[10, 10, 3 , 3],
 initializer=tf.truncated_normal_initializer(stddev=0.1),
 regularizer=slim.l2_regularizer(0.05),
 device='/CPU:0')
model_variables = slim.get_model_variables()

Regular variables
my_var = slim.variable('my_var',
 shape=[20, 1],
 initializer=tf.zeros_initializer)
regular_variables_and_model_variables = slim.get_variables()

How does this work? When you create a model variable via TF-Slim’s layers or
directly via the slim.model_variable function, TF-Slim adds the variable to
a the tf.GraphKeys.MODEL_VARIABLES collection. What if you have your own
custom layers or variable creation routine but still want TF-Slim to manage or
be aware of your model variables? TF-Slim provides a convenience function for
adding the model variable to its collection:

my_model_variable = CreateViaCustomCode()

Letting TF-Slim know about the additional variable.
slim.add_model_variable(my_model_variable)

Layers

While the set of TensorFlow operations is quite extensive, developers of
neural networks typically think of models in terms of higher level concepts
like “layers”, “losses”, “metrics”, and “networks”. A layer,
such as a Convolutional Layer, a Fully Connected Layer or a BatchNorm Layer
are more abstract than a single TensorFlow operation and typically involve
several operations. Furthermore, a layer usually (but not always) has
variables (tunable parameters) associated with it, unlike more primitive
operations. For example, a Convolutional Layer in a neural network
is composed of several low level operations:

		Creating the weight and bias variables

		Convolving the weights with the input from the previous layer

		Adding the biases to the result of the convolution.

		Applying an activation function.

Using only plain TensorFlow code, this can be rather laborious:

input = ...
with tf.name_scope('conv1_1') as scope:
 kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 128], dtype=tf.float32,
 stddev=1e-1), name='weights')
 conv = tf.nn.conv2d(input, kernel, [1, 1, 1, 1], padding='SAME')
 biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32),
 trainable=True, name='biases')
 bias = tf.nn.bias_add(conv, biases)
 conv1 = tf.nn.relu(bias, name=scope)

To alleviate the need to duplicate this code repeatedly, TF-Slim provides a
number of convenient operations defined at the more abstract level of
neural network layers. For example, compare the code above to an invocation
of the corresponding TF-Slim code:

input = ...
net = slim.conv2d(input, 128, [3, 3], scope='conv1_1')

TF-Slim provides standard implementations for numerous components for building
neural networks. These include:

Layer | TF-Slim
——- | ——–
BiasAdd | slim.bias_add [https://www.tensorflow.org/code/tensorflow/contrib/layers/python/layers/layers.py]
BatchNorm | slim.batch_norm [https://www.tensorflow.org/code/tensorflow/contrib/layers/python/layers/layers.py]
Conv2d | slim.conv2d [https://www.tensorflow.org/code/tensorflow/contrib/layers/python/layers/layers.py]
Conv2dInPlane | slim.conv2d_in_plane [https://www.tensorflow.org/code/tensorflow/contrib/layers/python/layers/layers.py]
Conv2dTranspose (Deconv) | slim.conv2d_transpose [https://www.tensorflow.org/code/tensorflow/contrib/layers/python/layers/layers.py]
FullyConnected | slim.fully_connected [https://www.tensorflow.org/code/tensorflow/contrib/layers/python/layers/layers.py]
AvgPool2D | slim.avg_pool2d [https://www.tensorflow.org/code/tensorflow/contrib/layers/python/layers/layers.py]
Dropout| slim.dropout [https://www.tensorflow.org/code/tensorflow/contrib/layers/python/layers/layers.py]
Flatten | slim.flatten [https://www.tensorflow.org/code/tensorflow/contrib/layers/python/layers/layers.py]
MaxPool2D | slim.max_pool2d [https://www.tensorflow.org/code/tensorflow/contrib/layers/python/layers/layers.py]
OneHotEncoding | slim.one_hot_encoding [https://www.tensorflow.org/code/tensorflow/contrib/layers/python/layers/layers.py]
SeperableConv2 | slim.seperable_conv2d [https://www.tensorflow.org/code/tensorflow/contrib/layers/python/layers/layers.py]
UnitNorm | slim.unit_norm [https://www.tensorflow.org/code/tensorflow/contrib/layers/python/layers/layers.py]

TF-Slim also provides two meta-operations called repeat and stack that
allow users to repeatedly perform the same operation. For example, consider the
following snippet from the
VGG [https://www.robots.ox.ac.uk/~vgg/research/very_deep/] network whose layers
perform several convolutions in a row between pooling layers:

net = ...
net = slim.conv2d(net, 256, [3, 3], scope='conv3_1')
net = slim.conv2d(net, 256, [3, 3], scope='conv3_2')
net = slim.conv2d(net, 256, [3, 3], scope='conv3_3')
net = slim.max_pool2d(net, [2, 2], scope='pool3')

One way to reduce this code duplication would be via a for loop:

net = ...
for i in range(3):
 net = slim.conv2d(net, 256, [3, 3], scope='conv3_' % (i+1))
net = slim.max_pool2d(net, [2, 2], scope='pool3')

This can be made even cleaner by using TF-Slim’s repeat operation:

net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
net = slim.max_pool(net, [2, 2], scope='pool2')

Notice that the slim.repeat not only applies the same argument in-line, it
also is smart enough to unroll the scopes such that the scopes assigned to each
subsequent call of slim.conv2d are appended with an underscore and iteration
number. More concretely, the scopes in the example above would be named
‘conv3/conv3_1’, ‘conv3/conv3_2’ and ‘conv3/conv3_3’.

Furthermore, TF-Slim’s slim.stack operator allows a caller to repeatedly apply
the same operation with different arguments to create a stack or tower of
layers. slim.stack also creates a new tf.variable_scope for each
operation created. For example, a simple way to create a Multi-Layer Perceptron
(MLP):

Verbose way:
x = slim.fully_connected(x, 32, scope='fc/fc_1')
x = slim.fully_connected(x, 64, scope='fc/fc_2')
x = slim.fully_connected(x, 128, scope='fc/fc_3')

Equivalent, TF-Slim way using slim.stack:
slim.stack(x, slim.fully_connected, [32, 64, 128], scope='fc')

In this example, slim.stack calls slim.fully_connected three times passing
the output of one invocation of the function to the next. However, the number of
hidden units in each invocation changes from 32 to 64 to 128. Similarly, one
can use stack to simplify a tower of multiple convolutions:

Verbose way:
x = slim.conv2d(x, 32, [3, 3], scope='core/core_1')
x = slim.conv2d(x, 32, [1, 1], scope='core/core_2')
x = slim.conv2d(x, 64, [3, 3], scope='core/core_3')
x = slim.conv2d(x, 64, [1, 1], scope='core/core_4')

Using stack:
slim.stack(x, slim.conv2d, [(32, [3, 3]), (32, [1, 1]), (64, [3, 3]), (64, [1, 1])], scope='core')

Scopes

In addition to the types of scope mechanisms in TensorFlow
(name_scope [https://www.tensorflow.org/api_docs/python/framework.html#name_scope],
variable_scope [https://www.tensorflow.org/api_docs/python/state_layers.html#variable_scope],
TF-Slim adds a new scoping mechanism called
arg_scope [https://www.tensorflow.org/code/tensorflow/contrib/framework/python/ops/arg_scope.py].
This new scope allows a user to specify one or more operations and a set of
arguments which will be passed to each of the operations defined in the
arg_scope. This functionality is best illustrated by example. Consider the
following code snippet:

net = slim.conv2d(inputs, 64, [11, 11], 4, padding='SAME',
 weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
 weights_regularizer=slim.l2_regularizer(0.0005), scope='conv1')
net = slim.conv2d(net, 128, [11, 11], padding='VALID',
 weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
 weights_regularizer=slim.l2_regularizer(0.0005), scope='conv2')
net = slim.conv2d(net, 256, [11, 11], padding='SAME',
 weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
 weights_regularizer=slim.l2_regularizer(0.0005), scope='conv3')

It should be clear that these three convolution layers share many of the same
hyperparameters. Two have the same padding, all three have the same
weights_initializer and weight_regularizer. This code is hard to read and
contains a lot of repeated values that should be factored out. One solution
would be to specify default values using variables:

padding = 'SAME'
initializer = tf.truncated_normal_initializer(stddev=0.01)
regularizer = slim.l2_regularizer(0.0005)
net = slim.conv2d(inputs, 64, [11, 11], 4,
 padding=padding,
 weights_initializer=initializer,
 weights_regularizer=regularizer,
 scope='conv1')
net = slim.conv2d(net, 128, [11, 11],
 padding='VALID',
 weights_initializer=initializer,
 weights_regularizer=regularizer,
 scope='conv2')
net = slim.conv2d(net, 256, [11, 11],
 padding=padding,
 weights_initializer=initializer,
 weights_regularizer=regularizer,
 scope='conv3')

This solution ensures that all three convolutions share the exact same parameter
values but doesn’t reduce completely the code clutter. By using an arg_scope,
we can both ensure that each layer uses the same values and simplify the code:

 with slim.arg_scope([slim.conv2d], padding='SAME',
 weights_initializer=tf.truncated_normal_initializer(stddev=0.01)
 weights_regularizer=slim.l2_regularizer(0.0005)):
 net = slim.conv2d(inputs, 64, [11, 11], scope='conv1')
 net = slim.conv2d(net, 128, [11, 11], padding='VALID', scope='conv2')
 net = slim.conv2d(net, 256, [11, 11], scope='conv3')

As the example illustrates, the use of arg_scope makes the code cleaner,
simpler and easier to maintain. Notice that while argument values are specifed
in the arg_scope, they can be overwritten locally. In particular, while
the padding argument has been set to ‘SAME’, the second convolution overrides
it with the value of ‘VALID’.

One can also nest arg_scopes and use multiple operations in the same scope.
For example:

 with slim.arg_scope([slim.conv2d, slim.fully_connected],
 activation_fn=tf.nn.relu,
 weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
 weights_regularizer=slim.l2_regularizer(0.0005)):
 with arg_scope([slim.conv2d], stride=1, padding='SAME'):
 net = slim.conv2d(inputs, 64, [11, 11], 4, padding='VALID', scope='conv1')
 net = slim.conv2d(net, 256, [5, 5],
 weights_initializer=tf.truncated_normal_initializer(stddev=0.03),
 scope='conv2')
 net = slim.fully_connected(net, 1000, activation_fn=None, scope='fc')

In this example, the first arg_scope applies the same weights_initializer
and weights_regularizer arguments to the conv2d and fully_connected layers
in its scope. In the second arg_scope, additional default arguments to
conv2d only are specified.

Working Example: Specifying the VGG16 Layers

By combining TF-Slim Variables, Operations and scopes, we can write a normally
very complex network with very few lines of code. For example, the entire
VGG [https://www.robots.ox.ac.uk/~vgg/research/very_deep/] architecture can be
defined with just the following snippet:

def vgg16(inputs):
 with slim.arg_scope([slim.conv2d, slim.fully_connected],
 activation_fn=tf.nn.relu,
 weights_initializer=tf.truncated_normal_initializer(0.0, 0.01),
 weights_regularizer=slim.l2_regularizer(0.0005)):
 net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')
 net = slim.max_pool2d(net, [2, 2], scope='pool1')
 net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
 net = slim.max_pool2d(net, [2, 2], scope='pool2')
 net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
 net = slim.max_pool2d(net, [2, 2], scope='pool3')
 net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
 net = slim.max_pool2d(net, [2, 2], scope='pool4')
 net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')
 net = slim.max_pool2d(net, [2, 2], scope='pool5')
 net = slim.fully_connected(net, 4096, scope='fc6')
 net = slim.dropout(net, 0.5, scope='dropout6')
 net = slim.fully_connected(net, 4096, scope='fc7')
 net = slim.dropout(net, 0.5, scope='dropout7')
 net = slim.fully_connected(net, 1000, activation_fn=None, scope='fc8')
 return net

Training Models

Training Tensorflow models requires a model, a loss function, the gradient
computation and a training routine that iteratively computes the gradients
of the model weights relative to the loss and updates the weights accordingly.
TF-Slim provides both common loss functions and a set of helper functions
that run the training and evaluation routines.

Losses

The loss function defines a quantity that we want to minimize. For
classification problems, this is typically the cross entropy between the true
distribution and the predicted probability distribution across
classes. For regression problems, this is often the sum-of-squares differences
between the predicted and true values.

Certain models, such as multi-task
learning models, require the use of multiple loss functions simultaneously. In
other words, the loss function ultimately being minimized is the sum of various
other loss functions. For example, consider a model that predicts both
the type of scene in an image as well as the depth from the
camera of each pixel. This model’s loss function would be the sum of the
classification loss and depth prediction loss.

TF-Slim provides an easy-to-use mechanism for defining and keeping track of
loss functions via the
losses [https://www.tensorflow.org/code/tensorflow/contrib/losses/python/losses/loss_ops.py]
module. Consider the simple case where we want to train the VGG network:

import tensorflow as tf
vgg = tf.contrib.slim.nets.vgg

Load the images and labels.
images, labels = ...

Create the model.
predictions = vgg.vgg16(images)

Define the loss functions and get the total loss.
loss = losses.softmax_cross_entropy(predictions, labels)

In this example, we start by creating the model (using TF-Slim’s VGG
implementation), and add the standard classification loss. Now, lets turn
to the case where we have a multi-task model that produces multiple outputs:

Load the images and labels.
images, scene_labels, depth_labels = ...

Create the model.
scene_predictions, depth_predictions = CreateMultiTaskModel(images)

Define the loss functions and get the total loss.
classification_loss = slim.losses.softmax_cross_entropy(scene_predictions, scene_labels)
sum_of_squares_loss = slim.losses.sum_of_squares(depth_predictions, depth_labels)

The following two lines have the same effect:
total_loss = classification_loss + sum_of_squares_loss
total_loss = slim.losses.get_total_loss(add_regularization_losses=False)

In this example, we have two losses which we add by calling
slim.losses.softmax_cross_entropy and slim.losses.sum_of_squares. We can
obtain the total loss by adding them together (total_loss) or by calling
slim.losses.GetTotalLoss(). How did this work?
When you create a loss function via TF-Slim, TF-Slim adds the loss to a
special TensorFlow collection of loss functions. This enables you to either
manage the total loss manually, or allow TF-Slim to manage them for you.

What if you want to let TF-Slim manage the losses for you but have a custom loss
function?
loss_ops.py [https://www.tensorflow.org/code/tensorflow/contrib/losses/python/losses/loss_ops.py]
also has a function that adds this loss to TF-Slims collection. For example:

Load the images and labels.
images, scene_labels, depth_labels, pose_labels = ...

Create the model.
scene_predictions, depth_predictions, pose_predictions = CreateMultiTaskModel(images)

Define the loss functions and get the total loss.
classification_loss = slim.losses.softmax_cross_entropy(scene_predictions, scene_labels)
sum_of_squares_loss = slim.losses.sum_of_squares(depth_predictions, depth_labels)
pose_loss = MyCustomLossFunction(pose_predictions, pose_labels)
slim.losses.add_loss(pose_loss) # Letting TF-Slim know about the additional loss.

The following two ways to compute the total loss are equivalent:
regularization_loss = tf.add_n(slim.losses.get_regularization_losses())
total_loss1 = classification_loss + sum_of_squares_loss + pose_loss + regularization_loss

(Regularization Loss is included in the total loss by default).
total_loss2 = losses.get_total_loss()

In this example, we can again either produce the total loss function manually
or let TF-Slim know about the additional loss and let TF-Slim handle the losses.

Training Loop

TF-Slim provides a simple but powerful set of tools for training models
found in
learning.py [https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/learning.py].
These include a Train function that repeatedly measures the loss, computes
gradients and saves the model to disk, as well as several convenience functions
for manipulating gradients. For example, once we’ve
specified the model, the loss function and the optimization scheme, we can
call slim.learning.create_train_op and slim.learning.train to perform the
optimization:

g = tf.Graph()

Create the model and specify the losses...
...

total_loss = slim.losses.get_total_loss()
optimizer = tf.train.GradientDescentOptimizer(learning_rate)

create_train_op ensures that each time we ask for the loss, the update_ops
are run and the gradients being computed are applied too.
train_op = slim.learning.create_train_op(total_loss, optimizer)
logdir = ... # Where checkpoints are stored.

slim.learning.train(
 train_op,
 logdir,
 number_of_steps=1000,
 save_summaries_secs=300,
 save_interval_secs=600):

In this example, slim.learning.train is provided with the train_op which is
used to (a) compute the loss and (b) apply the gradient step. logdir specifies
the directory where the checkpoints and event files are stored. We can limit the
number of gradient steps taken to any number. In this case, we’ve asked for
1000 steps to be taken. Finally, save_summaries_secs=300 indicates that
we’ll compute summaries every 5 minutes and save_interval_secs=600 indicates
that we’ll save a model checkpoint every 10 minutes.

Working Example: Training the VGG16 Model

To illustrate this, lets
examine the following sample of training the VGG network:

import tensorflow as tf

slim = tf.contrib.slim
vgg = tf.contrib.slim.nets.vgg

...

train_log_dir = ...
if not gfile.Exists(train_log_dir):
 gfile.MakeDirs(train_log_dir)

g = tf.Graph()
with g.as_default():
 # Set up the data loading:
 images, labels = ...

 # Define the model:
 predictions = vgg.vgg16(images, is_training=True)

 # Specify the loss function:
 slim.losses.softmax_cross_entropy(predictions, labels)

 total_loss = slim.losses.get_total_loss()
 tf.scalar_summary('losses/total loss', total_loss)

 # Specify the optimization scheme:
 optimizer = tf.train.GradientDescentOptimizer(learning_rate=.001)

 # create_train_op that ensures that when we evaluate it to get the loss,
 # the update_ops are done and the gradient updates are computed.
 train_tensor = slim.learning.create_train_op(total_loss, optimizer)

 # Actually runs training.
 slim.learning.train(train_tensor, train_log_dir)

Fine-Tuning Existing Models

Brief Recap on Restoring Variables from a Checkpoint

After a model has been trained, it can be restored using tf.train.Saver()
which restores Variables from a given checkpoint. For many cases,
tf.train.Saver() provides a simple mechanism to restore all or just a
few variables.

Create some variables.
v1 = tf.Variable(..., name="v1")
v2 = tf.Variable(..., name="v2")
...
Add ops to restore all the variables.
restorer = tf.train.Saver()

Add ops to restore some variables.
restorer = tf.train.Saver([v1, v2])

Later, launch the model, use the saver to restore variables from disk, and
do some work with the model.
with tf.Session() as sess:
 # Restore variables from disk.
 restorer.restore(sess, "/tmp/model.ckpt")
 print("Model restored.")
 # Do some work with the model
 ...

See Restoring Variables [https://www.tensorflow.org/how_tos/variables/index.html#restoring-variables]
and
Choosing which Variables to Save and Restore [https://www.tensorflow.org/how_tos/variables/index.html#choosing-which-variables-to-save-and-restore]
sections of the Variables [https://www.tensorflow.org/how_tos/variables/index.html]
page for more details.

Partially Restoring Models

It is often desirable to fine-tune a pre-trained model on an entirely new
dataset or even a new task. In these situations, one can use TF-Slim’s
helper functions to select a subset of variables to restore:

Create some variables.
v1 = slim.variables.variable(name="v1", ...)
v2 = slim.variables.variable(name="nested/v2", ...)
...

Get list of variables to restore (which contains only 'v2'). These are all
equivalent methods:
variables_to_restore = slim.get_variables_by_name("v2")
or
variables_to_restore = slim.get_variables_by_suffix("2")
or
variables_to_restore = slim.get_variables(scope="nested")
or
variables_to_restore = slim.get_variables_to_restore(include=["nested"])
or
variables_to_restore = slim.get_variables_to_restore(exclude=["v1"])

Create the saver which will be used to restore the variables.
restorer = tf.train.Saver(variables_to_restore)

with tf.Session() as sess:
 # Restore variables from disk.
 restorer.restore(sess, "/tmp/model.ckpt")
 print("Model restored.")
 # Do some work with the model
 ...

Restoring models with different variable names

When restoring variables from a checkpoint, the Saver
locates the variable names in a checkpoint file and maps them to variables in
the current graph. Above, we created a saver by passing to it a list of
variables. In this case, the names of the variables to locate in the checkpoint
file were implicitly obtained from each provided variable’s var.op.name.

This works well when the variable names in the checkpoint file match those in
the graph. However, sometimes, we want to restore a model from a checkpoint
whose variables have different names those in the current graph. In this case,
we must provide the Saver a dictionary that maps from each checkpoint variable
name to each graph variable. Consider the following example where the checkpoint
variables names are obtained via a simple function:

Assuming than 'conv1/weights' should be restored from 'vgg16/conv1/weights'
def name_in_checkpoint(var):
 return 'vgg16/' + var.op.name

Assuming than 'conv1/weights' and 'conv1/bias' should be restored from 'conv1/params1' and 'conv1/params2'
def name_in_checkpoint(var):
 if "weights" in var.op.name:
 return var.op.name.replace("weights", "params1")
 if "bias" in var.op.name:
 return var.op.name.replace("bias", "params2")

variables_to_restore = slim.get_model_variables()
variables_to_restore = {name_in_checkpoint(var):var for var in variables_to_restore}
restorer = tf.train.Saver(variables_to_restore)

with tf.Session() as sess:
 # Restore variables from disk.
 restorer.restore(sess, "/tmp/model.ckpt")

Fine-Tuning a Model on a different task

Consider the case where we have a pre-trained VGG16 model. The model was
trained on the ImageNet dataset, which has 1000 classes. However, we would
like to apply it to the Pascal VOC dataset which has only 20 classes. To
do so, we can initialize our new model using the values of the pre-trained
model excluding the final layer:

Load the Pascal VOC data
image, label = MyPascalVocDataLoader(...)
images, labels = tf.train.batch([image, label], batch_size=32)

Create the model
predictions = vgg.vgg_16(images)

train_op = slim.learning.create_train_op(...)

Specify where the Model, trained on ImageNet, was saved.
model_path = '/path/to/pre_trained_on_imagenet.checkpoint'

Specify where the new model will live:
log_dir = '/path/to/my_pascal_model_dir/'

Restore only the convolutional layers:
variables_to_restore = slim.get_variables_to_restore(exclude=['fc6', 'fc7', 'fc8'])
init_fn = assign_from_checkpoint_fn(model_path, var_list):

Start training.
slim.learning.train(train_op, log_dir, init_fn=init_fn)

Evaluating Models.

Once we’ve trained a model (or even while the model is busy training) we’d like
to see how well the model performs in practice. This is accomplished by picking
a set of evaluation metrics, which will grade the models performance, and the
evaluation code which actually loads the data, performs inference, compares the
results to the ground truth and records the evaluation scores. This step may be
performed once or repeated periodically.

Metrics

We define a metric to be a performance measure that is not a loss function
(losses are directly optimized during training), but which we are still
interested in for the purpose of evaluating our model.
For example, we might want to minimize log loss, but our metrics of interest
might be F1 score, or Intersection Over Union score (which are not
differentiable, and therefore cannot be used as losses).

TF-Slim provides a set of metric operations that makes evaluating models
easy. Abstractly, computing the value of a metric can be divided into three
parts:

		Initialization: initialize the variables used to compute the metrics.

		Aggregation: perform operations (sums, etc) used to compute the metrics.

		Finalization: (optionally) perform any final operation to compute metric
values. For example, computing means, mins, maxes, etc.

For example, to compute mean_absolute_error, two variables, a count and
total variable are initialized to zero. During aggregation, we observed
some set of predictions and labels, compute their absolute differences and add
the total to total. Each time we observe another value,
count is incremented. Finally, during finalization, total is divided
by count to obtain the mean.

The following example demonstrates the API for declaring metrics. Because
metrics are often evaluated on a test set which is different from the training
set (upon which the loss is computed), we’ll assume we’re using test data:

images, labels = LoadTestData(...)
predictions = MyModel(images)

mae_value_op, mae_update_op = slim.metrics.mean_absolute_error(predictions, labels)
mre_value_op, mre_update_op = slim.metrics.mean_relative_error(predictions, labels, labels)
pl_value_op, pl_update_op = slim.metrics.percentage_less(mean_relative_errors, 0.3)

As the example illustrates, the creation of a metric returns two values:
a value_op and an update_op. The value_op is an idempotent operation that
returns the current value of the metric. The update_op is an operation that
performs the aggregation step mentioned above as well as returning the value
of the metric.

Keeping track of each value_op and update_op can be laborious. To deal with
this, TF-Slim provides two convenience functions:

Aggregates the value and update ops in two lists:
value_ops, update_ops = slim.metrics.aggregate_metrics(
 slim.metrics.mean_absolute_error(predictions, labels),
 slim.metrics.mean_squared_error(predictions, labels))

Aggregates the value and update ops in two dictionaries:
names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
 "eval/mean_absolute_error": slim.metrics.mean_absolute_error(predictions, labels),
 "eval/mean_squared_error": slim.metrics.mean_squared_error(predictions, labels),
})

Working example: Tracking Multiple Metrics

Putting it all together:

import tensorflow as tf

slim = tf.contrib.slim
vgg = tf.contrib.slim.nets.vgg

Load the data
images, labels = load_data(...)

Define the network
predictions = vgg.vgg_16(images)

Choose the metrics to compute:
names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
 "eval/mean_absolute_error": slim.metrics.mean_absolute_error(predictions, labels),
 "eval/mean_squared_error": slim.metrics.mean_squared_error(predictions, labels),
})

Evaluate the model using 1000 batches of data:
num_batches = 1000

with tf.Session() as sess:
 sess.run(tf.initialize_all_variables())
 sess.run(tf.initialize_local_variables())

 for batch_id in range(num_batches):
 sess.run(names_to_updates.values())

 metric_values = sess.run(name_to_values.values())
 for metric, value in zip(names_to_values.keys(), metric_values):
 print('Metric %s has value: %f' % (metric, value))

Note that
metric_ops.py [https://www.tensorflow.org/code/tensorflow/contrib/metrics/python/ops/metric_ops.py]
can be used in isolation without using either
layers.py [https://www.tensorflow.org/code/tensorflow/contrib/layers/python/layers/layers.py]
or
loss_ops.py [https://www.tensorflow.org/code/tensorflow/contrib/losses/python/losses/loss_ops.py]

Evaluation Loop

TF-Slim provides an evaluation module
(evaluation.py [https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/evaluation.py]),
which contains helper functions for writing model evaluation scripts using
metrics from
the metric_ops.py [https://www.tensorflow.org/code/tensorflow/contrib/metrics/python/ops/metric_ops.py]
module. These include a function for periodically running evaluations,
evaluating
metrics over batches of data and printing and summarizing metric results. For
example:

import tensorflow as tf

slim = tf.contrib.slim

Load the data
images, labels = load_data(...)

Define the network
predictions = MyModel(images)

Choose the metrics to compute:
names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
 'accuracy': slim.metrics.accuracy(predictions, labels),
 'precision': slim.metrics.precision(predictions, labels),
 'recall': slim.metrics.recall(mean_relative_errors, 0.3),
})

Create the summary ops such that they also print out to std output:
summary_ops = []
for metric_name, metric_value in metrics_to_values.iteritems():
 op = tf.scalar_summary(metric_name, metric_value)
 op = tf.Print(op, [metric_value], metric_name)
 summary_ops.append(op)

num_examples = 10000
batch_size = 32
num_batches = math.ceil(num_examples / float(batch_size))

Setup the global step.
slim.get_or_create_global_step()

output_dir = ... # Where the summaries are stored.
eval_interval_secs = ... # How often to run the evaluation.
slim.evaluation.evaluation_loop(
 'local',
 checkpoint_dir,
 log_dir,
 num_evals=num_batches,
 eval_op=names_to_updates.values(),
 summary_op=tf.merge_summary(summary_ops),
 eval_interval_secs=eval_interval_secs)

Authors

Sergio Guadarrama and Nathan Silberman

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/contrib/slim/python/slim/data/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow-Slim Data

TF-Slim provides a data loading library for facilitating the reading of data
from various formats. TF-Slim’s data modules are composed of several layers of
abstraction to make it flexible enough to support multiple file storage types,
such as TFRecords or Text files, data encoding and features naming schemes.

Overview

The task of loading data has two main components: (1) specification of how
a dataset is represented so it can be read and interpreted and (2) instruction
for providing the data to consumers of the dataset.

Secondly, one must specify instructions for how
the data is actually provided and housed in memory. For example, if the data is
sharded over many sources, should it be read in parallel from these sources?
Should it be read serially? Should the data be shuffled in memory?

Dataset Specification

TF-Slim defines a dataset to be a set of files (that may or may not be encoded)
representing a finite set of samples, and which can be read to provide a
predefined set of entities or items. For example, a dataset might be stored
over thousands of files or a single file. The files might store the data in
clear text or some advanced encoding scheme. It might provide a single item,
like an image, or several items, like an image, a class label and a scene
label.

More concretely, TF-Slim’s
dataset [https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/data/dataset.py]
is a tuple that encapsulates the following elements of a dataset specification:

		data_sources: A list of file paths that together make up the dataset

		reader: A TensorFlow
Reader [https://www.tensorflow.org/api_docs/python/io_ops.html#ReaderBase]
appropriate for the file type in data_sources.

		decoder: A TF-Slim
data_decoder [https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/data/data_decoder.py]
class which is used to decode the content of the read dataset files.

		num_samples: The number of samples in the dataset.

		items_to_descriptions: A map from the items provided by the dataset to
descriptions of each.

In a nutshell, a dataset is read by (a) opening the files specified by
data_sources using the given reader class (b) decoding the files using
the given decoder and (c) allowing the user to request a list of items to
be returned as Tensors.

Data Decoders

A
data_decoder [https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/data/data_decoder.py]
is a class which is given some (possibly serialized/encoded) data and returns a
list of Tensors. In particular, a given data decoder is able to decode a
predefined list of items and can return a subset or all of them, when
requested:

Load the data
my_encoded_data = ...
data_decoder = MyDataDecoder()

Decode the inputs and labels:
decoded_input, decoded_labels = data_decoder.Decode(data, ['input', 'labels'])

Decode just the inputs:
decoded_input = data_decoder.Decode(data, ['input'])

Check which items a data decoder knows how to decode:
for item in data_decoder.list_items():
 print(item)

Example: TFExampleDataDecoder

The
tfexample_data_decoder.py [https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/data/tfexample_data_decoder.py]
is a data decoder which decodes serialized TFExample protocol buffers. A
TFExample protocol buffer is a map from keys (strings) to either a
tf.FixedLenFeature or tf.VarLenFeature. Consequently, to decode a
TFExample, one must provide a mapping from one or more TFExample fields
to each of the items that the tfexample_data_decoder can provide. For
example, a dataset of TFExamples might store images in various formats and
each TFExample might contain an encoding key and a format key which can
be used to decode the image using the appropriate decoder (jpg, png, etc).

To make this possible, the tfexample_data_decoder is constructed by specifying
the a map of TFExample keys to either tf.FixedLenFeature or
tf.VarLenFeature as well as a set of ItemHandlers. An ItemHandler
provides a mapping from TFExample keys to the item being provided. Because a
tfexample_data_decoder might return multiple items, one often constructs a
tfexample_data_decoder using multiple ItemHandlers.

tfexample_data_decoder provides some predefined ItemHandlers which take care
of the common cases of mapping TFExamples to images, Tensors and
SparseTensors. For example, the following specification might be
used to decode a dataset of images:

keys_to_features = {
 'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
 'image/format': tf.FixedLenFeature((), tf.string, default_value='raw'),
 'image/class/label': tf.FixedLenFeature(
 [1], tf.int64, default_value=tf.zeros([1], dtype=tf.int64)),
}

items_to_handlers = {
 'image': tfexample_decoder.Image(
 image_key = 'image/encoded',
 format_key = 'image/format',
 shape=[28, 28],
 channels=1),
 'label': tfexample_decoder.Tensor('image/class/label'),
}

decoder = tfexample_decoder.TFExampleDecoder(
 keys_to_features, items_to_handlers)

Notice that the TFExample is parsed using three keys: image/encoded,
image/format and image/class/label. Additionally, the first two keys are
mapped to a single item named ‘image’. As defined, this data_decoder
provides two items named ‘image’ and ‘label’.

Data Provision

A
data_provider [https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/data/data_provider.py]
is a class which provides Tensors for each item requested:

my_data_provider = ...
image, class_label, bounding_box = my_data_provider.get(
 ['image', 'label', 'bb'])

The
dataset_data_provider [https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/data/dataset_data_provider.py]
is a data_provider that provides data from a given dataset specification:

dataset = GetDataset(...)
data_provider = dataset_data_provider.DatasetDataProvider(
 dataset, common_queue_capacity=32, common_queue_min=8)

The dataset_data_provider enables control over several elements of data
provision:

		How many concurrent readers are used.

		Whether the data is shuffled as its loaded into its queue

		Whether to take a single pass over the data or read data indefinitely.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/contrib/layers/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow contrib layers.

initializers.py

Functions that produce variable initializer functions with signature:

foo(shape, dtype) : Tensor

These are typically consumed by functions in layers.py.

layers.py {#.py}

Functions that produce layer operations and associated weight & bias variables. Signatures will vary for different functions, but they will often take many of
these arguments.

foo(x, num_outputs, …, weight_init=<DEFAULT>, bias_init=<DEFAULT>, weight_collections=(tf.GraphKeys.WEIGHTS,), bias_collections=(tf.GraphKeys.BIASES,), output_collections=(tf.GraphKeys.ACTIVATIONS,), weight_regularizer=None, bias_regularizer=None, name=None) : Tensor

x is the input tensor.

Weights, biases, and activations (i.e., outputs) are, by default, added to the specified collections. Weights and biases are also added to
tf.GraphKeys.VARIABLES and tf.GraphKeys.TRAINABLE_VARIABLES.

optimizers.py

Functions that add optimization ops given loss and global_step tensors.

regularizers.py

Functions that produce weight regularization functions with signature

foo(weight_vars, name=None) : Operation

These are typically consumed by functions in layers.py.

summaries.py

Functions that add summary ops to the standard tf.GraphKeys.SUMMARIES
collection. They also avoid name conflicts in the summary key.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.VarLenFeature.__new__.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.VarLenFeature.__new__(_cls, dtype) {#VarLenFeature.new}

Create new instance of VarLenFeature(dtype,)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/contrib/session_bundle/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow Inference Model Format

[TOC]

Overview

This document describes the data formats and layouts for exporting [TensorFlow]
(https://www.tensorflow.org/) models for inference.

These exports have the following properties:

		Recoverable
		given an export the graph can easily be initialized and run

		Hermetic
		an export directory is self-contained to facilitate distribution

The TensorFlow Saver writes checkpoints (graph variables) while training
so it can recover if it crashes. A TensorFlow Serving export contains a
checkpoint with the current state of the graph variables along with a MetaGraph
definition that’s needed for serving.

Directory Structure

Directory overview
00000000/
 assets/
 export.meta
 export-?????-of-?????

		00000000 – Export version
		Format %08d

		assets – Asset file directory
		Holds auxiliary files for the graph (e.g., vocabularies)

		export.meta – MetaGraph Definition
		Binary [tensorflow::MetaGraphDef]
(https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/protobuf/meta_graph.proto)

		export-?????-of-?????
		A checkpoint of the Graph Variables

		Outputs from Python [Saver]
(https://github.com/tensorflow/tensorflow/tree/master/tensorflow/python/training/saver.py)
with sharded=True.

Exporting (Python code)

The Exporter [https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/session_bundle/exporter.py]
class can be used to export a model in the above format from a TensorFlow Python
binary.

Exporting TF.learn models

TF.learn uses an [Exporter wrapper]
(https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/learn/python/learn/utils/export.py)
that can be used for building signatures. Use the BaseEstimator.export
function to export your Estimator with a signature.

Importing (C++ code)

The LoadSessionBundleFromPath [https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/session_bundle/session_bundle.h]
function can be used to create a tensorflow::Session and initialize it from an
export. This function takes session options and the path to the export as
arguments and returns a bundle of export data including a tensorflow::Session
which can be run.

Signatures

Graphs used for inference tasks typically have set of inputs and outputs used at
inference time. We call this a ‘Signature’.

Standard Signatures (standard usage)

Graphs used for standard inference tasks have standard sets of inputs and
outputs. For example, a graph used for a regression task has an input tensor for
the data and an output tensor for the regression values. The signature mechanism
makes it easy to identify the relevant input and output tensors for common graph
applications.

The Manifest [https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/session_bundle/manifest.proto]
contains a Signature message which contains the task specific inputs and
outputs.

// A Signature specifies the inputs and outputs of commonly used graphs.
message Signature {
 oneof type {
 RegressionSignature regression_signature = 1;
 ClassificationSignature classification_signature = 2;
 GenericSignature generic_signature = 3;
 }
};

A Standard Signature can be set at export time using the Exporter API.

Run an export.
signature = exporter.classification_signature(input_tensor=input,
 classes_tensor=output)
export = exporter.Exporter(saver)
export.init(sess.graph.as_graph_def(), default_graph_signature=signature)
export.export(export_path, global_step_tensor, sess)

TF.learn signatures

TF.learn models can use the BaseEstimator.export function directly to export.
To specify a Signature, use the Exporter wrapper [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/learn/python/learn/utils/export.py]
helpers (e.g. classification_signature_fn).

estimator = tf.contrib.learn.Estimator(...)
...
Other possible parameters omitted for the sake of brevity.
estimator.export(
 export_path,
 signature_fn=tf.contrib.learn.utils.export.classification_signature_fn)

Recovering signatures

These can be recovered at serving time using utilities in signature.h [https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/session_bundle/signature.h]

// Get the classification signature.
ClassificationSignature signature;
TF_CHECK_OK(GetClassificationSignature(bundle->meta_graph_def, &signature));

// Run the graph.
Tensor input_tensor = GetInputTensor();
Tensor classes_tensor;
Tensor scores_tensor;
TF_CHECK_OK(RunClassification(signature, input_tensor, session, &classes_tensor,
 &scores_tensor));

Generic Signatures (custom or advanced usage)

Generic Signatures enable fully custom usage of the tensorflow::Session API.
They are recommended for when the Standard Signatures do not satisfy a
particular use-case. A general example of when to use these is for a model
taking a single input and generating multiple outputs performing different
inferences.

// GenericSignature specifies a map from logical name to Tensor name.
// Typical application of GenericSignature is to use a single GenericSignature
// that includes all of the Tensor nodes and target names that may be useful at
// serving, analysis or debugging time. The recommended name for this signature
// is "generic_bindings".
message GenericSignature {
 map<string, TensorBinding> map = 1;
};

Generic Signatures can be used to compliment a Standard Signature, for example
to support debugging. Here is an example that includes the Standard regression
Signature and a Generic Signature.

named_tensor_bindings = {"logical_input_A": v0,
 "logical_input_B": v1}
signatures = {
 "regression": exporter.regression_signature(input_tensor=v0,
 output_tensor=v1),
 "generic": exporter.generic_signature(named_tensor_bindings)}
export = exporter.Exporter(saver)
export.init(sess.graph.as_graph_def(), named_graph_signatures=signatures)
export.export(export_path, global_step_tensor, sess)

Generic Signature does not differentiate between input and output tensors. It
provides full flexibility to specify the input and output tensors you need.
The benefit is preserving a mapping between names that you specify at export
time (we call these the logical names), and the actual graph node names that may
be less stable and/or auto-generated by TensorFlow.

In signature.h [https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/session_bundle/signature.h]
note that the generic signature methods BindGenericInputs and
BindGenericNames are doing simple string to string mapping as a convenience.
These methods map from the names used at training time to actual names in the
graph.

The bound results from those methods can be used as inputs to
tensorflow::Session->Run(). Specifically, the bound result
vector<pair<string, Tensor>> from BindGenericInputs can be supplied as the
first parameter inputs to tensorflow::Session->Run(). Similarly, the bound
result vector<string> from BindGenericNames, can be mapped to
output_tensor_names in the tensorflow::Session->Run() arguments. The next
parameter, target_node_names is typically null at inference time. The last
parameter outputs is for the results, which share the same order as the
supplied output_tensor_names.

Custom Initialization

Some graphs many require custom initialization after the variables have been
restored. Such initialization, done through an arbitrary Op, can be added using
the Exporter API. If set, LoadSessionBundleFromPath will automatically run
the Op when restoring a Session following the loading of variables.

Assets

In many cases we have Ops which depend on external files for initialization
(such as vocabularies). These “assets” are not stored in the graph and are
needed for both training and inference.

In order to create hermetic exports these asset files need to be:

		copied to each export directory, and

		read when recovering a session from an export base directory.

Copying assets to the export directory is handled with a callback mechanism.
The callback function receives two parameters:

		the dictionary of source files to desired basename, and

		the export directory.
The default callback uses gfile.Copy to perform the copy.

The tensor that contains the filepath to be copied is specified by passing the
collection of asset filepath tensor, which is usually extracted from the graph
by tf.get_collection(tf.GraphKeys.ASSET_FILEPATHS).

Run an export.
export = exporter.Exporter(save)
export.init(
 sess.graph.as_graph_def(),
 asset_collection=tf.get_collection(tf.GraphKeys.ASSET_FILEPATHS))
export.export(export_path, global_step_tensor, sess)

Users can use their own callbacks as shown in the following example, with the
requirement to keep the basename of the original files:

def my_custom_copy_callback(files_to_copy, export_dir_path):
 # Copy all source files (keys) in files_to_copy to export_dir_path using the
 # corresponding basename (value).
 ...

Run an export.
export = exporter.Exporter(save)
export.init(
 sess.graph.as_graph_def(),
 asset_collection=tf.get_collection(tf.GraphKeys.ASSET_FILEPATHS),
 asset_callback=my_custom_copy_callback)
export.export(export_path, global_step_tensor, sess)

AssetFile binds the name of a tensor in the graph to the name of a file
within the assets directory. LoadSessionBundleFromPath will handle the base
path and asset directory swap/concatenation such that the tensor is set with
the fully qualified filename upon return.

Exporter Usage

The typical workflow of model exporting is:

		Build model graph G.

		Train variables or load trained variables from checkpoint in session S.

		[Optional] Build inference graph I.

		Export G.

The Exporter should be used as follows:

		The Saver used in Exporter(saver) should be created within the context of G.

		Exporter.init() should be called within the context of G.

		Exporter.export() should be called using session S.

		If I is provided for Exporter.init(), an exact same Saver should be created
under I as the saver under G – in the way that exact same Save/Restore ops
are created in both G and S.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.container.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.container(container_name) {#container}

Wrapper for Graph.container() using the default graph.

Args:

		container_name: The container string to use in the context.

Returns:

A context manager that specifies the default container to use for newly
created stateful ops.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.image.grayscale_to_rgb.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.grayscale_to_rgb(images, name=None) {#grayscale_to_rgb}

Converts one or more images from Grayscale to RGB.

Outputs a tensor of the same DType and rank as images. The size of the
last dimension of the output is 3, containing the RGB value of the pixels.

Args:

		images: The Grayscale tensor to convert. Last dimension must be size 1.

		name: A name for the operation (optional).

Returns:

The converted grayscale image(s).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.train.limit_epochs.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.limit_epochs(tensor, num_epochs=None, name=None) {#limit_epochs}

Returns tensor num_epochs times and then raises an OutOfRange error.

Args:

		tensor: Any Tensor.

		num_epochs: A positive integer (optional). If specified, limits the number
of steps the output tensor may be evaluated.

		name: A name for the operations (optional).

Returns:

tensor or OutOfRange.

Raises:

		ValueError: if num_epochs is invalid.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/contrib/framework/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow contrib framework.

Common TensorFlow utilities, mostly used by tf.contrib.layers and
tf.contrib.losses.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Chi2Tensor is a StochasticTensor backed by the distribution Chi2.

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#Chi2Tensor.init}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.clone(name=None, **dist_args) {#Chi2Tensor.clone}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.distribution {#Chi2Tensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.dtype {#Chi2Tensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.entropy(name='entropy') {#Chi2Tensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.graph {#Chi2Tensor.graph}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.input_dict {#Chi2Tensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.loss(final_loss, name='Loss') {#Chi2Tensor.loss}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.mean(name='mean') {#Chi2Tensor.mean}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.name {#Chi2Tensor.name}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.value(name='value') {#Chi2Tensor.value}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.value_type {#Chi2Tensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.add_to_collection.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.add_to_collection(name, value) {#add_to_collection}

Wrapper for Graph.add_to_collection() using the default graph.

See Graph.add_to_collection()
for more details.

Args:

		name: The key for the collection. For example, the GraphKeys class
contains many standard names for collections.

		value: The value to add to the collection.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.assert_integer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.assert_integer(x, message=None, name=None) {#assert_integer}

Assert that x is of integer dtype.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_integer(x)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_integer(x)], x)

Args:

		x: Tensor whose basetype is integer and is not quantized.

		message: A string to prefix to the default message.

		name: A name for this operation (optional). Defaults to “assert_integer”.

Raises:

		TypeError: If x.dtype is anything other than non-quantized integer.

Returns:

A no_op that does nothing. Type can be determined statically.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.global_norm.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.global_norm(t_list, name=None) {#global_norm}

Computes the global norm of multiple tensors.

Given a tuple or list of tensors t_list, this operation returns the
global norm of the elements in all tensors in t_list. The global norm is
computed as:

global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))

Any entries in t_list that are of type None are ignored.

Args:

		t_list: A tuple or list of mixed Tensors, IndexedSlices, or None.

		name: A name for the operation (optional).

Returns:

A 0-D (scalar) Tensor of type float.

Raises:

		TypeError: If t_list is not a sequence.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.logical_not.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.logical_not(x, name=None) {#logical_not}

Returns the truth value of NOT x element-wise.

Args:

		x: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.distributions.Chi2WithAbsDf.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Chi2 with parameter transform df = floor(abs(df)).

tf.contrib.distributions.Chi2WithAbsDf.__init__(df, validate_args=False, allow_nan_stats=True, name='Chi2WithAbsDf') {#Chi2WithAbsDf.init}

tf.contrib.distributions.Chi2WithAbsDf.allow_nan_stats {#Chi2WithAbsDf.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Chi2WithAbsDf.alpha {#Chi2WithAbsDf.alpha}

Shape parameter.

tf.contrib.distributions.Chi2WithAbsDf.batch_shape(name='batch_shape') {#Chi2WithAbsDf.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Chi2WithAbsDf.beta {#Chi2WithAbsDf.beta}

Inverse scale parameter.

tf.contrib.distributions.Chi2WithAbsDf.cdf(value, name='cdf') {#Chi2WithAbsDf.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Chi2WithAbsDf.df {#Chi2WithAbsDf.df}

tf.contrib.distributions.Chi2WithAbsDf.dtype {#Chi2WithAbsDf.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Chi2WithAbsDf.entropy(name='entropy') {#Chi2WithAbsDf.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Chi2WithAbsDf.event_shape(name='event_shape') {#Chi2WithAbsDf.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Chi2WithAbsDf.get_batch_shape() {#Chi2WithAbsDf.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Chi2WithAbsDf.get_event_shape() {#Chi2WithAbsDf.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Chi2WithAbsDf.is_continuous {#Chi2WithAbsDf.is_continuous}

tf.contrib.distributions.Chi2WithAbsDf.is_reparameterized {#Chi2WithAbsDf.is_reparameterized}

tf.contrib.distributions.Chi2WithAbsDf.log_cdf(value, name='log_cdf') {#Chi2WithAbsDf.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Chi2WithAbsDf.log_pdf(value, name='log_pdf') {#Chi2WithAbsDf.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Chi2WithAbsDf.log_pmf(value, name='log_pmf') {#Chi2WithAbsDf.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Chi2WithAbsDf.log_prob(value, name='log_prob') {#Chi2WithAbsDf.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Chi2WithAbsDf.log_survival_function(value, name='log_survival_function') {#Chi2WithAbsDf.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Chi2WithAbsDf.mean(name='mean') {#Chi2WithAbsDf.mean}

Mean.

tf.contrib.distributions.Chi2WithAbsDf.mode(name='mode') {#Chi2WithAbsDf.mode}

Mode.

tf.contrib.distributions.Chi2WithAbsDf.name {#Chi2WithAbsDf.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Chi2WithAbsDf.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Chi2WithAbsDf.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Chi2WithAbsDf.param_static_shapes(cls, sample_shape) {#Chi2WithAbsDf.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Chi2WithAbsDf.parameters {#Chi2WithAbsDf.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Chi2WithAbsDf.pdf(value, name='pdf') {#Chi2WithAbsDf.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Chi2WithAbsDf.pmf(value, name='pmf') {#Chi2WithAbsDf.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Chi2WithAbsDf.prob(value, name='prob') {#Chi2WithAbsDf.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Chi2WithAbsDf.sample(sample_shape=(), seed=None, name='sample') {#Chi2WithAbsDf.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Chi2WithAbsDf.sample_n(n, seed=None, name='sample_n') {#Chi2WithAbsDf.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Chi2WithAbsDf.std(name='std') {#Chi2WithAbsDf.std}

Standard deviation.

tf.contrib.distributions.Chi2WithAbsDf.survival_function(value, name='survival_function') {#Chi2WithAbsDf.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Chi2WithAbsDf.validate_args {#Chi2WithAbsDf.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Chi2WithAbsDf.variance(name='variance') {#Chi2WithAbsDf.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.squared_difference.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.squared_difference(x, y, name=None) {#squared_difference}

Returns (x - y)(x - y) element-wise.

NOTE: SquaredDifference supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.image.resize_nearest_neighbor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.resize_nearest_neighbor(images, size, align_corners=None, name=None) {#resize_nearest_neighbor}

Resize images to size using nearest neighbor interpolation.

Args:

		images: A Tensor. Must be one of the following types: uint8, int8, int16, int32, int64, half, float32, float64.
4-D with shape [batch, height, width, channels].

		size: A 1-D int32 Tensor of 2 elements: new_height, new_width. The
new size for the images.

		align_corners: An optional bool. Defaults to False.
If true, rescale input by (new_height - 1) / (height - 1), which
exactly aligns the 4 corners of images and resized images. If false, rescale
by new_height / height. Treat similarly the width dimension.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as images. 4-D with shape
[batch, new_height, new_width, channels].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.not_equal.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.not_equal(x, y, name=None) {#not_equal}

Returns the truth value of (x != y) element-wise.

NOTE: NotEqual supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, int16, int32, int64, complex64, quint8, qint8, qint32, string, bool, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.sparse_reshape.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_reshape(sp_input, shape, name=None) {#sparse_reshape}

Reshapes a SparseTensor to represent values in a new dense shape.

This operation has the same semantics as reshape on the represented dense
tensor. The indices of non-empty values in sp_input are recomputed based
on the new dense shape, and a new SparseTensor is returned containing the
new indices and new shape. The order of non-empty values in sp_input is
unchanged.

If one component of shape is the special value -1, the size of that
dimension is computed so that the total dense size remains constant. At
most one component of shape can be -1. The number of dense elements
implied by shape must be the same as the number of dense elements
originally represented by sp_input.

For example, if sp_input has shape [2, 3, 6] and indices / values:

[0, 0, 0]: a
[0, 0, 1]: b
[0, 1, 0]: c
[1, 0, 0]: d
[1, 2, 3]: e

and shape is [9, -1], then the output will be a SparseTensor of
shape [9, 4] and indices / values:

[0, 0]: a
[0, 1]: b
[1, 2]: c
[4, 2]: d
[8, 1]: e

Args:

		sp_input: The input SparseTensor.

		shape: A 1-D (vector) int64 Tensor specifying the new dense shape of the
represented SparseTensor.

		name: A name prefix for the returned tensors (optional)

Returns:

A SparseTensor with the same non-empty values but with indices calculated
by the new dense shape.

Raises:

		TypeError: If sp_input is not a SparseTensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.clip_by_global_norm.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.clip_by_global_norm(t_list, clip_norm, use_norm=None, name=None) {#clip_by_global_norm}

Clips values of multiple tensors by the ratio of the sum of their norms.

Given a tuple or list of tensors t_list, and a clipping ratio clip_norm,
this operation returns a list of clipped tensors list_clipped
and the global norm (global_norm) of all tensors in t_list. Optionally,
if you’ve already computed the global norm for t_list, you can specify
the global norm with use_norm.

To perform the clipping, the values t_list[i] are set to:

t_list[i] * clip_norm / max(global_norm, clip_norm)

where:

global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))

If clip_norm > global_norm then the entries in t_list remain as they are,
otherwise they’re all shrunk by the global ratio.

Any of the entries of t_list that are of type None are ignored.

This is the correct way to perform gradient clipping (for example, see
Pascanu et al., 2012 [http://arxiv.org/abs/1211.5063]
(pdf [http://arxiv.org/pdf/1211.5063.pdf])).

However, it is slower than clip_by_norm() because all the parameters must be
ready before the clipping operation can be performed.

Args:

		t_list: A tuple or list of mixed Tensors, IndexedSlices, or None.

		clip_norm: A 0-D (scalar) Tensor > 0. The clipping ratio.

		use_norm: A 0-D (scalar) Tensor of type float (optional). The global
norm to use. If not provided, global_norm() is used to compute the norm.

		name: A name for the operation (optional).

Returns:

		list_clipped: A list of Tensors of the same type as list_t.

		global_norm: A 0-D (scalar) Tensor representing the global norm.

Raises:

		TypeError: If t_list is not a sequence.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.add_check_numerics_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.add_check_numerics_ops() {#add_check_numerics_ops}

Connect a check_numerics to every floating point tensor.

check_numerics operations themselves are added for each half, float,
or double tensor in the graph. For all ops in the graph, the
check_numerics op for all of its (half, float, or double) inputs
is guaranteed to run before the check_numerics op on any of its outputs.

Returns:

A group op depending on all check_numerics ops added.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.framework.get_or_create_global_step.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.get_or_create_global_step(graph=None) {#get_or_create_global_step}

Returns and create (if necessary) the global step variable.

Args:

		graph: The graph in which to create the global step. If missing, use default
graph.

Returns:

the tensor representing the global step variable.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.nn.rnn_cell.DropoutWrapper.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Operator adding dropout to inputs and outputs of the given cell.

tf.nn.rnn_cell.DropoutWrapper.__call__(inputs, state, scope=None) {#DropoutWrapper.call}

Run the cell with the declared dropouts.

tf.nn.rnn_cell.DropoutWrapper.__init__(cell, input_keep_prob=1.0, output_keep_prob=1.0, seed=None) {#DropoutWrapper.init}

Create a cell with added input and/or output dropout.

Dropout is never used on the state.

Args:

		cell: an RNNCell, a projection to output_size is added to it.

		input_keep_prob: unit Tensor or float between 0 and 1, input keep
probability; if it is float and 1, no input dropout will be added.

		output_keep_prob: unit Tensor or float between 0 and 1, output keep
probability; if it is float and 1, no output dropout will be added.

		seed: (optional) integer, the randomness seed.

Raises:

		TypeError: if cell is not an RNNCell.

		ValueError: if keep_prob is not between 0 and 1.

tf.nn.rnn_cell.DropoutWrapper.output_size {#DropoutWrapper.output_size}

tf.nn.rnn_cell.DropoutWrapper.state_size {#DropoutWrapper.state_size}

tf.nn.rnn_cell.DropoutWrapper.zero_state(batch_size, dtype) {#DropoutWrapper.zero_state}

Return zero-filled state tensor(s).

Args:

		batch_size: int, float, or unit Tensor representing the batch size.

		dtype: the data type to use for the state.

Returns:

If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.distributions.MultivariateNormalCholesky.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 The multivariate normal distribution on R^k.

This distribution is defined by a 1-D mean mu and a Cholesky factor chol.
Providing the Cholesky factor allows for O(k^2) pdf evaluation and sampling,
and requires O(k^2) storage.

Mathematical details

The Cholesky factor chol defines the covariance matrix: C = chol chol^T.

The PDF of this distribution is then:

f(x) = (2 pi)^(-k/2) |det(C)|^(-1/2) exp(-1/2 (x - mu)^T C^{-1} (x - mu))

Examples

A single multi-variate Gaussian distribution is defined by a vector of means
of length k, and a covariance matrix of shape k x k.

Extra leading dimensions, if provided, allow for batches.

Initialize a single 3-variate Gaussian with diagonal covariance.
Note, this would be more efficient with MultivariateNormalDiag.
mu = [1, 2, 3.]
chol = [[1, 0, 0], [0, 3, 0], [0, 0, 2]]
dist = tf.contrib.distributions.MultivariateNormalCholesky(mu, chol)

Evaluate this on an observation in R^3, returning a scalar.
dist.pdf([-1, 0, 1])

Initialize a batch of two 3-variate Gaussians.
mu = [[1, 2, 3], [11, 22, 33]]
chol = ... # shape 2 x 3 x 3, lower triangular, positive diagonal.
dist = tf.contrib.distributions.MultivariateNormalCholesky(mu, chol)

Evaluate this on a two observations, each in R^3, returning a length two
tensor.
x = [[-1, 0, 1], [-11, 0, 11]] # Shape 2 x 3.
dist.pdf(x)

Trainable (batch) Choesky matrices can be created with
tf.contrib.distributions.matrix_diag_transform()

tf.contrib.distributions.MultivariateNormalCholesky.__init__(mu, chol, validate_args=False, allow_nan_stats=True, name='MultivariateNormalCholesky') {#MultivariateNormalCholesky.init}

Multivariate Normal distributions on R^k.

User must provide means mu and chol which holds the (batch) Cholesky
factors, such that the covariance of each batch member is chol chol^T.

Args:

		mu: (N+1)-D floating point tensor with shape [N1,...,Nb, k],
b >= 0.

		chol: (N+2)-D Tensor with same dtype as mu and shape
[N1,...,Nb, k, k]. The upper triangular part is ignored (treated as
though it is zero), and the diagonal must be positive.

		validate_args: Boolean, default False. Whether to validate input
with asserts. If validate_args is False, and the inputs are
invalid, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to give Ops created by the initializer.

Raises:

		TypeError: If mu and chol are different dtypes.

tf.contrib.distributions.MultivariateNormalCholesky.allow_nan_stats {#MultivariateNormalCholesky.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.MultivariateNormalCholesky.batch_shape(name='batch_shape') {#MultivariateNormalCholesky.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.MultivariateNormalCholesky.cdf(value, name='cdf') {#MultivariateNormalCholesky.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalCholesky.dtype {#MultivariateNormalCholesky.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.MultivariateNormalCholesky.entropy(name='entropy') {#MultivariateNormalCholesky.entropy}

Shanon entropy in nats.

tf.contrib.distributions.MultivariateNormalCholesky.event_shape(name='event_shape') {#MultivariateNormalCholesky.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.MultivariateNormalCholesky.get_batch_shape() {#MultivariateNormalCholesky.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.MultivariateNormalCholesky.get_event_shape() {#MultivariateNormalCholesky.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.MultivariateNormalCholesky.is_continuous {#MultivariateNormalCholesky.is_continuous}

tf.contrib.distributions.MultivariateNormalCholesky.is_reparameterized {#MultivariateNormalCholesky.is_reparameterized}

tf.contrib.distributions.MultivariateNormalCholesky.log_cdf(value, name='log_cdf') {#MultivariateNormalCholesky.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalCholesky.log_pdf(value, name='log_pdf') {#MultivariateNormalCholesky.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.MultivariateNormalCholesky.log_pmf(value, name='log_pmf') {#MultivariateNormalCholesky.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalCholesky.log_prob(value, name='log_prob') {#MultivariateNormalCholesky.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalCholesky.log_sigma_det(name='log_sigma_det') {#MultivariateNormalCholesky.log_sigma_det}

Log of determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalCholesky.log_survival_function(value, name='log_survival_function') {#MultivariateNormalCholesky.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.MultivariateNormalCholesky.mean(name='mean') {#MultivariateNormalCholesky.mean}

Mean.

tf.contrib.distributions.MultivariateNormalCholesky.mode(name='mode') {#MultivariateNormalCholesky.mode}

Mode.

tf.contrib.distributions.MultivariateNormalCholesky.mu {#MultivariateNormalCholesky.mu}

tf.contrib.distributions.MultivariateNormalCholesky.name {#MultivariateNormalCholesky.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.MultivariateNormalCholesky.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#MultivariateNormalCholesky.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.MultivariateNormalCholesky.param_static_shapes(cls, sample_shape) {#MultivariateNormalCholesky.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.MultivariateNormalCholesky.parameters {#MultivariateNormalCholesky.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.MultivariateNormalCholesky.pdf(value, name='pdf') {#MultivariateNormalCholesky.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.MultivariateNormalCholesky.pmf(value, name='pmf') {#MultivariateNormalCholesky.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalCholesky.prob(value, name='prob') {#MultivariateNormalCholesky.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalCholesky.sample(sample_shape=(), seed=None, name='sample') {#MultivariateNormalCholesky.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.MultivariateNormalCholesky.sample_n(n, seed=None, name='sample_n') {#MultivariateNormalCholesky.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.MultivariateNormalCholesky.sigma {#MultivariateNormalCholesky.sigma}

Dense (batch) covariance matrix, if available.

tf.contrib.distributions.MultivariateNormalCholesky.sigma_det(name='sigma_det') {#MultivariateNormalCholesky.sigma_det}

Determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalCholesky.std(name='std') {#MultivariateNormalCholesky.std}

Standard deviation.

tf.contrib.distributions.MultivariateNormalCholesky.survival_function(value, name='survival_function') {#MultivariateNormalCholesky.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.MultivariateNormalCholesky.validate_args {#MultivariateNormalCholesky.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.MultivariateNormalCholesky.variance(name='variance') {#MultivariateNormalCholesky.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.FixedLenFeature.__new__.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.FixedLenFeature.__new__(_cls, shape, dtype, default_value=None) {#FixedLenFeature.new}

Create new instance of FixedLenFeature(shape, dtype, default_value)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.learn.monitors.CheckpointSaver.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Saves checkpoints every N steps.

tf.contrib.learn.monitors.CheckpointSaver.__init__(checkpoint_dir, save_secs=None, save_steps=None, saver=None, checkpoint_basename='model.ckpt', scaffold=None) {#CheckpointSaver.init}

Initialize CheckpointSaver monitor.

Args:

		checkpoint_dir: str, base directory for the checkpoint files.

		save_secs: int, save every N secs.

		save_steps: int, save every N steps.

		saver: Saver object, used for saving.

		checkpoint_basename: str, base name for the checkpoint files.

		scaffold: Scaffold, use to get saver object.

Raises:

		ValueError: If both save_steps and save_secs are not None.

		ValueError: If both save_steps and save_secs are None.

tf.contrib.learn.monitors.CheckpointSaver.begin(max_steps=None) {#CheckpointSaver.begin}

tf.contrib.learn.monitors.CheckpointSaver.end(session=None) {#CheckpointSaver.end}

tf.contrib.learn.monitors.CheckpointSaver.epoch_begin(epoch) {#CheckpointSaver.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.CheckpointSaver.epoch_end(epoch) {#CheckpointSaver.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.CheckpointSaver.post_step(step, session) {#CheckpointSaver.post_step}

tf.contrib.learn.monitors.CheckpointSaver.run_on_all_workers {#CheckpointSaver.run_on_all_workers}

tf.contrib.learn.monitors.CheckpointSaver.set_estimator(estimator) {#CheckpointSaver.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.CheckpointSaver.step_begin(step) {#CheckpointSaver.step_begin}

tf.contrib.learn.monitors.CheckpointSaver.step_end(step, output) {#CheckpointSaver.step_end}

Callback after training step finished.

This callback provides access to the tensors/ops evaluated at this step,
including the additional tensors for which evaluation was requested in
step_begin.

In addition, the callback has the opportunity to stop training by returning
True. This is useful for early stopping, for example.

Note that this method is not called if the call to Session.run() that
followed the last call to step_begin() failed.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool. True if training should stop.

Raises:

		ValueError: if we’ve not begun a step, or step number does not match.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.segment_min.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.segment_min(data, segment_ids, name=None) {#segment_min}

Computes the minimum along segments of a tensor.

Read the section on
Segmentation for an explanation
of segments.

Computes a tensor such that
\(output_i = \min_j(data_j)\) where min is over j such
that segment_ids[j] == i.

[image:]

Args:

		data: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		segment_ids: A Tensor. Must be one of the following types: int32, int64.
A 1-D tensor whose rank is equal to the rank of data‘s
first dimension. Values should be sorted and can be repeated.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.
Has same shape as data, except for dimension 0 which
has size k, the number of segments.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.layers.stack.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.stack(inputs, layer, stack_args, **kwargs) {#stack}

Builds a stack of layers by applying layer repeatedly using stack_args.

stack allows you to repeatedly apply the same operation with different
arguments stack_args[i]. For each application of the layer, stack creates
a new scope appended with an increasing number. For example:

 y = stack(x, fully_connected, [32, 64, 128], scope='fc')
 # It is equivalent to:

 x = fully_connected(x, 32, scope='fc/fc_1')
 x = fully_connected(x, 64, scope='fc/fc_2')
 y = fully_connected(x, 128, scope='fc/fc_3')

If the scope argument is not given in kwargs, it is set to
layer.__name__, or layer.func.__name__ (for functools.partial
objects). If neither __name__ nor func.__name__ is available, the
layers are called with scope='stack'.

Args:

		inputs: A Tensor suitable for layer.

		layer: A layer with arguments (inputs, *args, **kwargs)

		stack_args: A list/tuple of parameters for each call of layer.

		**kwargs: Extra kwargs for the layer.

Returns:

a Tensor result of applying the stacked layers.

Raises:

		ValueError: if the op is unknown or wrong.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.graph_editor.make_placeholder_from_tensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.make_placeholder_from_tensor(t, scope=None) {#make_placeholder_from_tensor}

Create a tf.placeholder for the Graph Editor.

Note that the correct graph scope must be set by the calling function.

Args:

		t: a tf.Tensor whose name will be used to create the placeholder
(see function placeholder_name).

		scope: absolute scope within which to create the placeholder. None
means that the scope of t is preserved. “” means the root scope.

Returns:

A newly created tf.placeholder.

Raises:

		TypeError: if t is not None or a tf.Tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.image.flip_up_down.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.flip_up_down(image) {#flip_up_down}

Flip an image horizontally (upside down).

Outputs the contents of image flipped along the first dimension, which is
height.

See also reverse().

Args:

		image: A 3-D tensor of shape [height, width, channels].

Returns:

A 3-D tensor of the same type and shape as image.

Raises:

		ValueError: if the shape of image not supported.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.image.resize_image_with_crop_or_pad.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.resize_image_with_crop_or_pad(image, target_height, target_width) {#resize_image_with_crop_or_pad}

Crops and/or pads an image to a target width and height.

Resizes an image to a target width and height by either centrally
cropping the image or padding it evenly with zeros.

If width or height is greater than the specified target_width or
target_height respectively, this op centrally crops along that dimension.
If width or height is smaller than the specified target_width or
target_height respectively, this op centrally pads with 0 along that
dimension.

Args:

		image: 3-D tensor of shape [height, width, channels]

		target_height: Target height.

		target_width: Target width.

Raises:

		ValueError: if target_height or target_width are zero or negative.

Returns:

Cropped and/or padded image of shape
[target_height, target_width, channels]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/contrib/cmake/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 This directory contains CMake files that can be used to build TensorFlow
core library.

Current Status

CMake build is not yet ready for general usage!

We are actively working on CMake support. Please help us improve it.
Pull requests are welcomed!

Linux CMake + Docker (very simple)

git clone --recursive https://github.com/tensorflow/tensorflow.git
cd tensorflow
tensorflow/tools/ci_build/ci_build.sh CPU tensorflow/tools/ci_build/builds/cmake.sh

That’s it. Dependencies included. Otherwise read the rest of this readme...

Prerequisites

You need to have CMake [http://www.cmake.org] and Git [http://git-scm.com]
installed on your computer before proceeding.

Most of the instructions will be given to the Сommand Prompt, but the same
actions can be performed using appropriate GUI tools.

Environment Setup

Open the appropriate Command Prompt from the Start menu.

For example VS2013 x64 Native Tools Command Prompt:

C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin\amd64>

Change to your working directory:

C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin\amd64>cd C:\Path\to
C:\Path\to>

Where C:\Path\to is the path to your real working directory.

Create a folder where TensorFlow headers/libraries/binaries will be installed
after they are built:

C:\Path\to>mkdir install

If cmake command is not available from Command Prompt, add it to system
PATH variable:

C:\Path\to>set PATH=%PATH%;C:\Program Files (x86)\CMake\bin

If git command is not available from Command Prompt, add it to system
PATH variable:

C:\Path\to>set PATH=%PATH%;C:\Program Files\Git\cmd

Good. Now you are ready to continue.

Getting Sources

You can get the latest stable source packages from the
releases [https://github.com/tensorflow/tensorflow/releases] page.
Or you can type:

C:\Path\to> git clone --recursive -b [release_tag] https://github.com/tensorflow/tensorflow.git

Where [release_tag] is a git tag like v0.6.0 or a branch name like master
if you want to get the latest code.

Go to the project folder:

C:\Path\to>cd tensorflow
C:\Path\to\tensorflow>

Now go to tensorflow\contrib\cmake folder in TensorFlow’s contrib sources:

C:\Path\to\tensorflow>cd tensorflow\contrib\cmake
C:\Path\to\tensorflow\tensorflow\contrib\cmake>

Good. Now you are ready to configure CMake.

CMake Configuration

CMake supports a lot of different
generators [http://www.cmake.org/cmake/help/latest/manual/cmake-generators.7.html]
for various native build systems. We are only interested in
Makefile [http://www.cmake.org/cmake/help/latest/manual/cmake-generators.7.html#makefile-generators]
and
Visual Studio [http://www.cmake.org/cmake/help/latest/manual/cmake-generators.7.html#visual-studio-generators]
generators.

We will use shadow building to separate the temporary files from the TensorFlow
source code.

Create a temporary build folder and change your working directory to it:

 C:\Path\to\tensorflow\tensorflow\contrib\cmake>mkdir build & cd build
 C:\Path\to\tensorflow\tensorflow\contrib\cmake\build>

The Makefile generator can build the project in only one configuration, so
you need to build a separate folder for each configuration.

To start using a Release configuration:

 [...]\contrib\cmake\build>mkdir release & cd release
 [...]\contrib\cmake\build\release>cmake -G "NMake Makefiles" ^
 -DCMAKE_BUILD_TYPE=Release ^
 -DCMAKE_INSTALL_PREFIX=../../../../../../install ^
 ../..

It will generate nmake Makefile in current directory.

To use Debug configuration:

 [...]\contrib\cmake\build>mkdir debug & cd debug
 [...]\contrib\cmake\build\debug>cmake -G "NMake Makefiles" ^
 -DCMAKE_BUILD_TYPE=Debug ^
 -DCMAKE_INSTALL_PREFIX=../../../../../../install ^
 ../..

It will generate nmake Makefile in current directory.

To create Visual Studio solution file:

 [...]\contrib\cmake\build>mkdir solution & cd solution
 [...]\contrib\cmake\build\solution>cmake -G "Visual Studio 12 2013 Win64" ^
 -DCMAKE_INSTALL_PREFIX=../../../../../../install ^
 ../..

It will generate Visual Studio solution file tensorflow.sln in current
directory.

If the gmock directory does not exist, and/or you do not want to build
TensorFlow unit tests, you need to add cmake command argument
-Dtensorflow_BUILD_TESTS=OFF to disable testing.

Compiling

To compile tensorflow:

 [...]\contrib\cmake\build\release>nmake

or

 [...]\contrib\cmake\build\debug>nmake

And wait for the compilation to finish.

If you prefer to use the IDE:

		Open the generated tensorflow.sln file in Microsoft Visual Studio.

		Choose “Debug” or “Release” configuration as desired.

		From the Build menu, choose “Build Solution”.

And wait for the compilation to finish.

Testing

To run unit-tests:

 [...]\contrib\cmake\build\release>nmake check

or

 [...]\contrib\cmake\build\debug>nmake check

You can also build project check from Visual Studio solution.
Yes, it may sound strange, but it works.

You should see an output similar to:

 Running main() from gmock_main.cc
 [==========] Running 1546 tests from 165 test cases.

 ...

 [==========] 1546 tests from 165 test cases ran. (2529 ms total)
 [PASSED] 1546 tests.

To run specific tests:

 C:\Path\to\tensorflow>tensorflow\contrib\cmake\build\release\tests.exe ^
 --gtest_filter=AnyTest*
 Running main() from gmock_main.cc
 Note: Google Test filter = AnyTest*
 [==========] Running 3 tests from 1 test case.
 [----------] Global test environment set-up.
 [----------] 3 tests from AnyTest
 [RUN] AnyTest.TestPackAndUnpack
 [OK] AnyTest.TestPackAndUnpack (0 ms)
 [RUN] AnyTest.TestPackAndUnpackAny
 [OK] AnyTest.TestPackAndUnpackAny (0 ms)
 [RUN] AnyTest.TestIs
 [OK] AnyTest.TestIs (0 ms)
 [----------] 3 tests from AnyTest (1 ms total)

 [----------] Global test environment tear-down
 [==========] 3 tests from 1 test case ran. (2 ms total)
 [PASSED] 3 tests.

Note that the tests must be run from the source folder.

If all tests are passed, safely continue.

Installing

To install TensorFlow to the specified install folder:

 [...]\contrib\cmake\build\release>nmake install

or

 [...]\contrib\cmake\build\debug>nmake install

You can also build project INSTALL from Visual Studio solution.
It sounds not so strange and it works.

This will create the following folders under the install location:

		bin - that contains tensorflow binaries;

		include - that contains C++ headers and TensorFlow *.proto files;

		lib - that contains linking libraries and CMake configuration files for
tensorflow package.

Now you can if needed:

		Copy the contents of the include directory to wherever you want to put
headers.

		Copy binaries wherever you put build tools (probably somewhere in your
PATH).

		Copy linking libraries libtensorflow[d].lib wherever you put libraries.

To avoid conflicts between the MSVC debug and release runtime libraries, when
compiling a debug build of your application, you may need to link against a
debug build of libtensorflowd.lib with “d” postfix. Similarly, release builds
should link against release libtensorflow.lib library.

DLLs vs. static linking

Static linking is now the default for the TensorFlow Buffer libraries. Due to
issues with Win32’s use of a separate heap for each DLL, as well as binary
compatibility issues between different versions of MSVC’s STL library, it is
recommended that you use static linkage only. However, it is possible to
build libtensorflow as DLLs if you really want. To do this, do the following:

		Add an additional flag -Dtensorflow_BUILD_SHARED_LIBS=ON when invoking
cmake

		Follow the same steps as described in the above section.

		When compiling your project, make sure to #define TENSORFLOW_USE_DLLS.

When distributing your software to end users, we strongly recommend that you
do NOT install libtensorflow.dll to any shared location.
Instead, keep these libraries next to your binaries, in your application’s
own install directory. C++ makes it very difficult to maintain binary
compatibility between releases, so it is likely that future versions of these
libraries will not be usable as drop-in replacements.

If your project is itself a DLL intended for use by third-party software, we
recommend that you do NOT expose TensorFlow objects in your library’s
public interface, and that you statically link them into your library.

Notes on Compiler Warnings

The following warnings have been disabled while building the tensorflow
libraries and binaries. You may have to disable some of them in your own
project as well, or live with them.

		[TODO]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/python/summary/README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow Event Processing

This folder contains classes useful for analyzing and visualizing TensorFlow
events files. The code is primarily being developed to support TensorBoard,
but it can be used by anyone who wishes to analyze or visualize TensorFlow
events files.

If you wish to load TensorFlow events, you should use an EventAccumulator
(to load from a single events file) or an EventMultiplexer (to load from
multiple events files).

The API around these tools has not solidified, and we may make backwards-
incompatible changes without warning.

If you have questions or requests, please contact danmane@google.com

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/contrib/learn/get_started/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Introduction

Below are few simple examples of the API to get you started with TensorFlow Learn.
For more examples, please see examples [https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/skflow].

General tips

		It’s useful to re-scale dataset before passing to estimator to 0 mean and unit standard deviation. Stochastic Gradient Descent doesn’t always do the right thing when variable are very different scale.

		Categorical variables should be managed before passing input to the estimator.

Linear Classifier

Simple linear classification:

from tensorflow.contrib import learn
from sklearn import datasets, metrics

iris = datasets.load_iris()
classifier = learn.TensorFlowLinearClassifier(n_classes=3)
classifier.fit(iris.data, iris.target)
score = metrics.accuracy_score(iris.target, classifier.predict(iris.data))
print("Accuracy: %f" % score)

Linear Regressor

Simple linear regression:

from tensorflow.contrib import learn
from sklearn import datasets, metrics, preprocessing

boston = datasets.load_boston()
X = preprocessing.StandardScaler().fit_transform(boston.data)
regressor = learn.TensorFlowLinearRegressor()
regressor.fit(X, boston.target)
score = metrics.mean_squared_error(regressor.predict(X), boston.target)
print ("MSE: %f" % score)

Deep Neural Network

Example of 3 layer network with 10, 20 and 10 hidden units respectively:

from tensorflow.contrib import learn
from sklearn import datasets, metrics

iris = datasets.load_iris()
feature_columns = learn.infer_real_valued_columns_from_input(iris.data)
classifier = learn.DNNClassifier(
 feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3)
classifier.fit(iris.data, iris.target, steps=100)
score = metrics.accuracy_score(iris.target, classifier.predict(iris.data))
print("Accuracy: %f" % score)

Custom model

Example of how to pass a custom model to the TensorFlowEstimator:

from tensorflow.contrib import learn
from sklearn import datasets, metrics

iris = datasets.load_iris()

def my_model(X, y):
 """This is DNN with 10, 20, 10 hidden layers, and dropout of 0.5 probability."""
 layers = learn.ops.dnn(X, [10, 20, 10], keep_prob=0.5)
 return learn.models.logistic_regression(layers, y)

classifier = learn.TensorFlowEstimator(model_fn=my_model, n_classes=3)
classifier.fit(iris.data, iris.target)
score = metrics.accuracy_score(iris.target, classifier.predict(iris.data))
print("Accuracy: %f" % score)

Saving / Restoring models

Each estimator has a save method which takes folder path where all model information will be saved. For restoring you can just call learn.TensorFlowEstimator.restore(path) and it will return object of your class.

Some example code:

from tensorflow.contrib import learn

classifier = learn.TensorFlowLinearRegression()
classifier.fit(...)
classifier.save('/tmp/tf_examples/my_model_1/')

new_classifier = TensorFlowEstimator.restore('/tmp/tf_examples/my_model_2')
new_classifier.predict(...)

Summaries

To get nice visualizations and summaries you can use logdir parameter on fit. It will start writing summaries for loss and histograms for variables in your model. You can also add custom summaries in your custom model function by calling tf.summary and passing Tensors to report.

classifier = learn.TensorFlowLinearRegression()
classifier.fit(X, y, logdir='/tmp/tf_examples/my_model_1/')

Then run next command in command line:

tensorboard --logdir=/tmp/tf_examples/my_model_1

and follow reported url.

Graph visualization: Text classification RNN Graph image

Loss visualization: Text classification RNN Loss image

More examples

See examples folder [https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/skflow] for:

		Easy way to handle categorical variables - words are just an example of categorical variable.

		Text Classification - see examples for RNN, CNN on word and characters.

		Language modeling and text sequence to sequence.

		Images (CNNs) - see example for digit recognition.

		More & deeper - different examples showing DNNs and CNNs

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/how_tos/style_guide.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow Style Guide

This page contains style decisions that both developers and users of TensorFlow
should follow to increase the readability of their code, reduce the number of
errors, and promote consistency.

[TOC]

Python style

Generally follow
PEP8 Python style guide [https://www.python.org/dev/peps/pep-0008/],
except for using 2 spaces.

Python 2 and 3 compatible

		All code needs to be compatible with Python 2 and 3.

		Next lines should be present in all Python files:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

		Use six to write compatible code (for example six.range).

Bazel BUILD rules

TensorFlow uses Bazel build system and enforces next requirements:

		Every BUILD file should contain next header:

Description:
<...>

package(
 default_visibility = ["//visibility:private"],
 features = ["-parse_headers"],
)

licenses(["notice"]) # Apache 2.0

exports_files(["LICENSE"])

		At the end of every BUILD file, should contain:

filegroup(
 name = "all_files",
 srcs = glob(
 ["**/*"],
 exclude = [
 "**/METADATA",
 "**/OWNERS",
],
),
 visibility = ["//third_party/tensorflow:__subpackages__"],
)

		When adding new BUILD file, add this line to tensorflow/BUILD file into all_opensource_files target.

"//third_party/tensorflow/<directory>:all_files",

		For all Python BUILD targets (libraries and tests) add next line:

srcs_version = "PY2AND3",

Tensor

		Operations that deal with batches may assume that the first dimension of a Tensor is the batch dimension.

Python operations

A Python operation is a function that, given input tensors and parameters,
creates a part of the graph and returns output tensors.

		The first arguments should be tensors, followed by basic python parameters.
The last argument is name with a default value of None.
If operation needs to save some Tensors to Graph collections,
put the arguments with names of the collections right before name argument.

		Tensor arguments should be either a single tensor or an iterable of tensors.
E.g. a “Tensor or list of Tensors” is too broad. See assert_proper_iterable.

		Operations that take tensors as arguments should call convert_to_tensor
to convert non-tensor inputs into tensors if they are using C++ operations.
Note that the arguments are still described as a Tensor object
of a specific dtype in the documentation.

		Each Python operation should have an op_scope like below.
Pass list of input tensors, name and a default name of the op as arguments.

		Operations should contain an extensive Python comment with Args and Returns
declarations that explain both the type and meaning of each value. Possible
shapes, dtypes, or ranks should be specified in the description.
See documentation details

		For increased usability include an example of usage with inputs / outputs
of the op in Example section.

Example:

def my_op(tensor_in, other_tensor_in, my_param, other_param=0.5,
 output_collections=(), name=None):
"""My operation that adds two tensors with given coefficients.

Args:
 tensor_in: `Tensor`, input tensor.
 other_tensor_in: `Tensor`, same shape as `tensor_in`, other input tensor.
 my_param: `float`, coefficient for `tensor_in`.
 other_param: `float`, coefficient for `other_tensor_in`.
 output_collections: `tuple` of `string`s, name of the collection to
 collect result of this op.
 name: `string`, name of the operation.

Returns:
 `Tensor` of same shape as `tensor_in`, sum of input values with coefficients.

Example:
 >>> my_op([1., 2.], [3., 4.], my_param=0.5, other_param=0.6,
 output_collections=['MY_OPS'], name='add_t1t2')
 [2.3, 3.4]
"""
with tf.op_scope([tensor_in, other_tensor_in], name, "my_op"):
 tensor_in = tf.convert_to_tensor(tensor_in)
 other_tensor_in = tf.convert_to_tensor(other_tensor_in)
 result = my_param * tensor_in + other_param * other_tensor_in
 tf.add_to_collections(output_collections, result)
 return result

Usage:

output = my_op(t1, t2, my_param=0.5, other_param=0.6,
 output_collections=['MY_OPS'], name='add_t1t2')

Layers

A Layer is a Python operation that combines variable creation and/or one or many
other graph operations. Follow the same requirements as for regular Python
operation.

		If a layer creates one or more variables, the layer function
should take next arguments also following order:
		initializers: Optionally allow to specify initializers for the variables.

		regularizers: Optionally allow to specify regularizers for the variables.

		trainable: which control if their variables are trainable or not.

		scope: VariableScope object that variable will be put under.

		reuse: bool indicator if the variable should be reused if
it’s present in the scope.

		Layers that behave differently during training should have:
		is_training: bool to indicate if a training graph is been built.

Example:

def conv2d(inputs,
 num_filters_out,
 kernel_size,
 stride=1,
 padding='SAME',
 activation_fn=tf.nn.relu,
 normalization_fn=add_bias,
 normalization_params=None,
 initializers=None,
 regularizers=None,
 trainable=True,
 scope=None,
 reuse=None):
 ... see implementation at tensorflow/contrib/layers/python/layers/layers.py ...

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow for Googlers

This site has TensorFlow documentation for Google engineers. The menu at the
left lists those parts of the public TensorFlow documentation that pertain to
Google engineers, along with some internal-only resources written specifically
for Google engineers.

TensorFlow™ is an open source software library for numerical computation using
data flow graphs. Nodes in the graph represent mathematical operations, while
the graph edges represent the multidimensional data arrays (tensors) that flow
between them. This flexible architecture allows you to deploy computation to
one or more CPUs or GPUs in a desktop, server, or mobile device without
rewriting code. TensorFlow was originally developed by researchers and
engineers working on the Google Brain team within Google’s Machine
Intelligence research organization for the purposes of conducting machine
learning and deep neural networks research. The system is general enough to be
applicable in a wide variety of other domains as well. The following documents
show you how to set up and use the TensorFlow system.

Table of Contents

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/contrib/learn/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow Learn

This is an API for building learning models with TensorFlow.
This library covers variety of needs from linear models to Deep Learning
applications like text and image understanding.

Get Started

View Introduction

Tutorials

		Introduction to Scikit Flow and why you want to start learning
TensorFlow [https://medium.com/@ilblackdragon/tensorflow-tutorial-part-1-c559c63c0cb1]

		DNNs, custom model and Digit recognition
examples [https://medium.com/@ilblackdragon/tensorflow-tutorial-part-2-9ffe47049c92>]

		Categorical variables: One hot vs Distributed
representation [https://medium.com/@ilblackdragon/tensorflow-tutorial-part-3-c5fc0662bc08>]

		More coming soon.

Community

		Twitter #skflow [https://twitter.com/search?q=skflow&src=typd>].

		StackOverflow with
skflow tag [http://stackoverflow.com/questions/tagged/skflow>]
for questions and struggles.

		Github issues [https://github.com/tensorflow/tensorflow/issues>]
for technical discussions and feature requests.

		Gitter channel [https://gitter.im/tensorflow/skflow>]
for non-trivial discussions.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/how_tos/using_gpu/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Using GPUs

Supported devices

On a typical system, there are multiple computing devices. In TensorFlow, the
supported device types are CPU and GPU. They are represented as
strings. For example:

		"/cpu:0": The CPU of your machine.

		"/gpu:0": The GPU of your machine, if you have one.

		"/gpu:1": The second GPU of your machine, etc.

If a TensorFlow operation has both CPU and GPU implementations, the
GPU devices will be given priority when the operation is assigned to
a device. For example, matmul has both CPU and GPU kernels. On a
system with devices cpu:0 and gpu:0, gpu:0 will be selected to run
matmul.

Logging Device placement

To find out which devices your operations and tensors are assigned to, create
the session with log_device_placement configuration option set to True.

Creates a graph.
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
Runs the op.
print sess.run(c)

You should see the following output:

Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Tesla K40c, pci bus
id: 0000:05:00.0
b: /job:localhost/replica:0/task:0/gpu:0
a: /job:localhost/replica:0/task:0/gpu:0
MatMul: /job:localhost/replica:0/task:0/gpu:0
[[22. 28.]
 [49. 64.]]

Manual device placement

If you would like a particular operation to run on a device of your
choice instead of what’s automatically selected for you, you can use
with tf.device to create a device context such that all the operations
within that context will have the same device assignment.

Creates a graph.
with tf.device('/cpu:0'):
 a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
 b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
 c = tf.matmul(a, b)
Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
Runs the op.
print sess.run(c)

You will see that now a and b are assigned to cpu:0.

Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Tesla K40c, pci bus
id: 0000:05:00.0
b: /job:localhost/replica:0/task:0/cpu:0
a: /job:localhost/replica:0/task:0/cpu:0
MatMul: /job:localhost/replica:0/task:0/gpu:0
[[22. 28.]
 [49. 64.]]

Allowing GPU memory growth

By default, TensorFlow maps nearly all of the GPU memory of all GPUs visible to
the process. This is done to more efficiently use the relatively precious GPU
memory resources on the devices by reducing
memory fragmentation [https://en.wikipedia.org/wiki/Fragmentation_(computing)].

In some cases it is desirable for the process to only allocate a subset of the
available memory, or to only grow the memory usage as is needed by the process.
TensorFlow provides two Config options on the Session to control this.

The first is the allow_growth option, which attempts to allocate only as much
GPU memory based on runtime allocations: it starts out allocating very little
memory, and as Sessions get run and more GPU memory is needed, we extend the GPU
memory region needed by the TensorFlow process. Note that we do not release
memory, since that can lead to even worse memory fragmentation. To turn this
option on, set the option in the ConfigProto by:

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config, ...)

The second method is the per_process_gpu_memory_fraction option, which
determines the fraction of the overall amount of memory that each visible GPU
should be allocated. For example, you can tell TensorFlow to only allocate 40%
of the total memory of each GPU by:

config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.4
session = tf.Session(config=config, ...)

This is useful if you want to truly bound the amount of GPU memory available to
the TensorFlow process.

Using a single GPU on a multi-GPU system

If you have more than one GPU in your system, the GPU with the lowest ID will be
selected by default. If you would like to run on a different GPU, you will need
to specify the preference explicitly:

Creates a graph.
with tf.device('/gpu:2'):
 a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
 b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
 c = tf.matmul(a, b)
Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
Runs the op.
print sess.run(c)

If the device you have specified does not exist, you will get
InvalidArgumentError:

InvalidArgumentError: Invalid argument: Cannot assign a device to node 'b':
Could not satisfy explicit device specification '/gpu:2'
 [[Node: b = Const[dtype=DT_FLOAT, value=Tensor<type: float shape: [3,2]
 values: 1 2 3...>, _device="/gpu:2"]()]]

If you would like TensorFlow to automatically choose an existing and
supported device to run the operations in case the specified one doesn’t
exist, you can set allow_soft_placement to True in the configuration
option when creating the session.

Creates a graph.
with tf.device('/gpu:2'):
 a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
 b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
 c = tf.matmul(a, b)
Creates a session with allow_soft_placement and log_device_placement set
to True.
sess = tf.Session(config=tf.ConfigProto(
 allow_soft_placement=True, log_device_placement=True))
Runs the op.
print sess.run(c)

Using multiple GPUs

If you would like to run TensorFlow on multiple GPUs, you can construct your
model in a multi-tower fashion where each tower is assigned to a different GPU.
For example:

Creates a graph.
c = []
for d in ['/gpu:2', '/gpu:3']:
 with tf.device(d):
 a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3])
 b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2])
 c.append(tf.matmul(a, b))
with tf.device('/cpu:0'):
 sum = tf.add_n(c)
Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
Runs the op.
print sess.run(sum)

You will see the following output.

Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Tesla K20m, pci bus
id: 0000:02:00.0
/job:localhost/replica:0/task:0/gpu:1 -> device: 1, name: Tesla K20m, pci bus
id: 0000:03:00.0
/job:localhost/replica:0/task:0/gpu:2 -> device: 2, name: Tesla K20m, pci bus
id: 0000:83:00.0
/job:localhost/replica:0/task:0/gpu:3 -> device: 3, name: Tesla K20m, pci bus
id: 0000:84:00.0
Const_3: /job:localhost/replica:0/task:0/gpu:3
Const_2: /job:localhost/replica:0/task:0/gpu:3
MatMul_1: /job:localhost/replica:0/task:0/gpu:3
Const_1: /job:localhost/replica:0/task:0/gpu:2
Const: /job:localhost/replica:0/task:0/gpu:2
MatMul: /job:localhost/replica:0/task:0/gpu:2
AddN: /job:localhost/replica:0/task:0/cpu:0
[[44. 56.]
 [98. 128.]]

The cifar10 tutorial is a good example
demonstrating how to do training with multiple GPUs.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.matrix_diag.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.matrix_diag(diagonal, name=None) {#matrix_diag}

Returns a batched diagonal tensor with a given batched diagonal values.

Given a diagonal, this operation returns a tensor with the diagonal and
everything else padded with zeros. The diagonal is computed as follows:

Assume diagonal has k dimensions [I, J, K, ..., N], then the output is a
tensor of rank k+1 with dimensions [I, J, K, ..., N, N]` where:

output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n].

For example:

'diagonal' is [[1, 2, 3, 4], [5, 6, 7, 8]]

and diagonal.shape = (2, 4)

tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0]
 [0, 2, 0, 0]
 [0, 0, 3, 0]
 [0, 0, 0, 4]],
 [[5, 0, 0, 0]
 [0, 6, 0, 0]
 [0, 0, 7, 0]
 [0, 0, 0, 8]]]

which has shape (2, 4, 4)

Args:

		diagonal: A Tensor. Rank k, where k >= 1.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as diagonal.
Rank k+1, with output.shape = diagonal.shape + [diagonal.shape[-1]].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/how_tos/supervisor/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Supervisor: Training Helper for Days-Long Trainings.

To train a model with TensorFlow you can simply run a training op a number of
times and save a checkpoint of the trained parameters when you’re done. This
works well for small models that can train in a few hours.

Larger models that require days of training, possibly across multiple replicas,
need a more robust training process that:

		Handles shutdowns and crashes cleanly.

		Can be resumed after a shutdown or a crash.

		Can be monitored through TensorBoard.

To be able to resume training after a shutdown or a crash the training process
must save checkpoints regularly. On restart, it must look for the most recent
checkpoint and load it before resuming training.

To be monitored through TensorBoard, the training process must run summary ops
regularly and append the returned values to an events file as explained in
TensorBoard: Visualizing Learning.
TensorBoard monitors events files and displays graphs reporting training
progress over time.

The tf.Supervisor class provides
a set of services that helps implement a robust training process.

This how-to shows how to use the supervisor directly. Please also consider
using one of several frameworks built on top of the supervisor that provide
richer training loops, and numerous customization options:
tf.learn is a good choice.

Note that the supervisor is very helpful for training large models, but can
also be used for smaller models without any penalty.

Very Simple Scenario

The simplest scenario for using a supervisor is to:

		Create a Supervisor object, passing it the path to a directory where to
save checkpoints and summaries.

		Ask the supervisor for a session with
managed_session().

		Use the session to execute a train op, checking at each step if the
supervisor requests that the training stops.

 ...create graph...
 my_train_op = ...

 sv = tf.Supervisor(logdir="/my/training/directory")
 with sv.managed_session() as sess:
 for step in range(100000):
 if sv.should_stop():
 break
 sess.run(my_train_op)

Started Services

In the very simple scenario, the managed_session() call starts a few
services, which run in their own threads, and use the managed session to run
ops in your graph.

If your graph contains an integer variable named global_step, the services
use its value to measure the number of training steps executed. See the MNIST
training tutorial for how to
create a global_step variable.

		Checkpointing service: Saves a copy of the graph variables in the logdir.
The checkpoint filename uses the value of the global_step variable if one
was added to your graph. Runs every 10 minutes by default.

		Summary service: Runs all the summary ops and appends their output to an
events file in the logdir. Runs
every 2 minutes by default.

		Step counter: Counts how many steps have been executed, by looking at
changes in the global_step variable. Appends a summary to the events file
reporting the number of global steps per second. The summary tag is
“global_step/sec”. This also runs every 2 minutes by default.

		Queue Runners: If any queue
runners were added to the
graph, the supervisor launches them in their own threads.

All time intervals can be changed when constructing the supervisor object. See
the supervisor reference for details.

Checking for Stop

The check for stop in the main training loop is important and necessary.

Exceptions raised in the service threads are reported to the supervisor which
then sets its should_stop() condition to true. Other service threads notice
that condition and terminate properly. The main training loop, within the
managed_session() block, must also check for the stop condition and
terminate.

Note that managed_session() takes care of catching exceptions raised from the
training loop to report them to the supervisor. The main loop does not need to
do anything special about exceptions. It only needs to check for the stop
condition.

Recovery

If the training program shuts down or crashes, its most recent checkpoint and
event files are left in the logdir. When you restart the program,
managed_session() restores the graph from the most recent checkpoint and
resumes training where it stopped.

A new events file is created. If you start TensorBoard and point it to the
logdir, it will know how to merge the contents of the two events files and will
show the training resuming at the last global step from the checkpoint.

Larger Model Scenario

The very simple scenario is sufficient for most small to medium sized models.
Larger models may run out memory when the summary service runs: The summary ops
are run in parallel with the main loop running the train op. This can cause
memory usage to peak to up to two times the normal use.

For a larger model you can tell the supervisor to not run the summary service
and instead run it yourself in your main training loop: pass summary_op=None
when constructing the supervisor.

For example this code runs the summary op every 100 steps in the training loop:

 ...create graph...
 my_train_op = ...
 my_summary_op = tf.merge_all_summaries()

 sv = tf.Supervisor(logdir="/my/training/directory",
 summary_op=None) # Do not run the summary service
 with sv.managed_session() as sess:
 for step in range(100000):
 if sv.should_stop():
 break
 if step % 100 == 0:
 _, summ = session.run([my_train_op, my_summary_op])
 sv.summary_computed(sess, summ)
 else:
 session.run(my_train_op)

Pre-trained Model Scenario

The managed_session() call takes care of initializing the model in the
session. The model is restored from a checkpoint if one is available,
or initialized from scratch otherwise.

One common scenario is to initialize the model by loading a “pre-trained”
checkpoint that was saved while training a usually slightly different model
using a different dataset.

You can load a pre-trained checkpoint by passing an “init function” to the
supervisor. This function is called only if the model needs to be initialized
from scratch, not when the model can be recovered from a checkpoint from the
logdir.

To load the pre-trained model, the init function needs a
tf.Saver object, so you should create
a saver for this purpose. This is usually a good idea because the new model
may contain variables that are not present in the pre-trained checkpoint: This
saver must only restore the pre-trained variables. If you were using the
default saver, you could get an error trying to restore all the variables of
the new model from the pre-trained checkpoint.

 ...create graph...
 # Create a saver that restores only the pre-trained variables.
 pre_train_saver = tf.Saver([pre_train_var1, pre_train_var2])

 # Define an init function that loads the pretrained checkpoint.
 def load_pretrain(sess):
 pre_train_saver.restore(sess, "<path to pre-trained-checkpoint>")

 # Pass the init function to the supervisor.
 #
 # The init function is called _after_ the variables have been initialized
 # by running the init_op.
 sv = tf.Supervisor(logdir="/my/training/directory",
 init_fn=load_pretrain)
 with sv.managed_session() as sess:
 # Here sess was either initialized from the pre-trained-checkpoint or
 # recovered from a checkpoint saved in a previous run of this code.
 ...

Running Your Own Services

Supervisor services, such as the checkpointing service, run in threads parallel
to the main training loop. You sometimes want to add your own services, for
example to fetch different sets of summaries on a different schedule than the
usual summary service.

Use the loop() method of
the supervisor for this purpose. It repeatedly calls a function of your choice
on a timer until the supervisor stop condition becomes true, so it plays nicely
with the other services.

Example: Call my_additional_summaries() every 20mn:

def my_additional_sumaries(sv, sess):
 ...fetch and write summaries, see below...

...
 sv = tf.Supervisor(logdir="/my/training/directory")
 with sv.managed_session() as sess:
 # Call my_additional_sumaries() every 1200s, or 20mn,
 # passing (sv, sess) as arguments.
 sv.loop(1200, my_additional_sumaries, args=(sv, sess))
 ...main training loop...

Writing Summaries

The supervisor always creates an events file in its logdir, as well as a
tf.SummaryWriter to append
events and summaries to that file. If you want to write your own summaries it
is a good idea to append them to that same events file: TensorBoard likes it
better when only one events file in a directory is being actively appended to.

The supervisor provides a helper function to append summaries:
sv.summary_computed().
Just pass to the function the output returned by a summary op. Here is an
example of using that function to implement my_additional_sumaries() from the
previous example:

def my_additional_sumaries(sv, sess):
 summaries = sess.run(my_additional_summary_op)
 sv.summary_computed(sess, summaries)

For more advanced usages, the supervisor provides access to its summary writer
through its
summary_writer
attribute.

Supervisor Reference

The Very Simple Scenario, and the Larger Model
Scenario show basic uses of a supervisor. More
advanced scenarios can be constructed by using the many options provided by the
supervisor

Checkpointing: Where and When.

The managed_session() call launches the checkpointing service, which can be
configured by the following keyword arguments to the Supervisor()
constructor:

		logdir: path to a directory where the checkpointing service creates
checkpoints. The directory is created if needed. Passing None disables
the checkpointing and the summary services.

		checkpoint_basename: Name of the checkpoint files to create, defaults to
“model.ckpt”.

If the model contains a scalar integer variable named global_step, the
value of that variable is appended to the checkpoint filename.

For example, at global step 1234 the checkpoint filename is
“model.ckpt-1234”.

		save_model_secs: Number of seconds between each checkpoint. Defaults to
600, or 10 minutes.

When choosing a value, consider how much work you want to lose in case of a
crash: you will never lose more than save_model_secs seconds of work.
Setting this to 0 disables the checkpointing service.

		saver: A tf.Saver object to use
for checkpointing.

If you do not pass one, the supervisor creates one for you by calling
tf.Saver(), which add ops to save and restore all variables in your model.
This is usally what you need.

Example: Use a custom Saver and checkpoint every 30 seconds.

 ...create graph...
 my_saver = tf.Saver(<only some variables>)
 sv = tf.Supervisor(logdir="/my/training/directory",
 saver=my_saver,
 save_model_secs=30)
 with sv.managed_session() as sess:
 ...training loop...

Summaries: Where and When.

The managed_session() call launches the summary service which fetches
summaries and reports the number of steps executed per second. It can be
configured by the following keyword arguments to the Supervisor()
constructor:

		logdir: Path to a directory where the summary service creates event files.
The directory is created if needed. Passing None disables the summary
service as well as the checkpointing services.

		save_summaries_secs: Number of seconds between each run of the summary
service. Defaults to 120, or 2 minutes.

When choosing a value, consider how expensive your summaries are, and how
much disk they will occupy. Pass 0 to disable the summary service.

		summary_op: Op to use to fetch the summaries.

If not specified, the supervisor use the first op in the
tf.GraphKeys.SUMMARY_OP graph
collection. If
the collection is empty the supervisor creates an op that aggregates all
summaries in the graph using tf.merge_all_summaries().

Passing None disables the summary service.

		global_step: Tensor to use to count the global step.

If not specified, the supervisor uses the first tensor in the
tf.GraphKeys.GLOBAL_STEP graph
collection. If
the collection is empty, the supervisor looks for a scalar integer variable
named global_step in the graph.

If found, the global step tensor is used to measure the number of training
steps executed. Note that your training op is responsible for incrementing
the global step value.

Model Initialization and Recovery

The managed_session() call takes care of initializing or recovering a
session. It returns a session with a fully initialized model, ready to run
ops. If a checkpoint exists in the logdir when managed_session() is called,
the model is initialized by loading that checkpoint, otherwise it is
initialized by calling an init op and optionally an init function.

When no checkpoint is available, model initialization is controlled by the
following keyword arguments to the Supervisor() constructor:

		init_op: Op to run to initialize the model.

If not specified, the supervisor uses the first op in the
tf.GraphKeys.INIT_OP collection. If the collection is empty, the
supervisor adds an op to initialize all the variables in the graph by
calling tf.initialize_all_variables().

Pass None to not use an init op.

		init_fn: Python function to call to initialize the model.

If specified, called as init_fn(sess) where sess is the managed session.
If an init op is also used, the init function is called after the init op.

		local_init_op: An additional op to initialize parts of the graph that are
not saved in checkpoints such as tables and local
variables. The
local init op is run before the init op and the init function.

If not specified, the supervisor uses the first op in the
tf.GraphKeys.LOCAL_INIT_OP collection. If the collection is empty the
supervisor adds an op to initialize all the tables and local variables in
the graph by calling tf.initialize_all_tables() and
tf.initialize_all_local_variables().

Pass None to not use a local init op.

		ready_op: Op to check if the model is initialized.

After running the local init op, the init op, and the init function, the
supervisor verifies that the model is fully intialized by running the ready
op. This is an op that returns an empty string if the model is initialized,
or a description of what parts of the model are not initialized if not.

If not specified, the supervisor uses the first op in the
tf.GraphKeys.READY_OP collection. If the collection is empty the
supervisor creates a ready op that verifies that all variables are
initialized by calling tf.report_uninitialized_variables().

Pass None to disable the ready op. In that case the model is not
checked after initialization.

Checkpoint recovery is controlled by the following keyword arguments to the
Supervisor() constructor:

		logdir: Path to a directory in which to look for checkpoints. The
checkpoint service saves a metadata file, named “checkpoint”, in the
checkpoint directory that indicates the path to the most recent checkpoint.

This file is in text format. When in a pinch, you can edit it manually to
recover from a different checkpoint than the most recent one.

		ready_op: (see above). The ready op is run before and after loading the
checkpoint. The first run checks if the model needs to be initialized and
the second run verifies that the model is fully initialized.

		local_init_op: (see above). The local init op is run before running the
ready op the first time, to initialize local variables and tables.

		saver: (see above). Saver object used to load the checkpoint.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.distributions.MultivariateNormalFull.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 The multivariate normal distribution on R^k.

This distribution is defined by a 1-D mean mu and covariance matrix sigma.
Evaluation of the pdf, determinant, and sampling are all O(k^3) operations.

Mathematical details

With C = sigma, the PDF of this distribution is:

f(x) = (2 pi)^(-k/2) |det(C)|^(-1/2) exp(-1/2 (x - mu)^T C^{-1} (x - mu))

Examples

A single multi-variate Gaussian distribution is defined by a vector of means
of length k, and a covariance matrix of shape k x k.

Extra leading dimensions, if provided, allow for batches.

Initialize a single 3-variate Gaussian with diagonal covariance.
mu = [1, 2, 3.]
sigma = [[1, 0, 0], [0, 3, 0], [0, 0, 2.]]
dist = tf.contrib.distributions.MultivariateNormalFull(mu, chol)

Evaluate this on an observation in R^3, returning a scalar.
dist.pdf([-1, 0, 1])

Initialize a batch of two 3-variate Gaussians.
mu = [[1, 2, 3], [11, 22, 33.]]
sigma = ... # shape 2 x 3 x 3, positive definite.
dist = tf.contrib.distributions.MultivariateNormalFull(mu, sigma)

Evaluate this on a two observations, each in R^3, returning a length two
tensor.
x = [[-1, 0, 1], [-11, 0, 11.]] # Shape 2 x 3.
dist.pdf(x)

tf.contrib.distributions.MultivariateNormalFull.__init__(mu, sigma, validate_args=False, allow_nan_stats=True, name='MultivariateNormalFull') {#MultivariateNormalFull.init}

Multivariate Normal distributions on R^k.

User must provide means mu and sigma, the mean and covariance.

Args:

		mu: (N+1)-D floating point tensor with shape [N1,...,Nb, k],
b >= 0.

		sigma: (N+2)-D Tensor with same dtype as mu and shape
[N1,...,Nb, k, k]. Each batch member must be positive definite.

		validate_args: Boolean, default False. Whether to validate input
with asserts. If validate_args is False, and the inputs are
invalid, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to give Ops created by the initializer.

Raises:

		TypeError: If mu and sigma are different dtypes.

tf.contrib.distributions.MultivariateNormalFull.allow_nan_stats {#MultivariateNormalFull.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.MultivariateNormalFull.batch_shape(name='batch_shape') {#MultivariateNormalFull.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.MultivariateNormalFull.cdf(value, name='cdf') {#MultivariateNormalFull.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalFull.dtype {#MultivariateNormalFull.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.MultivariateNormalFull.entropy(name='entropy') {#MultivariateNormalFull.entropy}

Shanon entropy in nats.

tf.contrib.distributions.MultivariateNormalFull.event_shape(name='event_shape') {#MultivariateNormalFull.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.MultivariateNormalFull.get_batch_shape() {#MultivariateNormalFull.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.MultivariateNormalFull.get_event_shape() {#MultivariateNormalFull.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.MultivariateNormalFull.is_continuous {#MultivariateNormalFull.is_continuous}

tf.contrib.distributions.MultivariateNormalFull.is_reparameterized {#MultivariateNormalFull.is_reparameterized}

tf.contrib.distributions.MultivariateNormalFull.log_cdf(value, name='log_cdf') {#MultivariateNormalFull.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalFull.log_pdf(value, name='log_pdf') {#MultivariateNormalFull.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.MultivariateNormalFull.log_pmf(value, name='log_pmf') {#MultivariateNormalFull.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalFull.log_prob(value, name='log_prob') {#MultivariateNormalFull.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalFull.log_sigma_det(name='log_sigma_det') {#MultivariateNormalFull.log_sigma_det}

Log of determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalFull.log_survival_function(value, name='log_survival_function') {#MultivariateNormalFull.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.MultivariateNormalFull.mean(name='mean') {#MultivariateNormalFull.mean}

Mean.

tf.contrib.distributions.MultivariateNormalFull.mode(name='mode') {#MultivariateNormalFull.mode}

Mode.

tf.contrib.distributions.MultivariateNormalFull.mu {#MultivariateNormalFull.mu}

tf.contrib.distributions.MultivariateNormalFull.name {#MultivariateNormalFull.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.MultivariateNormalFull.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#MultivariateNormalFull.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.MultivariateNormalFull.param_static_shapes(cls, sample_shape) {#MultivariateNormalFull.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.MultivariateNormalFull.parameters {#MultivariateNormalFull.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.MultivariateNormalFull.pdf(value, name='pdf') {#MultivariateNormalFull.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.MultivariateNormalFull.pmf(value, name='pmf') {#MultivariateNormalFull.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalFull.prob(value, name='prob') {#MultivariateNormalFull.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalFull.sample(sample_shape=(), seed=None, name='sample') {#MultivariateNormalFull.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.MultivariateNormalFull.sample_n(n, seed=None, name='sample_n') {#MultivariateNormalFull.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.MultivariateNormalFull.sigma {#MultivariateNormalFull.sigma}

Dense (batch) covariance matrix, if available.

tf.contrib.distributions.MultivariateNormalFull.sigma_det(name='sigma_det') {#MultivariateNormalFull.sigma_det}

Determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalFull.std(name='std') {#MultivariateNormalFull.std}

Standard deviation.

tf.contrib.distributions.MultivariateNormalFull.survival_function(value, name='survival_function') {#MultivariateNormalFull.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.MultivariateNormalFull.validate_args {#MultivariateNormalFull.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.MultivariateNormalFull.variance(name='variance') {#MultivariateNormalFull.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/how_tos/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

How-Tos

Variables: Creation, Initializing, Saving, and Restoring

TensorFlow Variables are in-memory buffers containing tensors. Learn how to
use them to hold and update model parameters during training.

View Tutorial

TensorFlow Mechanics 101

A step-by-step walk through of the details of using TensorFlow infrastructure
to train models at scale, using MNIST handwritten digit recognition as a toy
example.

View Tutorial

TensorBoard: Visualizing Learning

TensorBoard is a useful tool for visualizing the training and evaluation of
your model(s). This tutorial describes how to build and run TensorBoard as well
as how to add Summary ops to automatically output data to the Events files that
TensorBoard uses for display.

View Tutorial

TensorBoard: Graph Visualization

This tutorial describes how to use the graph visualizer in TensorBoard to help
you understand the dataflow graph and debug it.

View Tutorial

Reading Data

This tutorial describes the three main methods of getting data into your
TensorFlow program: Feeding, Reading and Preloading.

View Tutorial

Distributed TensorFlow

This tutorial describes how to execute TensorFlow programs using a cluster of
TensorFlow servers.

View Tutorial

Threading and Queues

This tutorial describes the various constructs implemented by TensorFlow
to facilitate asynchronous and concurrent training.

View Tutorial

Adding a New Op

TensorFlow already has a large suite of node operations from which you can
compose in your graph, but here are the details of how to add you own custom Op.

View Tutorial

How to write TensorFlow code

TensorFlow Style Guide is set of style decisions that both developers
and users of TensorFlow should follow to increase the readability of their code,
reduce the number of errors, and promote consistency.

View Style Guide

Writing Documentation

TensorFlow’s documentation is largely generated from its source code. Here is an
introduction to the formats we use, a style guide, and instructions on how to
build updated documentation from the source.

View Tutorial

Custom Data Readers

If you have a sizable custom data set, you may want to consider extending
TensorFlow to read your data directly in it’s native format. Here’s how.

View Tutorial

Using GPUs

This tutorial describes how to construct and execute models on GPU(s).

View Tutorial

Sharing Variables

When deploying large models on multiple GPUs, or when unrolling complex LSTMs
or RNNs, it is often necessary to access the same Variable objects from
different locations in the model construction code.

The “Variable Scope” mechanism is designed to facilitate that.

View Tutorial

A Tool Developer’s Guide to TensorFlow Model Files

If you’re developing a tool to load, analyze, or manipulate TensorFlow model
files, it’s useful to understand a bit about the format in which they’re stored.
This guide covers the details of the saved model format.

View Tutorial

How to Retrain Inception using Transfer Learning

Training a full object recognition model like Inception takes a long time and a
lot of images. This example shows how to use the technique of transfer learning
to retrain just the final layer of a fully-trained model to recognize new
categories of objects, which is a lot faster and easier than completely
retraining a new model.

View Tutorial

How to Export and Import a Model

This tutorial describes how to export everything pertaining to a running
model and import it later for various purposes.

View Tutorial

How to Quantize Neural Networks with TensorFlow

This guide shows how you can convert a float model into one using eight-bit
quantized parameters and calculations. It also describes how the quantization
process works under the hood.

View Tutorial

How to run TensorFlow on Hadoop

This tutorial shows how to read and write HDFS files, and will later describe
running on cluster managers.

View Tutorial

TensorFlow in other languages

This guide describes how TensorFlow features can be provided in other
programming languages.

View Tutorial

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.sign.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sign(x, name=None) {#sign}

Returns an element-wise indication of the sign of a number.

y = sign(x) = -1 if x < 0; 0 if x == 0; 1 if x > 0.

For complex numbers, y = sign(x) = x / |x| if x != 0, otherwise y = 0.

Args:

		x: A Tensor or SparseTensor. Must be one of the following types: half,
float32, float64, int32, int64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor, respectively. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.segment_prod.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.segment_prod(data, segment_ids, name=None) {#segment_prod}

Computes the product along segments of a tensor.

Read the section on
Segmentation for an explanation
of segments.

Computes a tensor such that
\(output_i = \prod_j data_j\) where the product is over j such
that segment_ids[j] == i.

[image:]

Args:

		data: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.

		segment_ids: A Tensor. Must be one of the following types: int32, int64.
A 1-D tensor whose rank is equal to the rank of data‘s
first dimension. Values should be sorted and can be repeated.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.
Has same shape as data, except for dimension 0 which
has size k, the number of segments.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/how_tos/quantization/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

How to Quantize Neural Networks with TensorFlow

When modern neural networks were being developed, the biggest challenge was
getting them to work at all! That meant that accuracy and speed during training
were the top priorities. Using floating point arithmetic was the easiest way to
preserve accuracy, and GPUs were well-equipped to accelerate those calculations,
so it’s natural that not much attention was paid to other numerical formats.

These days, we actually have a lot of models being deployed in commercial
applications. The computation demands of training grow with the number of
researchers, but the cycles needed for inference expand in proportion to users.
That means pure inference efficiency has become a burning issue for a lot of
teams.

That is where quantization comes in. It’s an umbrella term that covers a lot of
different techniques to store numbers and perform calculations on them in more
compact formats than 32-bit floating point. I am going to focus on eight-bit
fixed point, for reasons I’ll go into more detail on later.

[TOC]

Why does Quantization Work?

Training neural networks is done by applying many tiny nudges to the weights,
and these small increments typically need floating point precision to work
(though there are research efforts to use quantized representations here too).

Taking a pre-trained model and running inference is very different. One of the
magical qualities of deep networks is that they tend to cope very well with high
levels of noise in their inputs. If you think about recognizing an object in a
photo you’ve just taken, the network has to ignore all the CCD noise, lighting
changes, and other non-essential differences between it and the training
examples it’s seen before, and focus on the important similarities instead. This
ability means that they seem to treat low-precision calculations as just another
source of noise, and still produce accurate results even with numerical formats
that hold less information.

Why Quantize?

Neural network models can take up a lot of space on disk, with the original
AlexNet being over 200 MB in float format for example. Almost all of that size
is taken up with the weights for the neural connections, since there are often
many millions of these in a single model. Because they’re all slightly different
floating point numbers, simple compression formats like zip don’t compress them
well. They are arranged in large layers though, and within each layer the
weights tend to be normally distributed within a certain range, for example -3.0
to 6.0.

The simplest motivation for quantization is to shrink file sizes by storing the
min and max for each layer, and then compressing each float value to an
eight-bit integer representing the closest real number in a linear set of 256
within the range. For example with the -3.0 to 6.0 range, a 0 byte would
represent -3.0, a 255 would stand for 6.0, and 128 would represent about 1.5.
I’ll go into the exact calculations later, since there’s some subtleties, but
this means you can get the benefit of a file on disk that’s shrunk by 75%, and
then convert back to float after loading so that your existing floating-point
code can work without any changes.

Another reason to quantize is to reduce the computational resources you need to
do the inference calculations, by running them entirely with eight-bit inputs
and outputs. This is a lot more difficult since it requires changes everywhere
you do calculations, but offers a lot of potential rewards. Fetching eight-bit
values only requires 25% of the memory bandwidth of floats, so you’ll make much
better use of caches and avoid bottlenecking on RAM access. You can also
typically use SIMD operations that do many more operations per clock cycle. In
some case you’ll have a DSP chip available that can accelerate eight-bit
calculations too, which can offer a lot of advantages.

Moving calculations over to eight bit will help you run your models faster, and
use less power (which is especially important on mobile devices). It also opens
the door to a lot of embedded systems that can’t run floating point code
efficiently, so it can enable a lot of applications in the IoT world.

Why Not Train in Lower Precision Directly?

There have been some experiments training at lower bit depths, but the results
seem to indicate that you need higher than eight bit to handle the back
propagation and gradients. That makes implementing the training more
complicated, and so starting with inference made sense. We also already have a
lot of float models already that we use and know well, so being able to convert
them directly is very convenient.

How Can You Quantize Your Models?

TensorFlow has production-grade support for eight-bit calculations built it. It
also has a process for converting many models trained in floating-point over to
equivalent graphs using quantized calculations for inference. For example,
here’s how you can translate the latest GoogLeNet model into a version that uses
eight-bit computations:

curl http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz -o /tmp/inceptionv3.tgz
tar xzf /tmp/inceptionv3.tgz -C /tmp/
bazel build tensorflow/contrib/quantization/tools:quantize_graph
bazel-bin/tensorflow/contrib/quantization/tools/quantize_graph \
--input=/tmp/classify_image_graph_def.pb \
--output_node_names="softmax" --output=/tmp/quantized_graph.pb \
--mode=eightbit

This will produce a new model that runs the same operations as the original, but
with eight bit calculations internally, and all weights quantized as well. If
you look at the file size, you’ll see it’s about a quarter of the original (23MB
versus 91MB). You can still run this model using exactly the same inputs and
outputs though, and you should get equivalent results. Here’s an example:

Note: You need to add the dependencies of the quantization operation to the
cc_binary in the BUILD file of the label_image program:
#
//tensorflow/contrib/quantization:cc_ops
//tensorflow/contrib/quantization/kernels:quantized_ops

bazel build tensorflow/examples/label_image:label_image
bazel-bin/tensorflow/examples/label_image/label_image \
--image=<input-image> \
--graph=/tmp/quantized_graph.pb \
--labels=/tmp/imagenet_synset_to_human_label_map.txt \
--input_width=299 \
--input_height=299 \
--input_mean=128 \
--input_std=128 \
--input_layer="Mul:0" \
--output_layer="softmax:0"

You’ll see that this runs the newly-quantized graph, and outputs a very similar
answer to the original.

You can run the same process on your own models saved out as GraphDefs, with the
input and output names adapted to those your network requires. I recommend that
you run them through the freeze_graph script first, to convert checkpoints into
constants stored in the file.

How Does the Quantization Process Work?

We’ve implemented quantization by writing equivalent eight-bit versions of
operations that are commonly used during inference. These include convolution,
matrix multiplication, activation functions, pooling operations and
concatenation. The conversion script first replaces all the individual ops it
knows about with quantized equivalents. These are small sub-graphs that have
conversion functions before and after to move the data between float and
eight-bit. Below is an example of what they look like. First here’s the original
Relu operation, with float inputs and outputs:

[image: Relu Diagram]

Then, this is the equivalent converted subgraph, still with float inputs and
outputs, but with internal conversions so the calculations are done in eight
bit.

[image: Converted Diagram]

The min and max operations actually look at the values in the input float
tensor, and then feeds them into the Dequantize operation that converts the
tensor into eight-bits. There’s more details on how the quantized representation
works later on.

Once the individual operations have been converted, the next stage is to remove
unnecessary conversions to and from float. If there are consecutive sequences of
operations that all have float equivalents, then there will be a lot of adjacent
Dequantize/Quantize ops. This stage spots that pattern, recognizes that they
cancel each other out, and removes them, like this:

[image: Stripping Diagram]

Applied on a large scale to models where all of the operations have quantized
equivalents, this gives a graph where all of the tensor calculations are done in
eight bit, without having to convert to float.

What Representation is Used for Quantized Tensors?

We approach converting floating-point arrays of numbers into eight-bit
representations as a compression problem. We know that the weights and
activation tensors in trained neural network models tend to have values that are
distributed across comparatively small ranges (for example you might have -15 to
+15 for weights, -500 to 1000 for activations on an image model, though the
exact numbers will vary). We also know from experiment that neural nets tend to
be very robust in the face of noise, and so the noise-like error produced by
quantizing down to a small set of values will not hurt the precision of the
overall results very much. We also want to pick a representation that’s easy to
perform calculations on, especially the large matrix multiplications that form
the bulk of the work that’s needed to run a model.

These led us to pick a representation that has two floats to store the overall
minimum and maximum values that are represented by the lowest and highest
quantized value. Each entry in the quantized array represents a float value in
that range, distributed linearly between the minimum and maximum. For example,
if we have minimum = -10.0, and maximum = 30.0f, and an eight-bit array, here’s
what the quantized values represent:

Quantized | Float
--------- | -----
0 | -10.0
255 | 30.0
128 | 10.0

The advantages of this format are that it can represent arbitrary magnitudes of
ranges, they don’t have to be symmetrical, it can represent signed and unsigned
values, and the linear spread makes doing multiplications straightforward. There
are alternatives like [Song Han’s code books]
(http://arxiv.org/pdf/1510.00149.pdf) that can use lower bit depths by
non-linearly distributing the float values across the representation, but these
tend to be more expensive to calculate on.

The advantage of having a strong and clear definition of the quantized format is
that it’s always possible to convert back and forth from float for operations
that aren’t quantization-ready, or to inspect the tensors for debugging
purposes. One implementation detail in TensorFlow that we’re hoping to improve
in the future is that the minimum and maximum float values need to be passed as
separate tensors to the one holding the quantized values, so graphs can get a
bit dense!

The nice thing about the minimum and maximum ranges is that they can often be
pre-calculated. Weight parameters are constants known at load time, so their
ranges can also be stored as constants. We often know the ranges for inputs (for
examples images are usually RGB values in the range 0.0 to 255.0), and many
activation functions have known ranges too. This can avoid having to analyze the
outputs of an operation to determine the range, which we need to do for math ops
like convolution or matrix multiplication which produce 32-bit accumulated
results from 8-bit inputs.

What’s Next?

We’ve found that we can get extremely good performance on mobile and embedded
devices by using eight-bit arithmetic rather than floating-point. You can see
the framework we use to optimize matrix multiplications at [gemmlowp]
(https://github.com/google/gemmlowp). We still need to apply all the lessons
we’ve learned to the TensorFlow ops to get maximum performance on mobile, but
we’re actively working on that. Right now, this quantized implementation is a
reasonably fast and accurate reference implementation that we’re hoping will
enable wider support for our eight-bit models on a wider variety of devices. We
also hope that this demonstration will encourage the community to explore what’s
possible with low-precision neural networks.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.truncated_normal_initializer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.truncated_normal_initializer(mean=0.0, stddev=1.0, seed=None, dtype=tf.float32) {#truncated_normal_initializer}

Returns an initializer that generates a truncated normal distribution.

These values are similar to values from a random_normal_initializer
except that values more than two standard deviations from the mean
are discarded and re-drawn. This is the recommended initializer for
neural network weights and filters.

Args:

		mean: a python scalar or a scalar tensor. Mean of the random values
to generate.

		stddev: a python scalar or a scalar tensor. Standard deviation of the
random values to generate.

		seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

		dtype: The data type. Only floating point types are supported.

Returns:

An initializer that generates tensors with a truncated normal
distribution.

Raises:

		ValueError: if dtype is not a floating point type.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.image.resize_area.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.resize_area(images, size, align_corners=None, name=None) {#resize_area}

Resize images to size using area interpolation.

Input images can be of different types but output images are always float.

Args:

		images: A Tensor. Must be one of the following types: uint8, int8, int16, int32, int64, half, float32, float64.
4-D with shape [batch, height, width, channels].

		size: A 1-D int32 Tensor of 2 elements: new_height, new_width. The
new size for the images.

		align_corners: An optional bool. Defaults to False.
If true, rescale input by (new_height - 1) / (height - 1), which
exactly aligns the 4 corners of images and resized images. If false, rescale
by new_height / height. Treat similarly the width dimension.

		name: A name for the operation (optional).

Returns:

A Tensor of type float32. 4-D with shape
[batch, new_height, new_width, channels].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.train.QueueRunner.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Holds a list of enqueue operations for a queue, each to be run in a thread.

Queues are a convenient TensorFlow mechanism to compute tensors
asynchronously using multiple threads. For example in the canonical ‘Input
Reader’ setup one set of threads generates filenames in a queue; a second set
of threads read records from the files, processes them, and enqueues tensors
on a second queue; a third set of threads dequeues these input records to
construct batches and runs them through training operations.

There are several delicate issues when running multiple threads that way:
closing the queues in sequence as the input is exhausted, correctly catching
and reporting exceptions, etc.

The QueueRunner, combined with the Coordinator, helps handle these issues.

tf.train.QueueRunner.__init__(queue=None, enqueue_ops=None, close_op=None, cancel_op=None, queue_closed_exception_types=None, queue_runner_def=None) {#QueueRunner.init}

Create a QueueRunner.

On construction the QueueRunner adds an op to close the queue. That op
will be run if the enqueue ops raise exceptions.

When you later call the create_threads() method, the QueueRunner will
create one thread for each op in enqueue_ops. Each thread will run its
enqueue op in parallel with the other threads. The enqueue ops do not have
to all be the same op, but it is expected that they all enqueue tensors in
queue.

Args:

		queue: A Queue.

		enqueue_ops: List of enqueue ops to run in threads later.

		close_op: Op to close the queue. Pending enqueue ops are preserved.

		cancel_op: Op to close the queue and cancel pending enqueue ops.

		queue_closed_exception_types: Optional tuple of Exception types that
indicate that the queue has been closed when raised during an enqueue
operation. Defaults to (tf.errors.OutOfRangeError,). Another common
case includes (tf.errors.OutOfRangeError, tf.errors.CancelledError),
when some of the enqueue ops may dequeue from other Queues.

		queue_runner_def: Optional QueueRunnerDef protocol buffer. If specified,
recreates the QueueRunner from its contents. queue_runner_def and the
other arguments are mutually exclusive.

Raises:

		ValueError: If both queue_runner_def and queue are both specified.

		ValueError: If queue or enqueue_ops are not provided when not
restoring from queue_runner_def.

tf.train.QueueRunner.cancel_op {#QueueRunner.cancel_op}

tf.train.QueueRunner.close_op {#QueueRunner.close_op}

tf.train.QueueRunner.create_threads(sess, coord=None, daemon=False, start=False) {#QueueRunner.create_threads}

Create threads to run the enqueue ops.

This method requires a session in which the graph was launched. It creates
a list of threads, optionally starting them. There is one thread for each
op passed in enqueue_ops.

The coord argument is an optional coordinator, that the threads will use
to terminate together and report exceptions. If a coordinator is given,
this method starts an additional thread to close the queue when the
coordinator requests a stop.

This method may be called again as long as all threads from a previous call
have stopped.

Args:

		sess: A Session.

		coord: Optional Coordinator object for reporting errors and checking
stop conditions.

		daemon: Boolean. If True make the threads daemon threads.

		start: Boolean. If True starts the threads. If False the
caller must call the start() method of the returned threads.

Returns:

A list of threads.

Raises:

		RuntimeError: If threads from a previous call to create_threads() are
still running.

tf.train.QueueRunner.enqueue_ops {#QueueRunner.enqueue_ops}

tf.train.QueueRunner.exceptions_raised {#QueueRunner.exceptions_raised}

Exceptions raised but not handled by the QueueRunner threads.

Exceptions raised in queue runner threads are handled in one of two ways
depending on whether or not a Coordinator was passed to
create_threads():

		With a Coordinator, exceptions are reported to the coordinator and
forgotten by the QueueRunner.

		Without a Coordinator, exceptions are captured by the QueueRunner and
made available in this exceptions_raised property.

Returns:

A list of Python Exception objects. The list is empty if no exception
was captured. (No exceptions are captured when using a Coordinator.)

tf.train.QueueRunner.from_proto(queue_runner_def) {#QueueRunner.from_proto}

Returns a QueueRunner object created from queue_runner_def.

tf.train.QueueRunner.name {#QueueRunner.name}

The string name of the underlying Queue.

tf.train.QueueRunner.queue {#QueueRunner.queue}

tf.train.QueueRunner.queue_closed_exception_types {#QueueRunner.queue_closed_exception_types}

tf.train.QueueRunner.to_proto() {#QueueRunner.to_proto}

Converts this QueueRunner to a QueueRunnerDef protocol buffer.

Returns:

A QueueRunnerDef protocol buffer.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.crf.crf_log_norm.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.crf.crf_log_norm(inputs, sequence_lengths, transition_params) {#crf_log_norm}

Computes the normalization for a CRF.

Args:

		inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials
to use as input to the CRF layer.

		sequence_lengths: A [batch_size] vector of true sequence lengths.

		transition_params: A [num_tags, num_tags] transition matrix.

Returns:

		log_norm: A [batch_size] vector of normalizers for a CRF.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.distributions.kl.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.distributions.kl(dist_a, dist_b, allow_nan=False, name=None) {#kl}

Get the KL-divergence KL(dist_a || dist_b).

Args:

		dist_a: The first distribution.

		dist_b: The second distribution.

		allow_nan: If False (default), a runtime error is raised
if the KL returns NaN values for any batch entry of the given
distributions. If True, the KL may return a NaN for the given entry.

		name: (optional) Name scope to use for created operations.

Returns:

A Tensor with the batchwise KL-divergence between dist_a and dist_b.

Raises:

		NotImplementedError: If no KL method is defined for distribution types
of dist_a and dist_b.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.rnn.CoupledInputForgetGateLSTMCell.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Long short-term memory unit (LSTM) recurrent network cell.

The default non-peephole implementation is based on:

http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf

S. Hochreiter and J. Schmidhuber.
“Long Short-Term Memory”. Neural Computation, 9(8):1735-1780, 1997.

The peephole implementation is based on:

https://research.google.com/pubs/archive/43905.pdf

Hasim Sak, Andrew Senior, and Francoise Beaufays.
“Long short-term memory recurrent neural network architectures for
large scale acoustic modeling.” INTERSPEECH, 2014.

The coupling of input and forget gate is based on:

http://arxiv.org/pdf/1503.04069.pdf

Greff et al. “LSTM: A Search Space Odyssey”

The class uses optional peep-hole connections, and an optional projection
layer.

tf.contrib.rnn.CoupledInputForgetGateLSTMCell.__call__(inputs, state, scope=None) {#CoupledInputForgetGateLSTMCell.call}

Run one step of LSTM.

Args:

		inputs: input Tensor, 2D, batch x num_units.

		state: if state_is_tuple is False, this must be a state Tensor,
2-D, batch x state_size. If state_is_tuple is True, this must be a
tuple of state Tensors, both 2-D, with column sizes c_state and
m_state.

		scope: VariableScope for the created subgraph; defaults to “LSTMCell”.

Returns:

A tuple containing:

		A 2-D, [batch x output_dim], Tensor representing the output of the
LSTM after reading inputs when previous state was state.
Here output_dim is:
num_proj if num_proj was set,
num_units otherwise.

		Tensor(s) representing the new state of LSTM after reading inputs when
the previous state was state. Same type and shape(s) as state.

Raises:

		ValueError: If input size cannot be inferred from inputs via
static shape inference.

tf.contrib.rnn.CoupledInputForgetGateLSTMCell.__init__(num_units, use_peepholes=False, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=1, num_proj_shards=1, forget_bias=1.0, state_is_tuple=False, activation=tanh) {#CoupledInputForgetGateLSTMCell.init}

Initialize the parameters for an LSTM cell.

Args:

		num_units: int, The number of units in the LSTM cell

		use_peepholes: bool, set True to enable diagonal/peephole connections.

		initializer: (optional) The initializer to use for the weight and
projection matrices.

		num_proj: (optional) int, The output dimensionality for the projection
matrices. If None, no projection is performed.

		proj_clip: (optional) A float value. If num_proj > 0 and proj_clip is
provided, then the projected values are clipped elementwise to within
[-proj_clip, proj_clip].

		num_unit_shards: How to split the weight matrix. If >1, the weight
matrix is stored across num_unit_shards.

		num_proj_shards: How to split the projection matrix. If >1, the
projection matrix is stored across num_proj_shards.

		forget_bias: Biases of the forget gate are initialized by default to 1
in order to reduce the scale of forgetting at the beginning of
the training.

		state_is_tuple: If True, accepted and returned states are 2-tuples of
the c_state and m_state. By default (False), they are concatenated
along the column axis. This default behavior will soon be deprecated.

		activation: Activation function of the inner states.

tf.contrib.rnn.CoupledInputForgetGateLSTMCell.output_size {#CoupledInputForgetGateLSTMCell.output_size}

tf.contrib.rnn.CoupledInputForgetGateLSTMCell.state_size {#CoupledInputForgetGateLSTMCell.state_size}

tf.contrib.rnn.CoupledInputForgetGateLSTMCell.zero_state(batch_size, dtype) {#CoupledInputForgetGateLSTMCell.zero_state}

Return zero-filled state tensor(s).

Args:

		batch_size: int, float, or unit Tensor representing the batch size.

		dtype: the data type to use for the state.

Returns:

If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.assert_greater.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.assert_greater(x, y, data=None, summarize=None, message=None, name=None) {#assert_greater}

Assert the condition x > y holds element-wise.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_greater(x, y)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_greater(x, y)], x)

This condition holds if for every pair of (possibly broadcast) elements
x[i], y[i], we have x[i] > y[i].
If both x and y are empty, this is trivially satisfied.

Args:

		x: Numeric Tensor.

		y: Numeric Tensor, same dtype as and broadcastable to x.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x, y.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional). Defaults to “assert_greater”.

Returns:

Op that raises InvalidArgumentError if x > y is False.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.lgamma.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.lgamma(x, name=None) {#lgamma}

Computes the log of the absolute value of Gamma(x) element-wise.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.Exponential.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 The Exponential distribution with rate parameter lam.

The PDF of this distribution is:

prob(x) = (lam * e^(-lam * x)), x > 0

Note that the Exponential distribution is a special case of the Gamma
distribution, with Exponential(lam) = Gamma(1, lam).

tf.contrib.distributions.Exponential.__init__(lam, validate_args=False, allow_nan_stats=True, name='Exponential') {#Exponential.init}

Construct Exponential distribution with parameter lam.

Args:

		lam: Floating point tensor, the rate of the distribution(s).
lam must contain only positive values.

		validate_args: Boolean, default False. Whether to assert that
lam > 0, and that x > 0 in the methods prob(x) and log_prob(x).
If validate_args is False and the inputs are invalid, correct
behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to prepend to all ops created by this distribution.

tf.contrib.distributions.Exponential.allow_nan_stats {#Exponential.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Exponential.alpha {#Exponential.alpha}

Shape parameter.

tf.contrib.distributions.Exponential.batch_shape(name='batch_shape') {#Exponential.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Exponential.beta {#Exponential.beta}

Inverse scale parameter.

tf.contrib.distributions.Exponential.cdf(value, name='cdf') {#Exponential.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Exponential.dtype {#Exponential.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Exponential.entropy(name='entropy') {#Exponential.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Exponential.event_shape(name='event_shape') {#Exponential.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Exponential.get_batch_shape() {#Exponential.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Exponential.get_event_shape() {#Exponential.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Exponential.is_continuous {#Exponential.is_continuous}

tf.contrib.distributions.Exponential.is_reparameterized {#Exponential.is_reparameterized}

tf.contrib.distributions.Exponential.lam {#Exponential.lam}

tf.contrib.distributions.Exponential.log_cdf(value, name='log_cdf') {#Exponential.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Exponential.log_pdf(value, name='log_pdf') {#Exponential.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Exponential.log_pmf(value, name='log_pmf') {#Exponential.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Exponential.log_prob(value, name='log_prob') {#Exponential.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Exponential.log_survival_function(value, name='log_survival_function') {#Exponential.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Exponential.mean(name='mean') {#Exponential.mean}

Mean.

tf.contrib.distributions.Exponential.mode(name='mode') {#Exponential.mode}

Mode.

tf.contrib.distributions.Exponential.name {#Exponential.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Exponential.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Exponential.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Exponential.param_static_shapes(cls, sample_shape) {#Exponential.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Exponential.parameters {#Exponential.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Exponential.pdf(value, name='pdf') {#Exponential.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Exponential.pmf(value, name='pmf') {#Exponential.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Exponential.prob(value, name='prob') {#Exponential.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Exponential.sample(sample_shape=(), seed=None, name='sample') {#Exponential.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Exponential.sample_n(n, seed=None, name='sample_n') {#Exponential.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Exponential.std(name='std') {#Exponential.std}

Standard deviation.

tf.contrib.distributions.Exponential.survival_function(value, name='survival_function') {#Exponential.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Exponential.validate_args {#Exponential.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Exponential.variance(name='variance') {#Exponential.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.metrics.streaming_percentage_less.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.streaming_percentage_less(*args, **kwargs) {#streaming_percentage_less}

Computes the percentage of values less than the given threshold. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-10-19.
Instructions for updating:
ignore_mask is being deprecated. Instead use weights with values 0.0 and 1.0 to mask values. For example, weights=tf.logical_not(mask).

The streaming_percentage_less function creates two local variables,
total and count that are used to compute the percentage of values that
fall below threshold. This rate is weighted by weights, and it is
ultimately returned as percentage which is an idempotent operation that
simply divides total by count.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
percentage.

If weights is None, weights default to 1. Use weights of 0 to mask values.
Alternatively, if ignore_mask is not None, then mask values where
ignore_mask is True.

Args:
values: A numeric Tensor of arbitrary size.
threshold: A scalar threshold.
ignore_mask: An optional, bool Tensor whose shape matches values.
weights: An optional Tensor whose shape is broadcastable to values.
metrics_collections: An optional list of collections that the metric
value variable should be added to.
updates_collections: An optional list of collections that the metric update
ops should be added to.
name: An optional variable_scope name.

Returns:
percentage: A tensor representing the current mean, the value of total
divided by count.
update_op: An operation that increments the total and count variables
appropriately.

Raises:
ValueError: If ignore_mask is not None and its shape doesn’t match
values, or if weights is not None and its shape doesn’t match
values, or if either metrics_collections or updates_collections are
not a list or tuple.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.nn.fractional_avg_pool.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.fractional_avg_pool(value, pooling_ratio, pseudo_random=None, overlapping=None, deterministic=None, seed=None, seed2=None, name=None) {#fractional_avg_pool}

Performs fractional average pooling on the input.

Fractional average pooling is similar to Fractional max pooling in the pooling
region generation step. The only difference is that after pooling regions are
generated, a mean operation is performed instead of a max operation in each
pooling region.

Args:

		value: A Tensor. Must be one of the following types: float32, float64, int32, int64.
4-D with shape [batch, height, width, channels].

		pooling_ratio: A list of floats that has length >= 4.
Pooling ratio for each dimension of value, currently only
supports row and col dimension and should be >= 1.0. For example, a valid
pooling ratio looks like [1.0, 1.44, 1.73, 1.0]. The first and last elements
must be 1.0 because we don’t allow pooling on batch and channels
dimensions. 1.44 and 1.73 are pooling ratio on height and width dimensions
respectively.

		pseudo_random: An optional bool. Defaults to False.
When set to True, generates the pooling sequence in a
pseudorandom fashion, otherwise, in a random fashion. Check paper [Benjamin
Graham, Fractional Max-Pooling] (http://arxiv.org/abs/1412.6071) for
difference between pseudorandom and random.

		overlapping: An optional bool. Defaults to False.
When set to True, it means when pooling, the values at the boundary
of adjacent pooling cells are used by both cells. For example:

index 0 1 2 3 4

value 20 5 16 3 7

If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice.
The result would be [41/3, 26/3] for fractional avg pooling.

		deterministic: An optional bool. Defaults to False.
When set to True, a fixed pooling region will be used when
iterating over a FractionalAvgPool node in the computation graph. Mainly used
in unit test to make FractionalAvgPool deterministic.

		seed: An optional int. Defaults to 0.
If either seed or seed2 are set to be non-zero, the random number
generator is seeded by the given seed. Otherwise, it is seeded by a
random seed.

		seed2: An optional int. Defaults to 0.
An second seed to avoid seed collision.

		name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (output, row_pooling_sequence, col_pooling_sequence).

		output: A Tensor. Has the same type as value. output tensor after fractional avg pooling.

		row_pooling_sequence: A Tensor of type int64. row pooling sequence, needed to calculate gradient.

		col_pooling_sequence: A Tensor of type int64. column pooling sequence, needed to calculate gradient.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.graph_editor.reroute_b2a.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.reroute_b2a(sgv0, sgv1) {#reroute_b2a}

Re-route the inputs and outputs of sgv1 to sgv0 (see _reroute).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.nn.top_k.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.top_k(input, k=1, sorted=True, name=None) {#top_k}

Finds values and indices of the k largest entries for the last dimension.

If the input is a vector (rank-1), finds the k largest entries in the vector
and outputs their values and indices as vectors. Thus values[j] is the
j-th largest entry in input, and its index is indices[j].

For matrices (resp. higher rank input), computes the top k entries in each
row (resp. vector along the last dimension). Thus,

values.shape = indices.shape = input.shape[:-1] + [k]

If two elements are equal, the lower-index element appears first.

Args:

		input: 1-D or higher Tensor with last dimension at least k.

		k: 0-D int32 Tensor. Number of top elements to look for along the last
dimension (along each row for matrices).

		sorted: If true the resulting k elements will be sorted by the values in
descending order.

		name: Optional name for the operation.

Returns:

		values: The k largest elements along each last dimensional slice.

		indices: The indices of values within the last dimension of input.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.graph_editor.ph.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.ph(dtype, shape=None, scope=None) {#ph}

Create a tf.placeholder for the Graph Editor.

Note that the correct graph scope must be set by the calling function.
The placeholder is named using the function placeholder_name (with no
tensor argument).

Args:

		dtype: the tensor type.

		shape: the tensor shape (optional).

		scope: absolute scope within which to create the placeholder. None
means that the scope of t is preserved. “” means the root scope.

Returns:

A newly created tf.placeholder.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.PriorityQueue.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A queue implementation that dequeues elements in prioritized order.

See tf.QueueBase for a description of the methods on
this class.

tf.PriorityQueue.__init__(capacity, types, shapes=None, names=None, shared_name=None, name='priority_queue') {#PriorityQueue.init}

Creates a queue that dequeues elements in a first-in first-out order.

A PriorityQueue has bounded capacity; supports multiple concurrent
producers and consumers; and provides exactly-once delivery.

A PriorityQueue holds a list of up to capacity elements. Each
element is a fixed-length tuple of tensors whose dtypes are
described by types, and whose shapes are optionally described
by the shapes argument.

If the shapes argument is specified, each component of a queue
element must have the respective fixed shape. If it is
unspecified, different queue elements may have different shapes,
but the use of dequeue_many is disallowed.

Enqueues and Dequeues to the PriorityQueue must include an additional
tuple entry at the beginning: the priority. The priority must be
an int64 scalar (for enqueue) or an int64 vector (for enqueue_many).

Args:

		capacity: An integer. The upper bound on the number of elements
that may be stored in this queue.

		types: A list of DType objects. The length of types must equal
the number of tensors in each queue element, except the first priority
element. The first tensor in each element is the priority,
which must be type int64.

		shapes: (Optional.) A list of fully-defined TensorShape objects,
with the same length as types, or None.

		names: (Optional.) A list of strings naming the components in the queue
with the same length as dtypes, or None. If specified, the dequeue
methods return a dictionary with the names as keys.

		shared_name: (Optional.) If non-empty, this queue will be shared under
the given name across multiple sessions.

		name: Optional name for the queue operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.sparse_maximum.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_maximum(sp_a, sp_b, name=None) {#sparse_maximum}

Returns the element-wise max of two SparseTensors.

Assumes the two SparseTensors have the same shape, i.e., no broadcasting.
Example:

sp_zero = ops.SparseTensor([[0]], [0], [7])
sp_one = ops.SparseTensor([[1]], [1], [7])
res = tf.sparse_maximum(sp_zero, sp_one).eval()
"res" should be equal to SparseTensor([[0], [1]], [0, 1], [7]).

Args:

		sp_a: a SparseTensor operand whose dtype is real, and indices
lexicographically ordered.

		sp_b: the other SparseTensor operand with the same requirements (and the
same shape).

		name: optional name of the operation.

Returns:

		output: the output SparseTensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.unique.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.unique(x, out_idx=None, name=None) {#unique}

Finds unique elements in a 1-D tensor.

This operation returns a tensor y containing all of the unique elements of x
sorted in the same order that they occur in x. This operation also returns a
tensor idx the same size as x that contains the index of each value of x
in the unique output y. In other words:

y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]

For example:

tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]
y, idx = unique(x)
y ==> [1, 2, 4, 7, 8]
idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]

Args:

		x: A Tensor. 1-D.

		out_idx: An optional tf.DType from: tf.int32, tf.int64. Defaults to tf.int32.

		name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (y, idx).

		y: A Tensor. Has the same type as x. 1-D.

		idx: A Tensor of type out_idx. 1-D.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.random_shuffle.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.random_shuffle(value, seed=None, name=None) {#random_shuffle}

Randomly shuffles a tensor along its first dimension.

The tensor is shuffled along dimension 0, such that each value[j] is mapped
to one and only one output[i]. For example, a mapping that might occur for a
3x2 tensor is:

[[1, 2], [[5, 6],
 [3, 4], ==> [1, 2],
 [5, 6]] [3, 4]]

Args:

		value: A Tensor to be shuffled.

		seed: A Python integer. Used to create a random seed for the distribution.
See
set_random_seed
for behavior.

		name: A name for the operation (optional).

Returns:

A tensor of same shape and type as value, shuffled along its first
dimension.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.cast.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.cast(x, dtype, name=None) {#cast}

Casts a tensor to a new type.

The operation casts x (in case of Tensor) or x.values
(in case of SparseTensor) to dtype.

For example:

tensor `a` is [1.8, 2.2], dtype=tf.float
tf.cast(a, tf.int32) ==> [1, 2] # dtype=tf.int32

Args:

		x: A Tensor or SparseTensor.

		dtype: The destination type.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x.

Raises:

		TypeError: If x cannot be cast to the dtype.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.image.random_flip_left_right.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.random_flip_left_right(image, seed=None) {#random_flip_left_right}

Randomly flip an image horizontally (left to right).

With a 1 in 2 chance, outputs the contents of image flipped along the
second dimension, which is width. Otherwise output the image as-is.

Args:

		image: A 3-D tensor of shape [height, width, channels].

		seed: A Python integer. Used to create a random seed. See
set_random_seed
for behavior.

Returns:

A 3-D tensor of the same type and shape as image.

Raises:

		ValueError: if the shape of image not supported.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.nn.fractional_max_pool.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.fractional_max_pool(value, pooling_ratio, pseudo_random=None, overlapping=None, deterministic=None, seed=None, seed2=None, name=None) {#fractional_max_pool}

Performs fractional max pooling on the input.

Fractional max pooling is slightly different than regular max pooling. In
regular max pooling, you downsize an input set by taking the maximum value of
smaller N x N subsections of the set (often 2x2), and try to reduce the set by
a factor of N, where N is an integer. Fractional max pooling, as you might
expect from the word “fractional”, means that the overall reduction ratio N
does not have to be an integer.

The sizes of the pooling regions are generated randomly but are fairly uniform.
For example, let’s look at the height dimension, and the constraints on the
list of rows that will be pool boundaries.

First we define the following:

		input_row_length : the number of rows from the input set

		output_row_length : which will be smaller than the input

		alpha = input_row_length / output_row_length : our reduction ratio

		K = floor(alpha)

		row_pooling_sequence : this is the result list of pool boundary rows

Then, row_pooling_sequence should satisfy:

		a[0] = 0 : the first value of the sequence is 0

		a[end] = input_row_length : the last value of the sequence is the size

		K <= (a[i+1] - a[i]) <= K+1 : all intervals are K or K+1 size

		length(row_pooling_sequence) = output_row_length+1

For more details on fractional max pooling, see this paper:
[Benjamin Graham, Fractional Max-Pooling]
(http://arxiv.org/abs/1412.6071)

Args:

		value: A Tensor. Must be one of the following types: float32, float64, int32, int64.
4-D with shape [batch, height, width, channels].

		pooling_ratio: A list of floats that has length >= 4.
Pooling ratio for each dimension of value, currently only
supports row and col dimension and should be >= 1.0. For example, a valid
pooling ratio looks like [1.0, 1.44, 1.73, 1.0]. The first and last elements
must be 1.0 because we don’t allow pooling on batch and channels
dimensions. 1.44 and 1.73 are pooling ratio on height and width dimensions
respectively.

		pseudo_random: An optional bool. Defaults to False.
When set to True, generates the pooling sequence in a
pseudorandom fashion, otherwise, in a random fashion. Check paper [Benjamin
Graham, Fractional Max-Pooling] (http://arxiv.org/abs/1412.6071) for
difference between pseudorandom and random.

		overlapping: An optional bool. Defaults to False.
When set to True, it means when pooling, the values at the boundary
of adjacent pooling cells are used by both cells. For example:

index 0 1 2 3 4

value 20 5 16 3 7

If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice.
The result would be [20, 16] for fractional max pooling.

		deterministic: An optional bool. Defaults to False.
When set to True, a fixed pooling region will be used when
iterating over a FractionalMaxPool node in the computation graph. Mainly used
in unit test to make FractionalMaxPool deterministic.

		seed: An optional int. Defaults to 0.
If either seed or seed2 are set to be non-zero, the random number
generator is seeded by the given seed. Otherwise, it is seeded by a
random seed.

		seed2: An optional int. Defaults to 0.
An second seed to avoid seed collision.

		name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (output, row_pooling_sequence, col_pooling_sequence).

		output: A Tensor. Has the same type as value. output tensor after fractional max pooling.

		row_pooling_sequence: A Tensor of type int64. row pooling sequence, needed to calculate gradient.

		col_pooling_sequence: A Tensor of type int64. column pooling sequence, needed to calculate gradient.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.verify_tensor_all_finite.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.verify_tensor_all_finite(t, msg, name=None) {#verify_tensor_all_finite}

Assert that the tensor does not contain any NaN’s or Inf’s.

Args:

		t: Tensor to check.

		msg: Message to log on failure.

		name: A name for this operation (optional).

Returns:

Same tensor as t.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.ffmpeg.encode_audio.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.ffmpeg.encode_audio(audio, file_format=None, samples_per_second=None) {#encode_audio}

Creates an op that encodes an audio file using sampled audio from a tensor.

Args:

		audio: A rank 2 tensor that has time along dimension 0 and channels along
dimension 1. Dimension 0 is samples_per_second * length long in
seconds.

		file_format: The type of file to encode. “wav” is the only supported format.

		samples_per_second: The number of samples in the audio tensor per second of
audio.

Returns:

A scalar tensor that contains the encoded audio in the specified file
format.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.train.LooperThread.loop.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.LooperThread.loop(coord, timer_interval_secs, target, args=None, kwargs=None) {#LooperThread.loop}

Start a LooperThread that calls a function periodically.

If timer_interval_secs is None the thread calls target(args)
repeatedly. Otherwise target(args) is called every timer_interval_secs
seconds. The thread terminates when a stop of the coordinator is
requested.

Args:

		coord: A Coordinator.

		timer_interval_secs: Number. Time boundaries at which to call target.

		target: A callable object.

		args: Optional arguments to pass to target when calling it.

		kwargs: Optional keyword arguments to pass to target when calling it.

Returns:

The started thread.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.bayesflow.entropy.renyi_ratio.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.bayesflow.entropy.renyi_ratio(log_p, q, alpha, z=None, n=None, seed=None, name='renyi_ratio') {#renyi_ratio}

Monte Carlo estimate of the ratio appearing in Renyi divergence.

This can be used to compute the Renyi (alpha) divergence, or a log evidence
approximation based on Renyi divergence.

Definition

With z_i iid samples from q, and exp{log_p(z)} = p(z), this Op returns
the (biased for finite n) estimate:

(1 - alpha)^{-1} Log[n^{-1} sum_{i=1}^n (p(z_i) / q(z_i))^{1 - alpha},
\approx (1 - alpha)^{-1} Log[E_q[(p(Z) / q(Z))^{1 - alpha}]]

This ratio appears in different contexts:

Renyi divergence

If log_p(z) = Log[p(z)] is the log prob of a distribution, and
alpha > 0, alpha != 1, this Op approximates -1 times Renyi divergence:

Choose reasonably high n to limit bias, see below.
renyi_ratio(log_p, q, alpha, n=100)
 \approx -1 * D_alpha[q || p], where
D_alpha[q || p] := (1 - alpha)^{-1} Log E_q[(p(Z) / q(Z))^{1 - alpha}]

The Renyi (or “alpha”) divergence is non-negative and equal to zero iff
q = p. Various limits of alpha lead to different special case results:

alpha D_alpha[q || p]
----- ---------------
--> 0 Log[int_{q > 0} p(z) dz]
= 0.5, -2 Log[1 - Hel^2[q || p]], (\propto squared Hellinger distance)
--> 1 KL[q || p]
= 2 Log[1 + chi^2[q || p]], (\propto squared Chi-2 divergence)
--> infty Log[max_z{q(z) / p(z)}], (min description length principle).

See “Renyi Divergence Variational Inference”, by Li and Turner.

Log evidence approximation

If log_p(z) = Log[p(z, x)] is the log of the joint distribution p, this is
an alternative to the ELBO common in variational inference.

L_alpha(q, p) = Log[p(x)] - D_alpha[q || p]

If q and p have the same support, and 0 < a <= b < 1, one can show
ELBO <= D_b <= D_a <= Log[p(x)]. Thus, this Op allows a smooth
interpolation between the ELBO and the true evidence.

Stability notes

Note that when 1 - alpha is not small, the ratio (p(z) / q(z))^{1 - alpha}
is subject to underflow/overflow issues. For that reason, it is evaluated in
log-space after centering. Nonetheless, infinite/NaN results may occur. For
that reason, one may wish to shrink alpha gradually. See the Op
renyi_alpha. Using float64 will also help.

Bias for finite sample size

Due to nonlinearity of the logarithm, for random variables {X_1,...,X_n},
E[Log[sum_{i=1}^n X_i]] != Log[E[sum_{i=1}^n X_i]]. As a result, this
estimate is biased for finite n. For alpha < 1, it is non-decreasing
with n (in expectation). For example, if n = 1, this estimator yields the
same result as elbo_ratio, and as n increases the expected value
of the estimator increases.

Call signature

User supplies either Tensor of samples z, or number of samples to draw n

Args:

		log_p: Callable mapping samples from q to Tensors with
shape broadcastable to q.batch_shape.
For example, log_p works “just like” q.log_prob.

		q: tf.contrib.distributions.BaseDistribution.
float64 dtype recommended.
log_p and q should be supported on the same set.

		alpha: Tensor with shape q.batch_shape and values not equal to 1.

		z: Tensor of samples from q, produced by q.sample_n.

		n: Integer Tensor. The number of samples to use if z is not provided.
Note that this can be highly biased for small n, see docstring.

		seed: Python integer to seed the random number generator.

		name: A name to give this Op.

Returns:

		renyi_result: The scaled log of sample mean. Tensor with shape equal
to batch shape of q, and dtype = q.dtype.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 NormalWithSoftplusSigmaTensor is a StochasticTensor backed by the distribution NormalWithSoftplusSigma.

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#NormalWithSoftplusSigmaTensor.init}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.clone(name=None, **dist_args) {#NormalWithSoftplusSigmaTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.distribution {#NormalWithSoftplusSigmaTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.dtype {#NormalWithSoftplusSigmaTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.entropy(name='entropy') {#NormalWithSoftplusSigmaTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.graph {#NormalWithSoftplusSigmaTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.input_dict {#NormalWithSoftplusSigmaTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.loss(final_loss, name='Loss') {#NormalWithSoftplusSigmaTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.mean(name='mean') {#NormalWithSoftplusSigmaTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.name {#NormalWithSoftplusSigmaTensor.name}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.value(name='value') {#NormalWithSoftplusSigmaTensor.value}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.value_type {#NormalWithSoftplusSigmaTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.training.stratified_sample.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.training.stratified_sample(tensors, labels, target_probs, batch_size, init_probs=None, enqueue_many=False, queue_capacity=16, threads_per_queue=1, name=None) {#stratified_sample}

Stochastically creates batches based on per-class probabilities.

This method discards examples. Internally, it creates one queue to amortize
the cost of disk reads, and one queue to hold the properly-proportioned
batch. See stratified_sample_unknown_dist for a function that performs
stratified sampling with one queue per class and doesn’t require knowing the
class data-distribution ahead of time.

Args:

		tensors: List of tensors for data. All tensors are either one item or a
batch, according to enqueue_many.

		labels: Tensor for label of data. Label is a single integer or a batch,
depending on enqueue_many. It is not a one-hot vector.

		target_probs: Target class proportions in batch. An object whose type has a
registered Tensor conversion function.

		batch_size: Size of batch to be returned.

		init_probs: Class proportions in the data. An object whose type has a
registered Tensor conversion function, or None for estimating the
initial distribution.

		enqueue_many: Bool. If true, interpret input tensors as having a batch
dimension.

		queue_capacity: Capacity of the large queue that holds input examples.

		threads_per_queue: Number of threads for the large queue that holds input
examples and for the final queue with the proper class proportions.

		name: Optional prefix for ops created by this function.

Raises:

		ValueError: enqueue_many is True and labels doesn’t have a batch
dimension, or if enqueue_many is False and labels isn’t a scalar.

		ValueError: enqueue_many is True, and batch dimension on data and labels
don’t match.

		ValueError: if probs don’t sum to one.

		ValueError: if a zero initial probability class has a nonzero target
probability.

		TFAssertion: if labels aren’t integers in [0, num classes).

Returns:

(data_batch, label_batch), where data_batch is a list of tensors of the same
length as tensors

Example:

Get tensor for a single data and label example.

data, label = data_provider.Get([‘data’, ‘label’])

Get stratified batch according to per-class probabilities.

target_probs = [...distribution you want...]
[data_batch], labels = tf.contrib.training.stratified_sample(
[data], label, target_probs)

Run batch through network.

...

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.graph_editor.bypass.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.bypass(sgv) {#bypass}

Bypass the given subgraph by connecting its inputs to its outputs.

Args:

		sgv: the subgraph view to be bypassed. This argument is converted to a
subgraph using the same rules than the function subgraph.make_view.
Note that sgv is modified in place.

Returns:

A tuple (sgv, detached_inputs) where:
sgv is a new subgraph view of the bypassed subgraph;
detached_inputs is a list of the created input placeholders.

Raises:

		StandardError: if sgv cannot be converted to a SubGraphView using
the same rules than the function subgraph.make_view.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.exp.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.exp(x, name=None) {#exp}

Computes exponential of x element-wise. \(y = e^x\).

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/how_tos/graph_viz/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorBoard: Graph Visualization

TensorFlow computation graphs are powerful but complicated. The graph visualization can help you understand and debug them. Here’s an example of the visualization at work.

[image: Visualization of a TensorFlow graph]
Visualization of a TensorFlow graph.

To see your own graph, run TensorBoard pointing it to the log directory of the job, click on the graph tab on the top pane and select the appropriate run using the menu at the upper left corner. For in depth information on how to run TensorBoard and make sure you are logging all the necessary information, see TensorBoard: Visualizing Learning.

You can interact with an instance of TensorBoard looking at data from an
MNIST training session, including the
graph visualization, by clicking
here [https://www.tensorflow.org/tensorboard/index.html#graphs].

Name scoping and nodes

Typical TensorFlow graphs can have many thousands of nodes–far too many to see
easily all at once, or even to lay out using standard graph tools. To simplify,
variable names can be scoped and the visualization uses this information to
define a hierarchy on the nodes in the graph. By default, only the top of this
hierarchy is shown. Here is an example that defines three operations under the
hidden name scope using
tf.name_scope:

import tensorflow as tf

with tf.name_scope('hidden') as scope:
 a = tf.constant(5, name='alpha')
 W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0), name='weights')
 b = tf.Variable(tf.zeros([1]), name='biases')

This results in the following three op names:

		hidden/alpha

		hidden/weights

		hidden/biases

By default, the visualization will collapse all three into a node labeled hidden.
The extra detail isn’t lost. You can double-click, or click
on the orange + sign in the top right to expand the node, and then you’ll see
three subnodes for alpha, weights and biases.

Here’s a real-life example of a more complicated node in its initial and
expanded states.

 		
 [image: Unexpanded name scope]

 		
 [image: Expanded name scope]

 		
 Initial view of top-level name scope pool_1. Clicking on the orange + button on the top right or double-clicking on the node itself will expand it.

 		
 Expanded view of pool_1 name scope. Clicking on the orange - button on the top right or double-clicking on the node itself will collapse the name scope.

Grouping nodes by name scopes is critical to making a legible graph. If you’re
building a model, name scopes give you control over the resulting visualization.
The better your name scopes, the better your visualization.

The figure above illustrates a second aspect of the visualization. TensorFlow
graphs have two kinds of connections: data dependencies and control
dependencies. Data dependencies show the flow of tensors between two ops and
are shown as solid arrows, while control dependencies use dotted lines. In the
expanded view (right side of the figure above) all the connections are data
dependencies with the exception of the dotted line connecting CheckNumerics
and control_dependency.

There’s a second trick to simplifying the layout. Most TensorFlow graphs have a
few nodes with many connections to other nodes. For example, many nodes might
have a control dependency on an initialization step. Drawing all edges between
the init node and its dependencies would create a very cluttered view.

To reduce clutter, the visualization separates out all high-degree nodes to an
auxiliary area on the right and doesn’t draw lines to represent their edges.
Instead of lines, we draw small node icons to indicate the connections.
Separating out the auxiliary nodes typically doesn’t remove critical
information since these nodes are usually related to bookkeeping functions.
See Interaction for how to move nodes between the main graph
and the auxiliary area.

 		
 [image: conv_1 is part of the main graph]

 		
 [image: save is extracted as auxiliary node]

 		
 Node conv_1 is connected to save. Note the little save node icon on its right.

 		
 save has a high degree, and will appear as an auxiliary node. The connection with conv_1 is shown as a node icon on its left. To further reduce clutter, since save has a lot of connections, we show the first 5 and abbreviate the others as ... 12 more.

One last structural simplification is series collapsing. Sequential
motifs–that is, nodes whose names differ by a number at the end and have
isomorphic structures–are collapsed into a single stack of nodes, as shown
below. For networks with long sequences, this greatly simplifies the view. As
with hierarchical nodes, double-clicking expands the series. See
Interaction for how to disable/enable series collapsing for a
specific set of nodes.

 		
 [image: Sequence of nodes]

 		
 [image: Expanded sequence of nodes]

 		
 A collapsed view of a node sequence.

 		
 A small piece of the expanded view, after double-click.

Finally, as one last aid to legibility, the visualization uses special icons
for constants and summary nodes. To summarize, here’s a table of node symbols:

Symbol | Meaning
— | —
[image: Name scope] | High-level node representing a name scope. Double-click to expand a high-level node.
[image: Sequence of unconnected nodes] | Sequence of numbered nodes that are not connected to each other.
[image: Sequence of connected nodes] | Sequence of numbered nodes that are connected to each other.
[image: Operation node] | An individual operation node.
[image: Constant node] | A constant.
[image: Summary node] | A summary node.
[image: Data flow edge] | Edge showing the data flow between operations.
[image: Control dependency edge] | Edge showing the control dependency between operations.
[image: Reference edge] | A reference edge showing that the outgoing operation node can mutate the incoming tensor.

Interaction {#interaction}

Navigate the graph by panning and zooming. Click and drag to pan, and use a
scroll gesture to zoom. Double-click on a node, or click on its + button, to
expand a name scope that represents a group of operations. To easily keep
track of the current viewpoint when zooming and panning, there is a minimap in
the bottom right corner.

To close an open node, double-click it again or click its - button. You can
also click once to select a node. It will turn a darker color, and details
about it and the nodes it connects to will appear in the info card at upper
right corner of the visualization.

 		
 [image: Info card of a name scope]

 		
 [image: Info card of operation node]

 		
 Info card showing detailed information for the conv2 name scope. The inputs and outputs are combined from the inputs and outputs of the operation nodes inside the name scope. For name scopes no attributes are shown.

 		
 Info card showing detailed information for the DecodeRaw operation node. In addition to inputs and outputs, the card shows the device and the attributes associated with the current operation.

TensorBoard provides several ways to change the visual layout of the graph. This
doesn’t change the graph’s computational semantics, but it can bring some
clarity to the network’s structure. By right clicking on a node or pressing
buttons on the bottom of that node’s info card, you can make the following
changes to its layout:

		Nodes can be moved between the main graph and the auxiliary area.

		A series of nodes can be ungrouped so that the nodes in the series do not
appear grouped together. Ungrouped series can likewise be regrouped.

Selection can also be helpful in understanding high-degree nodes. Select any
high-degree node, and the corresponding node icons for its other connections
will be selected as well. This makes it easy, for example, to see which nodes
are being saved–and which aren’t.

Clicking on a node name in the info card will select it. If necessary, the
viewpoint will automatically pan so that the node is visible.

Finally, you can choose two color schemes for your graph, using the color menu
above the legend. The default Structure View shows structure: when two
high-level nodes have the same structure, they appear in the same color of the
rainbow. Uniquely structured nodes are gray. There’s a second view, which shows
what device the different operations run on. Name scopes are colored
proportionally to the fraction of devices for the operations inside them.

The images below give an illustration for a piece of a real-life graph.

 		
 [image: Color by structure]

 		
 [image: Color by device]

 		
 Structure view: The gray nodes have unique structure. The orange conv1 and conv2 nodes have the same structure, and analogously for nodes with other colors.

 		
 Device view: Name scopes are colored proportionally to the fraction of devices of the operation nodes inside them. Here, purple means GPU and the green is CPU.

Tensor shape information

When the serialized GraphDef includes tensor shapes, the graph visualizer
labels edges with tensor dimensions, and edge thickness reflects total tensor
size. To include tensor shapes in the GraphDef pass the actual graph object
(as in sess.graph) to the SummaryWriter when serializing the graph.
The images below show the CIFAR-10 model with tensor shape information:

 		
 [image: CIFAR-10 model with tensor shape information]

 		
 CIFAR-10 model with tensor shape information.

Runtime statistics

Often it is useful to collect runtime metadata for a run, such as total memory
usage, total compute time, and tensor shapes for nodes. The code example below
is a snippet from the train and test section of a modification of the
simple MNIST tutorial [http://tensorflow.org/tutorials/mnist/beginners/index.md],
in which we have recorded summaries and runtime statistics. See the Summaries Tutorial
for details on how to record summaries.
Full source is here [https://www.tensorflow.org/code/tensorflow/examples/tutorials/mnist/mnist_with_summaries.py].

 # Train the model, and also write summaries.
 # Every 10th step, measure test-set accuracy, and write test summaries
 # All other steps, run train_step on training data, & add training summaries

 def feed_dict(train):
 """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
 if train or FLAGS.fake_data:
 xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)
 k = FLAGS.dropout
 else:
 xs, ys = mnist.test.images, mnist.test.labels
 k = 1.0
 return {x: xs, y_: ys, keep_prob: k}

 for i in range(FLAGS.max_steps):
 if i % 10 == 0: # Record summaries and test-set accuracy
 summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
 test_writer.add_summary(summary, i)
 print('Accuracy at step %s: %s' % (i, acc))
 else: # Record train set summaries, and train
 if i % 100 == 99: # Record execution stats
 run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
 run_metadata = tf.RunMetadata()
 summary, _ = sess.run([merged, train_step],
 feed_dict=feed_dict(True),
 options=run_options,
 run_metadata=run_metadata)
 train_writer.add_run_metadata(run_metadata, 'step%d' % i)
 train_writer.add_summary(summary, i)
 print('Adding run metadata for', i)
 else: # Record a summary
 summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
 train_writer.add_summary(summary, i)

This code will emit runtime statistics for every 100th step starting at step99.

When you launch tensorboard and go to the Graph tab, you will now see options
under “Session runs” which correspond to the steps where run metadata was added.
Selecting one of these runs will show you the snapshot of the network at that
step, fading out unused nodes. In the controls on the left hand side, you will
be able to color the nodes by total memory or total compute time. Additionally,
clicking on a node will display the exact total memory, compute time, and
tensor output sizes.

 		
 [image: Color by compute time]

 		
 [image: Run metadata graph]

 		
 [image: Run metadata info card]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/how_tos/summaries_and_tensorboard/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorBoard: Visualizing Learning

The computations you’ll use TensorFlow for - like training a massive
deep neural network - can be complex and confusing. To make it easier to
understand, debug, and optimize TensorFlow programs, we’ve included a suite of
visualization tools called TensorBoard. You can use TensorBoard to visualize
your TensorFlow graph, plot quantitative metrics about the execution of your
graph, and show additional data like images that pass through it. When
TensorBoard is fully configured, it looks like this:

[image: MNIST TensorBoard]

This tutorial is intended to get you started with simple TensorBoard usage.
There are other resources available as well! The TensorBoard README [https://www.tensorflow.org/code/tensorflow/tensorboard/README.md]
has a lot more information on TensorBoard usage, including tips & tricks, and
debugging information.

Serializing the data

TensorBoard operates by reading TensorFlow events files, which contain summary
data that you can generate when running TensorFlow. Here’s the general
lifecycle for summary data within TensorBoard.

First, create the TensorFlow graph that you’d like to collect summary
data from, and decide which nodes you would like to annotate with
[summary operations]
(../../api_docs/python/train.md#summary-operations).

For example, suppose you are training a convolutional neural network for
recognizing MNIST digits. You’d like to record how the learning rate
varies over time, and how the objective function is changing. Collect these by
attaching scalar_summary ops
to the nodes that output the learning rate and loss respectively. Then, give
each scalar_summary a meaningful tag, like 'learning rate' or 'loss function'.

Perhaps you’d also like to visualize the distributions of activations coming
off a particular layer, or the distribution of gradients or weights. Collect
this data by attaching
histogram_summary ops to
the gradient outputs and to the variable that holds your weights, respectively.

For details on all of the summary operations available, check out the docs on
[summary operations]
(../../api_docs/python/train.md#summary-operations).

Operations in TensorFlow don’t do anything until you run them, or an op that
depends on their output. And the summary nodes that we’ve just created are
peripheral to your graph: none of the ops you are currently running depend on
them. So, to generate summaries, we need to run all of these summary nodes.
Managing them by hand would be tedious, so use
tf.merge_all_summaries
to combine them into a single op that generates all the summary data.

Then, you can just run the merged summary op, which will generate a serialized
Summary protobuf object with all of your summary data at a given step.
Finally, to write this summary data to disk, pass the summary protobuf to a
tf.train.SummaryWriter.

The SummaryWriter takes a logdir in its constructor - this logdir is quite
important, it’s the directory where all of the events will be written out.
Also, the SummaryWriter can optionally take a Graph in its constructor.
If it receives a Graph object, then TensorBoard will visualize your graph
along with tensor shape information. This will give you a much better sense of
what flows through the graph: see
Tensor shape information.

Now that you’ve modified your graph and have a SummaryWriter, you’re ready to
start running your network! If you want, you could run the merged summary op
every single step, and record a ton of training data. That’s likely to be more
data than you need, though. Instead, consider running the merged summary op
every n steps.

The code example below is a modification of the [simple MNIST tutorial]
(http://tensorflow.org/tutorials/mnist/beginners/index.md), in which we have
added some summary ops, and run them every ten steps. If you run this and then
launch tensorboard --logdir=/tmp/mnist_logs, you’ll be able to visualize
statistics, such as how the weights or accuracy varied during training.
The code below is an excerpt; full source is here [https://www.tensorflow.org/code/tensorflow/examples/tutorials/mnist/mnist_with_summaries.py].

def variable_summaries(var, name):
 """Attach a lot of summaries to a Tensor."""
 with tf.name_scope('summaries'):
 mean = tf.reduce_mean(var)
 tf.scalar_summary('mean/' + name, mean)
 with tf.name_scope('stddev'):
 stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
 tf.scalar_summary('stddev/' + name, stddev)
 tf.scalar_summary('max/' + name, tf.reduce_max(var))
 tf.scalar_summary('min/' + name, tf.reduce_min(var))
 tf.histogram_summary(name, var)

def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
 """Reusable code for making a simple neural net layer.

 It does a matrix multiply, bias add, and then uses relu to nonlinearize.
 It also sets up name scoping so that the resultant graph is easy to read,
 and adds a number of summary ops.
 """
 # Adding a name scope ensures logical grouping of the layers in the graph.
 with tf.name_scope(layer_name):
 # This Variable will hold the state of the weights for the layer
 with tf.name_scope('weights'):
 weights = weight_variable([input_dim, output_dim])
 variable_summaries(weights, layer_name + '/weights')
 with tf.name_scope('biases'):
 biases = bias_variable([output_dim])
 variable_summaries(biases, layer_name + '/biases')
 with tf.name_scope('Wx_plus_b'):
 preactivate = tf.matmul(input_tensor, weights) + biases
 tf.histogram_summary(layer_name + '/pre_activations', preactivate)
 activations = act(preactivate, 'activation')
 tf.histogram_summary(layer_name + '/activations', activations)
 return activations

hidden1 = nn_layer(x, 784, 500, 'layer1')

with tf.name_scope('dropout'):
 keep_prob = tf.placeholder(tf.float32)
 tf.scalar_summary('dropout_keep_probability', keep_prob)
 dropped = tf.nn.dropout(hidden1, keep_prob)

y = nn_layer(dropped, 500, 10, 'layer2', act=tf.nn.softmax)

with tf.name_scope('cross_entropy'):
 diff = y_ * tf.log(y)
 with tf.name_scope('total'):
 cross_entropy = -tf.reduce_mean(diff)
 tf.scalar_summary('cross entropy', cross_entropy)

with tf.name_scope('train'):
 train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(
 cross_entropy)

with tf.name_scope('accuracy'):
 with tf.name_scope('correct_prediction'):
 correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
 with tf.name_scope('accuracy'):
 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
 tf.scalar_summary('accuracy', accuracy)

Merge all the summaries and write them out to /tmp/mnist_logs (by default)
merged = tf.merge_all_summaries()
train_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/train',
 sess.graph)
test_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/test')
tf.initialize_all_variables().run()

After we’ve initialized the SummaryWriters, we have to add summaries to the
SummaryWriters as we train and test the model.

Train the model, and also write summaries.
Every 10th step, measure test-set accuracy, and write test summaries
All other steps, run train_step on training data, & add training summaries

def feed_dict(train):
 """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
 if train or FLAGS.fake_data:
 xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)
 k = FLAGS.dropout
 else:
 xs, ys = mnist.test.images, mnist.test.labels
 k = 1.0
 return {x: xs, y_: ys, keep_prob: k}

for i in range(FLAGS.max_steps):
 if i % 10 == 0: # Record summaries and test-set accuracy
 summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
 test_writer.add_summary(summary, i)
 print('Accuracy at step %s: %s' % (i, acc))
 else: # Record train set summaries, and train
 summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
 train_writer.add_summary(summary, i)

You’re now all set to visualize this data using TensorBoard.

Launching TensorBoard

To run TensorBoard, use the following command (alternatively python -m tensorflow.tensorboard)

tensorboard --logdir=path/to/log-directory

where logdir points to the directory where the SummaryWriter serialized its
data. If this logdir directory contains subdirectories which contain
serialized data from separate runs, then TensorBoard will visualize the data
from all of those runs. Once TensorBoard is running, navigate your web browser
to localhost:6006 to view the TensorBoard.

When looking at TensorBoard, you will see the navigation tabs in the top right
corner. Each tab represents a set of serialized data that can be visualized.

For in depth information on how to use the graph tab to visualize your graph,
see TensorBoard: Graph Visualization.

For more usage information on TensorBoard in general, see the TensorBoard
README [https://www.tensorflow.org/code/tensorflow/tensorboard/README.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/how_tos/threading_and_queues/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Threading and Queues

Queues are a powerful mechanism for asynchronous computation using TensorFlow.

Like everything in TensorFlow, a queue is a node in a TensorFlow graph. It’s a
stateful node, like a variable: other nodes can modify its content. In
particular, nodes can enqueue new items in to the queue, or dequeue existing
items from the queue.

To get a feel for queues, let’s consider a simple example. We will create a
“first in, first out” queue (FIFOQueue) and fill it with zeros.
Then we’ll construct a graph
that takes an item off the queue, adds one to that item, and puts it back on the
end of the queue. Slowly, the numbers on the queue increase.

[image:]

Enqueue, EnqueueMany, and Dequeue are special nodes. They take a pointer
to the queue instead of a normal value, allowing them to change it. We recommend
you think of these as being like methods of the queue. In fact, in the Python
API, they are methods of the queue object (e.g. q.enqueue(...)).

N.B. Queue methods (such as q.enqueue(...)) must run on the same device
as the queue. Incompatible device placement directives will be ignored when
creating these operations.

Now that you have a bit of a feel for queues, let’s dive into the details...

Queue Use Overview

Queues, such as FIFOQueue and RandomShuffleQueue, are important TensorFlow
objects for computing tensors asynchronously in a graph.

For example, a typical input architecture is to use a RandomShuffleQueue to
prepare inputs for training a model:

		Multiple threads prepare training examples and push them in the queue.

		A training thread executes a training op that dequeues mini-batches from the
queue

This architecture has many benefits, as highlighted in the
Reading data how to, which also gives an overview of
functions that simplify the construction of input pipelines.

The TensorFlow Session object is multithreaded, so multiple threads can
easily use the same session and run ops in parallel. However, it is not always
easy to implement a Python program that drives threads as described above. All
threads must be able to stop together, exceptions must be caught and
reported, and queues must be properly closed when stopping.

TensorFlow provides two classes to help:
tf.Coordinator and
tf.QueueRunner. These two classes
are designed to be used together. The Coordinator class helps multiple threads
stop together and report exceptions to a program that waits for them to stop.
The QueueRunner class is used to create a number of threads cooperating to
enqueue tensors in the same queue.

Coordinator

The Coordinator class helps multiple threads stop together.

Its key methods are:

		should_stop(): returns True if the threads should stop.

		request_stop(<exception>): requests that threads should stop.

		join(<list of threads>): waits until the specified threads have stopped.

You first create a Coordinator object, and then create a number of threads
that use the coordinator. The threads typically run loops that stop when
should_stop() returns True.

Any thread can decide that the computation should stop. It only has to call
request_stop() and the other threads will stop as should_stop() will then
return True.

Thread body: loop until the coordinator indicates a stop was requested.
If some condition becomes true, ask the coordinator to stop.
def MyLoop(coord):
 while not coord.should_stop():
 ...do something...
 if ...some condition...:
 coord.request_stop()

Main code: create a coordinator.
coord = Coordinator()

Create 10 threads that run 'MyLoop()'
threads = [threading.Thread(target=MyLoop, args=(coord,)) for i in xrange(10)]

Start the threads and wait for all of them to stop.
for t in threads: t.start()
coord.join(threads)

Obviously, the coordinator can manage threads doing very different things.
They don’t have to be all the same as in the example above. The coordinator
also has support to capture and report exceptions. See the Coordinator class documentation for more details.

QueueRunner

The QueueRunner class creates a number of threads that repeatedly run an
enqueue op. These threads can use a coordinator to stop together. In
addition, a queue runner runs a closer thread that automatically closes the
queue if an exception is reported to the coordinator.

You can use a queue runner to implement the architecture described above.

First build a graph that uses a Queue for input examples. Add ops that
process examples and enqueue them in the queue. Add training ops that start by
dequeueing from the queue.

example = ...ops to create one example...
Create a queue, and an op that enqueues examples one at a time in the queue.
queue = tf.RandomShuffleQueue(...)
enqueue_op = queue.enqueue(example)
Create a training graph that starts by dequeuing a batch of examples.
inputs = queue.dequeue_many(batch_size)
train_op = ...use 'inputs' to build the training part of the graph...

In the Python training program, create a QueueRunner that will run a few
threads to process and enqueue examples. Create a Coordinator and ask the
queue runner to start its threads with the coordinator. Write a training loop
that also uses the coordinator.

Create a queue runner that will run 4 threads in parallel to enqueue
examples.
qr = tf.train.QueueRunner(queue, [enqueue_op] * 4)

Launch the graph.
sess = tf.Session()
Create a coordinator, launch the queue runner threads.
coord = tf.train.Coordinator()
enqueue_threads = qr.create_threads(sess, coord=coord, start=True)
Run the training loop, controlling termination with the coordinator.
for step in xrange(1000000):
 if coord.should_stop():
 break
 sess.run(train_op)
When done, ask the threads to stop.
coord.request_stop()
And wait for them to actually do it.
coord.join(enqueue_threads)

Handling Exceptions

Threads started by queue runners do more than just run the enqueue ops. They
also catch and handle exceptions generated by queues, including
OutOfRangeError which is used to report that a queue was closed.

A training program that uses a coordinator must similarly catch and report
exceptions in its main loop.

Here is an improved version of the training loop above.

try:
 for step in xrange(1000000):
 if coord.should_stop():
 break
 sess.run(train_op)
except Exception, e:
 # Report exceptions to the coordinator.
 coord.request_stop(e)
finally:
 # Terminate as usual. It is innocuous to request stop twice.
 coord.request_stop()
 coord.join(threads)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/how_tos/adding_an_op/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Adding a New Op

PREREQUISITES:

		Some familiarity with C++.

		Must have installed the
TensorFlow binary, or must
have
downloaded TensorFlow source,
and be able to build it.

If you’d like to incorporate an operation that isn’t covered by the existing
library, you can create a custom Op. To incorporate your custom Op, you’ll need
to:

		Register the new Op in a C++ file. The Op registration is independent of the
implementation, and describes the semantics of how the Op is invoked. For
example, it defines the Op name, and specifies its inputs and outputs.
It also defines the shape function that is used for tensor shape inference.

		Implement the Op in C++. This implementation is called a “kernel”, and there
can be multiple kernels for different architectures (e.g. CPUs, GPUs) or
input / output types.

		Optionally, create a Python wrapper. This wrapper is the public API to create
the Op. A default wrapper is generated from the Op registration, which can be
used directly or added to.

		Optionally, write a function to compute gradients for the Op.

		Test the Op, typically in Python. If you define gradients, you can verify them with the Python GradientChecker [https://www.tensorflow.org/code/tensorflow/python/kernel_tests/gradient_checker.py].

[TOC]

Define the Op’s interface

You define the interface of an Op by registering it with the TensorFlow system.
In the registration, you specify the name of your Op, its inputs (types and
names) and outputs (types and names), as well as docstrings and
any attrs the Op might require.

To see how this works, suppose you’d like to create an Op that takes a tensor of
int32s and outputs a copy of the tensor, with all but the first element set to
zero. Create file tensorflow/core/user_ops [https://www.tensorflow.org/code/tensorflow/core/user_ops/]/zero_out.cc and
add a call to the REGISTER_OP macro that defines the interface for such an Op:

#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/shape_inference.h"

REGISTER_OP("ZeroOut")
 .Input("to_zero: int32")
 .Output("zeroed: int32")
 .SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) {
 c->set_output(0, c->input(0));
 return Status::OK();
 });

This ZeroOut Op takes one tensor to_zero of 32-bit integers as input, and
outputs a tensor zeroed of 32-bit integers of the same shape as the input.
For example, if the input is a Tensor of shape [10, 20], then this shape
function specifies that the output shape is also [10, 20].

A note on naming: The name of the Op should be unique and CamelCase. Names
starting with an underscore (_) are reserved for internal use.

Implement the kernel for the Op

After you define the interface, provide one or more implementations of the Op.
To create one of these kernels, create a class that extends OpKernel and
overrides the Compute method. The Compute method provides one context
argument of type OpKernelContext*, from which you can access useful things
like the input and output tensors.

Important note: Instances of your OpKernel may be accessed concurrently. Your
Compute method must be thread-safe. Guard any access to class members with a
mutex (Or better yet, don’t share state via class members! Consider using a
ResourceMgr [https://www.tensorflow.org/code/tensorflow/core/framework/resource_mgr.h]
to keep track of Op state).

Add your kernel to the file you created above. The kernel might look something
like this:

#include "tensorflow/core/framework/op_kernel.h"

using namespace tensorflow;

class ZeroOutOp : public OpKernel {
 public:
 explicit ZeroOutOp(OpKernelConstruction* context) : OpKernel(context) {}

 void Compute(OpKernelContext* context) override {
 // Grab the input tensor
 const Tensor& input_tensor = context->input(0);
 auto input = input_tensor.flat<int32>();

 // Create an output tensor
 Tensor* output_tensor = NULL;
 OP_REQUIRES_OK(context, context->allocate_output(0, input_tensor.shape(),
 &output_tensor));
 auto output = output_tensor->flat<int32>();

 // Set all but the first element of the output tensor to 0.
 const int N = input.size();
 for (int i = 1; i < N; i++) {
 output(i) = 0;
 }

 // Preserve the first input value if possible.
 if (N > 0) output(0) = input(0);
 }
};

After implementing your kernel, you register it with the TensorFlow system. In
the registration, you specify different constraints under which this kernel
will run. For example, you might have one kernel made for CPUs, and a separate
one for GPUs.

To do this for the ZeroOut op, add the following to zero_out.cc:

REGISTER_KERNEL_BUILDER(Name("ZeroOut").Device(DEVICE_CPU), ZeroOutOp);

Building the Op library

With TensorFlow binary installation

You should be able to compile zero_out.cc with a C++ compiler such as g++
or clang available on your system. The binary PIP package installs the header
files and the library that you need to compile your Op in locations that are
system specific. However, the TensorFlow python library provides the
get_include function to get the header directory.
Here is the output of this function on a Ubuntu machine.

$ python
>>> import tensorflow as tf
>>> tf.sysconfig.get_include()
'/usr/local/lib/python2.7/site-packages/tensorflow/include'

Assuming you have g++ installed, here is the sequence of commands you can use
to compile your Op into a dynamic library.

TF_INC=$(python -c 'import tensorflow as tf; print(tf.sysconfig.get_include())')

g++ -std=c++11 -shared zero_out.cc -o zero_out.so -fPIC -I $TF_INC -O2

On Mac OS X, the additional flag “-undefined dynamic_lookup” is required when
building the .so file.

Note on gcc version 5: gcc5 uses the new C++
ABI [https://gcc.gnu.org/gcc-5/changes.html#libstdcxx]. The binary pip packages
available on the TensorFlow website are built with gcc4 that uses the older ABI.
If you compile your op library with gcc5, add -D_GLIBCXX_USE_CXX11_ABI=0 to
the command line to make the library compatible with the older abi.

With TensorFlow source installation

If you have TensorFlow sources installed, you can make use of TensorFlow’s build
system to compile your Op. Place a BUILD file with following Bazel build rule in
the tensorflow/core/user_ops [https://www.tensorflow.org/code/tensorflow/core/user_ops/] directory.

load("//tensorflow:tensorflow.bzl", "tf_custom_op_library")

tf_custom_op_library(
 name = "zero_out.so",
 srcs = ["zero_out.cc"],
)

Run the following command to build zero_out.so.

$ bazel build -c opt //tensorflow/core/user_ops:zero_out.so

Note:
Although you can create a shared library (a .so file) with the standard
cc_library rule, we strongly recommend that you use the tf_custom_op_library
macro. It adds some required dependencies, and performs checks to ensure that
the shared library is compatible with TensorFlow’s plugin loading mechanism.

Using the Op in Python

TensorFlow Python API provides the
load_op_library function to
load the dynamic library and register the Op with the TensorFlow
framework. load_op_library returns a Python module, that contains the Python
wrappers for the Op. Thus, once you have built the op, you can do the following
to run it from Python :

import tensorflow as tf
zero_out_module = tf.load_op_library('zero_out.so')
with tf.Session(''):
 zero_out_module.zero_out([[1, 2], [3, 4]]).eval()

Prints
array([[1, 0],
 [0, 0]], dtype=int32)

Note: The generated function will be given a snake_case name (to comply with
PEP8 [https://www.python.org/dev/peps/pep-0008/]). So if your op is named
ZeroOut in the C++ files, the python function will be called zero_out.

To make the Op available as a regular function import-able from a Python
module, it maybe useful to have the load_op_library call in a Python source
file as follows (see
zero_out_op_1.py [https://www.tensorflow.org/code/tensorflow/g3doc/how_tos/adding_an_op/zero_out_op_1.py])
:

import tensorflow as tf

_zero_out_module = tf.load_op_library('zero_out_op_kernel_1.so')
zero_out = _zero_out_module.zero_out

Verify it works

A good way to verify that you’ve successfully implemented your Op is to write a
test for it. Create the file
tensorflow/python/kernel_tests/zero_out_op_test.py with the contents:

import tensorflow as tf

class ZeroOutTest(tf.test.TestCase):
 def testZeroOut(self):
 zero_out_module = tf.load_op_library('zero_out.so')
 with self.test_session():
 result = zero_out_module.zero_out([5, 4, 3, 2, 1])
 self.assertAllEqual(result.eval(), [5, 0, 0, 0, 0])

Then run your test:

$ bazel test tensorflow/python:zero_out_op_test

Validation

The example above assumed that the Op applied to a tensor of any shape. What
if it only applied to vectors? That means adding a check to the above OpKernel
implementation.

 void Compute(OpKernelContext* context) override {
 // Grab the input tensor
 const Tensor& input_tensor = context->input(0);

 OP_REQUIRES(context, TensorShapeUtils::IsVector(input_tensor.shape()),
 errors::InvalidArgument("ZeroOut expects a 1-D vector."));
 // ...
 }

This asserts that the input is a vector, and returns having set the
InvalidArgument status if it isn’t. The
OP_REQUIRES macro [https://www.tensorflow.org/code/tensorflow/core/lib/core/errors.h] takes three arguments:

		The context, which can either be an OpKernelContext or
OpKernelConstruction pointer (see
tensorflow/core/framework/op_kernel.h [https://www.tensorflow.org/code/tensorflow/core/framework/op_kernel.h]),
for its SetStatus() method.

		The condition. For example, there are functions for validating the shape
of a tensor in
tensorflow/core/framework/tensor_shape.h [https://www.tensorflow.org/code/tensorflow/core/framework/tensor_shape.h]

		The error itself, which is represented by a Status object, see
tensorflow/core/lib/core/status.h [https://www.tensorflow.org/code/tensorflow/core/lib/core/status.h]. A
Status has both a type (frequently InvalidArgument, but see the list of
types) and a message. Functions for constructing an error may be found in
tensorflow/core/lib/core/errors.h [https://www.tensorflow.org/code/tensorflow/core/lib/core/errors.h].

Alternatively, if you want to test whether a Status object returned from some
function is an error, and if so return it, use
OP_REQUIRES_OK [https://www.tensorflow.org/code/tensorflow/core/lib/core/errors.h]. Both of these macros return from the
function on error.

Op registration

Attrs

Ops can have attrs, whose values are set when the Op is added to a graph. These
are used to configure the Op, and their values can be accessed both within the
kernel implementation and in the types of inputs and outputs in the Op
registration. Prefer using an input instead of an attr when possible, since
inputs are more flexible. They can change every step, be set using a feed, etc.
Attrs are used for things that can’t be done with inputs: any configuration
that affects the signature (number or type of inputs or outputs) or that
can’t change from step-to-step.

You define an attr when you register the Op, by specifying its name and type
using the Attr method, which expects a spec of the form:

<name>: <attr-type-expr>

where <name> begins with a letter and can be composed of alphanumeric
characters and underscores, and <attr-type-expr> is a type expression of the
form described below

For example, if you’d like the ZeroOut Op to preserve a user-specified index,
instead of only the 0th element, you can register the Op like so:

REGISTER_OP(“ZeroOut”)
.Attr(“preserve_index: int”)
.Input(“to_zero: int32”)
.Output(“zeroed: int32”);

Your kernel can then access this attr in its constructor via the context
parameter:

class ZeroOutOp : public OpKernel {
public:
explicit ZeroOutOp(OpKernelConstruction* context) : OpKernel(context) {
// Get the index of the value to preserve
OP_REQUIRES_OK(context,
context->

GetAttr(“preserve_index”, &preserve_index_));
// Check that preserve_index is positive
OP_REQUIRES(context, preserve_index_ >

= 0,
errors::InvalidArgument(“Need preserve_index >

= 0, got ”,
preserve_index_));
}
void Compute(OpKernelContext* context) override {
// ...
}
private:
int preserve_index_;
};

which can then be used in the Compute method:

void Compute(OpKernelContext* context) override {
// ...

 // Check that preserve_index is in range
OP_REQUIRES(context, preserve_index_ <

 input.dimension(0),
errors::InvalidArgument(“preserve_index out of range”));

// Set all the elements of the output tensor to 0
const int N = input.size();
for (int i = 0; i < N; i++) {
output_flat(i) = 0;
}

// Preserve the requested input value
output_flat(preserve_index_) = input(preserve_index_);
}

To preserve backwards compatibility, you should
specify a default value when adding an attr to
an existing op:

REGISTER_OP(“ZeroOut”)
.Attr(“preserve_index: int = 0”)
.Input(“to_zero: int32”)
.Output(“zeroed: int32”);

Attr types

The following types are supported in an attr:

		string: Any sequence of bytes (not required to be UTF8).

		int: A signed integer.

		float: A floating point number.

		bool: True or false.

		type: One of the (non-ref) values of DataType [https://www.tensorflow.org/code/tensorflow/core/framework/types.cc#DataTypeString].

		shape: A TensorShapeProto [https://www.tensorflow.org/code/tensorflow/core/framework/tensor_shape.proto].

		tensor: A TensorProto [https://www.tensorflow.org/code/tensorflow/core/framework/tensor.proto].

		list(<type>): A list of <type>, where <type> is one of the above types.
Note that list(list(<type>)) is invalid.

See also: op_def_builder.cc:FinalizeAttr [https://www.tensorflow.org/code/tensorflow/core/framework/op_def_builder.cc#FinalizeAttr] for a definitive list.

Default values & constraints

Attrs may have default values, and some types of attrs can have constraints. To
define an attr with constraints, you can use the following <attr-type-expr>s:

		{'<string1>', '<string2>'}: The value must be a string that has either the
value <string1> or <string2>. The name of the type, string, is implied
when you use this syntax. This emulates an enum:

REGISTER_OP("EnumExample")
 .Attr("e: {'apple', 'orange'}");

		{<type1>, <type2>}: The value is of type type, and must be one of
<type1> or <type2>, where <type1> and <type2> are supported
tensor types. You don’t specify
that the type of the attr is type. This is implied when you have a list of
types in {...}. For example, in this case the attr t is a type that must
be an int32, a float, or a bool:

REGISTER_OP("RestrictedTypeExample")
 .Attr("t: {int32, float, bool}");

		There are shortcuts for common type constraints:

		numbertype: Type type restricted to the numeric (non-string and
non-bool) types.

		realnumbertype: Like numbertype without complex types.

		quantizedtype: Like numbertype but just the quantized number types.

The specific lists of types allowed by these are defined by the functions
(like NumberTypes()) in
tensorflow/core/framework/types.h [https://www.tensorflow.org/code/tensorflow/core/framework/types.h].
In this example the attr t must be one of the numeric types:

REGISTER_OP("NumberType")
 .Attr("t: numbertype");

For this op:

tf.number_type(t=tf.int32) # Valid
tf.number_type(t=tf.bool) # Invalid

		int >= <n>: The value must be an int whose value is greater than or equal to
<n>, where <n> is a natural number.

For example, the following Op registration specifies that the attr a must
have a value that is at least 2:

REGISTER_OP("MinIntExample")
 .Attr("a: int >= 2");

		list(<type>) >= <n>: A list of type <type> whose length is greater than
or equal to <n>.

For example, the following Op registration specifies that the attr a is a
list of types (either int32 or float), and that there must be at least 3
of them:

REGISTER_OP("TypeListExample")
 .Attr("a: list({int32, float}) >= 3");

To set a default value for an attr (making it optional in the generated code),
add = <default> to the end, as in:

REGISTER_OP("AttrDefaultExample")
 .Attr("i: int = 0");

The supported syntax of the default value is what would be used in the proto
representation of the resulting GraphDef definition.

Here are examples for how to specify a default for all types:

REGISTER_OP("AttrDefaultExampleForAllTypes")
 .Attr("s: string = 'foo'")
 .Attr("i: int = 0")
 .Attr("f: float = 1.0")
 .Attr("b: bool = true")
 .Attr("ty: type = DT_INT32")
 .Attr("sh: shape = { dim { size: 1 } dim { size: 2 } }")
 .Attr("te: tensor = { dtype: DT_INT32 int_val: 5 }")
 .Attr("l_empty: list(int) = []")
 .Attr("l_int: list(int) = [2, 3, 5, 7]");

Note in particular that the values of type type use the DT_* names
for the types.

Polymorphism

Type Polymorphism

For ops that can take different types as input or produce different output
types, you can specify an attr in
an input or output type in the Op registration. Typically
you would then register an OpKernel for each supported type.

For instance, if you’d like the ZeroOut Op to work on floats
in addition to int32s, your Op registration might look like:

REGISTER_OP(“ZeroOut”)
.Attr(“T: {float, int32}”)
.Input(“to_zero: T”)
.Output(“zeroed: T”);

Your Op registration now specifies that the input’s type must be float, or
int32, and that its output will be the same type, since both have type T.

A note on naming: Inputs, outputs, and attrs generally should be
given snake_case names. The one exception is attrs that are used as the type
of an input or in the type of an input. Those attrs can be inferred when the
op is added to the graph and so don’t appear in the op’s function. For
example, this last definition of ZeroOut will generate a Python function that
looks like:

def zero_out(to_zero, name=None):
 """...
 Args:
 to_zero: A `Tensor`. Must be one of the following types:
 `float32`, `int32`.
 name: A name for the operation (optional).

 Returns:
 A `Tensor`. Has the same type as `to_zero`.
 """

If to_zero is passed an int32 tensor, then T is automatically set to
int32 (well, actually DT_INT32). Those inferred attrs are given
Capitalized or CamelCase names.

Compare this with an op that has a type attr that determines the output
type:

REGISTER_OP("StringToNumber")
 .Input("string_tensor: string")
 .Output("output: out_type")
 .Attr("out_type: {float, int32}");
 .Doc(R"doc(
Converts each string in the input Tensor to the specified numeric type.
)doc");

In this case, the user has to specify the output type, as in the generated
Python:

def string_to_number(string_tensor, out_type=None, name=None):
 """Converts each string in the input Tensor to the specified numeric type.

 Args:
 string_tensor: A `Tensor` of type `string`.
 out_type: An optional `tf.DType` from: `tf.float32, tf.int32`.
 Defaults to `tf.float32`.
 name: A name for the operation (optional).

 Returns:
 A `Tensor` of type `out_type`.
 """

#include “tensorflow/core/framework/op_kernel.h”

class ZeroOutInt32Op : public OpKernel {
// as before
};

class ZeroOutFloatOp : public OpKernel {
public:
explicit ZeroOutFloatOp(OpKernelConstruction* context)
: OpKernel(context) {}

void Compute(OpKernelContext* context) override {
// Grab the input tensor
const Tensor& input_tensor = context->

input(0);
auto input = input_tensor.flat<

float>

();

// Create an output tensor
Tensor* output = NULL;
OP_REQUIRES_OK(context,
context->

allocate_output(0, input_tensor.shape(), &output));
auto output_flat = output->

template flat<

float>

();

// Set all the elements of the output tensor to 0
const int N = input.size();
for (int i = 0; i <

 N; i++) {
output_flat(i) = 0;
}

// Preserve the first input value
if (N >

 0) output_flat(0) = input(0);
}
};

// Note that TypeConstraint<

int32>

(“T”) means that attr “T” (defined
// in the Op registration above) must be “int32” to use this template
// instantiation.
REGISTER_KERNEL_BUILDER(
Name(“ZeroOut”)
.Device(DEVICE_CPU)
.TypeConstraint<

int32>

(“T”),
ZeroOutOpInt32);
REGISTER_KERNEL_BUILDER(
Name(“ZeroOut”)
.Device(DEVICE_CPU)
.TypeConstraint<

float>

(“T”),
ZeroOutFloatOp);

To preserve backwards compatibility, you should
specify a default value when adding an attr to
an existing op:

REGISTER_OP(“ZeroOut”)
.Attr(“T: {float, int32} = DT_INT32”)
.Input(“to_zero: T”)
.Output(“zeroed: T”)

Lets say you wanted to add more types, say double:

REGISTER_OP(“ZeroOut”)
.Attr(“T: {float, double, int32}”)
.Input(“to_zero: T”)
.Output(“zeroed: T”);

Instead of writing another OpKernel with redundant code as above, often you
will be able to use a C++ template instead. You will still have one kernel
registration (REGISTER_KERNEL_BUILDER call) per overload.

template <

typename T>

class ZeroOutOp : public OpKernel {
public:
explicit ZeroOutOp(OpKernelConstruction* context) : OpKernel(context) {}

void Compute(OpKernelContext* context) override {
// Grab the input tensor
const Tensor& input_tensor = context->

input(0);
auto input = input_tensor.flat<

T>

();

// Create an output tensor
Tensor* output = NULL;
OP_REQUIRES_OK(context,
context->

allocate_output(0, input_tensor.shape(), &output));
auto output_flat = output->

template flat<

T>

();

// Set all the elements of the output tensor to 0
const int N = input.size();
for (int i = 0; i <

 N; i++) {
output_flat(i) = 0;
}

// Preserve the first input value
if (N >

 0) output_flat(0) = input(0);
}
};

// Note that TypeConstraint<

int32>

(“T”) means that attr “T” (defined
// in the Op registration above) must be “int32” to use this template
// instantiation.
REGISTER_KERNEL_BUILDER(
Name(“ZeroOut”)
.Device(DEVICE_CPU)
.TypeConstraint<

int32>

(“T”),
ZeroOutOp<

int32>

);
REGISTER_KERNEL_BUILDER(
Name(“ZeroOut”)
.Device(DEVICE_CPU)
.TypeConstraint<

float>

(“T”),
ZeroOutOp<

float>

);
REGISTER_KERNEL_BUILDER(
Name(“ZeroOut”)
.Device(DEVICE_CPU)
.TypeConstraint<

double>

(“T”),
ZeroOutOp<

double>

);

If you have more than a couple overloads, you can put the registration in a
macro.

#include "tensorflow/core/framework/op_kernel.h"

#define REGISTER_KERNEL(type) \
 REGISTER_KERNEL_BUILDER(\
 Name("ZeroOut").Device(DEVICE_CPU).TypeConstraint<type>("T"), \
 ZeroOutOp<type>)

REGISTER_KERNEL(int32);
REGISTER_KERNEL(float);
REGISTER_KERNEL(double);

#undef REGISTER_KERNEL

Depending on the list of types you are registering the kernel for, you may be
able to use a macro provided by
tensorflow/core/framework/register_types.h [https://www.tensorflow.org/code/tensorflow/core/framework/register_types.h]:

#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"

REGISTER_OP("ZeroOut")
 .Attr("T: realnumbertype")
 .Input("to_zero: T")
 .Output("zeroed: T");

template <typename T>
class ZeroOutOp : public OpKernel { ... };

#define REGISTER_KERNEL(type) \
 REGISTER_KERNEL_BUILDER(\
 Name("ZeroOut").Device(DEVICE_CPU).TypeConstraint<type>("T"), \
 ZeroOutOp<type>)

TF_CALL_REAL_NUMBER_TYPES(REGISTER_KERNEL);

#undef REGISTER_KERNEL

List Inputs and Outputs

In addition to being able to accept or produce different types, ops can consume
or produce a variable number of tensors.

In the next example, the attr T holds a list of types, and is used as the
type of both the input in and the output out. The input and output are
lists of tensors of that type (and the number and types of tensors in the output
are the same as the input, since both have type T).

REGISTER_OP("PolymorphicListExample")
 .Attr("T: list(type)")
 .Input("in: T")
 .Output("out: T");

You can also place restrictions on what types can be specified in the list. In
this next case, the input is a list of float and double tensors. The Op
accepts, for example, input types (float, double, float) and in that case the
output type would also be (float, double, float).

REGISTER_OP("ListTypeRestrictionExample")
 .Attr("T: list({float, double})")
 .Input("in: T")
 .Output("out: T");

If you want all the tensors in a list to be of the same type, you might do
something like:

REGISTER_OP("IntListInputExample")
 .Attr("N: int")
 .Input("in: N * int32")
 .Output("out: int32");

This accepts a list of int32 tensors, and uses an int attr N to
specify the length of the list.

This can be made type polymorphic as well. In the next
example, the input is a list of tensors (with length "N") of the same (but
unspecified) type ("T"), and the output is a single tensor of matching type:

REGISTER_OP("SameListInputExample")
 .Attr("N: int")
 .Attr("T: type")
 .Input("in: N * T")
 .Output("out: T");

By default, tensor lists have a minimum length of 1. You can change that default
using
a ">=" constraint on the corresponding attr.
In this next example, the input is a list of at least 2 int32 tensors:

REGISTER_OP("MinLengthIntListExample")
 .Attr("N: int >= 2")
 .Input("in: N * int32")
 .Output("out: int32");

The same syntax works with "list(type)" attrs:

REGISTER_OP("MinimumLengthPolymorphicListExample")
 .Attr("T: list(type) >= 3")
 .Input("in: T")
 .Output("out: T");

Inputs and Outputs

To summarize the above, an Op registration can have multiple inputs and outputs:

REGISTER_OP("MultipleInsAndOuts")
 .Input("y: int32")
 .Input("z: float")
 .Output("a: string")
 .Output("b: int32");

Each input or output spec is of the form:

<name>: <io-type-expr>

where <name> begins with a letter and can be composed of alphanumeric
characters and underscores. <io-type-expr> is one of the following type
expressions:

		<type>, where <type> is a supported input type (e.g. float, int32,
string). This specifies a single tensor of the given type.

See
the list of supported Tensor types.

REGISTER_OP("BuiltInTypesExample")
 .Input("integers: int32")
 .Input("complex_numbers: complex64");

		<attr-type>, where <attr-type> is the name of an Attr with type
type or list(type) (with a possible type restriction). This syntax allows
for polymorphic ops.

REGISTER_OP("PolymorphicSingleInput")
 .Attr("T: type")
 .Input("in: T);

REGISTER_OP("RestrictedPolymorphicSingleInput")
 .Attr("T: {int32, int64}")
 .Input("in: T);

Referencing an attr of type list(type) allows you to accept a sequence of
tensors.

REGISTER_OP("ArbitraryTensorSequenceExample")
 .Attr("T: list(type)")
 .Input("in: T")
 .Output("out: T");

REGISTER_OP("RestrictedTensorSequenceExample")
 .Attr("T: list({int32, int64})")
 .Input("in: T")
 .Output("out: T");

Note that the number and types of tensors in the output out is the same as
in the input in, since both are of type T.

		For a sequence of tensors with the same type: <number> * <type>, where
<number> is the name of an Attr with type int. The <type> can
either be
a specific type like int32 or float,
or the name of an attr with type type. As an example of the first, this
Op accepts a list of int32 tensors:

REGISTER_OP("Int32SequenceExample")
 .Attr("NumTensors: int")
 .Input("in: NumTensors * int32")

Whereas this Op accepts a list of tensors of any type, as long as they are all
the same:

REGISTER_OP("SameTypeSequenceExample")
 .Attr("NumTensors: int")
 .Attr("T: type")
 .Input("in: NumTensors * T")

		For a reference to a tensor: Ref(<type>), where <type> is one of the
previous types.

A note on naming: Any attr used in the type of an input will be inferred. By
convention those inferred attrs use capital names (like T or N).
Otherwise inputs, outputs, and attrs have names like function parameters
(e.g. num_outputs). For more details, see the
earlier note on naming.

For more details, see
tensorflow/core/framework/op_def_builder.h [https://www.tensorflow.org/code/tensorflow/core/framework/op_def_builder.h].

Backwards compatibility

In general, changes to specifications must be backwards-compatible: changing the
specification of an Op must not break prior serialized GraphDef protocol
buffers constructed from older specfications. The details of GraphDef
compatibility are described here.

There are several ways to preserve backwards-compatibility.

		Any new attrs added to an operation must have default values defined, and
with that default value the Op must have the original behavior. To change an
operation from not polymorphic to polymorphic, you must give a default
value to the new type attr to preserve the original signature by default. For
example, if your operation was:

REGISTER_OP("MyGeneralUnaryOp")
 .Input("in: float")
 .Output("out: float");

you can make it polymorphic in a backwards-compatible way using:

REGISTER_OP("MyGeneralUnaryOp")
 .Input("in: T")
 .Output("out: T")
 .Attr("T: numerictype = DT_FLOAT");

		You can safely make a constraint on an attr less restrictive. For example,
you can change from {int32, int64} to {int32, int64, float} or type.
Or you may change from {"apple", "orange"} to {"apple", "banana", "orange"} or string.

		You can change single inputs / outputs into list inputs / outputs, as long as
the default for the list type matches the old signature.

		You can add a new list input / output, if it defaults to empty.

		Namespace any new Ops you create, by prefixing the Op names with something
unique to your project. This avoids having your Op colliding with any Ops
that might be included in future versions of TensorFlow.

		Plan ahead! Try to anticipate future uses for the Op. Some signature changes
can’t be done in a compatible way (for example, making a list of the same
type into a list of varying types).

The full list of safe and unsafe changes can be found in
tensorflow/core/framework/op_compatibility_test.cc [https://www.tensorflow.org/code/tensorflow/core/framework/op_compatibility_test.cc].
If you cannot make your change to an operation backwards compatible, then create
a new operation with a new name with the new semantics.

Also note that while these changes can maintain GraphDef compatibility, the
generated Python code may change in a way that isn’t compatible with old
callers. The Python API may be kept compatible by careful changes in a
hand-written Python wrapper, by keeping the old signature except possibly adding
new optional arguments to the end. Generally incompatible changes may only be
made when TensorFlow’s changes major versions, and must conform to the
GraphDef version semantics.

GPU Support

You can implement different OpKernels and register one for CPU and another for
GPU, just like you can register kernels for different types.
There are several examples of kernels with GPU support in
tensorflow/core/kernels/ [https://www.tensorflow.org/code/tensorflow/core/kernels/].
Notice some kernels have a CPU version in a .cc file, a GPU version in a file
ending in _gpu.cu.cc, and some code shared in common in a .h file.

For example, the pad op has
everything but the GPU kernel in tensorflow/core/kernels/pad_op.cc [https://www.tensorflow.org/code/tensorflow/core/kernels/pad_op.cc].
The GPU kernel is in
tensorflow/core/kernels/pad_op_gpu.cu.cc [https://www.tensorflow.org/code/tensorflow/core/kernels/pad_op_gpu.cu.cc],
and the shared code is a templated class defined in
tensorflow/core/kernels/pad_op.h [https://www.tensorflow.org/code/tensorflow/core/kernels/pad_op.h].
One thing to note, even when the GPU kernel version of pad is used, it still
needs its "paddings" input in CPU memory. To mark that inputs or outputs are
kept on the CPU, add a HostMemory() call to the kernel registration, e.g.:

#define REGISTER_GPU_KERNEL(T) \
 REGISTER_KERNEL_BUILDER(Name("Pad") \
 .Device(DEVICE_GPU) \
 .TypeConstraint<T>("T") \
 .HostMemory("paddings"), \
 PadOp<GPUDevice, T>)

Compiling the kernel for the GPU device

Look at
cuda_op_kernel.cu.cc [https://www.tensorflow.org/code/tensorflow/g3doc/how_tos/adding_an_op/cuda_op_kernel.cu.cc]
for an example that uses a CUDA kernel to implement an op. The
tf_custom_op_library accepts a gpu_srcs argument in which the list of source
files containing the CUDA kernels (*.cu.cc files) can be specified. For use
with a binary installation of TensorFlow, the CUDA kernels have to be compiled
with NVIDIA’s nvcc compiler. Here is the sequence of commands you can use to
compile the
cuda_op_kernel.cu.cc [https://www.tensorflow.org/code/tensorflow/g3doc/how_tos/adding_an_op/cuda_op_kernel.cu.cc]
and
cuda_op_kernel.cc [https://www.tensorflow.org/code/tensorflow/g3doc/how_tos/adding_an_op/cuda_op_kernel.cc]
into a single dynamically loadable library:

nvcc -std=c++11 -c -o cuda_op_kernel.cu.o cuda_op_kernel.cu.cc \
-I $TF_INC -D GOOGLE_CUDA=1 -x cu -Xcompiler -fPIC

g++ -std=c++11 -shared -o cuda_op_kernel.so cuda_op_kernel.cc \
cuda_op_kernel.cu.o -I $TF_INC -fPIC -lcudart

cuda_op_kernel.so produced above can be loaded as usual in Python, using the
tf.load_op_library function.

Note that if your CUDA libraries are not installed in /usr/local/lib64,
you’ll need to specify the path explicitly in the second (g++) command above.
For example, add -L /usr/local/cuda-8.0/lib64/ if your CUDA is installed in
/usr/local/cuda-8.0.

Implement the gradient in Python

Given a graph of ops, TensorFlow uses automatic differentiation
(backpropagation) to add new ops representing gradients with respect to the
existing ops (see
Gradient Computation).
To make automatic differentiation work for new ops, you must register a gradient
function which computes gradients with respect to the ops’ inputs given
gradients with respect to the ops’ outputs.

Mathematically, if an op computes \(y = f(x)\) the registered gradient op
converts gradients \(\partial L/ \partial y\) of loss \(L\) with respect to
\(y\) into gradients \(\partial L/ \partial x\) with respect to \(x\) via
the chain rule:

$$\frac{\partial L}{\partial x}
= \frac{\partial L}{\partial y} \frac{\partial y}{\partial x}
= \frac{\partial L}{\partial y} \frac{\partial f}{\partial x}.$$

In the case of ZeroOut, only one entry in the input affects the output, so the
gradient with respect to the input is a sparse “one hot” tensor. This is
expressed as follows:

from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import sparse_ops

@ops.RegisterGradient("ZeroOut")
def _zero_out_grad(op, grad):
 """The gradients for `zero_out`.

 Args:
 op: The `zero_out` `Operation` that we are differentiating, which we can use
 to find the inputs and outputs of the original op.
 grad: Gradient with respect to the output of the `zero_out` op.

 Returns:
 Gradients with respect to the input of `zero_out`.
 """
 to_zero = op.inputs[0]
 shape = array_ops.shape(to_zero)
 index = array_ops.zeros_like(shape)
 first_grad = array_ops.reshape(grad, [-1])[0]
 to_zero_grad = sparse_ops.sparse_to_dense(index, shape, first_grad, 0)
 return [to_zero_grad] # List of one Tensor, since we have one input

Details about registering gradient functions with
ops.RegisterGradient:

		For an op with one output, the gradient function will take an
Operation op and a
Tensor grad and build new ops
out of the tensors
op.inputs[i],
op.outputs[i], and grad. Information
about any attrs can be found via
op.get_attr.

		If the op has multiple outputs, the gradient function will take op and
grads, where grads is a list of gradients with respect to each output.
The result of the gradient function must be a list of Tensor objects
representing the gradients with respect to each input.

		If there is no well-defined gradient for some input, such as for integer
inputs used as indices, the corresponding returned gradient should be
None. For example, for an op taking a floating point tensor x and an
integer index i, the gradient function would return [x_grad, None].

		If there is no meaningful gradient for the op at all, use
ops.NotDifferentiable("OpName") to disable automatic differentiation.

Note that at the time the gradient function is called, only the data flow graph
of ops is available, not the tensor data itself. Thus, all computation must be
performed using other tensorflow ops, to be run at graph execution time.

Shape functions in C++

The TensorFlow API has a feature called “shape inference” that provides
information about the shapes of tensors without having to execute the
graph. Shape inference is supported by “shape functions” that are registered for
each op type in the C++ REGISTER_OP declaration, and perform two roles:
asserting that the shapes of the inputs are compatible during graph
construction, and specifying the shapes for the outputs.

Shape functions are defined as operations on the
shape_inference::InferenceContext class. For example, in the shape function
for ZeroOut:

 .SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) {
 c->set_output(0, c->input(0));
 return Status::OK();
 });

c->set_output(0, c->input(0)); declares that the first output’s shape should
be set to the first input’s shape. There are a number of common shape functions
that apply to many ops, such as shape_inference::UnchangedShape which can be
found in common_shape_fns.h [https://www.tensorflow.org/code/tensorflow/core/framework/common_shape_fns.h] and used as follows:

REGISTER_OP("ZeroOut")
 .Input("to_zero: int32")
 .Output("zeroed: int32")
 .SetShapeFn([](::tensorflow::shape_inference::UnchangedShape);

A shape function can also constrain the shape of an input. For the version of
ZeroOut with a vector shape constraint, the shape function
would be as follows:

 .SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) {
 ::tensorflow::shape_inference::ShapeHandle input;
 TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &input));
 c->set_output(0, input);
 return Status::OK();
 });

The WithRank call validates that the input shape c->input(0) has
a shape with exactly one dimension (or if the input shape is unknown,
the output shape will be a vector with one unknown dimension).

If your op is polymorphic with multiple inputs, you can use
members of InferenceContext to determine the number of shapes to check, and
Merge to validate that the shapes are all compatible (alternatively, access
attributes that indicate the lengths, with InferenceContext::GetAttr, which
provides access to the attributes of the op).

 .SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) {
 ::tensorflow::shape_inference::ShapeHandle input;
 ::tensorflow::shape_inference::ShapeHandle output;
 for (size_t i = 0; i < c->num_inputs(); ++i) {
 TF_RETURN_IF_ERROR(c->WithRank(c->input(i), 2, &input));
 TF_RETURN_IF_ERROR(c->Merge(output, input, &output));
 }
 c->set_output(0, output);
 return Status::OK();
 });

Since shape inference is an optional feature, and the shapes of tensors may vary
dynamically, shape functions must be robust to incomplete shape information for
any of the inputs. The Merge method in InferenceContext [https://www.tensorflow.org/code/tensorflow/core/framework/shape_inference.h]
allows the caller to assert that two shapes are the same, even if either
or both of them do not have complete information. Shape functions are defined
for all of the core TensorFlow ops and provide many different usage examples.

The InferenceContext class has a number of functions that can be used to
define shape function manipulations. For example, you can validate that a
particular dimension has a very specific value using InferenceContext::Dim and
InferenceContext::WithValue; you can specify that an output dimension is the
sum / product of two input dimensions using InferenceContext::Add and
InferenceContext::Multiply. See the InferenceContext class for
all of the various shape manipulations you can specify.

If you have a complicated shape function, you should consider adding a test for
validating that various input shape combinations produce the expected output
shape combinations. You can see examples of how to write these tests in some
our
core ops tests [https://www.tensorflow.org/code/tensorflow/core/ops/array_ops_test.cc].
(The syntax of INFER_OK and INFER_ERROR are a little cryptic, but try to be
compact in representing input and output shape specifications in tests. For
now, see the surrounding comments in those tests to get a sense of the shape
string specification).

Shape functions in Python

To register a shape function in Python, apply the
tf.RegisterShape decorator
to a shape function. For example, the
ZeroOut op defined above would have a shape function like
the following:

@tf.RegisterShape("ZeroOut")(common_shapes.call_cpp_shape_fn)

This specifies that the shape function should use the C++-implemented
shape specfication defined in your REGISTER_OP declaration above. Note
that TensorFlow will soon make this the default, so you only need
to define the shape function once in C++ to get shape inference for
free in Python.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/how_tos/reading_data/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Reading data

There are three main methods of getting data into a TensorFlow program:

		Feeding: Python code provides the data when running each step.

		Reading from files: an input pipeline reads the data from files
at the beginning of a TensorFlow graph.

		Preloaded data: a constant or variable in the TensorFlow graph holds
all the data (for small data sets).

[TOC]

Feeding

TensorFlow’s feed mechanism lets you inject data into any Tensor in a
computation graph. A python computation can thus feed data directly into the
graph.

Supply feed data through the feed_dict argument to a run() or eval() call
that initiates computation.

with tf.Session():
 input = tf.placeholder(tf.float32)
 classifier = ...
 print(classifier.eval(feed_dict={input: my_python_preprocessing_fn()}))

While you can replace any Tensor with feed data, including variables and
constants, the best practice is to use a
placeholder op node. A
placeholder exists solely to serve as the target of feeds. It is not
initialized and contains no data. A placeholder generates an error if
it is executed without a feed, so you won’t forget to feed it.

An example using placeholder and feeding to train on MNIST data can be found
in
tensorflow/examples/tutorials/mnist/fully_connected_feed.py [https://www.tensorflow.org/code/tensorflow/examples/tutorials/mnist/fully_connected_feed.py],
and is described in the MNIST tutorial.

Reading from files

A typical pipeline for reading records from files has the following stages:

		The list of filenames

		Optional filename shuffling

		Optional epoch limit

		Filename queue

		A Reader for the file format

		A decoder for a record read by the reader

		Optional preprocessing

		Example queue

Filenames, shuffling, and epoch limits

For the list of filenames, use either a constant string Tensor (like
["file0", "file1"] or [("file%d" % i) for i in range(2)]) or the
tf.train.match_filenames_once
function.

Pass the list of filenames to the tf.train.string_input_producer
function.
string_input_producer creates a FIFO queue for holding the filenames until
the reader needs them.

string_input_producer has options for shuffling and setting a maximum number
of epochs. A queue runner adds the whole list of filenames to the queue once
for each epoch, shuffling the filenames within an epoch if shuffle=True.
This procedure provides a uniform sampling of files, so that examples are not
under- or over- sampled relative to each other.

The queue runner works in a thread separate from the reader that pulls
filenames from the queue, so the shuffling and enqueuing process does not
block the reader.

File formats

Select the reader that matches your input file format and pass the filename
queue to the reader’s read method. The read method outputs a key identifying
the file and record (useful for debugging if you have some weird records), and
a scalar string value. Use one (or more) of the decoder and conversion ops to
decode this string into the tensors that make up an example.

CSV files

To read text files in comma-separated value (CSV)
format [https://tools.ietf.org/html/rfc4180], use a
TextLineReader with the
decode_csv operation. For example:

filename_queue = tf.train.string_input_producer(["file0.csv", "file1.csv"])

reader = tf.TextLineReader()
key, value = reader.read(filename_queue)

Default values, in case of empty columns. Also specifies the type of the
decoded result.
record_defaults = [[1], [1], [1], [1], [1]]
col1, col2, col3, col4, col5 = tf.decode_csv(
 value, record_defaults=record_defaults)
features = tf.pack([col1, col2, col3, col4])

with tf.Session() as sess:
 # Start populating the filename queue.
 coord = tf.train.Coordinator()
 threads = tf.train.start_queue_runners(coord=coord)

 for i in range(1200):
 # Retrieve a single instance:
 example, label = sess.run([features, col5])

 coord.request_stop()
 coord.join(threads)

Each execution of read reads a single line from the file. The
decode_csv op then parses the result into a list of tensors. The
record_defaults argument determines the type of the resulting tensors and
sets the default value to use if a value is missing in the input string.

You must call tf.train.start_queue_runners to populate the queue before
you call run or eval to execute the read. Otherwise read will
block while it waits for filenames from the queue.

Fixed length records

To read binary files in which each record is a fixed number of bytes, use
tf.FixedLengthRecordReader
with the tf.decode_raw operation.
The decode_raw op converts from a string to a uint8 tensor.

For example, the CIFAR-10 dataset [http://www.cs.toronto.edu/~kriz/cifar.html]
uses a file format where each record is represented using a fixed number of
bytes: 1 byte for the label followed by 3072 bytes of image data. Once you have
a uint8 tensor, standard operations can slice out each piece and reformat as
needed. For CIFAR-10, you can see how to do the reading and decoding in
tensorflow/models/image/cifar10/cifar10_input.py [https://www.tensorflow.org/code/tensorflow/models/image/cifar10/cifar10_input.py]
and described in
this tutorial.

Standard TensorFlow format

Another approach is to convert whatever data you have into a supported format.
This approach makes it easier to mix and match data sets and network
architectures. The recommended format for TensorFlow is a
TFRecords file
containing
tf.train.Example protocol buffers [https://www.tensorflow.org/code/tensorflow/core/example/example.proto]
(which contain
Features [https://www.tensorflow.org/code/tensorflow/core/example/feature.proto]
as a field). You write a little program that gets your data, stuffs it in an
Example protocol buffer, serializes the protocol buffer to a string, and then
writes the string to a TFRecords file using the
tf.python_io.TFRecordWriter class.
For example,
tensorflow/examples/how_tos/reading_data/convert_to_records.py [https://www.tensorflow.org/code/tensorflow/examples/how_tos/reading_data/convert_to_records.py]
converts MNIST data to this format.

To read a file of TFRecords, use
tf.TFRecordReader with
the tf.parse_single_example
decoder. The parse_single_example op decodes the example protocol buffers into
tensors. An MNIST example using the data produced by convert_to_records can be
found in
tensorflow/examples/how_tos/reading_data/fully_connected_reader.py [https://www.tensorflow.org/code/tensorflow/examples/how_tos/reading_data/fully_connected_reader.py],
which you can compare with the fully_connected_feed version.

Preprocessing

You can then do any preprocessing of these examples you want. This would be any
processing that doesn’t depend on trainable parameters. Examples include
normalization of your data, picking a random slice, adding noise or distortions,
etc. See
tensorflow/models/image/cifar10/cifar10_input.py [https://www.tensorflow.org/code/tensorflow/models/image/cifar10/cifar10_input.py]
for an example.

Batching

At the end of the pipeline we use another queue to batch together examples for
training, evaluation, or inference. For this we use a queue that randomizes the
order of examples, using the
tf.train.shuffle_batch function.

Example:

def read_my_file_format(filename_queue):
 reader = tf.SomeReader()
 key, record_string = reader.read(filename_queue)
 example, label = tf.some_decoder(record_string)
 processed_example = some_processing(example)
 return processed_example, label

def input_pipeline(filenames, batch_size, num_epochs=None):
 filename_queue = tf.train.string_input_producer(
 filenames, num_epochs=num_epochs, shuffle=True)
 example, label = read_my_file_format(filename_queue)
 # min_after_dequeue defines how big a buffer we will randomly sample
 # from -- bigger means better shuffling but slower start up and more
 # memory used.
 # capacity must be larger than min_after_dequeue and the amount larger
 # determines the maximum we will prefetch. Recommendation:
 # min_after_dequeue + (num_threads + a small safety margin) * batch_size
 min_after_dequeue = 10000
 capacity = min_after_dequeue + 3 * batch_size
 example_batch, label_batch = tf.train.shuffle_batch(
 [example, label], batch_size=batch_size, capacity=capacity,
 min_after_dequeue=min_after_dequeue)
 return example_batch, label_batch

If you need more parallelism or shuffling of examples between files, use
multiple reader instances using the
tf.train.shuffle_batch_join function.
For example:

def read_my_file_format(filename_queue):
 # Same as above

def input_pipeline(filenames, batch_size, read_threads, num_epochs=None):
 filename_queue = tf.train.string_input_producer(
 filenames, num_epochs=num_epochs, shuffle=True)
 example_list = [read_my_file_format(filename_queue)
 for _ in range(read_threads)]
 min_after_dequeue = 10000
 capacity = min_after_dequeue + 3 * batch_size
 example_batch, label_batch = tf.train.shuffle_batch_join(
 example_list, batch_size=batch_size, capacity=capacity,
 min_after_dequeue=min_after_dequeue)
 return example_batch, label_batch

You still only use a single filename queue that is shared by all the readers.
That way we ensure that the different readers use different files from the same
epoch until all the files from the epoch have been started. (It is also usually
sufficient to have a single thread filling the filename queue.)

An alternative is to use a single reader via the
tf.train.shuffle_batch function
with num_threads bigger than 1. This will make it read from a single file at
the same time (but faster than with 1 thread), instead of N files at once.
This can be important:

		If you have more reading threads than input files, to avoid the risk that
you will have two threads reading the same example from the same file near
each other.

		Or if reading N files in parallel causes too many disk seeks.

How many threads do you need? the tf.train.shuffle_batch* functions add a
summary to the graph that indicates how full the example queue is. If you have
enough reading threads, that summary will stay above zero. You can
view your summaries as training progresses using TensorBoard.

Creating threads to prefetch using QueueRunner objects

The short version: many of the tf.train functions listed above add
QueueRunner objects to your
graph. These require that you call
tf.train.start_queue_runners
before running any training or inference steps, or it will hang forever. This
will start threads that run the input pipeline, filling the example queue so
that the dequeue to get the examples will succeed. This is best combined with a
tf.train.Coordinator to cleanly
shut down these threads when there are errors. If you set a limit on the number
of epochs, that will use an epoch counter that will need to be initialized. The
recommended code pattern combining these is:

Create the graph, etc.
init_op = tf.initialize_all_variables()

Create a session for running operations in the Graph.
sess = tf.Session()

Initialize the variables (like the epoch counter).
sess.run(init_op)

Start input enqueue threads.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)

try:
 while not coord.should_stop():
 # Run training steps or whatever
 sess.run(train_op)

except tf.errors.OutOfRangeError:
 print('Done training -- epoch limit reached')
finally:
 # When done, ask the threads to stop.
 coord.request_stop()

Wait for threads to finish.
coord.join(threads)
sess.close()

Aside: What is happening here?

First we create the graph. It will have a few pipeline stages that are
connected by queues. The first stage will generate filenames to read and enqueue
them in the filename queue. The second stage consumes filenames (using a
Reader), produces examples, and enqueues them in an example queue. Depending
on how you have set things up, you may actually have a few independent copies of
the second stage, so that you can read from multiple files in parallel. At the
end of these stages is an enqueue operation, which enqueues into a queue that
the next stage dequeues from. We want to start threads running these enqueuing
operations, so that our training loop can dequeue examples from the example
queue.

[image:]

The helpers in tf.train that create these queues and enqueuing operations add
a tf.train.QueueRunner to the
graph using the
tf.train.add_queue_runner
function. Each QueueRunner is responsible for one stage, and holds the list of
enqueue operations that need to be run in threads. Once the graph is
constructed, the
tf.train.start_queue_runners
function asks each QueueRunner in the graph to start its threads running the
enqueuing operations.

If all goes well, you can now run your training steps and the queues will be
filled by the background threads. If you have set an epoch limit, at some point
an attempt to dequeue examples will get an
tf.OutOfRangeError. This
is the TensorFlow equivalent of “end of file” (EOF) – this means the epoch
limit has been reached and no more examples are available.

The last ingredient is the
Coordinator. This is responsible
for letting all the threads know if anything has signalled a shut down. Most
commonly this would be because an exception was raised, for example one of the
threads got an error when running some operation (or an ordinary Python
exception).

For more about threading, queues, QueueRunners, and Coordinators
see here.

Aside: How clean shut-down when limiting epochs works

Imagine you have a model that has set a limit on the number of epochs to train
on. That means that the thread generating filenames will only run that many
times before generating an OutOfRange error. The QueueRunner will catch that
error, close the filename queue, and exit the thread. Closing the queue does two
things:

		Any future attempt to enqueue in the filename queue will generate an error.
At this point there shouldn’t be any threads trying to do that, but this
is helpful when queues are closed due to other errors.

		Any current or future dequeue will either succeed (if there are enough
elements left) or fail (with an OutOfRange error) immediately. They won’t
block waiting for more elements to be enqueued, since by the previous point
that can’t happen.

The point is that when the filename queue is closed, there will likely still be
many filenames in that queue, so the next stage of the pipeline (with the reader
and other preprocessing) may continue running for some time. Once the filename
queue is exhausted, though, the next attempt to dequeue a filename (e.g. from a
reader that has finished with the file it was working on) will trigger an
OutOfRange error. In this case, though, you might have multiple threads
associated with a single QueueRunner. If this isn’t the last thread in the
QueueRunner, the OutOfRange error just causes the one thread to exit. This
allows the other threads, which are still finishing up their last file, to
proceed until they finish as well. (Assuming you are using a
tf.train.Coordinator,
other types of errors will cause all the threads to stop.) Once all the reader
threads hit the OutOfRange error, only then does the next queue, the example
queue, gets closed.

Again, the example queue will have some elements queued, so training will
continue until those are exhausted. If the example queue is a
RandomShuffleQueue, say
because you are using shuffle_batch or shuffle_batch_join, it normally will
avoid ever having fewer than its min_after_dequeue attr elements buffered.
However, once the queue is closed that restriction will be lifted and the queue
will eventually empty. At that point the actual training threads, when they
try and dequeue from example queue, will start getting OutOfRange errors and
exiting. Once all the training threads are done,
tf.train.Coordinator.join
will return and you can exit cleanly.

Filtering records or producing multiple examples per record

Instead of examples with shapes [x, y, z], you will produce a batch of
examples with shape [batch, x, y, z]. The batch size can be 0 if you want to
filter this record out (maybe it is in a hold-out set?), or bigger than 1 if you
are producing multiple examples per record. Then simply set enqueue_many=True
when calling one of the batching functions (such as shuffle_batch or
shuffle_batch_join).

Sparse input data

SparseTensors don’t play well with queues. If you use SparseTensors you have
to decode the string records using
tf.parse_example after
batching (instead of using tf.parse_single_example before batching).

Preloaded data

This is only used for small data sets that can be loaded entirely in memory.
There are two approaches:

		Store the data in a constant.

		Store the data in a variable, that you initialize and then never change.

Using a constant is a bit simpler, but uses more memory (since the constant is
stored inline in the graph data structure, which may be duplicated a few times).

training_data = ...
training_labels = ...
with tf.Session():
 input_data = tf.constant(training_data)
 input_labels = tf.constant(training_labels)
 ...

To instead use a variable, you need to also initialize it after the graph has been built.

training_data = ...
training_labels = ...
with tf.Session() as sess:
 data_initializer = tf.placeholder(dtype=training_data.dtype,
 shape=training_data.shape)
 label_initializer = tf.placeholder(dtype=training_labels.dtype,
 shape=training_labels.shape)
 input_data = tf.Variable(data_initializer, trainable=False, collections=[])
 input_labels = tf.Variable(label_initializer, trainable=False, collections=[])
 ...
 sess.run(input_data.initializer,
 feed_dict={data_initializer: training_data})
 sess.run(input_labels.initializer,
 feed_dict={label_initializer: training_labels})

Setting trainable=False keeps the variable out of the
GraphKeys.TRAINABLE_VARIABLES collection in the graph, so we won’t try and
update it when training. Setting collections=[] keeps the variable out of the
GraphKeys.VARIABLES collection used for saving and restoring checkpoints.

Either way,
tf.train.slice_input_producer function
can be used to produce a slice at a time. This shuffles the examples across an
entire epoch, so further shuffling when batching is undesirable. So instead of
using the shuffle_batch functions, we use the plain
tf.train.batch function. To use
multiple preprocessing threads, set the num_threads parameter to a number
bigger than 1.

An MNIST example that preloads the data using constants can be found in
tensorflow/examples/how_tos/reading_data/fully_connected_preloaded.py [https://www.tensorflow.org/code/tensorflow/examples/how_tos/reading_data/fully_connected_preloaded.py], and one that preloads the data using variables can be found in
tensorflow/examples/how_tos/reading_data/fully_connected_preloaded_var.py [https://www.tensorflow.org/code/tensorflow/examples/how_tos/reading_data/fully_connected_preloaded_var.py],
You can compare these with the fully_connected_feed and
fully_connected_reader versions above.

Multiple input pipelines

Commonly you will want to train on one dataset and evaluate (or “eval”) on
another. One way to do this is to actually have two separate processes:

		The training process reads training input data and periodically writes
checkpoint files with all the trained variables.

		The evaluation process restores the checkpoint files into an inference
model that reads validation input data.

This is what is done in
the example CIFAR-10 model. This has a couple of benefits:

		The eval is performed on a single snapshot of the trained variables.

		You can perform the eval even after training has completed and exited.

You can have the train and eval in the same graph in the same process, and share
their trained variables. See
the shared variables tutorial.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/how_tos/distributed/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Distributed TensorFlow

This document shows how to create a cluster of TensorFlow servers, and how to
distribute a computation graph across that cluster. We assume that you are
familiar with the basic concepts of
writing TensorFlow programs.

Hello distributed TensorFlow!

To see a simple TensorFlow cluster in action, execute the following:

Start a TensorFlow server as a single-process "cluster".
$ python
>>> import tensorflow as tf
>>> c = tf.constant("Hello, distributed TensorFlow!")
>>> server = tf.train.Server.create_local_server()
>>> sess = tf.Session(server.target) # Create a session on the server.
>>> sess.run(c)
'Hello, distributed TensorFlow!'

The
tf.train.Server.create_local_server()
method creates a single-process cluster, with an in-process server.

Create a cluster

A TensorFlow “cluster” is a set of “tasks” that participate in the distributed
execution of a TensorFlow graph. Each task is associated with a TensorFlow
“server”, which contains a “master” that can be used to create sessions, and a
“worker” that executes operations in the graph. A cluster can also be divided
into one or more “jobs”, where each job contains one or more tasks.

To create a cluster, you start one TensorFlow server per task in the cluster.
Each task typically runs on a different machine, but you can run multiple tasks
on the same machine (e.g. to control different GPU devices). In each task, do
the following:

		Create a tf.train.ClusterSpec that describes all of the tasks
in the cluster. This should be the same for each task.

		Create a tf.train.Server, passing the tf.train.ClusterSpec to
the constructor, and identifying the local task with a job name
and task index.

Create a tf.train.ClusterSpec to describe the cluster

The cluster specification dictionary maps job names to lists of network
adresses. Pass this dictionary to the tf.train.ClusterSpec constructor. For
example:

 		tf.train.ClusterSpec construction		Available tasks

 		tf.train.ClusterSpec({"local": ["localhost:2222", "localhost:2223"]})

		/job:local/task:0
/job:local/task:1

 		tf.train.ClusterSpec({
 "worker": [
 "worker0.example.com:2222",
 "worker1.example.com:2222",
 "worker2.example.com:2222"
],
 "ps": [
 "ps0.example.com:2222",
 "ps1.example.com:2222"
]})

		/job:worker/task:0
/job:worker/task:1
/job:worker/task:2
/job:ps/task:0
/job:ps/task:1

Create a tf.train.Server instance in each task

A tf.train.Server object contains a
set of local devices, a set of connections to other tasks in its
tf.train.ClusterSpec, and a
“session target” that can use these
to perform a distributed computation. Each server is a member of a specific
named job and has a task index within that job. A server can communicate with
any other server in the cluster.

For example, to launch a cluster with two servers running on localhost:2222
and localhost:2223, run the following snippets in two different processes on
the local machine:

In task 0:
cluster = tf.train.ClusterSpec({"local": ["localhost:2222", "localhost:2223"]})
server = tf.train.Server(cluster, job_name="local", task_index=0)

In task 1:
cluster = tf.train.ClusterSpec({"local": ["localhost:2222", "localhost:2223"]})
server = tf.train.Server(cluster, job_name="local", task_index=1)

Note: Manually specifying these cluster specifications can be tedious,
especially for large clusters. We are working on tools for launching tasks
programmatically, e.g. using a cluster manager like
Kubernetes [http://kubernetes.io]. If there are particular cluster managers for
which you’d like to see support, please raise a
GitHub issue [https://github.com/tensorflow/tensorflow/issues].

Specifying distributed devices in your model

To place operations on a particular process, you can use the same
tf.device()
function that is used to specify whether ops run on the CPU or GPU. For example:

with tf.device("/job:ps/task:0"):
 weights_1 = tf.Variable(...)
 biases_1 = tf.Variable(...)

with tf.device("/job:ps/task:1"):
 weights_2 = tf.Variable(...)
 biases_2 = tf.Variable(...)

with tf.device("/job:worker/task:7"):
 input, labels = ...
 layer_1 = tf.nn.relu(tf.matmul(input, weights_1) + biases_1)
 logits = tf.nn.relu(tf.matmul(layer_1, weights_2) + biases_2)
 # ...
 train_op = ...

with tf.Session("grpc://worker7.example.com:2222") as sess:
 for _ in range(10000):
 sess.run(train_op)

In the above example, the variables are created on two tasks in the ps job,
and the compute-intensive part of the model is created in the worker
job. TensorFlow will insert the appropriate data transfers between the jobs
(from ps to worker for the forward pass, and from worker to ps for
applying gradients).

Replicated training

A common training configuration, called “data parallelism,” involves multiple
tasks in a worker job training the same model on different mini-batches of
data, updating shared parameters hosted in a one or more tasks in a ps
job. All tasks typically run on different machines. There are many ways to
specify this structure in TensorFlow, and we are building libraries that will
simplify the work of specifying a replicated model. Possible approaches include:

		In-graph replication. In this approach, the client builds a single
tf.Graph that contains one set of parameters (in tf.Variable nodes pinned
to /job:ps); and multiple copies of the compute-intensive part of the model,
each pinned to a different task in /job:worker.

		Between-graph replication. In this approach, there is a separate client
for each /job:worker task, typically in the same process as the worker
task. Each client builds a similar graph containing the parameters (pinned to
/job:ps as before using
tf.train.replica_device_setter()
to map them deterministically to the same tasks); and a single copy of the
compute-intensive part of the model, pinned to the local task in
/job:worker.

		Asynchronous training. In this approach, each replica of the graph has an
independent training loop that executes without coordination. It is compatible
with both forms of replication above.

		Synchronous training. In this approach, all of the replicas read the same
values for the current parameters, compute gradients in parallel, and then
apply them together. It is compatible with in-graph replication (e.g. using
gradient averaging as in the
CIFAR-10 multi-GPU trainer [https://www.tensorflow.org/code/tensorflow/models/image/cifar10/cifar10_multi_gpu_train.py]),
and between-graph replication (e.g. using the
tf.train.SyncReplicasOptimizer).

Putting it all together: example trainer program

The following code shows the skeleton of a distributed trainer program,
implementing between-graph replication and asynchronous training. It
includes the code for the parameter server and worker tasks.

import tensorflow as tf

Flags for defining the tf.train.ClusterSpec
tf.app.flags.DEFINE_string("ps_hosts", "",
 "Comma-separated list of hostname:port pairs")
tf.app.flags.DEFINE_string("worker_hosts", "",
 "Comma-separated list of hostname:port pairs")

Flags for defining the tf.train.Server
tf.app.flags.DEFINE_string("job_name", "", "One of 'ps', 'worker'")
tf.app.flags.DEFINE_integer("task_index", 0, "Index of task within the job")

FLAGS = tf.app.flags.FLAGS

def main(_):
 ps_hosts = FLAGS.ps_hosts.split(",")
 worker_hosts = FLAGS.worker_hosts.split(",")

 # Create a cluster from the parameter server and worker hosts.
 cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})

 # Create and start a server for the local task.
 server = tf.train.Server(cluster,
 job_name=FLAGS.job_name,
 task_index=FLAGS.task_index)

 if FLAGS.job_name == "ps":
 server.join()
 elif FLAGS.job_name == "worker":

 # Assigns ops to the local worker by default.
 with tf.device(tf.train.replica_device_setter(
 worker_device="/job:worker/task:%d" % FLAGS.task_index,
 cluster=cluster)):

 # Build model...
 loss = ...
 global_step = tf.Variable(0)

 train_op = tf.train.AdagradOptimizer(0.01).minimize(
 loss, global_step=global_step)

 saver = tf.train.Saver()
 summary_op = tf.merge_all_summaries()
 init_op = tf.initialize_all_variables()

 # Create a "supervisor", which oversees the training process.
 sv = tf.train.Supervisor(is_chief=(FLAGS.task_index == 0),
 logdir="/tmp/train_logs",
 init_op=init_op,
 summary_op=summary_op,
 saver=saver,
 global_step=global_step,
 save_model_secs=600)

 # The supervisor takes care of session initialization, restoring from
 # a checkpoint, and closing when done or an error occurs.
 with sv.managed_session(server.target) as sess:
 # Loop until the supervisor shuts down or 1000000 steps have completed.
 step = 0
 while not sv.should_stop() and step < 1000000:
 # Run a training step asynchronously.
 # See `tf.train.SyncReplicasOptimizer` for additional details on how to
 # perform *synchronous* training.
 _, step = sess.run([train_op, global_step])

 # Ask for all the services to stop.
 sv.stop()

if __name__ == "__main__":
 tf.app.run()

To start the trainer with two parameter servers and two workers, use the
following command line (assuming the script is called trainer.py):

On ps0.example.com:
$ python trainer.py \
 --ps_hosts=ps0.example.com:2222,ps1.example.com:2222 \
 --worker_hosts=worker0.example.com:2222,worker1.example.com:2222 \
 --job_name=ps --task_index=0
On ps1.example.com:
$ python trainer.py \
 --ps_hosts=ps0.example.com:2222,ps1.example.com:2222 \
 --worker_hosts=worker0.example.com:2222,worker1.example.com:2222 \
 --job_name=ps --task_index=1
On worker0.example.com:
$ python trainer.py \
 --ps_hosts=ps0.example.com:2222,ps1.example.com:2222 \
 --worker_hosts=worker0.example.com:2222,worker1.example.com:2222 \
 --job_name=worker --task_index=0
On worker1.example.com:
$ python trainer.py \
 --ps_hosts=ps0.example.com:2222,ps1.example.com:2222 \
 --worker_hosts=worker0.example.com:2222,worker1.example.com:2222 \
 --job_name=worker --task_index=1

Glossary

Client

A client is typically a program that builds a TensorFlow graph and constructs a
tensorflow::Session to interact with a cluster. Clients are typically written
in Python or C++. A single client process can directly interact with multiple
TensorFlow servers (see “Replicated training” above), and a single server can
serve multiple clients.

Cluster

A TensorFlow cluster comprises a one or more “jobs”, each divided into lists
of one or more “tasks”. A cluster is typically dedicated to a particular
high-level objective, such as training a neural network, using many machines in
parallel. A cluster is defined by a tf.train.ClusterSpec object.

Job

A job comprises a list of “tasks”, which typically serve a common purpose.
For example, a job named ps (for “parameter server”) typically hosts nodes
that store and update variables; while a job named worker typically hosts
stateless nodes that perform compute-intensive tasks. The tasks in a job
typically run on different machines. The set of job roles is flexible:
for example, a worker may maintain some state.

Master service

An RPC service that provides remote access to a set of distributed devices,
and acts as a session target. The master service implements the
tensorflow::Session interface, and is responsible for coordinating work across
one or more “worker services”. All TensorFlow servers implement the master
service.

Task

A task corresponds to a specific TensorFlow server, and typically corresponds
to a single process. A task belongs to a particular “job” and is identified by
its index within that job’s list of tasks.

TensorFlow server
A process running a tf.train.Server instance, which is a member of a cluster,
and exports a “master service” and “worker service”.

Worker service

An RPC service that executes parts of a TensorFlow graph using its local devices.
A worker service implements worker_service.proto [https://www.tensorflow.org/code/tensorflow/core/protobuf/worker_service.proto].
All TensorFlow servers implement the worker service.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/how_tos/language_bindings/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow in other languages

[TOC]

Background

This document is intended as a guide for those interested in the creation or
development of TensorFlow functionality in other programming languages. It
describes the features of TensorFlow and recommended steps for making the same
available in other programming languages.

Python was the first client language supported by TensorFlow and currently
supports the most features. More and more of that functionality is being moved
into the core of TensorFlow (implemented in C++) and exposed via a C API [https://www.tensorflow.org/code/tensorflow/c/c_api.h].
Client languages should use the language’s foreign function interface
(FFI) [https://en.wikipedia.org/wiki/Foreign_function_interface] to call into
this C API [https://www.tensorflow.org/code/tensorflow/c/c_api.h] to provide TensorFlow functionality.

Overview

Providing TensorFlow functionality in a programming language can be broken down
into broad categories:

		Run a predefined graph: Given a GraphDef (or
MetaGraphDef) protocol message, be able to create a session, run queries,
and get tensor results. This is sufficient for a mobile app or server that
wants to run inference on a pre-trained model.

		Graph construction: At least one function per defined
TensorFlow op that adds an operation to the graph. Ideally these functions
would be automatically generated so they stay in sync as the op definitions
are modified.

		Gradients (AKA automatic differentiation): Given a graph and a list of
input and output operations, add operations to the graph that compute the
partial deriviatives (gradients) of the inputs with respect to the outputs.
Allows for customization of the gradient function for a particular operation
in the graph.

		Functions: Define a subgraph that may be called in multiple places in the
main GraphDef. Defines a FunctionDef in the FunctionDefLibrary
included in a GraphDef.

		Control Flow: Construct “If” and “While” with user-specified subgraphs.
Ideally these work with gradients (see above).

		Neural Network library: A number of components that together support the
creation of neural network models and training them (possibly in a
distributed setting). While it would be convenient to have this available in
other languages, there are currently no plans to support this in languages
other than Python. These libraries are typically wrappers over the features
described above.

At a minimum, a language binding should support running a predefined graph, but
most should also support graph construction. The TensorFlow Python API provides
all these features.

Current Status

New language support should be built on top of the C API [https://www.tensorflow.org/code/tensorflow/c/c_api.h]. However, as you can
see in the table below, not all functionality is available in C yet. Providing
more functionality in the C API [https://www.tensorflow.org/code/tensorflow/c/c_api.h] is an ongoing project.

Feature | Python | C
:——————————————— | :———————————————————- | :–
Run a predefined Graph | tf.import_graph_def, tf.Session | TF_GraphImportGraphDef, TF_NewSessionWithGraph
Graph construction with generated op functions | Yes | Yes[^1]
Gradients | tf.gradients |
Functions | tf.python.framework.function.Defun |
Control Flow | tf.cond, tf.while_loop |
Neural Network library | tf.train, tf.nn, tf.contrib.layers, tf.contrib.slim |

Recommended Approach

Run a predefined graph {#run-graph}

A language binding is expected to define the following classes:

		Graph: A graph representing a TensorFlow computation. Consists of
operations (represented in the client language by Operations) and
corresponds to a TF_Graph in the C API. Mainly used as an argument when
creating new Operation objects and when starting a Session. Also
supports iterating through the operations in the graph
(TF_GraphNextOperation), looking up operations by name
(TF_GraphOperationByName), and converting to and from a GraphDef
protocol message (TF_GraphToGraphDef and TF_GraphImportGraphDef in the C
API).

		Operation: Represents a computation node in the graph. Corresponds to a
TF_Operation in the C API.

		Output: Represents one of the outputs of an operation in the graph. Has a
DataType (and eventually a shape). May be passed as an input argument to a
function for adding operations to a graph, or to a Session‘s Run()
method to fetch that output as a tensor. Corresponds to a TF_Port in the C
API.

		Session: Represents a client to a particular instance of the TensorFlow
runtime. Its main job is to be constructed with a Graph and some options
and then field calls to Run() the graph. Corresponds to a
TF_SessionWithGraph in the C API. (Note: TF_SessionWithGraph will
eventually be renamed TF_Session once the deprecated TF_Session is
removed.)

		Tensor: Represents an N-dimensional (rectangular) array with elements all
the same DataType. Gets data into and out of a Session‘s Run() call.
Corresponds to a TF_Tensor in the C API.

		DataType: An enumerant with all the possible tensor types supported by
TensorFlow. Corresponds to TF_DataType in the C API and often referred to
as dtype in the Python API.

Graph construction {#create-graph}

TensorFlow has many ops, and the list is not static, so we recommend generating
the functions for adding ops to a graph instead of writing them by individually
by hand (though writing a few by hand is a good way to figure out what the
generator should generate). The information needed to generate a function is
contained in an OpDef protocol message.

There are a few ways to get a list of the OpDefs for the registered ops:

		TF_GetAllOpList in the C API retrieves all registered OpDef protocol
messages. This can be used to write the generator in the client language.
This requires that the client language have protocol buffer support in order
to interpret the OpDef messages.

		The C++ function OpRegistry::Global()->GetRegisteredOps() returns the same
list of all registered OpDefs (defined in
[tensorflow/core/framework/op.h]). This can be used to write the generator
in C++ (particularly useful for languages that do not have protocol buffer
support).

		The ASCII-serialized version of that list is periodically checked in to
[tensorflow/core/ops/ops.pbtxt] by an automated process.

The OpDef specifies the following:

		Name of the op in CamelCase. For generated functions follow the conventions
of the language. For example, if the language uses snake_case, use that
instead of CamelCase for the op’s function name.

		A list of inputs and outputs. The types for these may be polymorphic by
referencing attributes, as described in the inputs and outputs section of
Adding an
op [https://tensorflow.org/how_tos/adding_an_op/index.html].

		A list of attributes, along with their default values (if any). Note that
some of these will be inferred (if they are determined by an input), some
will be optional (if they have a default), and some will be required (no
default).

		Documentation for the op in general and the inputs, outputs, and
non-inferred attributes.

		Some other fields that are used by the runtime and can be ignored by the
code generators.

An OpDef can be converted into the text of a function that adds that op to the
graph using the TF_OperationDescription C API (wrapped in the language’s FFI):

		Start with TF_NewOperation() to create the TF_OperationDescription*.

		Call TF_AddInput() or TF_AddInputList() once per input (depending on
whether the input has a list type).

		Call TF_SetAttr*() functions to set non-inferred attributes. May skip
attributes with defaults if you don’t want to override the default value.

		Set optional fields if necessary:
		TF_SetDevice(): force the operation onto a specific device.

		TF_AddControlInput(): add requirements that another operation finish
before this operation starts running

		TF_SetAttrString("_kernel") to set the kernel label (rarely used)

		TF_ColocateWith() to colocate one op with another

		Call TF_FinishOperation() when done. This adds the operation to the graph,
after which it can’t be modified.

The existing examples run the code generator as part of the build process (using
a Bazel genrule). Alternatively, the code generator can be run by an automated
cron process, possibly checking in the result. This creates a risk of divergence
between the generated code and the OpDefs checked into the repository, but is
useful for languages where code is expected to be generated ahead of time like
go get for Go and cargo ops for Rust. At the other end of the spectrum, for
some languages the code could be generated dynamically from
[tensorflow/core/ops/ops.pbtxt].

Handling Constants

Calling code will be much more concise if users can provide constants to input
arguments. The generated code should convert those constants to operations that
are added to the graph and used as input to the op being instantiated.

Optional parameters

If the language allows for optional parameters to a function (like keyword
arguments with defaults in Python), use them for optional attributes, operation
names, devices, control inputs etc. In some langauges, these optional parameters
can be set using dynamic scopes (like “with” blocks in Python). Without these
features, the library may resort to the “builder pattern”, as is done in the C++
version of the TensorFlow API.

Name scopes

It is a good idea to have support for naming graph operations using some sort of
scoping hierarchy, especially considering the fact that TensorBoard relies on it
to display large graphs in a reasonable way. The existing Python and C++ APIs
take different approaches: In Python, the “directory” part of the name
(everything up to the last “/”) comes from with blocks. In effect, there is a
thread-local stack with the scopes defining the name hierarchy. The last
component of the name is either supplied explicitly by the user (using the
optional name keyword argument) or defaults to the name of the type of the op
being added. In C++ the “directory” part of the name is stored in an explicit
Scope object. The NewSubScope() method appends to that part of the name and
returns a new Scope. The last component of the name is set using the
WithOpName() method, and like Python defaults to the name of the type of op
being added. Scope objects are explicitly passed around to specify the name of
the context.

Wrappers

It may make sense to keep the generated functions private for some ops so that
wrapper functions that do a little bit of additional work can be used instead.
This also gives an escape hatch for supporting features outside the scope of
generated code.

One use of a wrapper is for supporting SparseTensor input and output. A
SparseTensor is a tuple of 3 dense tensors: indices, values, and shape. values
is a vector size [n], shape is a vector size [rank], and indices is a matrix
size [n, rank]. There are some sparse ops that use this triple to represent a
single sparse tensor.

Another reason to use wrappers is for ops that hold state. There are a few such
ops (e.g. a variable) that have several companion ops for operating on that
state. The Python API has classes for these ops where the constructor creates
the op, and methods on that class add operations to the graph that operate on
the state.

Other Considerations

		It is good to have a list of keywords used to rename op functions and
arguments that collide with language keywords (or other symbols that will
cause trouble, like the names of library functions or variables referenced
in the generated code).

		The function for adding a Const operation to a graph typically is a
wrapper since the generated function will typically have redundant
DataType inputs.

Gradients, functions and control flow

At this time, support for gradients, functions and control flow operations (“if”
and “while”) is not available in languages other than Python. This will be
updated when the C API [https://www.tensorflow.org/code/tensorflow/c/c_api.h] provides necessary support.

[^1]: The C API supports client languages that would like to do this
[tensorflow/core/ops/ops.pbtxt]: https://www.tensorflow.org/code/tensorflow/core/ops/ops.pbtxt
[tensorflow/python/BUILD]: https://www.tensorflow.org/code/tensorflow/python/BUILD
[tensorflow/core/framework/op.h]: https://www.tensorflow.org/code/tensorflow/core/framework/op.h

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/how_tos/new_data_formats/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Custom Data Readers

PREREQUISITES:

		Some familiarity with C++.

		Must have
downloaded TensorFlow source, and be
able to build it.

We divide the task of supporting a file format into two pieces:

		File formats: We use a Reader Op to read a record (which can be any
string) from a file.

		Record formats: We use decoder or parsing Ops to turn a string record
into tensors usable by TensorFlow.

For example, to read a
CSV file [https://en.wikipedia.org/wiki/Comma-separated_values], we use
a Reader for text files
followed by
an Op that parses CSV data from a line of text.

[TOC]

Writing a Reader for a file format

A Reader is something that reads records from a file. There are some examples
of Reader Ops already built into TensorFlow:

		tf.TFRecordReader
(source in kernels/tf_record_reader_op.cc [https://www.tensorflow.org/code/tensorflow/core/kernels/tf_record_reader_op.cc])

		tf.FixedLengthRecordReader
(source in kernels/fixed_length_record_reader_op.cc [https://www.tensorflow.org/code/tensorflow/core/kernels/fixed_length_record_reader_op.cc])

		tf.TextLineReader
(source in kernels/text_line_reader_op.cc [https://www.tensorflow.org/code/tensorflow/core/kernels/text_line_reader_op.cc])

You can see these all expose the same interface, the only differences
are in their constructors. The most important method is read.
It takes a queue argument, which is where it gets filenames to
read from whenever it needs one (e.g. when the read op first runs, or
the previous read reads the last record from a file). It produces
two scalar tensors: a string key and a string value.

To create a new reader called SomeReader, you will need to:

		In C++, define a subclass of
tensorflow::ReaderBase [https://www.tensorflow.org/code/tensorflow/core/kernels/reader_base.h]
called SomeReader.

		In C++, register a new reader op and kernel with the name "SomeReader".

		In Python, define a subclass of tf.ReaderBase [https://www.tensorflow.org/code/tensorflow/python/ops/io_ops.py] called SomeReader.

You can put all the C++ code in a file in
tensorflow/core/user_ops/some_reader_op.cc. The code to read a file will live
in a descendant of the C++ ReaderBase class, which is defined in
tensorflow/core/kernels/reader_base.h [https://www.tensorflow.org/code/tensorflow/core/kernels/reader_base.h].
You will need to implement the following methods:

		OnWorkStartedLocked: open the next file

		ReadLocked: read a record or report EOF/error

		OnWorkFinishedLocked: close the current file, and

		ResetLocked: get a clean slate after, e.g., an error

These methods have names ending in “Locked” since ReaderBase makes sure
to acquire a mutex before calling any of these methods, so you generally don’t
have to worry about thread safety (though that only protects the members of the
class, not global state).

For OnWorkStartedLocked, the name of the file to open is the value returned by
the current_work() method. ReadLocked has this signature:

Status ReadLocked(string* key, string* value, bool* produced, bool* at_end)

If ReadLocked successfully reads a record from the file, it should fill in:

		*key: with an identifier for the record, that a human could use to find
this record again. You can include the filename from current_work(),
and append a record number or whatever.

		*value: with the contents of the record.

		*produced: set to true.

If you hit the end of a file (EOF), set *at_end to true. In either case,
return Status::OK(). If there is an error, simply return it using one of the
helper functions from
tensorflow/core/lib/core/errors.h [https://www.tensorflow.org/code/tensorflow/core/lib/core/errors.h]
without modifying any arguments.

Next you will create the actual Reader op. It will help if you are familiar
with the adding an op how-to. The main steps
are:

		Registering the op.

		Define and register an OpKernel.

To register the op, you will use a REGISTER_OP call defined in
tensorflow/core/framework/op.h [https://www.tensorflow.org/code/tensorflow/core/framework/op.h].
Reader ops never take any input and always have a single output with type
Ref(string). They should always call SetIsStateful(), and have a string
container and shared_name attrs. You may optionally define additional attrs
for configuration or include documentation in a Doc. For examples, see
tensorflow/core/ops/io_ops.cc [https://www.tensorflow.org/code/tensorflow/core/ops/io_ops.cc],
e.g.:

#include "tensorflow/core/framework/op.h"

REGISTER_OP("TextLineReader")
 .Output("reader_handle: Ref(string)")
 .Attr("skip_header_lines: int = 0")
 .Attr("container: string = ''")
 .Attr("shared_name: string = ''")
 .SetIsStateful()
 .Doc(R"doc(
A Reader that outputs the lines of a file delimited by '\n'.
)doc");

To define an OpKernel, Readers can use the shortcut of descending from
ReaderOpKernel, defined in
tensorflow/core/framework/reader_op_kernel.h [https://www.tensorflow.org/code/tensorflow/core/framework/reader_op_kernel.h],
and implement a constructor that calls SetReaderFactory. After defining
your class, you will need to register it using REGISTER_KERNEL_BUILDER(...).
An example with no attrs:

#include "tensorflow/core/framework/reader_op_kernel.h"

class TFRecordReaderOp : public ReaderOpKernel {
 public:
 explicit TFRecordReaderOp(OpKernelConstruction* context)
 : ReaderOpKernel(context) {
 Env* env = context->env();
 SetReaderFactory([this, env]() { return new TFRecordReader(name(), env); });
 }
};

REGISTER_KERNEL_BUILDER(Name("TFRecordReader").Device(DEVICE_CPU),
 TFRecordReaderOp);

An example with attrs:

#include "tensorflow/core/framework/reader_op_kernel.h"

class TextLineReaderOp : public ReaderOpKernel {
 public:
 explicit TextLineReaderOp(OpKernelConstruction* context)
 : ReaderOpKernel(context) {
 int skip_header_lines = -1;
 OP_REQUIRES_OK(context,
 context->GetAttr("skip_header_lines", &skip_header_lines));
 OP_REQUIRES(context, skip_header_lines >= 0,
 errors::InvalidArgument("skip_header_lines must be >= 0 not ",
 skip_header_lines));
 Env* env = context->env();
 SetReaderFactory([this, skip_header_lines, env]() {
 return new TextLineReader(name(), skip_header_lines, env);
 });
 }
};

REGISTER_KERNEL_BUILDER(Name("TextLineReader").Device(DEVICE_CPU),
 TextLineReaderOp);

The last step is to add the Python wrapper. You will import
tensorflow.python.ops.io_ops in
tensorflow/python/user_ops/user_ops.py [https://www.tensorflow.org/code/tensorflow/python/user_ops/user_ops.py]
and add a descendant of io_ops.ReaderBase [https://www.tensorflow.org/code/tensorflow/python/ops/io_ops.py].

from tensorflow.python.framework import ops
from tensorflow.python.ops import common_shapes
from tensorflow.python.ops import io_ops

class SomeReader(io_ops.ReaderBase):

 def __init__(self, name=None):
 rr = gen_user_ops.some_reader(name=name)
 super(SomeReader, self).__init__(rr)

ops.NotDifferentiable("SomeReader")
ops.RegisterShape("SomeReader")(common_shapes.scalar_shape)

You can see some examples in
tensorflow/python/ops/io_ops.py [https://www.tensorflow.org/code/tensorflow/python/ops/io_ops.py].

Writing an Op for a record format

Generally this is an ordinary op that takes a scalar string record as input, and
so follow the instructions to add an Op. You may
optionally take a scalar string key as input, and include that in error messages
reporting improperly formatted data. That way users can more easily track down
where the bad data came from.

Examples of Ops useful for decoding records:

		tf.parse_single_example
(and
tf.parse_example)

		tf.decode_csv

		tf.decode_raw

Note that it can be useful to use multiple Ops to decode a particular record
format. For example, you may have an image saved as a string in
a tf.train.Example protocol buffer [https://www.tensorflow.org/code/tensorflow/core/example/example.proto].
Depending on the format of that image, you might take the corresponding output
from a
tf.parse_single_example
op and call tf.image.decode_jpeg,
tf.image.decode_png, or
tf.decode_raw. It is common to
take the output of tf.decode_raw and use
tf.slice and
tf.reshape to extract pieces.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.losses.softmax_cross_entropy.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.losses.softmax_cross_entropy(logits, onehot_labels, weight=1.0, label_smoothing=0, scope=None) {#softmax_cross_entropy}

Creates a cross-entropy loss using tf.nn.softmax_cross_entropy_with_logits.

weight acts as a coefficient for the loss. If a scalar is provided,
then the loss is simply scaled by the given value. If weight is a
tensor of size [batch_size], then the loss weights apply to each
corresponding sample.

If label_smoothing is nonzero, smooth the labels towards 1/num_classes:
new_onehot_labels = onehot_labels * (1 - label_smoothing)
+ label_smoothing / num_classes

Args:

		logits: [batch_size, num_classes] logits outputs of the network .

		onehot_labels: [batch_size, num_classes] target one_hot_encoded labels.

		weight: Coefficients for the loss. The tensor must be a scalar or a tensor
of shape [batch_size].

		label_smoothing: If greater than 0 then smooth the labels.

		scope: the scope for the operations performed in computing the loss.

Returns:

A scalar Tensor representing the loss value.

Raises:

		ValueError: If the shape of logits doesn’t match that of onehot_labels
or if the shape of weight is invalid or if weight is None.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/how_tos/hadoop/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

How to run TensorFlow on Hadoop

This document describes how to run TensorFlow on Hadoop. It will be expanded to
describe running on various cluster managers, but only describes running on HDFS
at the moment.

HDFS

We assume that you are familiar with reading data.

To use HDFS with TensorFlow, change the file paths you use to read and write
data to an HDFS path. For example:

filename_queue = tf.train.string_input_producer([
 "hdfs://namenode:8020/path/to/file1.csv",
 "hdfs://namenode:8020/path/to/file2.csv",
])

If you want to use the namenode specified in your HDFS configuration files, then
change the file prefix to hdfs://default/.

When launching your TensorFlow program, the following environment variables must
be set:

		JAVA_HOME: The location of your Java installation.

		HADOOP_HDFS_HOME: The location of your HDFS installation. You can also
set this environment variable by running:

source $HADOOP_HOME/libexec/hadoop-config.sh

		LD_LIBRARY_PATH: To include the path to libjvm.so. On Linux:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/jre/lib/amd64/server

		CLASSPATH: The Hadoop jars must be added prior to running your
TensorFlow program. The CLASSPATH set by
$HADOOP_HOME/libexec/hadoop-config.sh is insufficient. Globs must be
expanded as described in the libhdfs documentation:

CLASSPATH=$($HADOOP_HDFS_HOME/bin/hdfs classpath --glob) python your_script.py

If you are running Distributed TensorFlow, then all
workers must have the environment variables set and Hadoop installed.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.graph_editor.reroute_b2a_inputs.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.reroute_b2a_inputs(sgv0, sgv1) {#reroute_b2a_inputs}

Re-route all the inputs of sgv1 to sgv0 (see reroute_inputs).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.matrix_band_part.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.matrix_band_part(input, num_lower, num_upper, name=None) {#matrix_band_part}

Copy a tensor setting everything outside a central band in each innermost matrix

to zero.

The band part is computed as follows:
Assume input has k dimensions [I, J, K, ..., M, N], then the output is a
tensor with the same shape where

band[i, j, k, ..., m, n] = in_band(m, n) * input[i, j, k, ..., m, n].

The indicator function ‘in_band(m, n)is one if(num_lower < 0 || (m-n) <= num_lower)) &&
(num_upper < 0 || (n-m) <= num_upper)`, and zero otherwise.

For example:

if 'input' is [[0, 1, 2, 3]
 [-1, 0, 1, 2]
 [-2, -1, 0, 1]
 [-3, -2, -1, 0]],

tf.matrix_band_part(input, 1, -1) ==> [[0, 1, 2, 3]
 [-1, 0, 1, 2]
 [0, -1, 0, 1]
 [0, 0, -1, 0]],

tf.matrix_band_part(input, 2, 1) ==> [[0, 1, 0, 0]
 [-1, 0, 1, 0]
 [-2, -1, 0, 1]
 [0, -2, -1, 0]]

Useful special cases:

 tf.matrix_band_part(input, 0, -1) ==> Upper triangular part.
 tf.matrix_band_part(input, -1, 0) ==> Lower triangular part.
 tf.matrix_band_part(input, 0, 0) ==> Diagonal.

Args:

		input: A Tensor. Rank k tensor.

		num_lower: A Tensor of type int64.
0-D tensor. Number of subdiagonals to keep. If negative, keep entire
lower triangle.

		num_upper: A Tensor of type int64.
0-D tensor. Number of superdiagonals to keep. If negative, keep
entire upper triangle.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
Rank k tensor of the same shape as input. The extracted banded tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/how_tos/image_retraining/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

How to Retrain Inception’s Final Layer for New Categories

Modern object recognition models have millions of parameters and can take weeks
to fully train. Transfer learning is a technique that shortcuts a lot of this
work by taking a fully-trained model for a set of categories like ImageNet, and
retrains from the existing weights for new classes. In this example we’ll be
retraining the final layer from scratch, while leaving all the others untouched.
For more information on the approach you can see
this paper on Decaf [http://arxiv.org/pdf/1310.1531v1.pdf].

Though it’s not as good as a full training run, this is surprisingly effective
for many applications, and can be run in as little as thirty minutes on a
laptop, without requiring a GPU. This tutorial will show you how to run the
example script on your own images, and will explain some of the options you have
to help control the training process.

[TOC]

Training on Flowers

[image: Daisies by Kelly Sikkema]
Image by Kelly Sikkema [https://www.flickr.com/photos/95072945@N05/9922116524/]

Before you start any training, you’ll need a set of images to teach the network
about the new classes you want to recognize. There’s a later section that
explains how to prepare your own images, but to make it easy we’ve created an
archive of creative-commons licensed flower photos to use initially. To get the
set of flower photos, run these commands:

cd ~
curl -O http://download.tensorflow.org/example_images/flower_photos.tgz
tar xzf flower_photos.tgz

Once you have the images, you can build the retrainer like this, from the root
of your TensorFlow source directory:

bazel build tensorflow/examples/image_retraining:retrain

If you have a machine which supports the AVX instruction set [https://en.wikipedia.org/wiki/Advanced_Vector_Extensions]
(common in x86 CPUs produced in the last few years) you can improve the running
speed of the retraining by building for that architecture, like this:

bazel build -c opt --copt=-mavx tensorflow/examples/image_retraining:retrain

The retrainer can then be run like this:

bazel-bin/tensorflow/examples/image_retraining/retrain --image_dir ~/flower_photos

This script loads the pre-trained Inception v3 model, removes the old top layer,
and trains a new one on the flower photos you’ve downloaded. None of the flower
species were in the original ImageNet classes the full network was trained on.
The magic of transfer learning is that lower layers that have been trained to
distinguish between some objects can be reused for many recognition tasks
without any alteration.

Bottlenecks

The script can take thirty minutes or more to complete, depending on the speed
of your machine. The first phase analyzes all the images on disk and calculates
the bottleneck values for each of them. ‘Bottleneck’ is an informal term we
often use for the layer just before the final output layer that actually does
the classification. This penultimate layer has been trained to output a set of
values that’s good enough for the classifier to use to distinguish between all
the classes it’s been asked to recognize. That means it has to be a meaningful
and compact summary of the images, since it has to contain enough information
for the classifier to make a good choice in a very small set of values. The
reason our final layer retraining can work on new classes is that it turns out
the kind of information needed to distinguish between all the 1,000 classes in
ImageNet is often also useful to distinguish between new kinds of objects.

Because every image is reused multiple times during training and calculating
each bottleneck takes a significant amount of time, it speeds things up to
cache these bottleneck values on disk so they don’t have to be repeatedly
recalculated. By default they’re stored in the /tmp/bottleneck directory, and
if you rerun the script they’ll be reused so you don’t have to wait for this
part again.

Training

Once the bottlenecks are complete, the actual training of the top layer of the
network begins. You’ll see a series of step outputs, each one showing training
accuracy, validation accuracy, and the cross entropy. The training accuracy
shows what percent of the images used in the current training batch were
labeled with the correct class. The validation accuracy is the precision on a
randomly-selected group of images from a different set. The key difference is
that the training accuracy is based on images that the network has been able
to learn from so the network can overfit to the noise in the training data. A
true measure of the performance of the network is to measure its performance on
a data set not contained in the training data – this is measured by the
validation accuracy. If the train accuracy is high but the validation accuracy
remains low, that means the network is overfitting and memorizing particular
features in the training images that aren’t helpful more generally. Cross
entropy is a loss function which gives a glimpse into how well the learning
process is progressing. The training’s objective is to make the loss as small as
possible, so you can tell if the learning is working by keeping an eye on
whether the loss keeps trending downwards, ignoring the short-term noise.

By default this script will run 4,000 training steps. Each step chooses ten
images at random from the training set, finds their bottlenecks from the cache,
and feeds them into the final layer to get predictions. Those predictions are
then compared against the actual labels to update the final layer’s weights
through the back-propagation process. As the process continues you should see
the reported accuracy improve, and after all the steps are done, a final test
accuracy evaluation is run on a set of images kept separate from the training
and validation pictures. This test evaluation is the best estimate of how the
trained model will perform on the classification task. You should see an
accuracy value of between 90% and 95%, though the exact value will vary from run
to run since there’s randomness in the training process. This number is based on
the percent of the images in the test set that are given the correct label
after the model is fully trained.

Visualizing the Retraining with TensorBoard

The script includes TensorBoard summaries that make it easier to understand, debug, and optimize the retraining. For example, you can visualize the graph and statistics, such as how the weights or accuracy varied during training.

To launch TensorBoard, run this command during or after retraining:

tensorboard --logdir /tmp/retrain_logs

Once TensorBoard is running, navigate your web browser to localhost:6006 to view the TensorBoard.

The script will log TensorBoard summaries to /tmp/retrain_logs by default. You can change the directory with the --summaries_dir flag.

The TensorBoard README [https://www.tensorflow.org/code/tensorflow/tensorboard/README.md] has a lot more information on TensorBoard usage, including tips & tricks, and debugging information.

Using the Retrained Model

The script will write out a version of the Inception v3 network with a final
layer retrained to your categories to /tmp/output_graph.pb, and a text file
containing the labels to /tmp/output_labels.txt. These are both in a format that
the C++ and Python image classification examples [https://www.tensorflow.org/versions/master/tutorials/image_recognition/index.html]
can read in, so you can start using your new model immediately. Since you’ve
replaced the top layer, you will need to specify the new name in the script, for
example with the flag --output_layer=final_result if you’re using label_image.

Here’s an example of how to build and run the label_image example with your
retrained graphs:

bazel build tensorflow/examples/label_image:label_image && \
bazel-bin/tensorflow/examples/label_image/label_image \
--graph=/tmp/output_graph.pb --labels=/tmp/output_labels.txt \
--output_layer=final_result \
--image=$HOME/flower_photos/daisy/21652746_cc379e0eea_m.jpg

You should see a list of flower labels, in most cases with daisy on top
(though each retrained model may be slightly different). You can replace the
--image parameter with your own images to try those out, and use the C++ code
as a template to integrate with your own applications.

If you’d like to use the retrained model in a Python program this example from @eldor4do shows what you’ll need to do [https://github.com/eldor4do/TensorFlow-Examples/blob/master/retraining-example.py].

Training on Your Own Categories

If you’ve managed to get the script working on the flower example images, you
can start looking at teaching it to recognize categories you care about instead.
In theory all you’ll need to do is point it at a set of sub-folders, each named
after one of your categories and containing only images from that category. If
you do that and pass the root folder of the subdirectories as the argument to
--image_dir, the script should train just like it did for the flowers.

Here’s what the folder structure of the flowers archive looks like, to give you
and example of the kind of layout the script is looking for:

[image: Folder Structure]

In practice it may take some work to get the accuracy you want. I’ll try to
guide you through some of the common problems you might encounter below.

Creating a Set of Training Images

The first place to start is by looking at the images you’ve gathered, since the
most common issues we see with training come from the data that’s being fed in.

For training to work well, you should gather at least a hundred photos of each
kind of object you want to recognize. The more you can gather, the better the
accuracy of your trained model is likely to be. You also need to make sure that
the photos are a good representation of what your application will actually
encounter. For example, if you take all your photos indoors against a blank wall
and your users are trying to recognize objects outdoors, you probably won’t see
good results when you deploy.

Another pitfall to avoid is that the learning process will pick up on anything
that the labeled images have in common with each other, and if you’re not
careful that might be something that’s not useful. For example if you photograph
one kind of object in a blue room, and another in a green one, then the model
will end up basing its prediction on the background color, not the features of
the object you actually care about. To avoid this, try to take pictures in as
wide a variety of situations as you can, at different times, and with different
devices. If you want to know more about this problem, you can read about the
classic (and possibly apocryphal) [tank recognition problem]
(http://www.jefftk.com/p/detecting-tanks).

You may also want to think about the categories you use. It might be worth
splitting big categories that cover a lot of different physical forms into
smaller ones that are more visually distinct. For example instead of ‘vehicle’
you might use ‘car’, ‘motorbike’, and ‘truck’. It’s also worth thinking about
whether you have a ‘closed world’ or an ‘open world’ problem. In a closed world,
the only things you’ll ever be asked to categorize are the classes of object you
know about. This might apply to a plant recognition app where you know the user
is likely to be taking a picture of a flower, so all you have to do is decide
which species. By contrast a roaming robot might see all sorts of different
things through its camera as it wanders around the world. In that case you’d
want the classifier to report if it wasn’t sure what it was seeing. This can be
hard to do well, but often if you collect a large number of typical ‘background’
photos with no relevant objects in them, you can add them to an extra ‘unknown’
class in your image folders.

It’s also worth checking to make sure that all of your images are labeled
correctly. Often user-generated tags are unreliable for our purposes, for
example using #daisy for pictures of a person named Daisy. If you go through
your images and weed out any mistakes it can do wonders for your overall
accuracy.

Training Steps

If you’re happy with your images, you can take a look at improving your results
by altering the details of the learning process. The simplest one to try is
--how_many_training_steps. This defaults to 4,000, but if you increase it to
8,000 it will train for twice as long. The rate of improvement in the accuracy
slows the longer you train for, and at some point will stop altogether, but you
can experiment to see when you hit that limit for your model.

Distortions

A common way of improving the results of image training is by deforming,
cropping, or brightening the training inputs in random ways. This has the
advantage of expanding the effective size of the training data thanks to all the
possible variations of the same images, and tends to help the network learn to
cope with all the distortions that will occur in real-life uses of the
classifier. The biggest disadvantage of enabling these distortions in our script
is that the bottleneck caching is no longer useful, since input images are never
reused exactly. This means the training process takes a lot longer, so I
recommend trying this as a way of fine-tuning your model once you’ve got one
that you’re reasonably happy with.

You enable these distortions by passing --random_crop, --random_scale and
--random_brightness to the script. These are all percentage values that
control how much of each of the distortions is applied to each image. It’s
reasonable to start with values of 5 or 10 for each of them and then experiment
to see which of them help with your application. --flip_left_right will
randomly mirror half of the images horizontally, which makes sense as long as
those inversions are likely to happen in your application. For example it
wouldn’t be a good idea if you were trying to recognize letters, since flipping
them destroys their meaning.

Hyper-parameters

There are several other parameters you can try adjusting to see if they help
your results. The --learning_rate controls the magnitude of the updates to the
final layer during training. Intuitively if this is smaller then the learning
will take longer, but it can end up helping the overall precision. That’s not
always the case though, so you need to experiment carefully to see what works
for your case. The --train_batch_size controls how many images are examined
during one training step, and because the learning rate is applied per batch
you’ll need to reduce it if you have larger batches to get the same overall
effect.

Training, Validation, and Testing Sets

One of the things the script does under the hood when you point it at a folder
of images is divide them up into three different sets. The largest is usually
the training set, which are all the images fed into the network during training,
with the results used to update the model’s weights. You might wonder why we
don’t use all the images for training? A big potential problem when we’re doing
machine learning is that our model may just be memorizing irrelevant details of
the training images to come up with the right answers. For example, you could
imagine a network remembering a pattern in the background of each photo it was
shown, and using that to match labels with objects. It could produce good
results on all the images it’s seen before during training, but then fail on new
images because it’s not learned general characteristics of the objects, just
memorized unimportant details of the training images.

This problem is known as overfitting, and to avoid it we keep some of our data
out of the training process, so that the model can’t memorize them. We then use
those images as a check to make sure that overfitting isn’t occurring, since if
we see good accuracy on them it’s a good sign the network isn’t overfitting. The
usual split is to put 80% of the images into the main training set, keep 10%
aside to run as validation frequently during training, and then have a final 10%
that are used less often as a testing set to predict the real-world performance
of the classifier. These ratios can be controlled using the
--testing_percentage and --validation_percentage flags. One subtle thing
that the script does is it uses the filename of the image to determine which set
it is put into. This is designed to ensure that images don’t get moved between
training and testing sets on different runs, since that could be a problem if
images that had been used for training a model were subsequently used in a
validation set. In general you should be able to leave these values at their
defaults, since you won’t usually find any advantage to training to adjusting
them.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.ones_like.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.ones_like(tensor, dtype=None, name=None, optimize=True) {#ones_like}

Creates a tensor with all elements set to 1.

Given a single tensor (tensor), this operation returns a tensor of the same
type and shape as tensor with all elements set to 1. Optionally, you can
specify a new type (dtype) for the returned tensor.

For example:

'tensor' is [[1, 2, 3], [4, 5, 6]]
tf.ones_like(tensor) ==> [[1, 1, 1], [1, 1, 1]]

Args:

		tensor: A Tensor.

		dtype: A type for the returned Tensor. Must be float32, float64,
int8, int16, int32, int64, uint8, complex64, complex128 or
bool.

		name: A name for the operation (optional).

		optimize: if true, attempt to statically determine the shape of ‘tensor’
and encode it as a constant.

Returns:

A Tensor with all elements set to 1.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.losses.get_regularization_losses.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.losses.get_regularization_losses(scope=None) {#get_regularization_losses}

Gets the regularization losses.

Args:

		scope: an optional scope for filtering the losses to return.

Returns:

A list of loss variables.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.framework.get_variables.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.get_variables(scope=None, suffix=None, collection='variables') {#get_variables}

Gets the list of variables, filtered by scope and/or suffix.

Args:

		scope: an optional scope for filtering the variables to return.

		suffix: an optional suffix for filtering the variables to return.

		collection: in which collection search for. Defaults to GraphKeys.VARIABLES.

Returns:

a list of variables in collection with scope and suffix.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.framework.has_arg_scope.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.has_arg_scope(func) {#has_arg_scope}

Checks whether a func has been decorated with @add_arg_scope or not.

Args:

		func: function to check.

Returns:

a boolean.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.layers.convolution2d.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.convolution2d(*args, **kwargs) {#convolution2d}

Adds a 2D convolution followed by an optional batch_norm layer.

convolution2d creates a variable called weights, representing the
convolutional kernel, that is convolved with the inputs to produce a
Tensor of activations. If a normalizer_fn is provided (such as
batch_norm), it is then applied. Otherwise, if normalizer_fn is
None and a biases_initializer is provided then a biases variable would be
created and added the activations. Finally, if activation_fn is not None,
it is applied to the activations as well.

Performs a’trous convolution with input stride equal to rate if rate is
greater than one.

Args:

		inputs: a 4-D tensor [batch_size, height, width, channels].

		num_outputs: integer, the number of output filters.

		kernel_size: a list of length 2 [kernel_height, kernel_width] of
of the filters. Can be an int if both values are the same.

		stride: a list of length 2 [stride_height, stride_width].
Can be an int if both strides are the same. Note that presently
both strides must have the same value.

		padding: one of VALID or SAME.

		rate: integer. If less than or equal to 1, a standard convolution is used.
If greater than 1, than the a’trous convolution is applied and stride
must be set to 1.

		activation_fn: activation function, set to None to skip it and maintain
a linear activation.

		normalizer_fn: normalization function to use instead of biases. If
normalizer_fn is provided then biases_initializer and
biases_regularizer are ignored and biases are not created nor added.
default set to None for no normalizer function

		normalizer_params: normalization function parameters.

		weights_initializer: An initializer for the weights.

		weights_regularizer: Optional regularizer for the weights.

		biases_initializer: An initializer for the biases. If None skip biases.

		biases_regularizer: Optional regularizer for the biases.

		reuse: whether or not the layer and its variables should be reused. To be
able to reuse the layer scope must be given.

		variables_collections: optional list of collections for all the variables or
a dictionay containing a different list of collection per variable.

		outputs_collections: collection to add the outputs.

		trainable: If True also add variables to the graph collection
GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

		scope: Optional scope for variable_scope.

Returns:

a tensor representing the output of the operation.

Raises:

		ValueError: if both ‘rate’ and stride are larger than one.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.get_session_tensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.get_session_tensor(handle, dtype, name=None) {#get_session_tensor}

Get the tensor of type dtype by feeding a tensor handle.

This is EXPERIMENTAL and subject to change.

Get the value of the tensor from a tensor handle. The tensor
is produced in a previous run() and stored in the state of the
session.

Args:

		handle: The string representation of a persistent tensor handle.

		dtype: The type of the output tensor.

		name: Optional name prefix for the return tensor.

Returns:

A pair of tensors. The first is a placeholder for feeding a
tensor handle and the second is the tensor in the session state
keyed by the tensor handle.

		Example:

c = tf.mul(a, b)
h = tf.get_session_handle(c)
h = sess.run(h)

p, a = tf.get_session_tensor(h.handle, tf.float32)
b = tf.mul(a, 10)
c = sess.run(b, feed_dict={p: h.handle})

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.nn.rnn_cell.EmbeddingWrapper.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Operator adding input embedding to the given cell.

Note: in many cases it may be more efficient to not use this wrapper,
but instead concatenate the whole sequence of your inputs in time,
do the embedding on this batch-concatenated sequence, then split it and
feed into your RNN.

tf.nn.rnn_cell.EmbeddingWrapper.__call__(inputs, state, scope=None) {#EmbeddingWrapper.call}

Run the cell on embedded inputs.

tf.nn.rnn_cell.EmbeddingWrapper.__init__(cell, embedding_classes, embedding_size, initializer=None) {#EmbeddingWrapper.init}

Create a cell with an added input embedding.

Args:

		cell: an RNNCell, an embedding will be put before its inputs.

		embedding_classes: integer, how many symbols will be embedded.

		embedding_size: integer, the size of the vectors we embed into.

		initializer: an initializer to use when creating the embedding;
if None, the initializer from variable scope or a default one is used.

Raises:

		TypeError: if cell is not an RNNCell.

		ValueError: if embedding_classes is not positive.

tf.nn.rnn_cell.EmbeddingWrapper.output_size {#EmbeddingWrapper.output_size}

tf.nn.rnn_cell.EmbeddingWrapper.state_size {#EmbeddingWrapper.state_size}

tf.nn.rnn_cell.EmbeddingWrapper.zero_state(batch_size, dtype) {#EmbeddingWrapper.zero_state}

Return zero-filled state tensor(s).

Args:

		batch_size: int, float, or unit Tensor representing the batch size.

		dtype: the data type to use for the state.

Returns:

If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.nn.rnn_cell.InputProjectionWrapper.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Operator adding an input projection to the given cell.

Note: in many cases it may be more efficient to not use this wrapper,
but instead concatenate the whole sequence of your inputs in time,
do the projection on this batch-concatenated sequence, then split it.

tf.nn.rnn_cell.InputProjectionWrapper.__call__(inputs, state, scope=None) {#InputProjectionWrapper.call}

Run the input projection and then the cell.

tf.nn.rnn_cell.InputProjectionWrapper.__init__(cell, num_proj, input_size=None) {#InputProjectionWrapper.init}

Create a cell with input projection.

Args:

		cell: an RNNCell, a projection of inputs is added before it.

		num_proj: Python integer. The dimension to project to.

		input_size: Deprecated and unused.

Raises:

		TypeError: if cell is not an RNNCell.

tf.nn.rnn_cell.InputProjectionWrapper.output_size {#InputProjectionWrapper.output_size}

tf.nn.rnn_cell.InputProjectionWrapper.state_size {#InputProjectionWrapper.state_size}

tf.nn.rnn_cell.InputProjectionWrapper.zero_state(batch_size, dtype) {#InputProjectionWrapper.zero_state}

Return zero-filled state tensor(s).

Args:

		batch_size: int, float, or unit Tensor representing the batch size.

		dtype: the data type to use for the state.

Returns:

If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.nn.local_response_normalization.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.local_response_normalization(input, depth_radius=None, bias=None, alpha=None, beta=None, name=None) {#local_response_normalization}

Local Response Normalization.

The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the last
dimension), and each vector is normalized independently. Within a given vector,
each component is divided by the weighted, squared sum of inputs within
depth_radius. In detail,

sqr_sum[a, b, c, d] =
 sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2)
output = input / (bias + alpha * sqr_sum) ** beta

For details, see [Krizhevsky et al., ImageNet classification with deep
convolutional neural networks (NIPS 2012)]
(http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks).

Args:

		input: A Tensor. Must be one of the following types: float32, half.
4-D.

		depth_radius: An optional int. Defaults to 5.
0-D. Half-width of the 1-D normalization window.

		bias: An optional float. Defaults to 1.
An offset (usually positive to avoid dividing by 0).

		alpha: An optional float. Defaults to 1.
A scale factor, usually positive.

		beta: An optional float. Defaults to 0.5. An exponent.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.training.bucket.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.training.bucket(tensors, which_bucket, batch_size, num_buckets, num_threads=1, capacity=32, shapes=None, dynamic_pad=False, allow_smaller_final_batch=False, keep_input=None, shared_name=None, name=None) {#bucket}

Lazy bucketing of input tensors according to which_bucket.

The argument tensors can be a list or a dictionary of tensors.
The value returned by the function will be of the same type
as tensors.

The tensors entering this function are put into the bucket given by
which_bucket. Each bucket has its own queue. When a bucket contains
batch_size elements, this minibatch is pushed onto a top queue. The
tensors returned from this function are a the result of dequeueing the
next minibatch from this top queue.

This function is implemented using several queues. A QueueRunner for the
queues is added to the current Graph‘s QUEUE_RUNNER collection.

As the returned tensors are the result of of a dequeue operation, evaluating
them will throw a tf.errors.OutOfRangeError when the input queue is
exhausted. If these tensors are feeding another input queue, its queue runner
will catch this exception, however, if they are used in your main thread
you are responsible for catching this yourself.

N.B.: If dynamic_pad is False, you must ensure that either
(i) the shapes argument is passed, or (ii) all of the tensors in
tensors must have fully-defined shapes. ValueError will be
raised if neither of these conditions holds.

If dynamic_pad is True, it is sufficient that the rank of the
tensors is known, but individual dimensions may have shape None.
In this case, for each enqueue the dimensions with value None
may have a variable length; upon dequeue, the output tensors will be padded
on the right to the maximum shape of the tensors in the current minibatch.
For numbers, this padding takes value 0. For strings, this padding is
the empty string. See PaddingFIFOQueue for more info.

If allow_smaller_final_batch is True, a smaller batch value than
batch_size is returned when the queues are closed and there are not enough
elements to fill the batch, otherwise the pending elements are discarded.
In addition, all output tensors’ static shapes, as accessed via the
get_shape() method will have a 0th Dimension value of None, and
operations that depend on fixed batch_size would fail.

Args:

		tensors: The list or dictionary of tensors, representing a single element,
to bucket. Nested lists are not supported.

		which_bucket: An int32 scalar Tensor taking a value in [0, num_buckets).

		batch_size: The new batch size pulled from the queue
(python int or int32 scalar).

		num_buckets: A python integer, the number of buckets.

		num_threads: An integer. The number of threads enqueuing tensors.

		capacity: An integer. The maximum number of minibatches in the top queue,
and also the maximum number of elements within each bucket.

		shapes: (Optional) The shapes for each example. Defaults to the
inferred shapes for tensors.

		dynamic_pad: Boolean. Allow variable dimensions in input shapes.
The given dimensions are padded upon dequeue so that tensors within a
batch have the same shapes.

		allow_smaller_final_batch: (Optional) Boolean. If True, allow the final
batches to be smaller if there are insufficient items left in the queues.

		keep_input: (Optional). A bool scalar Tensor. If provided, this tensor
controls whether the input is added to the queue or not. If it evaluates
True, then tensors are added to the bucket; otherwise they are
dropped. This tensor essentially acts as a filtering mechanism.
The default behavior is to assume keep_input=True.

		shared_name: (Optional). If set, the queues will be shared under the given
name across multiple sessions.

		name: (Optional) A name for the operations.

Returns:

A tuple (bucket, outputs) where bucket is
a int32 scalar tensor and outputs is a list or
dictionary of batched outputs corresponding to elements of tensors.
Every step will receive a new bucket of outputs.

Raises:

		ValueError: If the shapes are not specified, and cannot be
inferred from the elements of tensors.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 LaplaceTensor is a StochasticTensor backed by the distribution Laplace.

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#LaplaceTensor.init}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.clone(name=None, **dist_args) {#LaplaceTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.distribution {#LaplaceTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.dtype {#LaplaceTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.entropy(name='entropy') {#LaplaceTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.graph {#LaplaceTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.input_dict {#LaplaceTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.loss(final_loss, name='Loss') {#LaplaceTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.mean(name='mean') {#LaplaceTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.name {#LaplaceTensor.name}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.value(name='value') {#LaplaceTensor.value}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.value_type {#LaplaceTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.as_dtype.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.as_dtype(type_value) {#as_dtype}

Converts the given type_value to a DType.

Args:

		type_value: A value that can be converted to a tf.DType
object. This may currently be a tf.DType object, a
DataType enum [https://www.tensorflow.org/code/tensorflow/core/framework/types.proto],
a string type name, or a numpy.dtype.

Returns:

A DType corresponding to type_value.

Raises:

		TypeError: If type_value cannot be converted to a DType.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.bayesflow.stochastic_graph.surrogate_loss.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.bayesflow.stochastic_graph.surrogate_loss(sample_losses, stochastic_tensors=None, name='SurrogateLoss') {#surrogate_loss}

Surrogate loss for stochastic graphs.

This function will call loss_fn on each StochasticTensor
upstream of sample_losses, passing the losses that it influenced.

Note that currently surrogate_loss does not work with StochasticTensors
instantiated in while_loops or other control structures.

Args:

		sample_losses: a list or tuple of final losses. Each loss should be per
example in the batch (and possibly per sample); that is, it should have
dimensionality of 1 or greater. All losses should have the same shape.

		stochastic_tensors: a list of StochasticTensors to add loss terms for.
If None, defaults to all StochasticTensors in the graph upstream of
the Tensors in sample_losses.

		name: the name with which to prepend created ops.

Returns:

Tensor loss, which is the sum of sample_losses and the
loss_fns returned by the StochasticTensors.

Raises:

		TypeError: if sample_losses is not a list or tuple, or if its elements
are not Tensors.

		ValueError: if any loss in sample_losses does not have dimensionality 1
or greater.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.framework.deprecated_args.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.deprecated_args(date, instructions, *deprecated_arg_names) {#deprecated_args}

Decorator for marking specific function arguments as deprecated.

This decorator logs a deprecation warning whenever the decorated function is
called with the deprecated argument. It has the following format:

Calling (from) with is deprecated and will be
removed after . Instructions for updating:

 will include the class name if it is a method.

It also edits the docstring of the function: ‘ (deprecated arguments)’ is
appended to the first line of the docstring and a deprecation notice is
prepended to the rest of the docstring.

Args:

		date: String. The date the function is scheduled to be removed. Must be
ISO 8601 (YYYY-MM-DD).

		instructions: String. Instructions on how to update code using the
deprecated function.

		*deprecated_arg_names: String. The deprecated arguments.

Returns:

Decorated function or method.

Raises:

		ValueError: If date is not in ISO 8601 format, instructions are empty, or
the deprecated arguments are not present in the function signature.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.graph_editor.remove_control_inputs.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.remove_control_inputs(op, cops) {#remove_control_inputs}

Remove the control inputs cops from co.

Warning: this function is directly manipulating the internals of the tf.Graph.

Args:

		op: a tf.Operation from which to remove the control inputs.

		cops: an object convertible to a list of tf.Operation.

Raises:

		TypeError: if op is not a tf.Operation

		ValueError: if any cop in cops is not a control input of op.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.image.decode_jpeg.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.decode_jpeg(contents, channels=None, ratio=None, fancy_upscaling=None, try_recover_truncated=None, acceptable_fraction=None, name=None) {#decode_jpeg}

Decode a JPEG-encoded image to a uint8 tensor.

The attr channels indicates the desired number of color channels for the
decoded image.

Accepted values are:

		0: Use the number of channels in the JPEG-encoded image.

		1: output a grayscale image.

		3: output an RGB image.

If needed, the JPEG-encoded image is transformed to match the requested number
of color channels.

The attr ratio allows downscaling the image by an integer factor during
decoding. Allowed values are: 1, 2, 4, and 8. This is much faster than
downscaling the image later.

Args:

		contents: A Tensor of type string. 0-D. The JPEG-encoded image.

		channels: An optional int. Defaults to 0.
Number of color channels for the decoded image.

		ratio: An optional int. Defaults to 1. Downscaling ratio.

		fancy_upscaling: An optional bool. Defaults to True.
If true use a slower but nicer upscaling of the
chroma planes (yuv420/422 only).

		try_recover_truncated: An optional bool. Defaults to False.
If true try to recover an image from truncated input.

		acceptable_fraction: An optional float. Defaults to 1.
The minimum required fraction of lines before a truncated
input is accepted.

		name: A name for the operation (optional).

Returns:

A Tensor of type uint8. 3-D with shape [height, width, channels]..

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.image.pad_to_bounding_box.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.pad_to_bounding_box(image, offset_height, offset_width, target_height, target_width) {#pad_to_bounding_box}

Pad image with zeros to the specified height and width.

Adds offset_height rows of zeros on top, offset_width columns of
zeros on the left, and then pads the image on the bottom and right
with zeros until it has dimensions target_height, target_width.

This op does nothing if offset_* is zero and the image already has size
target_height by target_width.

Args:

		image: 3-D tensor with shape [height, width, channels]

		offset_height: Number of rows of zeros to add on top.

		offset_width: Number of columns of zeros to add on the left.

		target_height: Height of output image.

		target_width: Width of output image.

Returns:

3-D tensor of shape [target_height, target_width, channels]

Raises:

		ValueError: If the shape of image is incompatible with the offset_* or
target_* arguments, or either offset_height or offset_width is
negative.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.errors.DeadlineExceededError.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Raised when a deadline expires before an operation could complete.

This exception is not currently used.

tf.errors.DeadlineExceededError.__init__(node_def, op, message) {#DeadlineExceededError.init}

Creates a DeadlineExceededError.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.layers.sum_regularizer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.sum_regularizer(regularizer_list, scope=None) {#sum_regularizer}

Returns a function that applies the sum of multiple regularizers.

Args:

		regularizer_list: A list of regularizers to apply.

		scope: An optional scope name

Returns:

A function with signature sum_reg(weights) that applies the
sum of all the input regularizers.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 BetaWithSoftplusABTensor is a StochasticTensor backed by the distribution BetaWithSoftplusAB.

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#BetaWithSoftplusABTensor.init}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.clone(name=None, **dist_args) {#BetaWithSoftplusABTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.distribution {#BetaWithSoftplusABTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.dtype {#BetaWithSoftplusABTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.entropy(name='entropy') {#BetaWithSoftplusABTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.graph {#BetaWithSoftplusABTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.input_dict {#BetaWithSoftplusABTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.loss(final_loss, name='Loss') {#BetaWithSoftplusABTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.mean(name='mean') {#BetaWithSoftplusABTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.name {#BetaWithSoftplusABTensor.name}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.value(name='value') {#BetaWithSoftplusABTensor.value}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.value_type {#BetaWithSoftplusABTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.contrib.metrics.accuracy.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.accuracy(predictions, labels, weights=None) {#accuracy}

Computes the percentage of times that predictions matches labels.

Args:

		predictions: the predicted values, a Tensor whose dtype and shape
matches ‘labels’.

		labels: the ground truth values, a Tensor of any shape and
bool, integer, or string dtype.

		weights: None or Tensor of float values to reweight the accuracy.

Returns:

Accuracy Tensor.

Raises:

		ValueError: if dtypes don’t match or
if dtype is not bool, integer, or string.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.errors.PermissionDeniedError.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Raised when the caller does not have permission to run an operation.

For example, running the
tf.WholeFileReader.read()
operation could raise PermissionDeniedError if it receives the name of a
file for which the user does not have the read file permission.

tf.errors.PermissionDeniedError.__init__(node_def, op, message) {#PermissionDeniedError.init}

Creates a PermissionDeniedError.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.image.random_flip_up_down.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.random_flip_up_down(image, seed=None) {#random_flip_up_down}

Randomly flips an image vertically (upside down).

With a 1 in 2 chance, outputs the contents of image flipped along the first
dimension, which is height. Otherwise output the image as-is.

Args:

		image: A 3-D tensor of shape [height, width, channels].

		seed: A Python integer. Used to create a random seed. See
set_random_seed
for behavior.

Returns:

A 3-D tensor of the same type and shape as image.

Raises:

		ValueError: if the shape of image not supported.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.graph_editor.get_within_boundary_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.get_within_boundary_ops(ops, seed_ops, boundary_ops=(), inclusive=True, control_inputs=False, control_outputs=None, control_ios=None) {#get_within_boundary_ops}

Return all the tf.Operation within the given boundary.

Args:

		ops: an object convertible to a list of tf.Operation. those ops define the
set in which to perform the operation (if a tf.Graph is given, it
will be converted to the list of all its operations).

		seed_ops: the operations from which to start expanding.

		boundary_ops: the ops forming the boundary.

		inclusive: if True, the result will also include the boundary ops.

		control_inputs: A boolean indicating whether control inputs are enabled.

		control_outputs: An instance of util.ControlOutputs or None. If not None,
control outputs are enabled.

		control_ios: An instance of util.ControlOutputs or None. If not None, both
control inputs and control outputs are enabled. This is equivalent to set
control_inputs to True and control_outputs to the util.ControlOutputs
instance.

Returns:

All the tf.Operation surrounding the given ops.

Raises:

		TypeError: if ops or seed_ops cannot be converted to a list of tf.Operation.

		ValueError: if the boundary is intersecting with the seeds.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Ask the StochasticTensor for n samples and reshape the result.

Sampling from a StochasticTensor increases the rank of the value by 1
(because each sample represents a new outer dimension).

This ValueType requests n samples from StochasticTensors run within its
context that the outer two dimensions are reshaped to intermix the samples
with the outermost (usually batch) dimension.

Example:

mu and sigma are both shaped (2, 3)
mu = [[0.0, -1.0, 1.0], [0.0, -1.0, 1.0]]
sigma = tf.constant([[1.1, 1.2, 1.3], [1.1, 1.2, 1.3]])

with sg.value_type(sg.SampleAndReshapeValue(n=2)):
 dt = sg.DistributionTensor(
 distributions.Normal, mu=mu, sigma=sigma)

sample(2) creates a (2, 2, 3) tensor, and the two outermost dimensions
are reshaped into one: the final value is a (4, 3) tensor.
dt_value = dt.value()
assertEqual(dt_value.get_shape(), (4, 3))

dt_value_val = sess.run([dt_value])[0] # or e.g. run([tf.identity(dt)])[0]
assertEqual(dt_value_val.shape, (4, 3))

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.__init__(n=1, stop_gradient=False) {#SampleAndReshapeValue.init}

Sample n times and reshape the outer 2 axes so rank does not change.

Args:

		n: A python integer or int32 tensor. The number of samples to take.

		stop_gradient: If True, StochasticTensors’ values are wrapped in
stop_gradient, to avoid backpropagation through.

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.declare_inputs(unused_stochastic_tensor, unused_inputs_dict) {#SampleAndReshapeValue.declare_inputs}

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.n {#SampleAndReshapeValue.n}

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.popped_above(unused_value_type) {#SampleAndReshapeValue.popped_above}

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.pushed_above(unused_value_type) {#SampleAndReshapeValue.pushed_above}

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.stop_gradient {#SampleAndReshapeValue.stop_gradient}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.saturate_cast.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.saturate_cast(value, dtype, name=None) {#saturate_cast}

Performs a safe saturating cast of value to dtype.

This function casts the input to dtype without applying any scaling. If
there is a danger that values would over or underflow in the cast, this op
applies the appropriate clamping before the cast.

Args:

		value: A Tensor.

		dtype: The desired output DType.

		name: A name for the operation (optional).

Returns:

value safely cast to dtype.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.metrics.set_size.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.set_size(a, validate_indices=True) {#set_size}

Compute number of unique elements along last dimension of a.

Args:

		a: SparseTensor, with indices sorted in row-major order.

		validate_indices: Whether to validate the order and range of sparse indices
in a.

Returns:

int32 Tensor of set sizes. For a ranked n, this is a Tensor with
rank n-1, and the same 1st n-1 dimensions as a. Each value is the
number of unique elements in the corresponding [0...n-1] dimension of a.

Raises:

		TypeError: If a is an invalid types.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.sparse_merge.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_merge(sp_ids, sp_values, vocab_size, name=None, already_sorted=False) {#sparse_merge}

Combines a batch of feature ids and values into a single SparseTensor.

The most common use case for this function occurs when feature ids and
their corresponding values are stored in Example protos on disk.
parse_example will return a batch of ids and a batch of values, and this
function joins them into a single logical SparseTensor for use in
functions such as sparse_tensor_dense_matmul, sparse_to_dense, etc.

The SparseTensor returned by this function has the following properties:

		indices is equivalent to sp_ids.indices with the last
dimension discarded and replaced with sp_ids.values.

		values is simply sp_values.values.

		If sp_ids.shape = [D0, D1, ..., Dn, K], then
output.shape = [D0, D1, ..., Dn, vocab_size].

For example, consider the following feature vectors:

 vector1 = [-3, 0, 0, 0, 0, 0]
 vector2 = [0, 1, 0, 4, 1, 0]
 vector3 = [5, 0, 0, 9, 0, 0]

These might be stored sparsely in the following Example protos by storing
only the feature ids (column number if the vectors are treated as a matrix)
of the non-zero elements and the corresponding values:

 examples = [Example(features={
 "ids": Feature(int64_list=Int64List(value=[0])),
 "values": Feature(float_list=FloatList(value=[-3]))}),
 Example(features={
 "ids": Feature(int64_list=Int64List(value=[1, 4, 3])),
 "values": Feature(float_list=FloatList(value=[1, 1, 4]))}),
 Example(features={
 "ids": Feature(int64_list=Int64List(value=[0, 3])),
 "values": Feature(float_list=FloatList(value=[5, 9]))})]

The result of calling parse_example on these examples will produce a
dictionary with entries for “ids” and “values”. Passing those two objects
to this function along with vocab_size=6, will produce a SparseTensor that
sparsely represents all three instances. Namely, the indices property will
contain the coordinates of the non-zero entries in the feature matrix (the
first dimension is the row number in the matrix, i.e., the index within the
batch, and the second dimension is the column number, i.e., the feature id);
values will contain the actual values. shape will be the shape of the
original matrix, i.e., (3, 6). For our example above, the output will be
equal to:

 SparseTensor(indices=[[0, 0], [1, 1], [1, 3], [1, 4], [2, 0], [2, 3]],
 values=[-3, 1, 4, 1, 5, 9],
 shape=[3, 6])

Args:

		sp_ids: A SparseTensor with values property of type int32
or int64.

		sp_values: ASparseTensor of any type.

		vocab_size: A scalar int64 Tensor (or Python int) containing the new size
of the last dimension, all(0 <= sp_ids.values < vocab_size).

		name: A name prefix for the returned tensors (optional)

		already_sorted: A boolean to specify whether the per-batch values in
sp_values are already sorted. If so skip sorting, False by default
(optional).

Returns:

A SparseTensor compactly representing a batch of feature ids and values,
useful for passing to functions that expect such a SparseTensor.

Raises:

		TypeError: If sp_ids or sp_values are not a SparseTensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.distributions.Dirichlet.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Dirichlet distribution.

This distribution is parameterized by a vector alpha of concentration
parameters for k classes.

Mathematical details

The Dirichlet is a distribution over the standard n-simplex, where the
standard n-simplex is defined by:
{ (x_1, ..., x_n) in R^(n+1) | sum_j x_j = 1 and x_j >= 0 for all j }.
The distribution has hyperparameters alpha = (alpha_1,...,alpha_k),
and probability mass function (prob):

prob(x) = 1 / Beta(alpha) * prod_j x_j^(alpha_j - 1)

where Beta(x) = prod_j Gamma(x_j) / Gamma(sum_j x_j) is the multivariate
beta function.

This class provides methods to create indexed batches of Dirichlet
distributions. If the provided alpha is rank 2 or higher, for
every fixed set of leading dimensions, the last dimension represents one
single Dirichlet distribution. When calling distribution
functions (e.g. dist.prob(x)), alpha and x are broadcast to the
same shape (if possible). In all cases, the last dimension of alpha/x
represents single Dirichlet distributions.

Examples

alpha = [1, 2, 3]
dist = Dirichlet(alpha)

Creates a 3-class distribution, with the 3rd class is most likely to be drawn.
The distribution functions can be evaluated on x.

x same shape as alpha.
x = [.2, .3, .5]
dist.prob(x) # Shape []

alpha will be broadcast to [[1, 2, 3], [1, 2, 3]] to match x.
x = [[.1, .4, .5], [.2, .3, .5]]
dist.prob(x) # Shape [2]

alpha will be broadcast to shape [5, 7, 3] to match x.
x = [[...]] # Shape [5, 7, 3]
dist.prob(x) # Shape [5, 7]

Creates a 2-batch of 3-class distributions.

alpha = [[1, 2, 3], [4, 5, 6]] # Shape [2, 3]
dist = Dirichlet(alpha)

x will be broadcast to [[2, 1, 0], [2, 1, 0]] to match alpha.
x = [.2, .3, .5]
dist.prob(x) # Shape [2]

tf.contrib.distributions.Dirichlet.__init__(alpha, validate_args=False, allow_nan_stats=True, name='Dirichlet') {#Dirichlet.init}

Initialize a batch of Dirichlet distributions.

Args:

		alpha: Positive floating point tensor with shape broadcastable to
[N1,..., Nm, k] m >= 0. Defines this as a batch of N1 x ... x Nm
different k class Dirichlet distributions.

		validate_args: Boolean, default False. Whether to assert valid values
for parameters alpha and x in prob and log_prob. If False,
correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to prefix Ops created by this distribution class.

		Examples:

Define 1-batch of 2-class Dirichlet distributions,
also known as a Beta distribution.
dist = Dirichlet([1.1, 2.0])

Define a 2-batch of 3-class distributions.
dist = Dirichlet([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])

tf.contrib.distributions.Dirichlet.allow_nan_stats {#Dirichlet.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Dirichlet.alpha {#Dirichlet.alpha}

Shape parameter.

tf.contrib.distributions.Dirichlet.alpha_sum {#Dirichlet.alpha_sum}

Sum of shape parameter.

tf.contrib.distributions.Dirichlet.batch_shape(name='batch_shape') {#Dirichlet.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Dirichlet.cdf(value, name='cdf') {#Dirichlet.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Dirichlet.dtype {#Dirichlet.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Dirichlet.entropy(name='entropy') {#Dirichlet.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Dirichlet.event_shape(name='event_shape') {#Dirichlet.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Dirichlet.get_batch_shape() {#Dirichlet.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Dirichlet.get_event_shape() {#Dirichlet.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Dirichlet.is_continuous {#Dirichlet.is_continuous}

tf.contrib.distributions.Dirichlet.is_reparameterized {#Dirichlet.is_reparameterized}

tf.contrib.distributions.Dirichlet.log_cdf(value, name='log_cdf') {#Dirichlet.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Dirichlet.log_pdf(value, name='log_pdf') {#Dirichlet.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Dirichlet.log_pmf(value, name='log_pmf') {#Dirichlet.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Dirichlet.log_prob(value, name='log_prob') {#Dirichlet.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Dirichlet.log_survival_function(value, name='log_survival_function') {#Dirichlet.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Dirichlet.mean(name='mean') {#Dirichlet.mean}

Mean.

tf.contrib.distributions.Dirichlet.mode(name='mode') {#Dirichlet.mode}

Mode.

tf.contrib.distributions.Dirichlet.name {#Dirichlet.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Dirichlet.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Dirichlet.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Dirichlet.param_static_shapes(cls, sample_shape) {#Dirichlet.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Dirichlet.parameters {#Dirichlet.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Dirichlet.pdf(value, name='pdf') {#Dirichlet.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Dirichlet.pmf(value, name='pmf') {#Dirichlet.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Dirichlet.prob(value, name='prob') {#Dirichlet.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Dirichlet.sample(sample_shape=(), seed=None, name='sample') {#Dirichlet.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Dirichlet.sample_n(n, seed=None, name='sample_n') {#Dirichlet.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Dirichlet.std(name='std') {#Dirichlet.std}

Standard deviation.

tf.contrib.distributions.Dirichlet.survival_function(value, name='survival_function') {#Dirichlet.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Dirichlet.validate_args {#Dirichlet.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Dirichlet.variance(name='variance') {#Dirichlet.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.distributions.Poisson.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Poisson distribution.

The Poisson distribution is parameterized by lam, the rate parameter.

The pmf of this distribution is:

pmf(k) = e^(-lam) * lam^k / k!, k >= 0

tf.contrib.distributions.Poisson.__init__(lam, validate_args=False, allow_nan_stats=True, name='Poisson') {#Poisson.init}

Construct Poisson distributions.

Args:

		lam: Floating point tensor, the rate parameter of the
distribution(s). lam must be positive.

		validate_args: Boolean, default False. Whether to assert that
lam > 0 as well as inputs to pmf computations are non-negative
integers. If validate_args is False, then pmf computations might
return NaN, but can be evaluated at any real value.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: A name for this distribution.

tf.contrib.distributions.Poisson.allow_nan_stats {#Poisson.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Poisson.batch_shape(name='batch_shape') {#Poisson.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Poisson.cdf(value, name='cdf') {#Poisson.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Poisson.dtype {#Poisson.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Poisson.entropy(name='entropy') {#Poisson.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Poisson.event_shape(name='event_shape') {#Poisson.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Poisson.get_batch_shape() {#Poisson.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Poisson.get_event_shape() {#Poisson.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Poisson.is_continuous {#Poisson.is_continuous}

tf.contrib.distributions.Poisson.is_reparameterized {#Poisson.is_reparameterized}

tf.contrib.distributions.Poisson.lam {#Poisson.lam}

Rate parameter.

tf.contrib.distributions.Poisson.log_cdf(value, name='log_cdf') {#Poisson.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Poisson.log_pdf(value, name='log_pdf') {#Poisson.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Poisson.log_pmf(value, name='log_pmf') {#Poisson.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Poisson.log_prob(value, name='log_prob') {#Poisson.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Poisson.log_survival_function(value, name='log_survival_function') {#Poisson.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Poisson.mean(name='mean') {#Poisson.mean}

Mean.

tf.contrib.distributions.Poisson.mode(name='mode') {#Poisson.mode}

Mode.

tf.contrib.distributions.Poisson.name {#Poisson.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Poisson.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Poisson.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Poisson.param_static_shapes(cls, sample_shape) {#Poisson.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Poisson.parameters {#Poisson.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Poisson.pdf(value, name='pdf') {#Poisson.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Poisson.pmf(value, name='pmf') {#Poisson.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Poisson.prob(value, name='prob') {#Poisson.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Poisson.sample(sample_shape=(), seed=None, name='sample') {#Poisson.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Poisson.sample_n(n, seed=None, name='sample_n') {#Poisson.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Poisson.std(name='std') {#Poisson.std}

Standard deviation.

tf.contrib.distributions.Poisson.survival_function(value, name='survival_function') {#Poisson.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Poisson.validate_args {#Poisson.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Poisson.variance(name='variance') {#Poisson.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.nn.ctc_loss.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.ctc_loss(inputs, labels, sequence_length, preprocess_collapse_repeated=False, ctc_merge_repeated=True, time_major=True) {#ctc_loss}

Computes the CTC (Connectionist Temporal Classification) Loss.

This op implements the CTC loss as presented in the article:

A. Graves, S. Fernandez, F. Gomez, J. Schmidhuber.
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks. ICML 2006, Pittsburgh, USA, pp. 369-376.

http://www.cs.toronto.edu/~graves/icml_2006.pdf

Input requirements:

sequence_length(b) <= time for all b

max(labels.indices(labels.indices[:, 1] == b, 2))
 <= sequence_length(b) for all b.

Notes:

This class performs the softmax operation for you, so inputs should
be e.g. linear projections of outputs by an LSTM.

The inputs Tensor’s innermost dimension size, num_classes, represents
num_labels + 1 classes, where num_labels is the number of true labels, and
the largest value (num_classes - 1) is reserved for the blank label.

For example, for a vocabulary containing 3 labels [a, b, c],
num_classes = 4 and the labels indexing is {a: 0, b: 1, c: 2, blank: 3}.

Regarding the arguments preprocess_collapse_repeated and
ctc_merge_repeated:

If preprocess_collapse_repeated is True, then a preprocessing step runs
before loss calculation, wherein repeated labels passed to the loss
are merged into single labels. This is useful if the training labels come
from, e.g., forced alignments and therefore have unnecessary repetitions.

If ctc_merge_repeated is set False, then deep within the CTC calculation,
repeated non-blank labels will not be merged and are interpreted
as individual labels. This is a simplified (non-standard) version of CTC.

Here is a table of the (roughly) expected first order behavior:

		preprocess_collapse_repeated=False, ctc_merge_repeated=True

Classical CTC behavior: Outputs true repeated classes with blanks in
between, and can also output repeated classes with no blanks in
between that need to be collapsed by the decoder.

		preprocess_collapse_repeated=True, ctc_merge_repeated=False

Never learns to output repeated classes, as they are collapsed
in the input labels before training.

		preprocess_collapse_repeated=False, ctc_merge_repeated=False

Outputs repeated classes with blanks in between, but generally does not
require the decoder to collapse/merge repeated classes.

		preprocess_collapse_repeated=True, ctc_merge_repeated=True

Untested. Very likely will not learn to output repeated classes.

Args:

		inputs: 3-D float Tensor.
If time_major == False, this will be a Tensor shaped:
[batch_size x max_time x num_classes].
If time_major == True (default), this will be a Tensor shaped:
[max_time x batch_size x num_classes].
The logits.

		labels: An int32 SparseTensor.
labels.indices[i, :] == [b, t] means labels.values[i] stores
the id for (batch b, time t).
labels.values[i] must take on values in [0, num_labels).
See core/ops/ctc_ops.cc for more details.

		sequence_length: 1-D int32 vector, size [batch_size].
The sequence lengths.

		preprocess_collapse_repeated: Boolean. Default: False.
If True, repeated labels are collapsed prior to the CTC calculation.

		ctc_merge_repeated: Boolean. Default: True.

		time_major: The shape format of the inputs Tensors.
If True, these Tensors must be shaped [max_time, batch_size, num_classes].
If False, these Tensors must be shaped [batch_size, max_time, num_classes].
Using time_major = True (default) is a bit more efficient because it avoids
transposes at the beginning of the ctc_loss calculation. However, most
TensorFlow data is batch-major, so by this function also accepts inputs
in batch-major form.

Returns:

A 1-D float Tensor, size [batch], containing the negative log probabilities.

Raises:

		TypeError: if labels is not a SparseTensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.nn.rnn_cell.RNNCell.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Abstract object representing an RNN cell.

The definition of cell in this package differs from the definition used in the
literature. In the literature, cell refers to an object with a single scalar
output. The definition in this package refers to a horizontal array of such
units.

An RNN cell, in the most abstract setting, is anything that has
a state and performs some operation that takes a matrix of inputs.
This operation results in an output matrix with self.output_size columns.
If self.state_size is an integer, this operation also results in a new
state matrix with self.state_size columns. If self.state_size is a
tuple of integers, then it results in a tuple of len(state_size) state
matrices, each with a column size corresponding to values in state_size.

This module provides a number of basic commonly used RNN cells, such as
LSTM (Long Short Term Memory) or GRU (Gated Recurrent Unit), and a number
of operators that allow add dropouts, projections, or embeddings for inputs.
Constructing multi-layer cells is supported by the class MultiRNNCell,
or by calling the rnn ops several times. Every RNNCell must have the
properties below and and implement __call__ with the following signature.

tf.nn.rnn_cell.RNNCell.__call__(inputs, state, scope=None) {#RNNCell.call}

Run this RNN cell on inputs, starting from the given state.

Args:

		inputs: 2-D tensor with shape [batch_size x input_size].

		state: if self.state_size is an integer, this should be a 2-D Tensor
with shape [batch_size x self.state_size]. Otherwise, if
self.state_size is a tuple of integers, this should be a tuple
with shapes [batch_size x s] for s in self.state_size.

		scope: VariableScope for the created subgraph; defaults to class name.

Returns:

A pair containing:

		Output: A 2-D tensor with shape [batch_size x self.output_size].

		New state: Either a single 2-D tensor, or a tuple of tensors matching
the arity and shapes of state.

tf.nn.rnn_cell.RNNCell.output_size {#RNNCell.output_size}

Integer or TensorShape: size of outputs produced by this cell.

tf.nn.rnn_cell.RNNCell.state_size {#RNNCell.state_size}

size(s) of state(s) used by this cell.

It can be represented by an Integer, a TensorShape or a tuple of Integers
or TensorShapes.

tf.nn.rnn_cell.RNNCell.zero_state(batch_size, dtype) {#RNNCell.zero_state}

Return zero-filled state tensor(s).

Args:

		batch_size: int, float, or unit Tensor representing the batch size.

		dtype: the data type to use for the state.

Returns:

If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.assert_greater_equal.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.assert_greater_equal(x, y, data=None, summarize=None, message=None, name=None) {#assert_greater_equal}

Assert the condition x >= y holds element-wise.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_greater_equal(x, y)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_greater_equal(x, y)], x)

This condition holds if for every pair of (possibly broadcast) elements
x[i], y[i], we have x[i] >= y[i].
If both x and y are empty, this is trivially satisfied.

Args:

		x: Numeric Tensor.

		y: Numeric Tensor, same dtype as and broadcastable to x.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x, y.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional). Defaults to
“assert_greater_equal”

Returns:

Op that raises InvalidArgumentError if x >= y is False.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 DirichletTensor is a StochasticTensor backed by the distribution Dirichlet.

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#DirichletTensor.init}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.clone(name=None, **dist_args) {#DirichletTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.distribution {#DirichletTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.dtype {#DirichletTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.entropy(name='entropy') {#DirichletTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.graph {#DirichletTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.input_dict {#DirichletTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.loss(final_loss, name='Loss') {#DirichletTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.mean(name='mean') {#DirichletTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.name {#DirichletTensor.name}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.value(name='value') {#DirichletTensor.value}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.value_type {#DirichletTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.device.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.device(device_name_or_function) {#device}

Wrapper for Graph.device() using the default graph.

See
Graph.device()
for more details.

Args:

		device_name_or_function: The device name or function to use in
the context.

Returns:

A context manager that specifies the default device to use for newly
created ops.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.distributions.WishartFull.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 The matrix Wishart distribution on positive definite matrices.

This distribution is defined by a scalar degrees of freedom df and a
symmetric, positive definite scale matrix.

Evaluation of the pdf, determinant, and sampling are all O(k^3) operations
where (k, k) is the event space shape.

Mathematical details.

The PDF of this distribution is,

f(X) = det(X)^(0.5 (df-k-1)) exp(-0.5 tr[inv(scale) X]) / B(scale, df)

where df >= k denotes the degrees of freedom, scale is a symmetric, pd,
k x k matrix, and the normalizing constant B(scale, df) is given by:

B(scale, df) = 2^(0.5 df k) |det(scale)|^(0.5 df) Gamma_k(0.5 df)

where Gamma_k is the multivariate Gamma function.

Examples

Initialize a single 3x3 Wishart with Full factored scale matrix and 5
degrees-of-freedom.(*)
df = 5
scale = ... # Shape is [3, 3]; positive definite.
dist = tf.contrib.distributions.WishartFull(df=df, scale=scale)

Evaluate this on an observation in R^3, returning a scalar.
x = ... # A 3x3 positive definite matrix.
dist.pdf(x) # Shape is [], a scalar.

Evaluate this on a two observations, each in R^{3x3}, returning a length two
Tensor.
x = [x0, x1] # Shape is [2, 3, 3].
dist.pdf(x) # Shape is [2].

Initialize two 3x3 Wisharts with Full factored scale matrices.
df = [5, 4]
scale = ... # Shape is [2, 3, 3].
dist = tf.contrib.distributions.WishartFull(df=df, scale=scale)

Evaluate this on four observations.
x = [[x0, x1], [x2, x3]] # Shape is [2, 2, 3, 3]; xi is positive definite.
dist.pdf(x) # Shape is [2, 2].

(*) - To efficiently create a trainable covariance matrix, see the example
in tf.contrib.distributions.matrix_diag_transform.

tf.contrib.distributions.WishartFull.__init__(df, scale, cholesky_input_output_matrices=False, validate_args=False, allow_nan_stats=True, name='WishartFull') {#WishartFull.init}

Construct Wishart distributions.

Args:

		df: float or double Tensor. Degrees of freedom, must be greater than
or equal to dimension of the scale matrix.

		scale: float or double Tensor. The symmetric positive definite
scale matrix of the distribution.

		cholesky_input_output_matrices: Boolean. Any function which whose input
or output is a matrix assumes the input is Cholesky and returns a
Cholesky factored matrix. Examplelog_pdf input takes a Cholesky and
sample_n returns a Cholesky when
cholesky_input_output_matrices=True.

		validate_args: Boolean, default False. Whether to validate input with
asserts. If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g., mean, mode) is undefined for any batch
member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name scope to give class member ops.

tf.contrib.distributions.WishartFull.allow_nan_stats {#WishartFull.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.WishartFull.batch_shape(name='batch_shape') {#WishartFull.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.WishartFull.cdf(value, name='cdf') {#WishartFull.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.WishartFull.cholesky_input_output_matrices {#WishartFull.cholesky_input_output_matrices}

Boolean indicating if Tensor input/outputs are Cholesky factorized.

tf.contrib.distributions.WishartFull.df {#WishartFull.df}

Wishart distribution degree(s) of freedom.

tf.contrib.distributions.WishartFull.dimension {#WishartFull.dimension}

Dimension of underlying vector space. The p in R^(p*p).

tf.contrib.distributions.WishartFull.dtype {#WishartFull.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.WishartFull.entropy(name='entropy') {#WishartFull.entropy}

Shanon entropy in nats.

tf.contrib.distributions.WishartFull.event_shape(name='event_shape') {#WishartFull.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.WishartFull.get_batch_shape() {#WishartFull.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.WishartFull.get_event_shape() {#WishartFull.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.WishartFull.is_continuous {#WishartFull.is_continuous}

tf.contrib.distributions.WishartFull.is_reparameterized {#WishartFull.is_reparameterized}

tf.contrib.distributions.WishartFull.log_cdf(value, name='log_cdf') {#WishartFull.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.WishartFull.log_normalizing_constant(name='log_normalizing_constant') {#WishartFull.log_normalizing_constant}

Computes the log normalizing constant, log(Z).

tf.contrib.distributions.WishartFull.log_pdf(value, name='log_pdf') {#WishartFull.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.WishartFull.log_pmf(value, name='log_pmf') {#WishartFull.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.WishartFull.log_prob(value, name='log_prob') {#WishartFull.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.WishartFull.log_survival_function(value, name='log_survival_function') {#WishartFull.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.WishartFull.mean(name='mean') {#WishartFull.mean}

Mean.

tf.contrib.distributions.WishartFull.mean_log_det(name='mean_log_det') {#WishartFull.mean_log_det}

Computes E[log(det(X))] under this Wishart distribution.

tf.contrib.distributions.WishartFull.mode(name='mode') {#WishartFull.mode}

Mode.

tf.contrib.distributions.WishartFull.name {#WishartFull.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.WishartFull.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#WishartFull.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.WishartFull.param_static_shapes(cls, sample_shape) {#WishartFull.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.WishartFull.parameters {#WishartFull.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.WishartFull.pdf(value, name='pdf') {#WishartFull.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.WishartFull.pmf(value, name='pmf') {#WishartFull.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.WishartFull.prob(value, name='prob') {#WishartFull.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.WishartFull.sample(sample_shape=(), seed=None, name='sample') {#WishartFull.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.WishartFull.sample_n(n, seed=None, name='sample_n') {#WishartFull.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.WishartFull.scale() {#WishartFull.scale}

Wishart distribution scale matrix.

tf.contrib.distributions.WishartFull.scale_operator_pd {#WishartFull.scale_operator_pd}

Wishart distribution scale matrix as an OperatorPD.

tf.contrib.distributions.WishartFull.std(name='std') {#WishartFull.std}

Standard deviation.

tf.contrib.distributions.WishartFull.survival_function(value, name='survival_function') {#WishartFull.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.WishartFull.validate_args {#WishartFull.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.WishartFull.variance(name='variance') {#WishartFull.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.cond.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.cond(pred, fn1, fn2, name=None) {#cond}

Return either fn1() or fn2() based on the boolean predicate pred.

fn1 and fn2 both return lists of output tensors. fn1 and fn2 must have
the same non-zero number and type of outputs.

Note that the conditional execution applies only to the operations defined in
fn1 and fn2. Consider the following simple program:

z = tf.mul(a, b)
result = tf.cond(x < y, lambda: tf.add(x, z), lambda: tf.square(y))

If x < y, the tf.add operation will be executed and tf.square
operation will not be executed. Since z is needed for at least one
branch of the cond, the tf.mul operation is always executed, unconditionally.
Although this behavior is consistent with the dataflow model of TensorFlow,
it has occasionally surprised some users who expected a lazier semantics.

Args:

		pred: A scalar determining whether to return the result of fn1 or fn2.

		fn1: The callable to be performed if pred is true.

		fn2: The callable to be performed if pref is false.

		name: Optional name prefix for the returned tensors.

Returns:

Tensors returned by the call to either fn1 or fn2. If the callables
return a singleton list, the element is extracted from the list.

Raises:

		TypeError: if fn1 or fn2 is not callable.

		ValueError: if fn1 and fn2 do not return the same number of tensors, or
return tensors of different types.

		Example:

 x = tf.constant(2)
 y = tf.constant(5)
 def f1(): return tf.mul(x, 17)
 def f2(): return tf.add(y, 23)
 r = cond(tf.less(x, y), f1, f2)
 # r is set to f1().
 # Operations in f2 (e.g., tf.add) are not executed.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.errors.UnknownError.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Unknown error.

An example of where this error may be returned is if a Status value
received from another address space belongs to an error-space that
is not known to this address space. Also errors raised by APIs that
do not return enough error information may be converted to this
error.

tf.errors.UnknownError.__init__(node_def, op, message, error_code=2) {#UnknownError.init}

Creates an UnknownError.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.train.add_queue_runner.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.add_queue_runner(qr, collection='queue_runners') {#add_queue_runner}

Adds a QueueRunner to a collection in the graph.

When building a complex model that uses many queues it is often difficult to
gather all the queue runners that need to be run. This convenience function
allows you to add a queue runner to a well known collection in the graph.

The companion method start_queue_runners() can be used to start threads for
all the collected queue runners.

Args:

		qr: A QueueRunner.

		collection: A GraphKey specifying the graph collection to add
the queue runner to. Defaults to GraphKeys.QUEUE_RUNNERS.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.pad.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.pad(tensor, paddings, mode='CONSTANT', name=None) {#pad}

Pads a tensor.

This operation pads a tensor according to the paddings you specify.
paddings is an integer tensor with shape [n, 2], where n is the rank of
tensor. For each dimension D of input, paddings[D, 0] indicates how
many values to add before the contents of tensor in that dimension, and
paddings[D, 1] indicates how many values to add after the contents of
tensor in that dimension. If mode is “REFLECT” then both paddings[D, 0]
and paddings[D, 1] must be no greater than tensor.dim_size(D) - 1. If
mode is “SYMMETRIC” then both paddings[D, 0] and paddings[D, 1] must be
no greater than tensor.dim_size(D).

The padded size of each dimension D of the output is:

paddings[D, 0] + tensor.dim_size(D) + paddings[D, 1]

For example:

't' is [[1, 2, 3], [4, 5, 6]].
'paddings' is [[1, 1,], [2, 2]].
rank of 't' is 2.
pad(t, paddings, "CONSTANT") ==> [[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 2, 3, 0, 0],
 [0, 0, 4, 5, 6, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]]

pad(t, paddings, "REFLECT") ==> [[6, 5, 4, 5, 6, 5, 4],
 [3, 2, 1, 2, 3, 2, 1],
 [6, 5, 4, 5, 6, 5, 4],
 [3, 2, 1, 2, 3, 2, 1]]

pad(t, paddings, "SYMMETRIC") ==> [[2, 1, 1, 2, 3, 3, 2],
 [2, 1, 1, 2, 3, 3, 2],
 [5, 4, 4, 5, 6, 6, 5],
 [5, 4, 4, 5, 6, 6, 5]]

Args:

		tensor: A Tensor.

		paddings: A Tensor of type int32.

		mode: One of “CONSTANT”, “REFLECT”, or “SYMMETRIC”.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as tensor.

Raises:

		ValueError: When mode is not one of “CONSTANT”, “REFLECT”, or “SYMMETRIC”.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.learn.extract_pandas_matrix.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.learn.extract_pandas_matrix(data) {#extract_pandas_matrix}

Extracts numpy matrix from pandas DataFrame.

Args:

		data: pandas.DataFrame containing the data to be extracted.

Returns:

A numpy ndarray of the DataFrame’s values.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.TensorArray.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Class wrapping dynamic-sized, per-time-step, write-once Tensor arrays.

This class is meant to be used with dynamic iteration primitives such as
while_loop and map_fn. It supports gradient back-propagation via special
“flow” control flow dependencies.

tf.TensorArray.handle {#TensorArray.handle}

The reference to the TensorArray.

tf.TensorArray.flow {#TensorArray.flow}

The flow Tensor forcing ops leading to this TensorArray state.

tf.TensorArray.read(index, name=None) {#TensorArray.read}

Read the value at location index in the TensorArray.

Args:

		index: 0-D. int32 tensor with the index to read from.

		name: A name for the operation (optional).

Returns:

The tensor at index index.

tf.TensorArray.gather(indices, name=None) {#TensorArray.gather}

Return selected values in the TensorArray as a packed Tensor.

All of selected values must have been written and their shapes
must all match.

Args:

		indices: A 1-D Tensor taking values in [0, max_value). If
the TensorArray is not dynamic, max_value=size().

		name: A name for the operation (optional).

Returns:

The in the TensorArray selected by indices, packed into one tensor.

tf.TensorArray.pack(name=None) {#TensorArray.pack}

Return the values in the TensorArray as a packed Tensor.

All of the values must have been written and their shapes must all match.

Args:

		name: A name for the operation (optional).

Returns:

All the tensors in the TensorArray packed into one tensor.

tf.TensorArray.concat(name=None) {#TensorArray.concat}

Return the values in the TensorArray as a concatenated Tensor.

All of the values must have been written, their ranks must match, and
and their shapes must all match for all dimensions except the first.

Args:

		name: A name for the operation (optional).

Returns:

All the tensors in the TensorArray concatenated into one tensor.

tf.TensorArray.write(index, value, name=None) {#TensorArray.write}

Write value into index index of the TensorArray.

Args:

		index: 0-D. int32 scalar with the index to write to.

		value: N-D. Tensor of type dtype. The Tensor to write to this index.

		name: A name for the operation (optional).

Returns:

A new TensorArray object with flow that ensures the write occurs.
Use this object all for subsequent operations.

Raises:

		ValueError: if there are more writers than specified.

tf.TensorArray.scatter(indices, value, name=None) {#TensorArray.scatter}

Scatter the values of a Tensor in specific indices of a TensorArray.

Args:

		indices: A 1-D Tensor taking values in [0, max_value). If
the TensorArray is not dynamic, max_value=size().

		value: (N+1)-D. Tensor of type dtype. The Tensor to unpack.

		name: A name for the operation (optional).

Returns:

A new TensorArray object with flow that ensures the scatter occurs.
Use this object all for subsequent operations.

Raises:

		ValueError: if the shape inference fails.

tf.TensorArray.unpack(value, name=None) {#TensorArray.unpack}

Pack the values of a Tensor in the TensorArray.

Args:

		value: (N+1)-D. Tensor of type dtype. The Tensor to unpack.

		name: A name for the operation (optional).

Returns:

A new TensorArray object with flow that ensures the unpack occurs.
Use this object all for subsequent operations.

Raises:

		ValueError: if the shape inference fails.

tf.TensorArray.split(value, lengths, name=None) {#TensorArray.split}

Split the values of a Tensor into the TensorArray.

Args:

		value: (N+1)-D. Tensor of type dtype. The Tensor to split.

		lengths: 1-D. int32 vector with the lengths to use when splitting
value along its first dimension.

		name: A name for the operation (optional).

Returns:

A new TensorArray object with flow that ensures the split occurs.
Use this object all for subsequent operations.

Raises:

		ValueError: if the shape inference fails.

tf.TensorArray.grad(source, flow=None, name=None) {#TensorArray.grad}

Other Methods

tf.TensorArray.__init__(dtype, size=None, dynamic_size=None, clear_after_read=None, tensor_array_name=None, handle=None, flow=None, infer_shape=True, name=None) {#TensorArray.init}

Construct a new TensorArray or wrap an existing TensorArray handle.

A note about the parameter name:

The name of the TensorArray (even if passed in) is uniquified: each time
a new TensorArray is created at runtime it is assigned its own name for
the duration of the run. This avoids name collisions if a TensorArray
is created within a while_loop.

Args:

		dtype: (required) data type of the TensorArray.

		size: (optional) int32 scalar Tensor: the size of the TensorArray.
Required if handle is not provided.

		dynamic_size: (optional) Python bool: If true, writes to the TensorArray
can grow the TensorArray past its initial size. Default: False.

		clear_after_read: Boolean (optional, default: True). If True, clear
TensorArray values after reading them. This disables read-many
semantics, but allows early release of memory.

		tensor_array_name: (optional) Python string: the name of the TensorArray.
This is used when creating the TensorArray handle. If this value is
set, handle should be None.

		handle: (optional) A Tensor handle to an existing TensorArray. If this
is set, tensor_array_name should be None.

		flow: (optional) A float Tensor scalar coming from an existing
TensorArray.flow.

		infer_shape: (optional, default: True) If True, shape inference
is enabled. In this case, all elements must have the same shape.

		name: A name for the operation (optional).

Raises:

		ValueError: if both handle and tensor_array_name are provided.

		TypeError: if handle is provided but is not a Tensor.

tf.TensorArray.close(name=None) {#TensorArray.close}

Close the current TensorArray.

tf.TensorArray.dtype {#TensorArray.dtype}

The data type of this TensorArray.

tf.TensorArray.size(name=None) {#TensorArray.size}

Return the size of the TensorArray.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.learn.TensorFlowRNNClassifier.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 TensorFlow RNN Classifier model.

tf.contrib.learn.TensorFlowRNNClassifier.__init__(rnn_size, n_classes, cell_type='gru', num_layers=1, input_op_fn=null_input_op_fn, initial_state=None, bidirectional=False, sequence_length=None, attn_length=None, attn_size=None, attn_vec_size=None, batch_size=32, steps=50, optimizer='Adagrad', learning_rate=0.1, class_weight=None, clip_gradients=5.0, continue_training=False, config=None, verbose=1) {#TensorFlowRNNClassifier.init}

Initializes a TensorFlowRNNClassifier instance.

Args:

		rnn_size: The size for rnn cell, e.g. size of your word embeddings.

		cell_type: The type of rnn cell, including rnn, gru, and lstm.

		num_layers: The number of layers of the rnn model.

		input_op_fn: Function that will transform the input tensor, such as
creating word embeddings, byte list, etc. This takes
an argument x for input and returns transformed x.

		bidirectional: boolean, Whether this is a bidirectional rnn.

		sequence_length: If sequence_length is provided, dynamic calculation
is performed. This saves computational time when unrolling past max
sequence length.

		initial_state: An initial state for the RNN. This must be a tensor of
appropriate type and shape [batch_size x cell.state_size].

		attn_length: integer, the size of attention vector attached to rnn cells.

		attn_size: integer, the size of an attention window attached to rnn cells.

		attn_vec_size: integer, the number of convolutional features calculated on
attention state and the size of the hidden layer built from base cell state.

		n_classes: Number of classes in the target.

		batch_size: Mini batch size.

		steps: Number of steps to run over data.

		optimizer: Optimizer name (or class), for example “SGD”, “Adam”,
“Adagrad”.

		learning_rate: If this is constant float value, no decay function is
used. Instead, a customized decay function can be passed that accepts
global_step as parameter and returns a Tensor.
e.g. exponential decay function:

def exp_decay(global_step):
 return tf.train.exponential_decay(
 learning_rate=0.1, global_step,
 decay_steps=2, decay_rate=0.001)

		class_weight: None or list of n_classes floats. Weight associated with
classes for loss computation. If not given, all classes are
supposed to have weight one.

		continue_training: when continue_training is True, once initialized
model will be continuely trained on every call of fit.

		config: RunConfig object that controls the configurations of the session,
e.g. num_cores, gpu_memory_fraction, etc.

tf.contrib.learn.TensorFlowRNNClassifier.__repr__() {#TensorFlowRNNClassifier.repr}

tf.contrib.learn.TensorFlowRNNClassifier.bias_ {#TensorFlowRNNClassifier.bias_}

Returns bias of the rnn layer.

tf.contrib.learn.TensorFlowRNNClassifier.config {#TensorFlowRNNClassifier.config}

tf.contrib.learn.TensorFlowRNNClassifier.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) {#TensorFlowRNNClassifier.evaluate}

Evaluates given model with provided evaluation data.

See superclass Estimator for more details.

Args:

		x: features.

		y: targets.

		input_fn: Input function.

		feed_fn: Function creating a feed dict every time it is called.

		batch_size: minibatch size to use on the input.

		steps: Number of steps for which to evaluate model.

		metrics: Dict of metric ops to run. If None, the default metrics are used.

		name: Name of the evaluation.

Returns:

Returns dict with evaluation results.

tf.contrib.learn.TensorFlowRNNClassifier.export(*args, **kwargs) {#TensorFlowRNNClassifier.export}

Exports inference graph into given dir. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23.
Instructions for updating:
The signature of the input_fn accepted by export is changing to be consistent with what’s used by tf.Learn Estimator’s train/evaluate. input_fn and input_feature_key will become required args, and use_deprecated_input_fn will default to False and be removed altogether.

Args:
 export_dir: A string containing a directory to write the exported graph
 and checkpoints.
 input_fn: If `use_deprecated_input_fn` is true, then a function that given
 `Tensor` of `Example` strings, parses it into features that are then
 passed to the model. Otherwise, a function that takes no argument and
 returns a tuple of (features, targets), where features is a dict of
 string key to `Tensor` and targets is a `Tensor` that's currently not
 used (and so can be `None`).
 input_feature_key: Only used if `use_deprecated_input_fn` is false. String
 key into the features dict returned by `input_fn` that corresponds toa
 the raw `Example` strings `Tensor` that the exported model will take as
 input.
 use_deprecated_input_fn: Determines the signature format of `input_fn`.
 signature_fn: Function that returns a default signature and a named
 signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s
 for features and `Tensor` or `dict` of `Tensor`s for predictions.
 prediction_key: The key for a tensor in the `predictions` dict (output
 from the `model_fn`) to use as the `predictions` input to the
 `signature_fn`. Optional. If `None`, predictions will pass to
 `signature_fn` without filtering.
 default_batch_size: Default batch size of the `Example` placeholder.
 exports_to_keep: Number of exports to keep.

Returns:
 The string path to the exported directory. NB: this functionality was
 added ca. 2016/09/25; clients that depend on the return value may need
 to handle the case where this function returns None because subclasses
 are not returning a value.

tf.contrib.learn.TensorFlowRNNClassifier.fit(x, y, steps=None, monitors=None, logdir=None) {#TensorFlowRNNClassifier.fit}

Neural network model from provided model_fn and training data.

Note: called first time constructs the graph and initializers
variables. Consecutives times it will continue training the same model.
This logic follows partial_fit() interface in scikit-learn.
To restart learning, create new estimator.

Args:

		x: matrix or tensor of shape [n_samples, n_features...]. Can be
iterator that returns arrays of features. The training input
samples for fitting the model.

		y: vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of targets. The training target values
(class labels in classification, real numbers in regression).

		steps: int, number of steps to train.
If None or 0, train for self.steps.

		monitors: List of BaseMonitor objects to print training progress and
invoke early stopping.

		logdir: the directory to save the log file that can be used for
optional visualization.

Returns:

Returns self.

tf.contrib.learn.TensorFlowRNNClassifier.get_params(deep=True) {#TensorFlowRNNClassifier.get_params}

Get parameters for this estimator.

Args:

		deep: boolean, optional

If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns:

params : mapping of string to any
Parameter names mapped to their values.

tf.contrib.learn.TensorFlowRNNClassifier.get_tensor(name) {#TensorFlowRNNClassifier.get_tensor}

Returns tensor by name.

Args:

		name: string, name of the tensor.

Returns:

Tensor.

tf.contrib.learn.TensorFlowRNNClassifier.get_variable_names() {#TensorFlowRNNClassifier.get_variable_names}

Returns list of all variable names in this model.

Returns:

List of names.

tf.contrib.learn.TensorFlowRNNClassifier.get_variable_value(name) {#TensorFlowRNNClassifier.get_variable_value}

Returns value of the variable given by name.

Args:

		name: string, name of the tensor.

Returns:

Numpy array - value of the tensor.

tf.contrib.learn.TensorFlowRNNClassifier.model_dir {#TensorFlowRNNClassifier.model_dir}

tf.contrib.learn.TensorFlowRNNClassifier.partial_fit(x, y) {#TensorFlowRNNClassifier.partial_fit}

Incremental fit on a batch of samples.

This method is expected to be called several times consecutively
on different or the same chunks of the dataset. This either can
implement iterative training or out-of-core/online training.
This is especially useful when the whole dataset is too big to
fit in memory at the same time. Or when model is taking long time
to converge, and you want to split up training into subparts.

Args:

		x: matrix or tensor of shape [n_samples, n_features...]. Can be
iterator that returns arrays of features. The training input
samples for fitting the model.

		y: vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of targets. The training target values
(class label in classification, real numbers in regression).

Returns:

Returns self.

tf.contrib.learn.TensorFlowRNNClassifier.predict(x, axis=1, batch_size=None) {#TensorFlowRNNClassifier.predict}

Predict class or regression for x.

For a classification model, the predicted class for each sample in x is
returned. For a regression model, the predicted value based on x is
returned.

Args:

		x: array-like matrix, [n_samples, n_features...] or iterator.

		axis: Which axis to argmax for classification.
By default axis 1 (next after batch) is used.
Use 2 for sequence predictions.

		batch_size: If test set is too big, use batch size to split
it into mini batches. By default the batch_size member
variable is used.

Returns:

		y: array of shape [n_samples]. The predicted classes or predicted
value.

tf.contrib.learn.TensorFlowRNNClassifier.predict_proba(x, batch_size=None) {#TensorFlowRNNClassifier.predict_proba}

Predict class probability of the input samples x.

Args:

		x: array-like matrix, [n_samples, n_features...] or iterator.

		batch_size: If test set is too big, use batch size to split
it into mini batches. By default the batch_size member variable is used.

Returns:

		y: array of shape [n_samples, n_classes]. The predicted
probabilities for each class.

tf.contrib.learn.TensorFlowRNNClassifier.restore(cls, path, config=None) {#TensorFlowRNNClassifier.restore}

Restores model from give path.

Args:

		path: Path to the checkpoints and other model information.

		config: RunConfig object that controls the configurations of the session,
e.g. num_cores, gpu_memory_fraction, etc. This is allowed to be
reconfigured.

Returns:

Estimator, object of the subclass of TensorFlowEstimator.

Raises:

		ValueError: if path does not contain a model definition.

tf.contrib.learn.TensorFlowRNNClassifier.save(path) {#TensorFlowRNNClassifier.save}

Saves checkpoints and graph to given path.

Args:

		path: Folder to save model to.

tf.contrib.learn.TensorFlowRNNClassifier.set_params(**params) {#TensorFlowRNNClassifier.set_params}

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.

Args:

		**params: Parameters.

Returns:

self

Raises:

		ValueError: If params contain invalid names.

tf.contrib.learn.TensorFlowRNNClassifier.weights_ {#TensorFlowRNNClassifier.weights_}

Returns weights of the rnn layer.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.losses.get_losses.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.losses.get_losses(scope=None, loss_collection='losses') {#get_losses}

Gets the list of losses from the loss_collection.

Args:

		scope: an optional scope for filtering the losses to return.

		loss_collection: Optional losses collection.

Returns:

a list of loss tensors.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.audio_summary.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.audio_summary(tag, tensor, sample_rate, max_outputs=3, collections=None, name=None) {#audio_summary}

Outputs a Summary protocol buffer with audio.

The summary has up to max_outputs summary values containing audio. The
audio is built from tensor which must be 3-D with shape [batch_size, frames, channels] or 2-D with shape [batch_size, frames]. The values are
assumed to be in the range of [-1.0, 1.0] with a sample rate of
sample_rate.

The tag argument is a scalar Tensor of type string. It is used to
build the tag of the summary values:

		If max_outputs is 1, the summary value tag is ‘tag/audio’.

		If max_outputs is greater than 1, the summary value tags are
generated sequentially as ‘tag/audio/0’, ‘tag/audio/1’, etc.

Args:

		tag: A scalar Tensor of type string. Used to build the tag
of the summary values.

		tensor: A 3-D float32 Tensor of shape [batch_size, frames, channels]
or a 2-D float32 Tensor of shape [batch_size, frames].

		sample_rate: The sample rate of the signal in hertz.

		max_outputs: Max number of batch elements to generate audio for.

		collections: Optional list of ops.GraphKeys. The collections to add the
summary to. Defaults to [ops.GraphKeys.SUMMARIES]

		name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized Summary protocol
buffer.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.sqrt.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sqrt(x, name=None) {#sqrt}

Computes square root of x element-wise.

I.e., (y = \sqrt{x} = x^{1/2}).

Args:

		x: A Tensor or SparseTensor. Must be one of the following types: half,
float32, float64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor, respectively. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.graph_editor.get_generating_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.get_generating_ops(ts) {#get_generating_ops}

Return all the generating ops of the tensors in ts.

Args:

		ts: a list of tf.Tensor

Returns:

A list of all the generating tf.Operation of the tensors in ts.

Raises:

		TypeError: if ts cannot be converted to a list of tf.Tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.errors.InvalidArgumentError.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Raised when an operation receives an invalid argument.

This may occur, for example, if an operation is receives an input
tensor that has an invalid value or shape. For example, the
tf.matmul() op will raise this
error if it receives an input that is not a matrix, and the
tf.reshape() op will raise
this error if the new shape does not match the number of elements in the input
tensor.

tf.errors.InvalidArgumentError.__init__(node_def, op, message) {#InvalidArgumentError.init}

Creates an InvalidArgumentError.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.mod.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.mod(x, y, name=None) {#mod}

Returns element-wise remainder of division.

NOTE: Mod supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: int32, int64, float32, float64.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.graph_editor.connect.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.connect(sgv0, sgv1, disconnect_first=False) {#connect}

Connect the outputs of sgv0 to the inputs of sgv1.

Args:

		sgv0: the first subgraph to have its outputs swapped. This argument is
converted to a subgraph using the same rules as the function
subgraph.make_view.
Note that sgv0 is modified in place.

		sgv1: the second subgraph to have its outputs swapped. This argument is
converted to a subgraph using the same rules as the function
subgraph.make_view.
Note that sgv1 is modified in place.

		disconnect_first: if True the current outputs of sgv0 are disconnected.

Returns:

A tuple (sgv0, sgv1) of the now connected subgraphs.

Raises:

		StandardError: if sgv0 or sgv1 cannot be converted to a SubGraphView using
the same rules than the function subgraph.make_view.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.VariableScope.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Variable scope object to carry defaults to provide to get_variable.

Many of the arguments we need for get_variable in a variable store are most
easily handled with a context. This object is used for the defaults.

Attributes:
name: name of the current scope, used as prefix in get_variable.
initializer: default initializer passed to get_variable.
regularizer: default regularizer passed to get_variable.
reuse: Boolean or None, setting the reuse in get_variable.
caching_device: string, callable, or None: the caching device passed to
get_variable.
partitioner: callable or None: the partitioner passed to get_variable.
custom_getter: default custom getter passed to get_variable.
name_scope: The name passed to tf.name_scope.
dtype: default type passed to get_variable (defaults to DT_FLOAT).

tf.VariableScope.__init__(reuse, name='', initializer=None, regularizer=None, caching_device=None, partitioner=None, custom_getter=None, name_scope='', dtype=tf.float32) {#VariableScope.init}

Creates a new VariableScope with the given properties.

tf.VariableScope.caching_device {#VariableScope.caching_device}

tf.VariableScope.custom_getter {#VariableScope.custom_getter}

tf.VariableScope.dtype {#VariableScope.dtype}

tf.VariableScope.get_variable(var_store, name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True, collections=None, caching_device=None, partitioner=None, validate_shape=True, custom_getter=None) {#VariableScope.get_variable}

Gets an existing variable with this name or create a new one.

tf.VariableScope.initializer {#VariableScope.initializer}

tf.VariableScope.name {#VariableScope.name}

tf.VariableScope.original_name_scope {#VariableScope.original_name_scope}

tf.VariableScope.partitioner {#VariableScope.partitioner}

tf.VariableScope.regularizer {#VariableScope.regularizer}

tf.VariableScope.reuse {#VariableScope.reuse}

tf.VariableScope.reuse_variables() {#VariableScope.reuse_variables}

Reuse variables in this scope.

tf.VariableScope.set_caching_device(caching_device) {#VariableScope.set_caching_device}

Set caching_device for this scope.

tf.VariableScope.set_custom_getter(custom_getter) {#VariableScope.set_custom_getter}

Set custom getter for this scope.

tf.VariableScope.set_dtype(dtype) {#VariableScope.set_dtype}

Set data type for this scope.

tf.VariableScope.set_initializer(initializer) {#VariableScope.set_initializer}

Set initializer for this scope.

tf.VariableScope.set_partitioner(partitioner) {#VariableScope.set_partitioner}

Set partitioner for this scope.

tf.VariableScope.set_regularizer(regularizer) {#VariableScope.set_regularizer}

Set regularizer for this scope.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.scan.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.scan(fn, elems, initializer=None, parallel_iterations=10, back_prop=True, swap_memory=False, infer_shape=True, name=None) {#scan}

scan on the list of tensors unpacked from elems on dimension 0.

The simplest version of scan repeatedly applies the callable fn to a
sequence of elements from first to last. The elements are made of the tensors
unpacked from elems on dimension 0. The callable fn takes two tensors as
arguments. The first argument is the accumulated value computed from the
preceding invocation of fn. If initializer is None, elems must contain
at least one element, and its first element is used as the initializer.

Suppose that elems is unpacked into values, a list of tensors. The shape
of the result tensor is [len(values)] + fn(initializer, values[0]).shape.

This method also allows multi-arity elems and accumulator. If elems
is a (possibly nested) list or tuple of tensors, then each of these tensors
must have a matching first (unpack) dimension. The second argument of
fn must match the structure of elems.

If no initializer is provided, the output structure and dtypes of fn
are assumed to be the same as its input; and in this case, the first
argument of fn must match the structure of elems.

If an initializer is provided, then the output of fn must have the same
structure as initializer; and the first argument of fn must match
this structure.

For example, if elems is (t1, [t2, t3]) and initializer is
[i1, i2] then an appropriate signature for fn in python2 is:
fn = lambda (acc_p1, acc_p2), (t1 [t2, t3]): and fn must return a list,
[acc_n1, acc_n2]. An alternative correct signature for fn, and the
one that works in python3, is:
fn = lambda a, t:, where a and t correspond to the input tuples.

Args:

		fn: The callable to be performed. It accepts two arguments. The first
will have the same (possibly nested) structure as elems. The second
will have the same structure as initializer if one is provided,
otherwise it will have the same structure as elems. Its output
must have the same structure as initializer if one is provided,
otherwise it must have the same structure as elems.

		elems: A tensor or (possibly nested) sequence of tensors, each of which
will be unpacked along their first dimension. The nested sequence
of the resulting slices will be the first argument to fn.

		initializer: (optional) A tensor or (possibly nested) sequence of tensors,
initial value for the accumulator, and the expected output type of fn.

		parallel_iterations: (optional) The number of iterations allowed to run
in parallel.

		back_prop: (optional) True enables support for back propagation.

		swap_memory: (optional) True enables GPU-CPU memory swapping.

		infer_shape: (optional) False disables tests for consistent output shapes.

		name: (optional) Name prefix for the returned tensors.

Returns:

A tensor or (possibly nested) sequence of tensors. Each tensor packs the
results of applying fn to tensors unpacked from elems along the first
dimension, and the previous accumulator value(s), from first to last.

Raises:

		TypeError: if fn is not callable or the structure of the output of
fn and initializer do not match.

		ValueError: if the lengths of the output of fn and initializer
do not match.

Examples:

elems = np.array([1, 2, 3, 4, 5, 6])
sum = scan(lambda a, x: a + x, elems)
sum == [1, 3, 6, 10, 15, 21]

elems = np.array([1, 2, 3, 4, 5, 6])
initializer = np.array(0)
sum_one = scan(
 lambda a, x: x[0] - x[1] + a, (elems + 1, elems), initializer)
sum_one == [1, 2, 3, 4, 5, 6]

elems = np.array([1, 0, 0, 0, 0, 0])
initializer = (np.array(0), np.array(1))
fibonaccis = scan(lambda a, _: (a[1], a[0] + a[1]), elems, initializer)
fibonaccis == ([1, 1, 2, 3, 5, 8], [1, 2, 3, 5, 8, 13])

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.reshape.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.reshape(tensor, shape, name=None) {#reshape}

Reshapes a tensor.

Given tensor, this operation returns a tensor that has the same values
as tensor with shape shape.

If one component of shape is the special value -1, the size of that dimension
is computed so that the total size remains constant. In particular, a shape
of [-1] flattens into 1-D. At most one component of shape can be -1.

If shape is 1-D or higher, then the operation returns a tensor with shape
shape filled with the values of tensor. In this case, the number of elements
implied by shape must be the same as the number of elements in tensor.

For example:

tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9]
tensor 't' has shape [9]
reshape(t, [3, 3]) ==> [[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]]

tensor 't' is [[[1, 1], [2, 2]],
[[3, 3], [4, 4]]]
tensor 't' has shape [2, 2, 2]
reshape(t, [2, 4]) ==> [[1, 1, 2, 2],
 [3, 3, 4, 4]]

tensor 't' is [[[1, 1, 1],
[2, 2, 2]],
[[3, 3, 3],
[4, 4, 4]],
[[5, 5, 5],
[6, 6, 6]]]
tensor 't' has shape [3, 2, 3]
pass '[-1]' to flatten 't'
reshape(t, [-1]) ==> [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6]

-1 can also be used to infer the shape

-1 is inferred to be 9:
reshape(t, [2, -1]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],
 [4, 4, 4, 5, 5, 5, 6, 6, 6]]
-1 is inferred to be 2:
reshape(t, [-1, 9]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],
 [4, 4, 4, 5, 5, 5, 6, 6, 6]]
-1 is inferred to be 3:
reshape(t, [2, -1, 3]) ==> [[[1, 1, 1],
 [2, 2, 2],
 [3, 3, 3]],
 [[4, 4, 4],
 [5, 5, 5],
 [6, 6, 6]]]

tensor 't' is [7]
shape `[]` reshapes to a scalar
reshape(t, []) ==> 7

Args:

		tensor: A Tensor.

		shape: A Tensor. Must be one of the following types: int32, int64.
Defines the shape of the output tensor.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.learn.monitors.LoggingTrainable.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Writes trainable variable values into log every N steps.

Write the tensors in trainable variables every_n steps,
starting with the first_nth step.

tf.contrib.learn.monitors.LoggingTrainable.__init__(scope=None, every_n=100, first_n=1) {#LoggingTrainable.init}

Initializes LoggingTrainable monitor.

Args:

		scope: An optional string to match variable names using re.match.

		every_n: Print every N steps.

		first_n: Print first N steps.

tf.contrib.learn.monitors.LoggingTrainable.begin(max_steps=None) {#LoggingTrainable.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.LoggingTrainable.end(session=None) {#LoggingTrainable.end}

tf.contrib.learn.monitors.LoggingTrainable.epoch_begin(epoch) {#LoggingTrainable.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.LoggingTrainable.epoch_end(epoch) {#LoggingTrainable.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.LoggingTrainable.every_n_post_step(step, session) {#LoggingTrainable.every_n_post_step}

Callback after a step is finished or end() is called.

Args:

		step: int, the current value of the global step.

		session: Session object.

tf.contrib.learn.monitors.LoggingTrainable.every_n_step_begin(step) {#LoggingTrainable.every_n_step_begin}

tf.contrib.learn.monitors.LoggingTrainable.every_n_step_end(step, outputs) {#LoggingTrainable.every_n_step_end}

tf.contrib.learn.monitors.LoggingTrainable.post_step(step, session) {#LoggingTrainable.post_step}

tf.contrib.learn.monitors.LoggingTrainable.run_on_all_workers {#LoggingTrainable.run_on_all_workers}

tf.contrib.learn.monitors.LoggingTrainable.set_estimator(estimator) {#LoggingTrainable.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.LoggingTrainable.step_begin(step) {#LoggingTrainable.step_begin}

Overrides BaseMonitor.step_begin.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

Returns:

A list, the result of every_n_step_begin, if that was called this step,
or an empty list otherwise.

Raises:

		ValueError: if called more than once during a step.

tf.contrib.learn.monitors.LoggingTrainable.step_end(step, output) {#LoggingTrainable.step_end}

Overrides BaseMonitor.step_end.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool, the result of every_n_step_end, if that was called this step,
or False otherwise.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.ReaderBase.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Base class for different Reader types, that produce a record every step.

Conceptually, Readers convert string ‘work units’ into records (key,
value pairs). Typically the ‘work units’ are filenames and the
records are extracted from the contents of those files. We want a
single record produced per step, but a work unit can correspond to
many records.

Therefore we introduce some decoupling using a queue. The queue
contains the work units and the Reader dequeues from the queue when
it is asked to produce a record (via Read()) but it has finished the
last work unit.

tf.ReaderBase.__init__(reader_ref, supports_serialize=False) {#ReaderBase.init}

Creates a new ReaderBase.

Args:

		reader_ref: The operation that implements the reader.

		supports_serialize: True if the reader implementation can
serialize its state.

tf.ReaderBase.num_records_produced(name=None) {#ReaderBase.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.ReaderBase.num_work_units_completed(name=None) {#ReaderBase.num_work_units_completed}

Returns the number of work units this reader has finished processing.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.ReaderBase.read(queue, name=None) {#ReaderBase.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

		key: A string scalar Tensor.

		value: A string scalar Tensor.

tf.ReaderBase.read_up_to(queue, num_records, name=None) {#ReaderBase.read_up_to}

Returns up to num_records (key, value pairs) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g., when the
Reader needs to start reading from a new file since it has
finished with the previous file).
It may return less than num_records even before the last batch.

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		num_records: Number of records to read.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (keys, values).

		keys: A 1-D string Tensor.

		values: A 1-D string Tensor.

tf.ReaderBase.reader_ref {#ReaderBase.reader_ref}

Op that implements the reader.

tf.ReaderBase.reset(name=None) {#ReaderBase.reset}

Restore a reader to its initial clean state.

Args:

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.ReaderBase.restore_state(state, name=None) {#ReaderBase.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

		state: A string Tensor.
Result of a SerializeState of a Reader with matching type.

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.ReaderBase.serialize_state(name=None) {#ReaderBase.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

		name: A name for the operation (optional).

Returns:

A string Tensor.

tf.ReaderBase.supports_serialize {#ReaderBase.supports_serialize}

Whether the Reader implementation can serialize its state.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.get_variable.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.get_variable(name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True, collections=None, caching_device=None, partitioner=None, validate_shape=True, custom_getter=None) {#get_variable}

Gets an existing variable with these parameters or create a new one.

This function prefixes the name with the current variable scope
and performs reuse checks. See the
Variable Scope How To
for an extensive description of how reusing works. Here is a basic example:

with tf.variable_scope("foo"):
 v = tf.get_variable("v", [1]) # v.name == "foo/v:0"
 w = tf.get_variable("w", [1]) # w.name == "foo/w:0"
with tf.variable_scope("foo", reuse=True)
 v1 = tf.get_variable("v") # The same as v above.

If initializer is None (the default), the default initializer passed in
the variable scope will be used. If that one is None too, a
uniform_unit_scaling_initializer will be used. The initializer can also be
a Tensor, in which case the variable is initialized to this value and shape.

Similarly, if the regularizer is None (the default), the default regularizer
passed in the variable scope will be used (if that is None too,
then by default no regularization is performed).

If a partitioner is provided, first a sharded Variable is created
via _get_partitioned_variable, and the return value is a
Tensor composed of the shards concatenated along the partition axis.

Some useful partitioners are available. See, e.g.,
variable_axis_size_partitioner and min_max_variable_partitioner.

Args:

		name: The name of the new or existing variable.

		shape: Shape of the new or existing variable.

		dtype: Type of the new or existing variable (defaults to DT_FLOAT).

		initializer: Initializer for the variable if one is created.

		regularizer: A (Tensor -> Tensor or None) function; the result of
applying it on a newly created variable will be added to the collection
GraphKeys.REGULARIZATION_LOSSES and can be used for regularization.

		trainable: If True also add the variable to the graph collection
GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

		collections: List of graph collections keys to add the Variable to.
Defaults to [GraphKeys.VARIABLES] (see tf.Variable).

		caching_device: Optional device string or function describing where the
Variable should be cached for reading. Defaults to the Variable’s
device. If not None, caches on another device. Typical use is to
cache on the device where the Ops using the Variable reside, to
deduplicate copying through Switch and other conditional statements.

		partitioner: Optional callable that accepts a fully defined TensorShape
and dtype of the Variable to be created, and returns a list of
partitions for each axis (currently only one axis can be partitioned).

		validate_shape: If False, allows the variable to be initialized with a
value of unknown shape. If True, the default, the shape of initial_value
must be known.

		custom_getter: Callable that takes as a first argument the true getter, and
allows overwriting the internal get_variable method.
The signature of custom_getter should match that of this method,
but the most future-proof version will allow for changes:
def custom_getter(getter, *args, **kwargs). Direct access to
all get_variable parameters is also allowed:
def custom_getter(getter, name, *args, **kwargs). A simple identity
custom getter that simply creates variables with modified names is:

def custom_getter(getter, name, *args, **kwargs):
 return getter(name + '_suffix', *args, **kwargs)

Returns:

The created or existing variable.

Raises:

		ValueError: when creating a new variable and shape is not declared,
when violating reuse during variable creation, or when initializer dtype
and dtype don’t match. Reuse is set inside variable_scope.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.get_session_handle.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.get_session_handle(data, name=None) {#get_session_handle}

Return the handle of data.

This is EXPERIMENTAL and subject to change.

Keep data “in-place” in the runtime and create a handle that can be
used to retrieve data in a subsequent run().

Combined with get_session_tensor, we can keep a tensor produced in
one run call in place, and use it as the input in a future run call.

Args:

		data: A tensor to be stored in the session.

		name: Optional name prefix for the return tensor.

Returns:

A scalar string tensor representing a unique handle for data.

Raises:

		TypeError: if data is not a Tensor.

		Example:

c = tf.mul(a, b)
h = tf.get_session_handle(c)
h = sess.run(h)

p, a = tf.get_session_tensor(h.handle, tf.float32)
b = tf.mul(a, 10)
c = sess.run(b, feed_dict={p: h.handle})

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.ones.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.ones(shape, dtype=tf.float32, name=None) {#ones}

Creates a tensor with all elements set to 1.

This operation returns a tensor of type dtype with shape shape and all
elements set to 1.

For example:

tf.ones([2, 3], tf.int32) ==> [[1, 1, 1], [1, 1, 1]]

Args:

		shape: Either a list of integers, or a 1-D Tensor of type int32.

		dtype: The type of an element in the resulting Tensor.

		name: A name for the operation (optional).

Returns:

A Tensor with all elements set to 1.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.errors.DataLossError.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Raised when unrecoverable data loss or corruption is encountered.

For example, this may be raised by running a
tf.WholeFileReader.read()
operation, if the file is truncated while it is being read.

tf.errors.DataLossError.__init__(node_def, op, message) {#DataLossError.init}

Creates a DataLossError.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.training.SequenceQueueingStateSaver.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 SequenceQueueingStateSaver provides access to stateful values from input.

This class is meant to be used instead of, e.g., a Queue, for splitting
variable-length sequence inputs into segments of sequences with fixed length
and batching them into mini-batches. It maintains contexts and state for a
sequence across the segments. It can be used in conjunction with a
QueueRunner (see the example below).

The SequenceQueueingStateSaver (SQSS) accepts one example at a time via the
inputs input_length, input_key, input_sequences (a dict),
input_context (a dict), and initial_states (a dict).
The sequences, values in input_sequences, may have variable first dimension
(the padded_length), though this dimension must always be a multiple of
num_unroll. All other dimensions must be fixed and accessible via
get_shape calls. The length prior to padding can be recorded in
input_length. The context values in input_context must all have fixed and
well defined dimensions. The initial state values must all have fixed and
well defined dimensions.

The SQSS splits the sequences of an input example into segments of length
num_unroll. Across examples minibatches of size batch_size are formed.
These minibatches contain a segment of the sequences, copy the context values,
and maintain state, length, and key information of the original input
examples. In the first segment of an example the state is still the initial
state. It can then be updated; and updated state values are accessible in
subsequent segments of the same example. After each segment
batch.save_state() must be called which is done by the state_saving_rnn.
Without this call, the dequeue op associated with the SQSS will not run.
Internally, SQSS has a queue for the input examples. Its capacity is
configurable. If set smaller than batch_size then the dequeue op will block
indefinitely. A small multiple of batch_size is a good rule of thumb to
prevent that queue from becoming a bottleneck and slowing down training.
If set too large (and note that it defaults to unbounded) memory consumption
goes up. Moreover, when iterating over the same input examples multiple times
reusing the same key the capacity must be smaller than the number of
examples.

The prefetcher, which reads one unrolled, variable-length input sequence at
a time, is accessible via prefetch_op. The underlying Barrier object
is accessible via barrier. Processed minibatches, as well as
state read and write capabilities are accessible via next_batch.
Specifically, next_batch provides access to all of the minibatched
data, including the following, see NextQueuedSequenceBatch for details:

		total_length, length, insertion_index, key, next_key,

		sequence (the index each minibatch entry’s time segment index),

		sequence_count (the total time segment count for each minibatch entry),

		context (a dict of the copied minibatched context values),

		sequences (a dict of the split minibatched variable-length sequences),

		state (to access the states of the current segments of these entries)

		save_state (to save the states for the next segments of these entries)

Example usage:

batch_size = 32
num_unroll = 20
lstm_size = 8
cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=lstm_size)
initial_state_values = tf.zeros(cell.state_size, dtype=tf.float32)

raw_data = get_single_input_from_input_reader()
length, key, sequences, context = my_parser(raw_data)
assert "input" in sequences.keys()
assert "label" in context.keys()
initial_states = {"lstm_state": initial_state_value}

stateful_reader = tf.SequenceQueueingStateSaver(
 batch_size, num_unroll,
 length=length, input_key=key, input_sequences=sequences,
 input_context=context, initial_states=initial_states,
 capacity=batch_size*100)

batch = stateful_reader.next_batch
inputs = batch.sequences["input"]
context_label = batch.context["label"]

inputs_by_time = tf.split(1, num_unroll, inputs)
assert len(inputs_by_time) == num_unroll

lstm_output, _ = tf.nn.state_saving_rnn(
 cell,
 inputs_by_time,
 state_saver=batch,
 state_name="lstm_state")

Start a prefetcher in the background
sess = tf.Session()
num_threads = 3
queue_runner = tf.train.QueueRunner(
 stateful_reader, [stateful_reader.prefetch_op] * num_threads)
tf.train.add_queue_runner(queue_runner)
tf.train.start_queue_runners(sess=session)

while True:
 # Step through batches, perform training or inference...
 session.run([lstm_output])

Note: Usually the barrier is given to a QueueRunner as in the
examples above. The QueueRunner will close the barrier if the prefetch_op
receives an OutOfRange Error from upstream input queues (i.e., reaches
the end of the input). If the barrier is closed no further new examples
are added to the SQSS. The underlying barrier might, however, still
contain further unroll-steps of examples that have not undergone all
iterations. To gracefully finish all examples, the flag
allow_small_batch must be set to true, which causes the SQSS to issue
progressively smaller mini-batches with the remaining examples.

tf.contrib.training.SequenceQueueingStateSaver.__init__(batch_size, num_unroll, input_length, input_key, input_sequences, input_context, initial_states, capacity=None, allow_small_batch=False, name=None) {#SequenceQueueingStateSaver.init}

Creates the SequenceQueueingStateSaver.

Args:

		batch_size: int or int32 scalar Tensor, how large minibatches should
be when accessing the state() method and context, sequences, etc,
properties.

		num_unroll: Python integer, how many time steps to unroll at a time.
The input sequences of length k are then split into k / num_unroll
many segments.

		input_length: An int32 scalar Tensor, the length of the sequence prior
to padding. This value may be at most padded_length for any given
input (see below for the definition of padded_length).
Batched and total lengths of the current iteration are made accessible
via the length and total_length properties. The shape of
input_length (scalar) must be fully specified.

		input_key: A string scalar Tensor, the unique key for the given
input. This is used to keep track of the split minibatch elements
of this input. Batched keys of the current iteration are made
accessible via the key property. The shape of input_key (scalar)
must be fully specified.

		input_sequences: A dict mapping string names to Tensor values. The
values must all have matching first dimension, called padded_length.
The SequenceQueueingStateSaver will split these tensors along
this first dimension into minibatch elements of dimension
num_unroll. Batched and segmented sequences of the current iteration
are made accessible via the sequences property.

Note: padded_length may be dynamic, and may vary from input
to input, but must always be a multiple of num_unroll. The remainder
of the shape (other than the first dimension) must be fully specified.

		input_context: A dict mapping string names to Tensor values. The values
are treated as “global” across all time splits of the given input,
and will be copied across for all minibatch elements accordingly.
Batched and copied context of the current iteration are made
accessible via the context property.

Note: All input_context values must have fully defined shapes.

		initial_states: A dict mapping string state names to multi-dimensional
values (e.g. constants or tensors). This input defines the set of
states that will be kept track of during computing iterations, and
which can be accessed via the state and save_state methods.

Note: All initial_state values must have fully defined shapes.

		capacity: The max capacity of the SQSS in number of examples. Needs to be
at least batch_size. Defaults to unbounded.

		allow_small_batch: If true, the SQSS will return smaller batches when
there aren’t enough input examples to fill a whole batch and the end of
the input has been reached (i.e., the underlying barrier has been
closed).

		name: An op name string (optional).

Raises:

		TypeError: if any of the inputs is not an expected type.

		ValueError: if any of the input values is inconsistent, e.g. if
not enough shape information is available from inputs to build
the state saver.

tf.contrib.training.SequenceQueueingStateSaver.barrier {#SequenceQueueingStateSaver.barrier}

tf.contrib.training.SequenceQueueingStateSaver.batch_size {#SequenceQueueingStateSaver.batch_size}

tf.contrib.training.SequenceQueueingStateSaver.close(cancel_pending_enqueues=False, name=None) {#SequenceQueueingStateSaver.close}

Closes the barrier and the FIFOQueue.

This operation signals that no more segments of new sequences will be
enqueued. New segments of already inserted sequences may still be enqueued
and dequeued if there is a sufficient number filling a batch or
allow_small_batch is true. Otherwise dequeue operations will fail
immediately.

Args:

		cancel_pending_enqueues: (Optional.) A boolean, defaulting to
False. If True, all pending enqueues to the underlying queues will
be cancelled, and completing already started sequences is not possible.

		name: Optional name for the op.

Returns:

The operation that closes the barrier and the FIFOQueue.

tf.contrib.training.SequenceQueueingStateSaver.name {#SequenceQueueingStateSaver.name}

tf.contrib.training.SequenceQueueingStateSaver.next_batch {#SequenceQueueingStateSaver.next_batch}

The NextQueuedSequenceBatch providing access to batched output data.

Also provides access to the state and save_state methods.
The first time this gets called, it additionally prepares barrier reads
and creates NextQueuedSequenceBatch / next_batch objects. Subsequent
calls simply return the previously created next_batch.

In order to access data in next_batch without blocking, the prefetch_op
must have been run at least batch_size times (ideally in a separate
thread, or launched via a QueueRunner). After processing a segment in
next_batch(), batch.save_state() must be called which is done by the
state_saving_rnn. Without this call, the dequeue op associated with the SQSS
will not run.

Returns:

A cached NextQueuedSequenceBatch instance.

tf.contrib.training.SequenceQueueingStateSaver.num_unroll {#SequenceQueueingStateSaver.num_unroll}

tf.contrib.training.SequenceQueueingStateSaver.prefetch_op {#SequenceQueueingStateSaver.prefetch_op}

The op used to prefetch new data into the state saver.

Running it once enqueues one new input example into the state saver.
The first time this gets called, it additionally creates the prefetch_op.
Subsequent calls simply return the previously created prefetch_op.

It should be run in a separate thread via e.g. a QueueRunner.

Returns:

An Operation that performs prefetching.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.nn.bidirectional_rnn.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.bidirectional_rnn(cell_fw, cell_bw, inputs, initial_state_fw=None, initial_state_bw=None, dtype=None, sequence_length=None, scope=None) {#bidirectional_rnn}

Creates a bidirectional recurrent neural network.

Similar to the unidirectional case above (rnn) but takes input and builds
independent forward and backward RNNs with the final forward and backward
outputs depth-concatenated, such that the output will have the format
[time][batch][cell_fw.output_size + cell_bw.output_size]. The input_size of
forward and backward cell must match. The initial state for both directions
is zero by default (but can be set optionally) and no intermediate states are
ever returned – the network is fully unrolled for the given (passed in)
length(s) of the sequence(s) or completely unrolled if length(s) is not given.

Args:

		cell_fw: An instance of RNNCell, to be used for forward direction.

		cell_bw: An instance of RNNCell, to be used for backward direction.

		inputs: A length T list of inputs, each a tensor of shape
[batch_size, input_size], or a nested tuple of such elements.

		initial_state_fw: (optional) An initial state for the forward RNN.
This must be a tensor of appropriate type and shape
[batch_size, cell_fw.state_size].
If cell_fw.state_size is a tuple, this should be a tuple of
tensors having shapes [batch_size, s] for s in cell_fw.state_size.

		initial_state_bw: (optional) Same as for initial_state_fw, but using
the corresponding properties of cell_bw.

		dtype: (optional) The data type for the initial state. Required if
either of the initial states are not provided.

		sequence_length: (optional) An int32/int64 vector, size [batch_size],
containing the actual lengths for each of the sequences.

		scope: VariableScope for the created subgraph; defaults to “BiRNN”

Returns:

A tuple (outputs, output_state_fw, output_state_bw) where:
outputs is a length T list of outputs (one for each input), which
are depth-concatenated forward and backward outputs.
output_state_fw is the final state of the forward rnn.
output_state_bw is the final state of the backward rnn.

Raises:

		TypeError: If cell_fw or cell_bw is not an instance of RNNCell.

		ValueError: If inputs is None or an empty list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.learn.DNNRegressor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A regressor for TensorFlow DNN models.

Example:

education = sparse_column_with_hash_bucket(column_name="education",
 hash_bucket_size=1000)
occupation = sparse_column_with_hash_bucket(column_name="occupation",
 hash_bucket_size=1000)

education_emb = embedding_column(sparse_id_column=education, dimension=16,
 combiner="sum")
occupation_emb = embedding_column(sparse_id_column=occupation, dimension=16,
 combiner="sum")

estimator = DNNRegressor(
 feature_columns=[education_emb, occupation_emb],
 hidden_units=[1024, 512, 256])

Or estimator using the ProximalAdagradOptimizer optimizer with
regularization.
estimator = DNNRegressor(
 feature_columns=[education_emb, occupation_emb],
 hidden_units=[1024, 512, 256],
 optimizer=tf.train.ProximalAdagradOptimizer(
 learning_rate=0.1,
 l1_regularization_strength=0.001
))

Input builders
def input_fn_train: # returns x, Y
 pass
estimator.fit(input_fn=input_fn_train)

def input_fn_eval: # returns x, Y
 pass
estimator.evaluate(input_fn=input_fn_eval)
estimator.predict(x=x)

Input of fit and evaluate should have following features,
otherwise there will be a KeyError:

		if weight_column_name is not None, a feature with
key=weight_column_name whose value is a Tensor.

		for each column in feature_columns:
		if column is a SparseColumn, a feature with key=column.name
whose value is a SparseTensor.

		if column is a WeightedSparseColumn, two features: the first with
key the id column name, the second with key the weight column name.
Both features’ value must be a SparseTensor.

		if column is a RealValuedColumn, a feature with key=column.name
whose value is a Tensor.

tf.contrib.learn.DNNRegressor.__init__(hidden_units, feature_columns, model_dir=None, weight_column_name=None, optimizer=None, activation_fn=relu, dropout=None, gradient_clip_norm=None, enable_centered_bias=None, config=None) {#DNNRegressor.init}

Initializes a DNNRegressor instance.

Args:

		hidden_units: List of hidden units per layer. All layers are fully
connected. Ex. [64, 32] means first layer has 64 nodes and second one
has 32.

		feature_columns: An iterable containing all the feature columns used by
the model. All items in the set should be instances of classes derived
from FeatureColumn.

		model_dir: Directory to save model parameters, graph and etc. This can also
be used to load checkpoints from the directory into a estimator to continue
training a previously saved model.

		weight_column_name: A string defining feature column name representing
weights. It is used to down weight or boost examples during training. It
will be multiplied by the loss of the example.

		optimizer: An instance of tf.Optimizer used to train the model. If
None, will use an Adagrad optimizer.

		activation_fn: Activation function applied to each layer. If None, will
use tf.nn.relu.

		dropout: When not None, the probability we will drop out a given
coordinate.

		gradient_clip_norm: A float > 0. If provided, gradients are clipped
to their global norm with this clipping ratio. See
tf.clip_by_global_norm for more details.

		enable_centered_bias: A bool. If True, estimator will learn a centered
bias variable for each class. Rest of the model structure learns the
residual after centered bias.

		config: RunConfig object to configure the runtime settings.

Returns:

A DNNRegressor estimator.

tf.contrib.learn.DNNRegressor.__repr__() {#DNNRegressor.repr}

tf.contrib.learn.DNNRegressor.bias_ {#DNNRegressor.bias_}

tf.contrib.learn.DNNRegressor.config {#DNNRegressor.config}

tf.contrib.learn.DNNRegressor.dnn_bias_ {#DNNRegressor.dnn_bias_}

Returns bias of deep neural network part.

tf.contrib.learn.DNNRegressor.dnn_weights_ {#DNNRegressor.dnn_weights_}

Returns weights of deep neural network part.

tf.contrib.learn.DNNRegressor.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) {#DNNRegressor.evaluate}

See Evaluable.

Raises:

		ValueError: If at least one of x or y is provided, and at least one of
input_fn or feed_fn is provided.
Or if metrics is not None or dict.

tf.contrib.learn.DNNRegressor.export(*args, **kwargs) {#DNNRegressor.export}

Exports inference graph into given dir. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23.
Instructions for updating:
The signature of the input_fn accepted by export is changing to be consistent with what’s used by tf.Learn Estimator’s train/evaluate. input_fn and input_feature_key will become required args, and use_deprecated_input_fn will default to False and be removed altogether.

Args:
 export_dir: A string containing a directory to write the exported graph
 and checkpoints.
 input_fn: If `use_deprecated_input_fn` is true, then a function that given
 `Tensor` of `Example` strings, parses it into features that are then
 passed to the model. Otherwise, a function that takes no argument and
 returns a tuple of (features, targets), where features is a dict of
 string key to `Tensor` and targets is a `Tensor` that's currently not
 used (and so can be `None`).
 input_feature_key: Only used if `use_deprecated_input_fn` is false. String
 key into the features dict returned by `input_fn` that corresponds toa
 the raw `Example` strings `Tensor` that the exported model will take as
 input.
 use_deprecated_input_fn: Determines the signature format of `input_fn`.
 signature_fn: Function that returns a default signature and a named
 signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s
 for features and `Tensor` or `dict` of `Tensor`s for predictions.
 prediction_key: The key for a tensor in the `predictions` dict (output
 from the `model_fn`) to use as the `predictions` input to the
 `signature_fn`. Optional. If `None`, predictions will pass to
 `signature_fn` without filtering.
 default_batch_size: Default batch size of the `Example` placeholder.
 exports_to_keep: Number of exports to keep.

Returns:
 The string path to the exported directory. NB: this functionality was
 added ca. 2016/09/25; clients that depend on the return value may need
 to handle the case where this function returns None because subclasses
 are not returning a value.

tf.contrib.learn.DNNRegressor.fit(x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None) {#DNNRegressor.fit}

See Trainable.

Raises:

		ValueError: If x or y are not None while input_fn is not None.

		ValueError: If both steps and max_steps are not None.

tf.contrib.learn.DNNRegressor.get_params(deep=True) {#DNNRegressor.get_params}

Get parameters for this estimator.

Args:

		deep: boolean, optional

If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns:

params : mapping of string to any
Parameter names mapped to their values.

tf.contrib.learn.DNNRegressor.get_variable_names() {#DNNRegressor.get_variable_names}

Returns list of all variable names in this model.

Returns:

List of names.

tf.contrib.learn.DNNRegressor.get_variable_value(name) {#DNNRegressor.get_variable_value}

Returns value of the variable given by name.

Args:

		name: string, name of the tensor.

Returns:

Numpy array - value of the tensor.

tf.contrib.learn.DNNRegressor.linear_bias_ {#DNNRegressor.linear_bias_}

Returns bias of the linear part.

tf.contrib.learn.DNNRegressor.linear_weights_ {#DNNRegressor.linear_weights_}

Returns weights per feature of the linear part.

tf.contrib.learn.DNNRegressor.model_dir {#DNNRegressor.model_dir}

tf.contrib.learn.DNNRegressor.partial_fit(x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None) {#DNNRegressor.partial_fit}

Incremental fit on a batch of samples.

This method is expected to be called several times consecutively
on different or the same chunks of the dataset. This either can
implement iterative training or out-of-core/online training.

This is especially useful when the whole dataset is too big to
fit in memory at the same time. Or when model is taking long time
to converge, and you want to split up training into subparts.

Args:

		x: Matrix of shape [n_samples, n_features...]. Can be iterator that
returns arrays of features. The training input samples for fitting the
model. If set, input_fn must be None.

		y: Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of targets. The training target values
(class labels in classification, real numbers in regression). If set,
input_fn must be None.

		input_fn: Input function. If set, x, y, and batch_size must be
None.

		steps: Number of steps for which to train model. If None, train forever.

		batch_size: minibatch size to use on the input, defaults to first
dimension of x. Must be None if input_fn is provided.

		monitors: List of BaseMonitor subclass instances. Used for callbacks
inside the training loop.

Returns:

self, for chaining.

Raises:

		ValueError: If at least one of x and y is provided, and input_fn is
provided.

tf.contrib.learn.DNNRegressor.predict(*args, **kwargs) {#DNNRegressor.predict}

Returns predictions for given features. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-15.
Instructions for updating:
The default behavior of predict() is changing. The default value for
as_iterable will change to True, and then the flag will be removed
altogether. The behavior of this flag is described below.

Args:
 x: Matrix of shape [n_samples, n_features...]. Can be iterator that
 returns arrays of features. The training input samples for fitting the
 model. If set, `input_fn` must be `None`.
 input_fn: Input function. If set, `x` and 'batch_size' must be `None`.
 batch_size: Override default batch size. If set, 'input_fn' must be
 'None'.
 outputs: list of `str`, name of the output to predict.
 If `None`, returns all.
 as_iterable: If True, return an iterable which keeps yielding predictions
 for each example until inputs are exhausted. Note: The inputs must
 terminate if you want the iterable to terminate (e.g. be sure to pass
 num_epochs=1 if you are using something like read_batch_features).

Returns:
 A numpy array of predicted classes or regression values if the
 constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict`
 of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of
 predictions if as_iterable is True.

Raises:
 ValueError: If x and input_fn are both provided or both `None`.

tf.contrib.learn.DNNRegressor.set_params(**params) {#DNNRegressor.set_params}

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.

Args:

		**params: Parameters.

Returns:

self

Raises:

		ValueError: If params contain invalid names.

tf.contrib.learn.DNNRegressor.weights_ {#DNNRegressor.weights_}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.train.ExponentialMovingAverage.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Maintains moving averages of variables by employing an exponential decay.

When training a model, it is often beneficial to maintain moving averages of
the trained parameters. Evaluations that use averaged parameters sometimes
produce significantly better results than the final trained values.

The apply() method adds shadow copies of trained variables and add ops that
maintain a moving average of the trained variables in their shadow copies.
It is used when building the training model. The ops that maintain moving
averages are typically run after each training step.
The average() and average_name() methods give access to the shadow
variables and their names. They are useful when building an evaluation
model, or when restoring a model from a checkpoint file. They help use the
moving averages in place of the last trained values for evaluations.

The moving averages are computed using exponential decay. You specify the
decay value when creating the ExponentialMovingAverage object. The shadow
variables are initialized with the same initial values as the trained
variables. When you run the ops to maintain the moving averages, each
shadow variable is updated with the formula:

shadow_variable -= (1 - decay) * (shadow_variable - variable)

This is mathematically equivalent to the classic formula below, but the use
of an assign_sub op (the "-=" in the formula) allows concurrent lockless
updates to the variables:

shadow_variable = decay * shadow_variable + (1 - decay) * variable

Reasonable values for decay are close to 1.0, typically in the
multiple-nines range: 0.999, 0.9999, etc.

Example usage when creating a training model:

Create variables.
var0 = tf.Variable(...)
var1 = tf.Variable(...)
... use the variables to build a training model...
...
Create an op that applies the optimizer. This is what we usually
would use as a training op.
opt_op = opt.minimize(my_loss, [var0, var1])

Create an ExponentialMovingAverage object
ema = tf.train.ExponentialMovingAverage(decay=0.9999)

Create the shadow variables, and add ops to maintain moving averages
of var0 and var1.
maintain_averages_op = ema.apply([var0, var1])

Create an op that will update the moving averages after each training
step. This is what we will use in place of the usual training op.
with tf.control_dependencies([opt_op]):
 training_op = tf.group(maintain_averages_op)

...train the model by running training_op...

There are two ways to use the moving averages for evaluations:

		Build a model that uses the shadow variables instead of the variables.
For this, use the average() method which returns the shadow variable
for a given variable.

		Build a model normally but load the checkpoint files to evaluate by using
the shadow variable names. For this use the average_name() method. See
the Saver class for more
information on restoring saved variables.

Example of restoring the shadow variable values:

Create a Saver that loads variables from their saved shadow values.
shadow_var0_name = ema.average_name(var0)
shadow_var1_name = ema.average_name(var1)
saver = tf.train.Saver({shadow_var0_name: var0, shadow_var1_name: var1})
saver.restore(...checkpoint filename...)
var0 and var1 now hold the moving average values

tf.train.ExponentialMovingAverage.__init__(decay, num_updates=None, name='ExponentialMovingAverage') {#ExponentialMovingAverage.init}

Creates a new ExponentialMovingAverage object.

The apply() method has to be called to create shadow variables and add
ops to maintain moving averages.

The optional num_updates parameter allows one to tweak the decay rate
dynamically. . It is typical to pass the count of training steps, usually
kept in a variable that is incremented at each step, in which case the
decay rate is lower at the start of training. This makes moving averages
move faster. If passed, the actual decay rate used is:

min(decay, (1 + num_updates) / (10 + num_updates))

Args:

		decay: Float. The decay to use.

		num_updates: Optional count of number of updates applied to variables.

		name: String. Optional prefix name to use for the name of ops added in
apply().

tf.train.ExponentialMovingAverage.apply(var_list=None) {#ExponentialMovingAverage.apply}

Maintains moving averages of variables.

var_list must be a list of Variable or Tensor objects. This method
creates shadow variables for all elements of var_list. Shadow variables
for Variable objects are initialized to the variable’s initial value.
They will be added to the GraphKeys.MOVING_AVERAGE_VARIABLES collection.
For Tensor objects, the shadow variables are initialized to 0.

shadow variables are created with trainable=False and added to the
GraphKeys.ALL_VARIABLES collection. They will be returned by calls to
tf.all_variables().

Returns an op that updates all shadow variables as described above.

Note that apply() can be called multiple times with different lists of
variables.

Args:

		var_list: A list of Variable or Tensor objects. The variables
and Tensors must be of types float16, float32, or float64.

Returns:

An Operation that updates the moving averages.

Raises:

		TypeError: If the arguments are not all float16, float32, or float64.

		ValueError: If the moving average of one of the variables is already
being computed.

tf.train.ExponentialMovingAverage.average_name(var) {#ExponentialMovingAverage.average_name}

Returns the name of the Variable holding the average for var.

The typical scenario for ExponentialMovingAverage is to compute moving
averages of variables during training, and restore the variables from the
computed moving averages during evaluations.

To restore variables, you have to know the name of the shadow variables.
That name and the original variable can then be passed to a Saver() object
to restore the variable from the moving average value with:
saver = tf.train.Saver({ema.average_name(var): var})

average_name() can be called whether or not apply() has been called.

Args:

		var: A Variable object.

Returns:

A string: The name of the variable that will be used or was used
by the ExponentialMovingAverage class to hold the moving average of
var.

tf.train.ExponentialMovingAverage.average(var) {#ExponentialMovingAverage.average}

Returns the Variable holding the average of var.

Args:

		var: A Variable object.

Returns:

A Variable object or None if the moving average of var
is not maintained..

tf.train.ExponentialMovingAverage.variables_to_restore(moving_avg_variables=None) {#ExponentialMovingAverage.variables_to_restore}

Returns a map of names to Variables to restore.

If a variable has a moving average, use the moving average variable name as
the restore name; otherwise, use the variable name.

For example,

 variables_to_restore = ema.variables_to_restore()
 saver = tf.train.Saver(variables_to_restore)

Below is an example of such mapping:

 conv/batchnorm/gamma/ExponentialMovingAverage: conv/batchnorm/gamma,
 conv_4/conv2d_params/ExponentialMovingAverage: conv_4/conv2d_params,
 global_step: global_step

Args:

		moving_avg_variables: a list of variables that require to use of the
moving variable name to be restored. If None, it will default to
variables.moving_average_variables() + variables.trainable_variables()

Returns:

A map from restore_names to variables. The restore_name can be the
moving_average version of the variable name if it exist, or the original
variable name.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.ffmpeg.decode_audio.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.ffmpeg.decode_audio(contents, file_format=None, samples_per_second=None, channel_count=None) {#decode_audio}

Create an op that decodes the contents of an audio file.

Note that ffmpeg is free to select the “best” audio track from an mp4.
https://trac.ffmpeg.org/wiki/Map

Args:

		contents: The binary contents of the audio file to decode. This is a
scalar.

		file_format: A string specifying which format the contents will conform
to. This can be mp3, mp4, ogg, or wav.

		samples_per_second: The number of samples per second that is assumed.
In some cases, resampling will occur to generate the correct sample
rate.

		channel_count: The number of channels that should be created from the
audio contents. If the contents have more than this number, then
some channels will be merged or dropped. If contents has fewer than
this, then additional channels will be created from the existing ones.

Returns:

A rank 2 tensor that has time along dimension 0 and channels along
dimension 1. Dimension 0 will be samples_per_second * length wide, and
dimension 1 will be channel_count wide. If ffmpeg fails to decode the
audio then an empty tensor will be returned.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.fft.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.fft(input, name=None) {#fft}

Compute the 1-dimensional discrete Fourier Transform over the inner-most

dimension of input.

Args:

		input: A Tensor of type complex64. A complex64 tensor.

		name: A name for the operation (optional).

Returns:

A Tensor of type complex64.
A complex64 tensor of the same shape as input. The inner-most
dimension of input is replaced with its 1D Fourier Transform.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.is_numeric_tensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.is_numeric_tensor(tensor) {#is_numeric_tensor}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.size.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.size(input, name=None, out_type=tf.int32) {#size}

Returns the size of a tensor.

This operation returns an integer representing the number of elements in
input.

For example:

't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]]
size(t) ==> 12

Args:

		input: A Tensor or SparseTensor.

		name: A name for the operation (optional).

		out_type: (Optional) The specified output type of the operation
(int32 or int64). Defaults to tf.int32.

Returns:

A Tensor of type out_type. Defaults to tf.int32.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.nn.crelu.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.crelu(features, name=None) {#crelu}

Computes Concatenated ReLU.

Concatenates a ReLU which selects only the positive part of the activation
with a ReLU which selects only the negative part of the activation.
Note that as a result this non-linearity doubles the depth of the activations.
Source: https://arxiv.org/abs/1603.05201

Args:

		features: A Tensor with type float, double, int32, int64, uint8,
int16, or int8.

		name: A name for the operation (optional).

Returns:

A Tensor with the same type as features.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.image.random_brightness.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.random_brightness(image, max_delta, seed=None) {#random_brightness}

Adjust the brightness of images by a random factor.

Equivalent to adjust_brightness() using a delta randomly picked in the
interval [-max_delta, max_delta).

Args:

		image: An image.

		max_delta: float, must be non-negative.

		seed: A Python integer. Used to create a random seed. See
set_random_seed
for behavior.

Returns:

The brightness-adjusted image.

Raises:

		ValueError: if max_delta is negative.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.matrix_determinant.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.matrix_determinant(input, name=None) {#matrix_determinant}

Computes the determinant of one ore more square matrices.

The input is a tensor of shape [..., M, M] whose inner-most 2 dimensions
form square matrices. The output is a tensor containing the determinants
for all input submatrices [..., :, :].

Args:

		input: A Tensor. Must be one of the following types: float32, float64.
Shape is [..., M, M].

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shape is [...].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.reduce_sum.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.reduce_sum(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_sum}

Computes the sum of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

'x' is [[1, 1, 1]
[1, 1, 1]]
tf.reduce_sum(x) ==> 6
tf.reduce_sum(x, 0) ==> [2, 2, 2]
tf.reduce_sum(x, 1) ==> [3, 3]
tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]
tf.reduce_sum(x, [0, 1]) ==> 6

Args:

		input_tensor: The tensor to reduce. Should have numeric type.

		reduction_indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

		keep_dims: If true, retains reduced dimensions with length 1.

		name: A name for the operation (optional).

Returns:

The reduced tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.train.input_producer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.input_producer(input_tensor, element_shape=None, num_epochs=None, shuffle=True, seed=None, capacity=32, shared_name=None, summary_name=None, name=None) {#input_producer}

Output the rows of input_tensor to a queue for an input pipeline.

Args:

		input_tensor: A tensor with the rows to produce. Must be at least
one-dimensional. Must either have a fully-defined shape, or
element_shape must be defined.

		element_shape: (Optional.) A TensorShape representing the shape of a
row of input_tensor, if it cannot be inferred.

		num_epochs: (Optional.) An integer. If specified input_producer produces
each row of input_tensor num_epochs times before generating an
OutOfRange error. If not specified, input_producer can cycle through
the rows of input_tensor an unlimited number of times.

		shuffle: (Optional.) A boolean. If true, the rows are randomly shuffled
within each epoch.

		seed: (Optional.) An integer. The seed to use if shuffle is true.

		capacity: (Optional.) The capacity of the queue to be used for buffering
the input.

		shared_name: (Optional.) If set, this queue will be shared under the given
name across multiple sessions.

		summary_name: (Optional.) If set, a scalar summary for the current queue
size will be generated, using this name as part of the tag.

		name: (Optional.) A name for queue.

Returns:

A queue with the output rows. A QueueRunner for the queue is
added to the current QUEUE_RUNNER collection of the current
graph.

Raises:

		ValueError: If the shape of the input cannot be inferred from the arguments.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.layers.flatten.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.flatten(*args, **kwargs) {#flatten}

Flattens the input while maintaining the batch_size.

Assumes that the first dimension represents the batch.

Args:

		inputs: a tensor of size [batch_size, ...].

		outputs_collections: collection to add the outputs.

		scope: Optional scope for name_scope.

Returns:

a flattened tensor with shape [batch_size, k].

Raises:

		ValueError: if inputs.shape is wrong.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.fft2d.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.fft2d(input, name=None) {#fft2d}

Compute the 2-dimensional discrete Fourier Transform over the inner-most

2 dimensions of input.

Args:

		input: A Tensor of type complex64. A complex64 tensor.

		name: A name for the operation (optional).

Returns:

A Tensor of type complex64.
A complex64 tensor of the same shape as input. The inner-most 2
dimensions of input are replaced with their 2D Fourier Transform.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.bayesflow.entropy.entropy_shannon.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.bayesflow.entropy.entropy_shannon(p, z=None, n=None, seed=None, form=None, name='entropy_shannon') {#entropy_shannon}

Monte Carlo or deterministic computation of Shannon’s entropy.

Depending on the kwarg form, this Op returns either the analytic entropy
of the distribution p, or the sampled entropy:

-n^{-1} sum_{i=1}^n p.log_prob(z_i), where z_i ~ p,
 \approx - E_p[Log[p(Z)]]
 = Entropy[p]

User supplies either Tensor of samples z, or number of samples to draw n

Args:

		p: tf.contrib.distributions.BaseDistribution

		z: Tensor of samples from p, produced by p.sample_n(n) for some n.

		n: Integer Tensor. Number of samples to generate if z is not provided.

		seed: Python integer to seed the random number generator.

		form: Either ELBOForms.analytic_entropy (use formula for entropy of q)
or ELBOForms.sample (sample estimate of entropy), or ELBOForms.default
(attempt analytic entropy, fallback on sample).
Default value is ELBOForms.default.

		name: A name to give this Op.

Returns:

A Tensor with same dtype as p, and shape equal to p.batch_shape.

Raises:

		ValueError: If form not handled by this function.

		ValueError: If form is ELBOForms.analytic_entropy and n was provided.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.bayesflow.variational_inference.elbo.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.bayesflow.variational_inference.elbo(log_likelihood, variational_with_prior=None, keep_batch_dim=True, form=None, name='ELBO') {#elbo}

Evidence Lower BOund. log p(x) >= ELBO.

Optimization objective for inference of hidden variables by variational
inference.

This function is meant to be used in conjunction with DistributionTensor.
The user should build out the inference network, using DistributionTensors
as latent variables, and the generative network. elbo at minimum needs
p(x|Z) and assumes that all DistributionTensors upstream of p(x|Z) are
the variational distributions. Use register_prior to register Distribution
priors for each DistributionTensor. Alternatively, pass in
variational_with_prior specifying all variational distributions and their
priors.

Mathematical details:

log p(x) = log \int p(x, Z) dZ
 = log \int \frac {q(Z)p(x, Z)}{q(Z)} dZ
 = log E_q[\frac {p(x, Z)}{q(Z)}]
 >= E_q[log \frac {p(x, Z)}{q(Z)}] = L[q; p, x] # ELBO

L[q; p, x] = E_q[log p(x|Z)p(Z)] - E_q[log q(Z)]
 = E_q[log p(x|Z)p(Z)] + H[q] (1)
 = E_q[log p(x|Z)] - KL(q || p) (2)

H - Entropy
KL - Kullback-Leibler divergence

See section 2.2 of Stochastic Variational Inference by Hoffman et al. for
more, including the ELBO’s equivalence to minimizing KL(q(Z)||p(Z|x))
in the fully Bayesian setting. https://arxiv.org/pdf/1206.7051.pdf.

form specifies which form of the ELBO is used. form=ELBOForms.default
tries, in order of preference: analytic KL, analytic entropy, sampling.

Multiple entries in the variational_with_prior dict implies a factorization.
e.g. q(Z) = q(z1)q(z2)q(z3).

Args:

		log_likelihood: Tensor log p(x|Z).

		variational_with_prior: dict from DistributionTensor q(Z) to
Distribution p(Z). If None, defaults to all DistributionTensor
objects upstream of log_likelihood with priors registered with
register_prior.

		keep_batch_dim: bool. Whether to keep the batch dimension when summing
entropy/KL term. When the sample is per data point, this should be True;
otherwise (e.g. in a Bayesian NN), this should be False.

		form: ELBOForms constant. Controls how the ELBO is computed. Defaults to
ELBOForms.default.

		name: name to prefix ops with.

Returns:

Tensor ELBO of the same type and shape as log_likelihood.

Raises:

		TypeError: if variationals in variational_with_prior are not
DistributionTensors or if priors are not BaseDistributions.

		TypeError: if form is not a valid ELBOForms constant.

		ValueError: if variational_with_prior is None and there are no
DistributionTensors upstream of log_likelihood.

		ValueError: if any variational does not have a prior passed or registered.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.add_n.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.add_n(inputs, name=None) {#add_n}

Adds all input tensors element-wise.

Args:

		inputs: A list of Tensor objects, each with same shape and type.

		name: A name for the operation (optional).

Returns:

A Tensor of same shape and type as the elements of inputs.

Raises:

		ValueError: If inputs don’t all have same shape and dtype or the shape
cannot be inferred.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.losses.get_total_loss.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.losses.get_total_loss(add_regularization_losses=True, name='total_loss') {#get_total_loss}

Returns a tensor whose value represents the total loss.

Notice that the function adds the given losses to the regularization losses.

Args:

		add_regularization_losses: A boolean indicating whether or not to use the
regularization losses in the sum.

		name: The name of the returned tensor.

Returns:

A Tensor whose value represents the total loss.

Raises:

		ValueError: if losses is not iterable.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.graph_editor.reroute_a2b_inputs.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.reroute_a2b_inputs(sgv0, sgv1) {#reroute_a2b_inputs}

Re-route all the inputs of sgv0 to sgv1 (see reroute_inputs).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.layers.convolution2d_in_plane.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.convolution2d_in_plane(*args, **kwargs) {#convolution2d_in_plane}

Performs the same in-plane convolution to each channel independently.

This is useful for performing various simple channel-independent convolution
operations such as image gradients:

image = tf.constant(..., shape=(16, 240, 320, 3))
vert_gradients = layers.conv2d_in_plane(image,
kernel=[1, -1],
kernel_size=[2, 1])
horz_gradients = layers.conv2d_in_plane(image,
kernel=[1, -1],
kernel_size=[1, 2])

Args:

		inputs: a 4-D tensor with dimensions [batch_size, height, width, channels].

		kernel_size: a list of length 2 holding the [kernel_height, kernel_width] of
of the pooling. Can be an int if both values are the same.

		stride: a list of length 2 [stride_height, stride_width].
Can be an int if both strides are the same. Note that presently
both strides must have the same value.

		padding: the padding type to use, either ‘SAME’ or ‘VALID’.

		activation_fn: activation function, set to None to skip it and maintain
a linear activation.

		normalizer_fn: normalization function to use instead of biases. If
normalizer_fn is provided then biases_initializer and
biases_regularizer are ignored and biases are not created nor added.
default set to None for no normalizer function

		normalizer_params: normalization function parameters.

		weights_initializer: An initializer for the weights.

		weights_regularizer: Optional regularizer for the weights.

		biases_initializer: An initializer for the biases. If None skip biases.

		biases_regularizer: Optional regularizer for the biases.

		reuse: whether or not the layer and its variables should be reused. To be
able to reuse the layer scope must be given.

		variables_collections: optional list of collections for all the variables or
a dictionay containing a different list of collection per variable.

		outputs_collections: collection to add the outputs.

		trainable: If True also add variables to the graph collection
GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

		scope: Optional scope for variable_scope.

Returns:

A Tensor representing the output of the operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.to_bfloat16.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.to_bfloat16(x, name='ToBFloat16') {#to_bfloat16}

Casts a tensor to type bfloat16.

Args:

		x: A Tensor or SparseTensor.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x with type bfloat16.

Raises:

		TypeError: If x cannot be cast to the bfloat16.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.Print.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.Print(input_, data, message=None, first_n=None, summarize=None, name=None) {#Print}

Prints a list of tensors.

This is an identity op with the side effect of printing data when
evaluating.

Args:

		input_: A tensor passed through this op.

		data: A list of tensors to print out when op is evaluated.

		message: A string, prefix of the error message.

		first_n: Only log first_n number of times. Negative numbers log always;
this is the default.

		summarize: Only print this many entries of each tensor. If None, then a
maximum of 3 elements are printed per input tensor.

		name: A name for the operation (optional).

Returns:

Same tensor as input_.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.cumprod.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.cumprod(x, axis=0, exclusive=False, reverse=False, name=None) {#cumprod}

Compute the cumulative product of the tensor x along axis.

By default, this op performs an inclusive cumprod, which means that the
first
element of the input is identical to the first element of the output:

tf.cumprod([a, b, c]) ==> [a, a * b, a * b * c]

By setting the exclusive kwarg to True, an exclusive cumprod is
performed
instead:

tf.cumprod([a, b, c], exclusive=True) ==> [0, a, a * b]

By setting the reverse kwarg to True, the cumprod is performed in the
opposite direction:

tf.cumprod([a, b, c], reverse=True) ==> [a * b * c, b * c, c]

This is more efficient than using separate tf.reverse ops.

The reverse and exclusive kwargs can also be combined:

tf.cumprod([a, b, c], exclusive=True, reverse=True) ==> [b * c, c, 0]

Args:

		x: A Tensor. Must be one of the following types: float32, float64,
int64, int32, uint8, uint16, int16, int8, complex64,
complex128, qint8, quint8, qint32, half.

		axis: A Tensor of type int32 (default: 0).

		reverse: A bool (default: False).

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 WishartCholeskyTensor is a StochasticTensor backed by the distribution WishartCholesky.

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#WishartCholeskyTensor.init}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.clone(name=None, **dist_args) {#WishartCholeskyTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.distribution {#WishartCholeskyTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.dtype {#WishartCholeskyTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.entropy(name='entropy') {#WishartCholeskyTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.graph {#WishartCholeskyTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.input_dict {#WishartCholeskyTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.loss(final_loss, name='Loss') {#WishartCholeskyTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.mean(name='mean') {#WishartCholeskyTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.name {#WishartCholeskyTensor.name}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.value(name='value') {#WishartCholeskyTensor.value}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.value_type {#WishartCholeskyTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.nn.conv1d.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.conv1d(value, filters, stride, padding, use_cudnn_on_gpu=None, data_format=None, name=None) {#conv1d}

Computes a 1-D convolution given 3-D input and filter tensors.

Given an input tensor of shape [batch, in_width, in_channels]
and a filter / kernel tensor of shape
[filter_width, in_channels, out_channels], this op reshapes
the arguments to pass them to conv2d to perform the equivalent
convolution operation.

Internally, this op reshapes the input tensors and invokes
tf.nn.conv2d. A tensor of shape [batch, in_width, in_channels]
is reshaped to [batch, 1, in_width, in_channels], and the filter
is reshaped to [1, filter_width, in_channels, out_channels].
The result is then reshaped back to [batch, out_width, out_channels]
(where out_width is a function of the stride and padding as in
conv2d) and returned to the caller.

Args:

		value: A 3D Tensor. Must be of type float32 or float64.

		filters: A 3D Tensor. Must have the same type as input.

		stride: An integer. The number of entries by which
the filter is moved right at each step.

		padding: ‘SAME’ or ‘VALID’

		use_cudnn_on_gpu: An optional bool. Defaults to True.

		data_format: An optional string from "NHWC", "NCHW". Defaults
to "NHWC", the data is stored in the order of
[batch, in_width, in_channels]. The "NCHW" format stores
data as [batch, in_channels, in_width].

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.image.adjust_brightness.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.adjust_brightness(image, delta) {#adjust_brightness}

Adjust the brightness of RGB or Grayscale images.

This is a convenience method that converts an RGB image to float
representation, adjusts its brightness, and then converts it back to the
original data type. If several adjustments are chained it is advisable to
minimize the number of redundant conversions.

The value delta is added to all components of the tensor image. Both
image and delta are converted to float before adding (and image is
scaled appropriately if it is in fixed-point representation). For regular
images, delta should be in the range [0,1), as it is added to the image in
floating point representation, where pixel values are in the [0,1) range.

Args:

		image: A tensor.

		delta: A scalar. Amount to add to the pixel values.

Returns:

A brightness-adjusted tensor of the same shape and type as image.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.bayesflow.monte_carlo.expectation_importance_sampler_logspace.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.bayesflow.monte_carlo.expectation_importance_sampler_logspace(log_f, log_p, sampling_dist_q, z=None, n=None, seed=None, name='expectation_importance_sampler_logspace') {#expectation_importance_sampler_logspace}

Importance sampling with a positive function, in log-space.

With p(z) := exp{log_p(z)}, and f(z) = exp{log_f(z)}, this Op
returns

Log[n^{-1} sum_{i=1}^n [f(z_i) p(z_i) / q(z_i)]], z_i ~ q,
\approx Log[E_q[f(Z) p(Z) / q(Z)]]
= Log[E_p[f(Z)]]

This integral is done in log-space with max-subtraction to better handle the
often extreme values that f(z) p(z) / q(z) can take on.

In contrast to expectation_importance_sampler, this Op returns values in
log-space.

User supplies either Tensor of samples z, or number of samples to draw n

Args:

		log_f: Callable mapping samples from sampling_dist_q to Tensors with
shape broadcastable to q.batch_shape.
For example, log_f works “just like” sampling_dist_q.log_prob.

		log_p: Callable mapping samples from sampling_dist_q to Tensors with
shape broadcastable to q.batch_shape.
For example, log_p works “just like” q.log_prob.

		sampling_dist_q: The sampling distribution.
tf.contrib.distributions.BaseDistribution.
float64 dtype recommended.
log_p and q should be supported on the same set.

		z: Tensor of samples from q, produced by q.sample_n.

		n: Integer Tensor. Number of samples to generate if z is not provided.

		seed: Python integer to seed the random number generator.

		name: A name to give this Op.

Returns:

Logarithm of the importance sampling estimate. Tensor with shape equal
to batch shape of q, and dtype = q.dtype.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.sparse_minimum.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_minimum(sp_a, sp_b, name=None) {#sparse_minimum}

Returns the element-wise min of two SparseTensors.

Assumes the two SparseTensors have the same shape, i.e., no broadcasting.
Example:

sp_zero = ops.SparseTensor([[0]], [0], [7])
sp_one = ops.SparseTensor([[1]], [1], [7])
res = tf.sparse_minimum(sp_zero, sp_one).eval()
"res" should be equal to SparseTensor([[0], [1]], [0, 0], [7]).

Args:

		sp_a: a SparseTensor operand whose dtype is real, and indices
lexicographically ordered.

		sp_b: the other SparseTensor operand with the same requirements (and the
same shape).

		name: optional name of the operation.

Returns:

		output: the output SparseTensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.is_finite.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.is_finite(x, name=None) {#is_finite}

Returns which elements of x are finite.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.bayesflow.stochastic_tensor.UniformTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 UniformTensor is a StochasticTensor backed by the distribution Uniform.

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#UniformTensor.init}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.clone(name=None, **dist_args) {#UniformTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.distribution {#UniformTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.dtype {#UniformTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.entropy(name='entropy') {#UniformTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.graph {#UniformTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.input_dict {#UniformTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.loss(final_loss, name='Loss') {#UniformTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.mean(name='mean') {#UniformTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.name {#UniformTensor.name}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.value(name='value') {#UniformTensor.value}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.value_type {#UniformTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.gradients.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.gradients(ys, xs, grad_ys=None, name='gradients', colocate_gradients_with_ops=False, gate_gradients=False, aggregation_method=None) {#gradients}

Constructs symbolic partial derivatives of sum of ys w.r.t. x in xs.

ys and xs are each a Tensor or a list of tensors. grad_ys
is a list of Tensor, holding the gradients received by the
ys. The list must be the same length as ys.

gradients() adds ops to the graph to output the partial
derivatives of ys with respect to xs. It returns a list of
Tensor of length len(xs) where each tensor is the sum(dy/dx)
for y in ys.

grad_ys is a list of tensors of the same length as ys that holds
the initial gradients for each y in ys. When grad_ys is None,
we fill in a tensor of ‘1’s of the shape of y for each y in ys. A
user can provide their own initial grad_ys to compute the
derivatives using a different initial gradient for each y (e.g., if
one wanted to weight the gradient differently for each value in
each y).

Args:

		ys: A Tensor or list of tensors to be differentiated.

		xs: A Tensor or list of tensors to be used for differentiation.

		grad_ys: Optional. A Tensor or list of tensors the same size as
ys and holding the gradients computed for each y in ys.

		name: Optional name to use for grouping all the gradient ops together.
defaults to ‘gradients’.

		colocate_gradients_with_ops: If True, try colocating gradients with
the corresponding op.

		gate_gradients: If True, add a tuple around the gradients returned
for an operations. This avoids some race conditions.

		aggregation_method: Specifies the method used to combine gradient terms.
Accepted values are constants defined in the class AggregationMethod.

Returns:

A list of sum(dy/dx) for each x in xs.

Raises:

		LookupError: if one of the operations between x and y does not
have a registered gradient function.

		ValueError: if the arguments are invalid.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.zeros_initializer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.zeros_initializer(shape, dtype=tf.float32, partition_info=None) {#zeros_initializer}

An adaptor for zeros() to match the Initializer spec.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.train.LooperThread.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A thread that runs code repeatedly, optionally on a timer.

This thread class is intended to be used with a Coordinator. It repeatedly
runs code specified either as target and args or by the run_loop()
method.

Before each run the thread checks if the coordinator has requested stop. In
that case the looper thread terminates immediately.

If the code being run raises an exception, that exception is reported to the
coordinator and the thread terminates. The coordinator will then request all
the other threads it coordinates to stop.

You typically pass looper threads to the supervisor Join() method.

tf.train.LooperThread.__init__(coord, timer_interval_secs, target=None, args=None, kwargs=None) {#LooperThread.init}

Create a LooperThread.

Args:

		coord: A Coordinator.

		timer_interval_secs: Time boundaries at which to call Run(), or None
if it should be called back to back.

		target: Optional callable object that will be executed in the thread.

		args: Optional arguments to pass to target when calling it.

		kwargs: Optional keyword arguments to pass to target when calling it.

Raises:

		ValueError: If one of the arguments is invalid.

tf.train.LooperThread.__repr__() {#LooperThread.repr}

tf.train.LooperThread.daemon {#LooperThread.daemon}

A boolean value indicating whether this thread is a daemon thread (True) or not (False).

This must be set before start() is called, otherwise RuntimeError is
raised. Its initial value is inherited from the creating thread; the
main thread is not a daemon thread and therefore all threads created in
the main thread default to daemon = False.

The entire Python program exits when no alive non-daemon threads are
left.

tf.train.LooperThread.getName() {#LooperThread.getName}

tf.train.LooperThread.ident {#LooperThread.ident}

Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the thread.get_ident() function. Thread
identifiers may be recycled when a thread exits and another thread is
created. The identifier is available even after the thread has exited.

tf.train.LooperThread.isAlive() {#LooperThread.isAlive}

Return whether the thread is alive.

This method returns True just before the run() method starts until just
after the run() method terminates. The module function enumerate()
returns a list of all alive threads.

tf.train.LooperThread.isDaemon() {#LooperThread.isDaemon}

tf.train.LooperThread.is_alive() {#LooperThread.is_alive}

Return whether the thread is alive.

This method returns True just before the run() method starts until just
after the run() method terminates. The module function enumerate()
returns a list of all alive threads.

tf.train.LooperThread.join(timeout=None) {#LooperThread.join}

Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is
called terminates – either normally or through an unhandled exception
or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof). As join() always returns None, you must call
isAlive() after join() to decide whether a timeout happened – if the
thread is still alive, the join() call timed out.

When the timeout argument is not present or None, the operation will
block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current
thread as that would cause a deadlock. It is also an error to join() a
thread before it has been started and attempts to do so raises the same
exception.

tf.train.LooperThread.loop(coord, timer_interval_secs, target, args=None, kwargs=None) {#LooperThread.loop}

Start a LooperThread that calls a function periodically.

If timer_interval_secs is None the thread calls target(args)
repeatedly. Otherwise target(args) is called every timer_interval_secs
seconds. The thread terminates when a stop of the coordinator is
requested.

Args:

		coord: A Coordinator.

		timer_interval_secs: Number. Time boundaries at which to call target.

		target: A callable object.

		args: Optional arguments to pass to target when calling it.

		kwargs: Optional keyword arguments to pass to target when calling it.

Returns:

The started thread.

tf.train.LooperThread.name {#LooperThread.name}

A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name. The
initial name is set by the constructor.

tf.train.LooperThread.run() {#LooperThread.run}

tf.train.LooperThread.run_loop() {#LooperThread.run_loop}

Called at ‘timer_interval_secs’ boundaries.

tf.train.LooperThread.setDaemon(daemonic) {#LooperThread.setDaemon}

tf.train.LooperThread.setName(name) {#LooperThread.setName}

tf.train.LooperThread.start() {#LooperThread.start}

Start the thread’s activity.

It must be called at most once per thread object. It arranges for the
object’s run() method to be invoked in a separate thread of control.

This method will raise a RuntimeError if called more than once on the
same thread object.

tf.train.LooperThread.start_loop() {#LooperThread.start_loop}

Called when the thread starts.

tf.train.LooperThread.stop_loop() {#LooperThread.stop_loop}

Called when the thread stops.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.framework.assign_from_checkpoint.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.assign_from_checkpoint(model_path, var_list) {#assign_from_checkpoint}

Creates an operation to assign specific variables from a checkpoint.

Args:

		model_path: The full path to the model checkpoint. To get latest checkpoint
use model_path = tf.train.latest_checkpoint(checkpoint_dir)

		var_list: A list of Variable objects or a dictionary mapping names in the
checkpoint to the correspoing variables to initialize. If empty or None,
it would return no_op(), None.

Returns:

the restore_op and the feed_dict that need to be run to restore var_list.

Raises:

		ValueError: If the checkpoint specified at model_path is missing one of
the variables in var_list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.losses.mean_pairwise_squared_error.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.losses.mean_pairwise_squared_error(*args, **kwargs) {#mean_pairwise_squared_error}

Adds a pairwise-errors-squared loss to the training procedure. (deprecated)

THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-01.
Instructions for updating:
Use mean_pairwise_squared_error.

Unlike the sum_of_squares loss, which is a measure of the differences between
corresponding elements of predictions and targets, sum_of_pairwise_squares
is a measure of the differences between pairs of corresponding elements of
predictions and targets.

For example, if targets=[a, b, c] and predictions=[x, y, z], there are
three pairs of differences are summed to compute the loss:
loss = [((a-b) - (x-y)).^2 + ((a-c) - (x-z)).^2 + ((b-c) - (y-z)).^2] / 3

Note that since the inputs are of size [batch_size, d0, ... dN], the
corresponding pairs are computed within each batch sample but not across
samples within a batch. For example, if predictions represents a batch of
16 grayscale images of dimenion [batch_size, 100, 200], then the set of pairs
is drawn from each image, but not across images.

weight acts as a coefficient for the loss. If a scalar is provided, then the
loss is simply scaled by the given value. If weight is a tensor of size
[batch_size], then the total loss for each sample of the batch is rescaled
by the corresponding element in the weight vector.

Args:
predictions: The predicted outputs, a tensor of size [batch_size, d0, .. dN]
where N+1 is the total number of dimensions in predictions.
targets: The ground truth output tensor, whose shape must match the shape of
the predictions tensor.
weight: Coefficients for the loss a scalar, a tensor of shape [batch_size]
or a tensor whose shape matches predictions.
scope: The scope for the operations performed in computing the loss.

Returns:
A scalar Tensor representing the loss value.

Raises:
ValueError: If the shape of predictions doesn’t match that of targets or
if the shape of weight is invalid.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.training.stratified_sample_unknown_dist.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.training.stratified_sample_unknown_dist(tensors, labels, probs, batch_size, enqueue_many=False, queue_capacity=16, threads_per_queue=1, name=None) {#stratified_sample_unknown_dist}

Stochastically creates batches based on per-class probabilities.

NOTICE This sampler can be significantly slower than stratified_sample
due to each thread discarding all examples not in its assigned class.

This uses a number of threads proportional to the number of classes. See
stratified_sample for an implementation that discards fewer examples and
uses a fixed number of threads. This function’s only advantage over
stratified_sample is that the class data-distribution doesn’t need to be
known ahead of time.

Args:

		tensors: List of tensors for data. All tensors are either one item or a
batch, according to enqueue_many.

		labels: Tensor for label of data. Label is a single integer or a batch,
depending on enqueue_many. It is not a one-hot vector.

		probs: Target class probabilities. An object whose type has a registered
Tensor conversion function.

		batch_size: Size of batch to be returned.

		enqueue_many: Bool. If true, interpret input tensors as having a batch
dimension.

		queue_capacity: Capacity of each per-class queue.

		threads_per_queue: Number of threads for each per-class queue.

		name: Optional prefix for ops created by this function.

Raises:

		ValueError: enqueue_many is True and labels doesn’t have a batch
dimension, or if enqueue_many is False and labels isn’t a scalar.

		ValueError: enqueue_many is True, and batch dimension of data and labels
don’t match.

		ValueError: if probs don’t sum to one.

		TFAssertion: if labels aren’t integers in [0, num classes).

Returns:

(data_batch, label_batch), where data_batch is a list of tensors of the same
length as tensors

Example:

Get tensor for a single data and label example.

data, label = data_provider.Get([‘data’, ‘label’])

Get stratified batch according to per-class probabilities.

init_probs = [1.0/NUM_CLASSES for _ in range(NUM_CLASSES)]
[data_batch], labels = (
tf.contrib.training.stratified_sample_unknown_dist(
[data], label, init_probs, 16))

Run batch through network.

...

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.zeros_like.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.zeros_like(tensor, dtype=None, name=None, optimize=True) {#zeros_like}

Creates a tensor with all elements set to zero.

Given a single tensor (tensor), this operation returns a tensor of the
same type and shape as tensor with all elements set to zero. Optionally,
you can use dtype to specify a new type for the returned tensor.

For example:

'tensor' is [[1, 2, 3], [4, 5, 6]]
tf.zeros_like(tensor) ==> [[0, 0, 0], [0, 0, 0]]

Args:

		tensor: A Tensor.

		dtype: A type for the returned Tensor. Must be float32, float64,
int8, int16, int32, int64, uint8, complex64, or complex128.

		name: A name for the operation (optional).

		optimize: if true, attempt to statically determine the shape of ‘tensor’
and encode it as a constant.

Returns:

A Tensor with all elements set to zero.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.nn.avg_pool3d.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.avg_pool3d(input, ksize, strides, padding, name=None) {#avg_pool3d}

Performs 3D average pooling on the input.

Args:

		input: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
Shape [batch, depth, rows, cols, channels] tensor to pool over.

		ksize: A list of ints that has length >= 5.
1-D tensor of length 5. The size of the window for each dimension of
the input tensor. Must have ksize[0] = ksize[4] = 1.

		strides: A list of ints that has length >= 5.
1-D tensor of length 5. The stride of the sliding window for each
dimension of input. Must have strides[0] = strides[4] = 1.

		padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
The average pooled output tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.graph_editor.make_list_of_t.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.make_list_of_t(ts, check_graph=True, allow_graph=True, ignore_ops=False) {#make_list_of_t}

Convert ts to a list of tf.Tensor.

Args:

		ts: can be an iterable of tf.Tensor, a tf.Graph or a single tensor.

		check_graph: if True check if all the tensors belong to the same graph.

		allow_graph: if False a tf.Graph cannot be converted.

		ignore_ops: if True, silently ignore tf.Operation.

Returns:

A newly created list of tf.Tensor.

Raises:

		TypeError: if ts cannot be converted to a list of tf.Tensor or,
if check_graph is True, if all the ops do not belong to the same graph.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.nn.bias_add.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.bias_add(value, bias, data_format=None, name=None) {#bias_add}

Adds bias to value.

This is (mostly) a special case of tf.add where bias is restricted to 1-D.
Broadcasting is supported, so value may have any number of dimensions.
Unlike tf.add, the type of bias is allowed to differ from value in the
case where both types are quantized.

Args:

		value: A Tensor with type float, double, int64, int32, uint8,
int16, int8, complex64, or complex128.

		bias: A 1-D Tensor with size matching the last dimension of value.
Must be the same type as value unless value is a quantized type,
in which case a different quantized type may be used.

		data_format: A string. ‘NHWC’ and ‘NCHW’ are supported.

		name: A name for the operation (optional).

Returns:

A Tensor with the same type as value.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.nn.l2_normalize.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.l2_normalize(x, dim, epsilon=1e-12, name=None) {#l2_normalize}

Normalizes along dimension dim using an L2 norm.

For a 1-D tensor with dim = 0, computes

output = x / sqrt(max(sum(x**2), epsilon))

For x with more dimensions, independently normalizes each 1-D slice along
dimension dim.

Args:

		x: A Tensor.

		dim: Dimension along which to normalize. A scalar or a vector of
integers.

		epsilon: A lower bound value for the norm. Will use sqrt(epsilon) as the
divisor if norm < sqrt(epsilon).

		name: A name for this operation (optional).

Returns:

A Tensor with the same shape as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.framework.model_variable.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.model_variable(*args, **kwargs) {#model_variable}

Gets an existing model variable with these parameters or creates a new one.

Args:

		name: the name of the new or existing variable.

		shape: shape of the new or existing variable.

		dtype: type of the new or existing variable (defaults to DT_FLOAT).

		initializer: initializer for the variable if one is created.

		regularizer: a (Tensor -> Tensor or None) function; the result of
applying it on a newly created variable will be added to the collection
GraphKeys.REGULARIZATION_LOSSES and can be used for regularization.

		trainable: If True also add the variable to the graph collection
GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

		collections: A list of collection names to which the Variable will be added.
Note that the variable is always also added to the GraphKeys.VARIABLES
and GraphKeys.MODEL_VARIABLES collections.

		caching_device: Optional device string or function describing where the
Variable should be cached for reading. Defaults to the Variable’s
device.

		device: Optional device to place the variable. It can be an string or a
function that is called to get the device for the variable.

Returns:

The created or existing variable.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.string_to_number.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.string_to_number(string_tensor, out_type=None, name=None) {#string_to_number}

Converts each string in the input Tensor to the specified numeric type.

(Note that int32 overflow results in an error while float overflow
results in a rounded value.)

Args:

		string_tensor: A Tensor of type string.

		out_type: An optional tf.DType from: tf.float32, tf.int32. Defaults to tf.float32.
The numeric type to interpret each string in string_tensor as.

		name: A name for the operation (optional).

Returns:

A Tensor of type out_type.
A Tensor of the same shape as the input string_tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.layers.summarize_tensors.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.summarize_tensors(tensors, summarizer=summarize_tensor) {#summarize_tensors}

Summarize a set of tensors.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.rnn.AttentionCellWrapper.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Basic attention cell wrapper.

Implementation based on https://arxiv.org/pdf/1601.06733.pdf.

tf.contrib.rnn.AttentionCellWrapper.__call__(inputs, state, scope=None) {#AttentionCellWrapper.call}

Long short-term memory cell with attention (LSTMA).

tf.contrib.rnn.AttentionCellWrapper.__init__(cell, attn_length, attn_size=None, attn_vec_size=None, input_size=None, state_is_tuple=False) {#AttentionCellWrapper.init}

Create a cell with attention.

Args:

		cell: an RNNCell, an attention is added to it.

		attn_length: integer, the size of an attention window.

		attn_size: integer, the size of an attention vector. Equal to
cell.output_size by default.

		attn_vec_size: integer, the number of convolutional features calculated
on attention state and a size of the hidden layer built from
base cell state. Equal attn_size to by default.

		input_size: integer, the size of a hidden linear layer,
built from inputs and attention. Derived from the input tensor
by default.

		state_is_tuple: If True, accepted and returned states are n-tuples, where
n = len(cells). By default (False), the states are all
concatenated along the column axis.

Raises:

		TypeError: if cell is not an RNNCell.

		ValueError: if cell returns a state tuple but the flag
state_is_tuple is False or if attn_length is zero or less.

tf.contrib.rnn.AttentionCellWrapper.output_size {#AttentionCellWrapper.output_size}

tf.contrib.rnn.AttentionCellWrapper.state_size {#AttentionCellWrapper.state_size}

tf.contrib.rnn.AttentionCellWrapper.zero_state(batch_size, dtype) {#AttentionCellWrapper.zero_state}

Return zero-filled state tensor(s).

Args:

		batch_size: int, float, or unit Tensor representing the batch size.

		dtype: the data type to use for the state.

Returns:

If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.Session.reset.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.Session.reset(target, containers=None, config=None) {#Session.reset}

Resets resource containers on target, and close all connected sessions.

A resource container is distributed across all workers in the
same cluster as target. When a resource container on target
is reset, resources associated with that container will be cleared.
In particular, all Variables in the container will become undefined:
they lose their values and shapes.

NOTE:
(i) reset() is currently only implemented for distributed sessions.
(ii) Any sessions on the master named by target will be closed.

If no resource containers are provided, all containers are reset.

Args:

		target: The execution engine to connect to.

		containers: A list of resource container name strings, or None if all of
all the containers are to be reset.

		config: (Optional.) Protocol buffer with configuration options.

Raises:

tf.errors.OpError: Or one of its subclasses if an error occurs while
resetting containers.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.distributions.Distribution.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A generic probability distribution base class.

Distribution is a base class for constructing and organizing properties
(e.g., mean, variance) of random variables (e.g, Bernoulli, Gaussian).

Subclassing

Subclasess are expected to implement a leading-underscore version of the
same-named function. The argument signature should be identical except for
the omission of name="...". For example, to enable log_prob(value, name="log_prob") a subclass should implement _log_prob(value).

Subclasses can rewrite/append to public-level docstrings. For example,

Subclass.prob.__func__.__doc__ += "Some other details."

would add the string “Some other details.” to the prob function docstring.

Broadcasting, batching, and shapes

All distributions support batches of independent distributions of that type.
The batch shape is determined by broadcasting together the parameters.

The shape of arguments to __init__, cdf, log_cdf, prob, and
log_prob reflect this broadcasting, as does the return value of sample and
sample_n.

sample_n_shape = (n,) + batch_shape + event_shape, where sample_n_shape is
the shape of the Tensor returned from sample_n, n is the number of
samples, batch_shape defines how many independent distributions there are,
and event_shape defines the shape of samples from each of those independent
distributions. Samples are independent along the batch_shape dimensions, but
not necessarily so along the event_shape dimensions (dependending on the
particulars of the underlying distribution).

Using the Uniform distribution as an example:

minval = 3.0
maxval = [[4.0, 6.0],
 [10.0, 12.0]]

Broadcasting:
This instance represents 4 Uniform distributions. Each has a lower bound at
3.0 as the `minval` parameter was broadcasted to match `maxval`'s shape.
u = Uniform(minval, maxval)

`event_shape` is `TensorShape([])`.
event_shape = u.get_event_shape()
`event_shape_t` is a `Tensor` which will evaluate to [].
event_shape_t = u.event_shape

Sampling returns a sample per distribution. `samples` has shape
(5, 2, 2), which is (n,) + batch_shape + event_shape, where n=5,
batch_shape=(2, 2), and event_shape=().
samples = u.sample_n(5)

The broadcasting holds across methods. Here we use `cdf` as an example. The
same holds for `log_cdf` and the likelihood functions.

`cum_prob` has shape (2, 2) as the `value` argument was broadcasted to the
shape of the `Uniform` instance.
cum_prob_broadcast = u.cdf(4.0)

`cum_prob`'s shape is (2, 2), one per distribution. No broadcasting
occurred.
cum_prob_per_dist = u.cdf([[4.0, 5.0],
 [6.0, 7.0]])

INVALID as the `value` argument is not broadcastable to the distribution's
shape.
cum_prob_invalid = u.cdf([4.0, 5.0, 6.0])

Parameter values leading to undefined statistics or distributions.

Some distributions do not have well-defined statistics for all initialization
parameter values. For example, the beta distribution is parameterized by
positive real numbers `a` and `b`, and does not have well-defined mode if
`a < 1` or `b < 1`.

The user is given the option of raising an exception or returning `NaN`.

```python
a = tf.exp(tf.matmul(logits, weights_a))
b = tf.exp(tf.matmul(logits, weights_b))

# Will raise exception if ANY batch member has a < 1 or b < 1.
dist = distributions.beta(a, b, allow_nan_stats=False)
mode = dist.mode().eval()

# Will return NaN for batch members with either a < 1 or b < 1.
dist = distributions.beta(a, b, allow_nan_stats=True)  # Default behavior
mode = dist.mode().eval()






In all cases, an exception is raised if invalid parameters are passed, e.g.


# Will raise an exception if any Op is run.
negative_a = -1.0 * a  # beta distribution by definition has a > 0.
dist = distributions.beta(negative_a, b, allow_nan_stats=True)
dist.mean().eval()









tf.contrib.distributions.Distribution.__init__(dtype, parameters, is_continuous, is_reparameterized, validate_args, allow_nan_stats, name=None) {#Distribution.init}


Constructs the Distribution.


This is a private method for subclass use.



Args:



		dtype: The type of the event samples. None implies no type-enforcement.


		parameters: Python dictionary of parameters used by this Distribution.


		is_continuous: Python boolean. If True this
Distribution is continuous over its supported domain.


		is_reparameterized: Python boolean. If True this
Distribution can be reparameterized in terms of some standard
distribution with a function whose Jacobian is constant for the support
of the standard distribution.


		validate_args: Python boolean.  Whether to validate input with asserts.
If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.


		allow_nan_stats: Pytho nboolean.  If False, raise an
exception if a statistic (e.g., mean, mode) is undefined for any batch
member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.


		name: A name for this distribution (optional).












tf.contrib.distributions.Distribution.allow_nan_stats {#Distribution.allow_nan_stats}


Python boolean describing behavior when a stat is undefined.


Stats return +/- infinity when it makes sense.  E.g., the variance
of a Cauchy distribution is infinity.  However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.



Returns:



		allow_nan_stats: Python boolean.












tf.contrib.distributions.Distribution.batch_shape(name='batch_shape') {#Distribution.batch_shape}


Shape of a single sample from a single event index as a 1-D Tensor.


The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.



Args:



		name: name to give to the op








Returns:



		batch_shape: Tensor.












tf.contrib.distributions.Distribution.cdf(value, name='cdf') {#Distribution.cdf}


Cumulative distribution function.


Given random variable X, the cumulative distribution function cdf is:


cdf(x) := P[X <= x]







Args:



		value: float or double Tensor.


		name: The name to give this op.








Returns:



		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.












tf.contrib.distributions.Distribution.dtype {#Distribution.dtype}


The DType of Tensors handled by this Distribution.







tf.contrib.distributions.Distribution.entropy(name='entropy') {#Distribution.entropy}


Shanon entropy in nats.







tf.contrib.distributions.Distribution.event_shape(name='event_shape') {#Distribution.event_shape}


Shape of a single sample from a single batch as a 1-D int32 Tensor.



Args:



		name: name to give to the op








Returns:



		event_shape: Tensor.












tf.contrib.distributions.Distribution.get_batch_shape() {#Distribution.get_batch_shape}


Shape of a single sample from a single event index as a TensorShape.


Same meaning as batch_shape. May be only partially defined.



Returns:



		batch_shape: TensorShape, possibly unknown.












tf.contrib.distributions.Distribution.get_event_shape() {#Distribution.get_event_shape}


Shape of a single sample from a single batch as a TensorShape.


Same meaning as event_shape. May be only partially defined.



Returns:



		event_shape: TensorShape, possibly unknown.












tf.contrib.distributions.Distribution.is_continuous {#Distribution.is_continuous}







tf.contrib.distributions.Distribution.is_reparameterized {#Distribution.is_reparameterized}







tf.contrib.distributions.Distribution.log_cdf(value, name='log_cdf') {#Distribution.log_cdf}


Log cumulative distribution function.


Given random variable X, the cumulative distribution function cdf is:


log_cdf(x) := Log[ P[X <= x] ]






Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.



Args:



		value: float or double Tensor.


		name: The name to give this op.








Returns:



		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.












tf.contrib.distributions.Distribution.log_pdf(value, name='log_pdf') {#Distribution.log_pdf}


Log probability density function.



Args:



		value: float or double Tensor.


		name: The name to give this op.








Returns:



		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.








Raises:



		AttributeError: if not is_continuous.












tf.contrib.distributions.Distribution.log_pmf(value, name='log_pmf') {#Distribution.log_pmf}


Log probability mass function.



Args:



		value: float or double Tensor.


		name: The name to give this op.








Returns:



		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.








Raises:



		AttributeError: if is_continuous.












tf.contrib.distributions.Distribution.log_prob(value, name='log_prob') {#Distribution.log_prob}


Log probability density/mass function (depending on is_continuous).



Args:



		value: float or double Tensor.


		name: The name to give this op.








Returns:



		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.












tf.contrib.distributions.Distribution.log_survival_function(value, name='log_survival_function') {#Distribution.log_survival_function}


Log survival function.


Given random variable X, the survival function is defined:


log_survival_function(x) = Log[ P[X > x] ]
                         = Log[ 1 - P[X <= x] ]
                         = Log[ 1 - cdf(x) ]






Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.



Args:



		value: float or double Tensor.


		name: The name to give this op.








Returns:


Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.









tf.contrib.distributions.Distribution.mean(name='mean') {#Distribution.mean}


Mean.







tf.contrib.distributions.Distribution.mode(name='mode') {#Distribution.mode}


Mode.







tf.contrib.distributions.Distribution.name {#Distribution.name}


Name prepended to all ops created by this Distribution.







tf.contrib.distributions.Distribution.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Distribution.param_shapes}


Shapes of parameters given the desired shape of a call to sample().


Subclasses should override static method _param_shapes.



Args:



		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().


		name: name to prepend ops with.








Returns:


dict of parameter name to Tensor shapes.









tf.contrib.distributions.Distribution.param_static_shapes(cls, sample_shape) {#Distribution.param_static_shapes}


param_shapes with static (i.e. TensorShape) shapes.



Args:



		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().








Returns:


dict of parameter name to TensorShape.





Raises:



		ValueError: if sample_shape is a TensorShape and is not fully defined.












tf.contrib.distributions.Distribution.parameters {#Distribution.parameters}


Dictionary of parameters used by this Distribution.







tf.contrib.distributions.Distribution.pdf(value, name='pdf') {#Distribution.pdf}


Probability density function.



Args:



		value: float or double Tensor.


		name: The name to give this op.








Returns:



		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.








Raises:



		AttributeError: if not is_continuous.












tf.contrib.distributions.Distribution.pmf(value, name='pmf') {#Distribution.pmf}


Probability mass function.



Args:



		value: float or double Tensor.


		name: The name to give this op.








Returns:



		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.








Raises:



		AttributeError: if is_continuous.












tf.contrib.distributions.Distribution.prob(value, name='prob') {#Distribution.prob}


Probability density/mass function (depending on is_continuous).



Args:



		value: float or double Tensor.


		name: The name to give this op.








Returns:



		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.












tf.contrib.distributions.Distribution.sample(sample_shape=(), seed=None, name='sample') {#Distribution.sample}


Generate samples of the specified shape.


Note that a call to sample() without arguments will generate a single
sample.



Args:



		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.


		seed: Python integer seed for RNG


		name: name to give to the op.








Returns:



		samples: a Tensor with prepended dimensions sample_shape.












tf.contrib.distributions.Distribution.sample_n(n, seed=None, name='sample_n') {#Distribution.sample_n}


Generate n samples.



Args:



		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.


		seed: Python integer seed for RNG


		name: name to give to the op.








Returns:



		samples: a Tensor with a prepended dimension (n,).








Raises:



		TypeError: if n is not an integer type.












tf.contrib.distributions.Distribution.std(name='std') {#Distribution.std}


Standard deviation.







tf.contrib.distributions.Distribution.survival_function(value, name='survival_function') {#Distribution.survival_function}


Survival function.


Given random variable X, the survival function is defined:


survival_function(x) = P[X > x]
                     = 1 - P[X <= x]
                     = 1 - cdf(x).







Args:



		value: float or double Tensor.


		name: The name to give this op.








Returns:


Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.









tf.contrib.distributions.Distribution.validate_args {#Distribution.validate_args}


Python boolean indicated possibly expensive checks are enabled.







tf.contrib.distributions.Distribution.variance(name='variance') {#Distribution.variance}


Variance.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.matrix_triangular_solve.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
tf.matrix_triangular_solve(matrix, rhs, lower=None, adjoint=None, name=None) {#matrix_triangular_solve}


Solves systems of linear equations with upper or lower triangular matrices by


backsubstitution.


matrix is a tensor of shape [..., M, M] whose inner-most 2 dimensions form
square matrices. If lower is True then the strictly upper triangular part
of each inner-most matrix is assumed to be zero and not accessed.
If lower is False then the strictly lower triangular part of each inner-most
matrix is assumed to be zero and not accessed.
rhs is a tensor of shape [..., M, K].


The output is a tensor of shape [..., M, K]. If adjoint is
True then the innermost matrices in outputsatisfy matrix equationsmatrix[..., :, :] * output[..., :, :] = rhs[..., :, :]. IfadjointisFalsethen the strictly then the innermost matrices inoutputsatisfy matrix equationsadjoint(matrix[..., i, k]) * output[..., k, j] = rhs[..., i, j]`.



Args:



		matrix: A Tensor. Must be one of the following types: float64, float32.
Shape is [..., M, M].


		rhs: A Tensor. Must have the same type as matrix.
Shape is [..., M, K].


		lower: An optional bool. Defaults to True.
Boolean indicating whether the innermost matrices in matrix are
lower or upper triangular.


		adjoint: An optional bool. Defaults to False.
Boolean indicating whether to solve with matrix or its (block-wise)
adjoint.


		name: A name for the operation (optional).








Returns:


A Tensor. Has the same type as matrix. Shape is [..., M, K].








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.reverse_sequence.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
tf.reverse_sequence(input, seq_lengths, seq_dim, batch_dim=None, name=None) {#reverse_sequence}


Reverses variable length slices.


This op first slices input along the dimension batch_dim, and for each
slice i, reverses the first seq_lengths[i] elements along
the dimension seq_dim.


The elements of seq_lengths must obey seq_lengths[i] < input.dims[seq_dim],
and seq_lengths must be a vector of length input.dims[batch_dim].


The output slice i along dimension batch_dim is then given by input
slice i, with the first seq_lengths[i] slices along dimension
seq_dim reversed.


For example:


# Given this:
batch_dim = 0
seq_dim = 1
input.dims = (4, 8, ...)
seq_lengths = [7, 2, 3, 5]

# then slices of input are reversed on seq_dim, but only up to seq_lengths:
output[0, 0:7, :, ...] = input[0, 7:0:-1, :, ...]
output[1, 0:2, :, ...] = input[1, 2:0:-1, :, ...]
output[2, 0:3, :, ...] = input[2, 3:0:-1, :, ...]
output[3, 0:5, :, ...] = input[3, 5:0:-1, :, ...]

# while entries past seq_lens are copied through:
output[0, 7:, :, ...] = input[0, 7:, :, ...]
output[1, 2:, :, ...] = input[1, 2:, :, ...]
output[2, 3:, :, ...] = input[2, 3:, :, ...]
output[3, 2:, :, ...] = input[3, 2:, :, ...]






In contrast, if:


# Given this:
batch_dim = 2
seq_dim = 0
input.dims = (8, ?, 4, ...)
seq_lengths = [7, 2, 3, 5]

# then slices of input are reversed on seq_dim, but only up to seq_lengths:
output[0:7, :, 0, :, ...] = input[7:0:-1, :, 0, :, ...]
output[0:2, :, 1, :, ...] = input[2:0:-1, :, 1, :, ...]
output[0:3, :, 2, :, ...] = input[3:0:-1, :, 2, :, ...]
output[0:5, :, 3, :, ...] = input[5:0:-1, :, 3, :, ...]

# while entries past seq_lens are copied through:
output[7:, :, 0, :, ...] = input[7:, :, 0, :, ...]
output[2:, :, 1, :, ...] = input[2:, :, 1, :, ...]
output[3:, :, 2, :, ...] = input[3:, :, 2, :, ...]
output[2:, :, 3, :, ...] = input[2:, :, 3, :, ...]







Args:



		input: A Tensor. The input to reverse.


		seq_lengths: A Tensor. Must be one of the following types: int32, int64.
1-D with length input.dims(batch_dim) and
max(seq_lengths) < input.dims(seq_dim)


		seq_dim: An int. The dimension which is partially reversed.


		batch_dim: An optional int. Defaults to 0.
The dimension along which reversal is performed.


		name: A name for the operation (optional).








Returns:


A Tensor. Has the same type as input.
The partially reversed input. It has the same shape as input.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.framework.convert_to_tensor_or_sparse_tensor.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
tf.contrib.framework.convert_to_tensor_or_sparse_tensor(value, dtype=None, name=None, as_ref=False) {#convert_to_tensor_or_sparse_tensor}


Converts value to a SparseTensor or Tensor.



Args:



		value: A SparseTensor, SparseTensorValue, or an object whose type has a
registered Tensor conversion function.


		dtype: Optional element type for the returned tensor. If missing, the
type is inferred from the type of value.


		name: Optional name to use if a new Tensor is created.


		as_ref: True if we want the result as a ref tensor. Only used if a new
Tensor is created.








Returns:


A SparseTensor or Tensor based on value.





Raises:



		RuntimeError: If result type is incompatible with dtype.











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.ifft3d.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
tf.ifft3d(input, name=None) {#ifft3d}


Compute the inverse 3-dimensional discrete Fourier Transform over the inner-most


3 dimensions of input.



Args:



		input: A Tensor of type complex64. A complex64 tensor.


		name: A name for the operation (optional).








Returns:


A Tensor of type complex64.
A complex64 tensor of the same shape as input. The inner-most 3
dimensions of input are replaced with their inverse 3D Fourier Transform.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.graph_editor.make_view_from_scope.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
tf.contrib.graph_editor.make_view_from_scope(scope, graph) {#make_view_from_scope}


Make a subgraph from a name scope.



Args:



		scope: the name of the scope.


		graph: the tf.Graph.








Returns:


A subgraph view representing the given scope.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.graph_editor.add_control_inputs.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
tf.contrib.graph_editor.add_control_inputs(op, cops) {#add_control_inputs}


Add the control inputs cops to co.


Warning: this function is directly manipulating the internals of the tf.Graph.



Args:



		op: a tf.Operation to which the control inputs are added.


		cops: an object convertible to a list of tf.Operation.








Raises:



		TypeError: if op is not a tf.Operation


		ValueError: if any cop in cops is already a control input of op.











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.bayesflow.stochastic_tensor.get_current_value_type.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
tf.contrib.bayesflow.stochastic_tensor.get_current_value_type() {#get_current_value_type}






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.graph_editor.filter_ops.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
tf.contrib.graph_editor.filter_ops(ops, positive_filter) {#filter_ops}


Get the ops passing the given filter.



Args:



		ops: an object convertible to a list of tf.Operation.


		positive_filter: a function deciding where to keep an operation or not.
If True, all the operations are returned.








Returns:


A list of selected tf.Operation.





Raises:



		TypeError: if ops cannot be converted to a list of tf.Operation.











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  CategoricalTensor is a StochasticTensor backed by the distribution Categorical.





tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#CategoricalTensor.init}







tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.clone(name=None, **dist_args) {#CategoricalTensor.clone}







tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.distribution {#CategoricalTensor.distribution}







tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.dtype {#CategoricalTensor.dtype}







tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.entropy(name='entropy') {#CategoricalTensor.entropy}







tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.graph {#CategoricalTensor.graph}







tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.input_dict {#CategoricalTensor.input_dict}







tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.loss(final_loss, name='Loss') {#CategoricalTensor.loss}







tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.mean(name='mean') {#CategoricalTensor.mean}







tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.name {#CategoricalTensor.name}







tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.value(name='value') {#CategoricalTensor.value}







tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.value_type {#CategoricalTensor.value_type}






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.distributions.RegisterKL.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  Decorator to register a KL divergence implementation function.


Usage:


@distributions.RegisterKL(distributions.Normal, distributions.Normal)
def _kl_normal_mvn(norm_a, norm_b):



Return KL(norm_a || norm_b)





tf.contrib.distributions.RegisterKL.__call__(kl_fn) {#RegisterKL.call}


Perform the KL registration.



Args:



		kl_fn: The function to use for the KL divergence.








Returns:


kl_fn





Raises:



		TypeError: if kl_fn is not a callable.


		ValueError: if a KL divergence function has already been registered for
the given argument classes.












tf.contrib.distributions.RegisterKL.__init__(dist_cls_a, dist_cls_b) {#RegisterKL.init}


Initialize the KL registrar.



Args:



		dist_cls_a: the class of the first argument of the KL divergence.


		dist_cls_b: the class of the second argument of the KL divergence.













          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.meshgrid.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
tf.meshgrid(*args, **kwargs) {#meshgrid}


Broadcasts parameters for evaluation on an N-D grid.


Given N one-dimensional coordinate arrays *args, returns a list outputs
of N-D coordinate arrays for evaluating expressions on an N-D grid.


Notes:


meshgrid supports cartesian (‘xy’) and matrix (‘ij’) indexing conventions.
When the indexing argument is set to ‘xy’ (the default), the broadcasting
instructions for the first two dimensions are swapped.


Examples:


Calling X, Y = meshgrid(x, y) with the tensors


  x = [1, 2, 3]
  y = [4, 5, 6]






results in


  X = [[1, 1, 1],
       [2, 2, 2],
       [3, 3, 3]]
  Y = [[4, 5, 6],
       [4, 5, 6],
       [4, 5, 6]]







Args:



		*args: Tensors with rank 1


		indexing: Either ‘xy’ or ‘ij’ (optional, default: ‘xy’)


		name: A name for the operation (optional).








Returns:



		outputs: A list of N Tensors with rank N











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.sparse_tensor_to_dense.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
tf.sparse_tensor_to_dense(sp_input, default_value=0, validate_indices=True, name=None) {#sparse_tensor_to_dense}


Converts a SparseTensor into a dense tensor.


This op is a convenience wrapper around sparse_to_dense for SparseTensors.


For example, if sp_input has shape [3, 5] and non-empty string values:


[0, 1]: a
[0, 3]: b
[2, 0]: c






and default_value is x, then the output will be a dense [3, 5]
string tensor with values:


[[x a x b x]
 [x x x x x]
 [c x x x x]]






Indices must be without repeats.  This is only
tested if validate_indices is True.



Args:



		sp_input: The input SparseTensor.


		default_value: Scalar value to set for indices not specified in
sp_input.  Defaults to zero.


		validate_indices: A boolean value.  If True, indices are checked to make
sure they are sorted in lexicographic order and that there are no repeats.


		name: A name prefix for the returned tensors (optional).








Returns:


A dense tensor with shape sp_input.shape and values specified by
the non-empty values in sp_input. Indices not in sp_input are assigned
default_value.





Raises:



		TypeError: If sp_input is not a SparseTensor.











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.NotDifferentiable.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
tf.NotDifferentiable(op_type) {#NotDifferentiable}


Specifies that ops of type op_type is not differentiable.


This function should not be used for operations that have a
well-defined gradient that is not yet implemented.


This function is only used when defining a new op type. It may be
used for ops such as tf.size() that are not differentiable.  For
example:


tf.NotDifferentiable("Size")






The gradient computed for ‘op_type’ will then propagate zeros.


For ops that have a well-defined gradient but are not yet implemented,
no declaration should be made, and an error must be thrown if
an attempt to request its gradient is made.



Args:



		op_type: The string type of an operation. This corresponds to the
OpDef.name field for the proto that defines the operation.








Raises:



		TypeError: If op_type is not a string.











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  GammaWithSoftplusAlphaBetaTensor is a StochasticTensor backed by the distribution GammaWithSoftplusAlphaBeta.





tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#GammaWithSoftplusAlphaBetaTensor.init}







tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.clone(name=None, **dist_args) {#GammaWithSoftplusAlphaBetaTensor.clone}







tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.distribution {#GammaWithSoftplusAlphaBetaTensor.distribution}







tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.dtype {#GammaWithSoftplusAlphaBetaTensor.dtype}







tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.entropy(name='entropy') {#GammaWithSoftplusAlphaBetaTensor.entropy}







tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.graph {#GammaWithSoftplusAlphaBetaTensor.graph}







tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.input_dict {#GammaWithSoftplusAlphaBetaTensor.input_dict}







tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.loss(final_loss, name='Loss') {#GammaWithSoftplusAlphaBetaTensor.loss}







tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.mean(name='mean') {#GammaWithSoftplusAlphaBetaTensor.mean}







tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.name {#GammaWithSoftplusAlphaBetaTensor.name}







tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.value(name='value') {#GammaWithSoftplusAlphaBetaTensor.value}







tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.value_type {#GammaWithSoftplusAlphaBetaTensor.value_type}






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.errors.CancelledError.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  Raised when an operation or step is cancelled.


For example, a long-running operation (e.g.
queue.enqueue() may be
cancelled by running another operation (e.g.
queue.close(cancel_pending_enqueues=True),
or by closing the session.
A step that is running such a long-running operation will fail by raising
CancelledError.





tf.errors.CancelledError.__init__(node_def, op, message) {#CancelledError.init}


Creates a CancelledError.






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/rnn_cell.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
Neural Network RNN Cells


[TOC]


Module for constructing RNN Cells.



Base interface for all RNN Cells





class tf.nn.rnn_cell.RNNCell {#RNNCell}


Abstract object representing an RNN cell.


The definition of cell in this package differs from the definition used in the
literature. In the literature, cell refers to an object with a single scalar
output. The definition in this package refers to a horizontal array of such
units.


An RNN cell, in the most abstract setting, is anything that has
a state and performs some operation that takes a matrix of inputs.
This operation results in an output matrix with self.output_size columns.
If self.state_size is an integer, this operation also results in a new
state matrix with self.state_size columns.  If self.state_size is a
tuple of integers, then it results in a tuple of len(state_size) state
matrices, each with a column size corresponding to values in state_size.


This module provides a number of basic commonly used RNN cells, such as
LSTM (Long Short Term Memory) or GRU (Gated Recurrent Unit), and a number
of operators that allow add dropouts, projections, or embeddings for inputs.
Constructing multi-layer cells is supported by the class MultiRNNCell,
or by calling the rnn ops several times. Every RNNCell must have the
properties below and and implement __call__ with the following signature.





tf.nn.rnn_cell.RNNCell.__call__(inputs, state, scope=None) {#RNNCell.call}


Run this RNN cell on inputs, starting from the given state.



Args:



		inputs: 2-D tensor with shape [batch_size x input_size].


		state: if self.state_size is an integer, this should be a 2-D Tensor
with shape [batch_size x self.state_size].  Otherwise, if
self.state_size is a tuple of integers, this should be a tuple
with shapes [batch_size x s] for s in self.state_size.


		scope: VariableScope for the created subgraph; defaults to class name.








Returns:


A pair containing:



		Output: A 2-D tensor with shape [batch_size x self.output_size].


		New state: Either a single 2-D tensor, or a tuple of tensors matching
the arity and shapes of state.












tf.nn.rnn_cell.RNNCell.output_size {#RNNCell.output_size}


Integer or TensorShape: size of outputs produced by this cell.







tf.nn.rnn_cell.RNNCell.state_size {#RNNCell.state_size}


size(s) of state(s) used by this cell.


It can be represented by an Integer, a TensorShape or a tuple of Integers
or TensorShapes.







tf.nn.rnn_cell.RNNCell.zero_state(batch_size, dtype) {#RNNCell.zero_state}


Return zero-filled state tensor(s).



Args:



		batch_size: int, float, or unit Tensor representing the batch size.


		dtype: the data type to use for the state.








Returns:


If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.


If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.











RNN Cells for use with TensorFlow’s core RNN methods





class tf.nn.rnn_cell.BasicRNNCell {#BasicRNNCell}


The most basic RNN cell.





tf.nn.rnn_cell.BasicRNNCell.__call__(inputs, state, scope=None) {#BasicRNNCell.call}


Most basic RNN: output = new_state = activation(W * input + U * state + B).







tf.nn.rnn_cell.BasicRNNCell.__init__(num_units, input_size=None, activation=tanh) {#BasicRNNCell.init}







tf.nn.rnn_cell.BasicRNNCell.output_size {#BasicRNNCell.output_size}







tf.nn.rnn_cell.BasicRNNCell.state_size {#BasicRNNCell.state_size}







tf.nn.rnn_cell.BasicRNNCell.zero_state(batch_size, dtype) {#BasicRNNCell.zero_state}


Return zero-filled state tensor(s).



Args:



		batch_size: int, float, or unit Tensor representing the batch size.


		dtype: the data type to use for the state.








Returns:


If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.


If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.











class tf.nn.rnn_cell.BasicLSTMCell {#BasicLSTMCell}


Basic LSTM recurrent network cell.


The implementation is based on: http://arxiv.org/abs/1409.2329.


We add forget_bias (default: 1) to the biases of the forget gate in order to
reduce the scale of forgetting in the beginning of the training.


It does not allow cell clipping, a projection layer, and does not
use peep-hole connections: it is the basic baseline.


For advanced models, please use the full LSTMCell that follows.





tf.nn.rnn_cell.BasicLSTMCell.__call__(inputs, state, scope=None) {#BasicLSTMCell.call}


Long short-term memory cell (LSTM).







tf.nn.rnn_cell.BasicLSTMCell.__init__(num_units, forget_bias=1.0, input_size=None, state_is_tuple=True, activation=tanh) {#BasicLSTMCell.init}


Initialize the basic LSTM cell.



Args:



		num_units: int, The number of units in the LSTM cell.


		forget_bias: float, The bias added to forget gates (see above).


		input_size: Deprecated and unused.


		state_is_tuple: If True, accepted and returned states are 2-tuples of
the c_state and m_state.  If False, they are concatenated
along the column axis.  The latter behavior will soon be deprecated.


		activation: Activation function of the inner states.












tf.nn.rnn_cell.BasicLSTMCell.output_size {#BasicLSTMCell.output_size}







tf.nn.rnn_cell.BasicLSTMCell.state_size {#BasicLSTMCell.state_size}







tf.nn.rnn_cell.BasicLSTMCell.zero_state(batch_size, dtype) {#BasicLSTMCell.zero_state}


Return zero-filled state tensor(s).



Args:



		batch_size: int, float, or unit Tensor representing the batch size.


		dtype: the data type to use for the state.








Returns:


If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.


If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.











class tf.nn.rnn_cell.GRUCell {#GRUCell}


Gated Recurrent Unit cell (cf. http://arxiv.org/abs/1406.1078).





tf.nn.rnn_cell.GRUCell.__call__(inputs, state, scope=None) {#GRUCell.call}


Gated recurrent unit (GRU) with nunits cells.







tf.nn.rnn_cell.GRUCell.__init__(num_units, input_size=None, activation=tanh) {#GRUCell.init}







tf.nn.rnn_cell.GRUCell.output_size {#GRUCell.output_size}







tf.nn.rnn_cell.GRUCell.state_size {#GRUCell.state_size}







tf.nn.rnn_cell.GRUCell.zero_state(batch_size, dtype) {#GRUCell.zero_state}


Return zero-filled state tensor(s).



Args:



		batch_size: int, float, or unit Tensor representing the batch size.


		dtype: the data type to use for the state.








Returns:


If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.


If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.











class tf.nn.rnn_cell.LSTMCell {#LSTMCell}


Long short-term memory unit (LSTM) recurrent network cell.


The default non-peephole implementation is based on:


http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf


S. Hochreiter and J. Schmidhuber.
“Long Short-Term Memory”. Neural Computation, 9(8):1735-1780, 1997.


The peephole implementation is based on:


https://research.google.com/pubs/archive/43905.pdf


Hasim Sak, Andrew Senior, and Francoise Beaufays.
“Long short-term memory recurrent neural network architectures for
large scale acoustic modeling.” INTERSPEECH, 2014.


The class uses optional peep-hole connections, optional cell clipping, and
an optional projection layer.





tf.nn.rnn_cell.LSTMCell.__call__(inputs, state, scope=None) {#LSTMCell.call}


Run one step of LSTM.



Args:



		inputs: input Tensor, 2D, batch x num_units.


		state: if state_is_tuple is False, this must be a state Tensor,
2-D, batch x state_size.  If state_is_tuple is True, this must be a
tuple of state Tensors, both 2-D, with column sizes c_state and
m_state.


		scope: VariableScope for the created subgraph; defaults to “LSTMCell”.








Returns:


A tuple containing:



		A 2-D, [batch x output_dim], Tensor representing the output of the
LSTM after reading inputs when previous state was state.
Here output_dim is:
num_proj if num_proj was set,
num_units otherwise.


		Tensor(s) representing the new state of LSTM after reading inputs when
the previous state was state.  Same type and shape(s) as state.








Raises:



		ValueError: If input size cannot be inferred from inputs via
static shape inference.












tf.nn.rnn_cell.LSTMCell.__init__(num_units, input_size=None, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=1, num_proj_shards=1, forget_bias=1.0, state_is_tuple=True, activation=tanh) {#LSTMCell.init}


Initialize the parameters for an LSTM cell.



Args:



		num_units: int, The number of units in the LSTM cell


		input_size: Deprecated and unused.


		use_peepholes: bool, set True to enable diagonal/peephole connections.


		cell_clip: (optional) A float value, if provided the cell state is clipped
by this value prior to the cell output activation.


		initializer: (optional) The initializer to use for the weight and
projection matrices.


		num_proj: (optional) int, The output dimensionality for the projection
matrices.  If None, no projection is performed.


		proj_clip: (optional) A float value.  If num_proj > 0 and proj_clip is
provided, then the projected values are clipped elementwise to within
[-proj_clip, proj_clip].


		num_unit_shards: How to split the weight matrix.  If >1, the weight
matrix is stored across num_unit_shards.


		num_proj_shards: How to split the projection matrix.  If >1, the
projection matrix is stored across num_proj_shards.


		forget_bias: Biases of the forget gate are initialized by default to 1
in order to reduce the scale of forgetting at the beginning of
the training.


		state_is_tuple: If True, accepted and returned states are 2-tuples of
the c_state and m_state.  If False, they are concatenated
along the column axis.  This latter behavior will soon be deprecated.


		activation: Activation function of the inner states.












tf.nn.rnn_cell.LSTMCell.output_size {#LSTMCell.output_size}







tf.nn.rnn_cell.LSTMCell.state_size {#LSTMCell.state_size}







tf.nn.rnn_cell.LSTMCell.zero_state(batch_size, dtype) {#LSTMCell.zero_state}


Return zero-filled state tensor(s).



Args:



		batch_size: int, float, or unit Tensor representing the batch size.


		dtype: the data type to use for the state.








Returns:


If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.


If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.











Classes storing split RNNCell state





class tf.nn.rnn_cell.LSTMStateTuple {#LSTMStateTuple}


Tuple used by LSTM Cells for state_size, zero_state, and output state.


Stores two elements: (c, h), in that order.


Only used when state_is_tuple=True.





tf.nn.rnn_cell.LSTMStateTuple.__getnewargs__() {#LSTMStateTuple.getnewargs}


Return self as a plain tuple.  Used by copy and pickle.







tf.nn.rnn_cell.LSTMStateTuple.__getstate__() {#LSTMStateTuple.getstate}


Exclude the OrderedDict from pickling







tf.nn.rnn_cell.LSTMStateTuple.__new__(_cls, c, h) {#LSTMStateTuple.new}


Create new instance of LSTMStateTuple(c, h)







tf.nn.rnn_cell.LSTMStateTuple.__repr__() {#LSTMStateTuple.repr}


Return a nicely formatted representation string







tf.nn.rnn_cell.LSTMStateTuple.c {#LSTMStateTuple.c}


Alias for field number 0







tf.nn.rnn_cell.LSTMStateTuple.dtype {#LSTMStateTuple.dtype}







tf.nn.rnn_cell.LSTMStateTuple.h {#LSTMStateTuple.h}


Alias for field number 1









RNN Cell wrappers (RNNCells that wrap other RNNCells)





class tf.nn.rnn_cell.MultiRNNCell {#MultiRNNCell}


RNN cell composed sequentially of multiple simple cells.





tf.nn.rnn_cell.MultiRNNCell.__call__(inputs, state, scope=None) {#MultiRNNCell.call}


Run this multi-layer cell on inputs, starting from state.







tf.nn.rnn_cell.MultiRNNCell.__init__(cells, state_is_tuple=True) {#MultiRNNCell.init}


Create a RNN cell composed sequentially of a number of RNNCells.



Args:



		cells: list of RNNCells that will be composed in this order.


		state_is_tuple: If True, accepted and returned states are n-tuples, where
n = len(cells).  If False, the states are all
concatenated along the column axis.  This latter behavior will soon be
deprecated.








Raises:



		ValueError: if cells is empty (not allowed), or at least one of the cells
returns a state tuple but the flag state_is_tuple is False.












tf.nn.rnn_cell.MultiRNNCell.output_size {#MultiRNNCell.output_size}







tf.nn.rnn_cell.MultiRNNCell.state_size {#MultiRNNCell.state_size}







tf.nn.rnn_cell.MultiRNNCell.zero_state(batch_size, dtype) {#MultiRNNCell.zero_state}


Return zero-filled state tensor(s).



Args:



		batch_size: int, float, or unit Tensor representing the batch size.


		dtype: the data type to use for the state.








Returns:


If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.


If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.











class tf.nn.rnn_cell.DropoutWrapper {#DropoutWrapper}


Operator adding dropout to inputs and outputs of the given cell.





tf.nn.rnn_cell.DropoutWrapper.__call__(inputs, state, scope=None) {#DropoutWrapper.call}


Run the cell with the declared dropouts.







tf.nn.rnn_cell.DropoutWrapper.__init__(cell, input_keep_prob=1.0, output_keep_prob=1.0, seed=None) {#DropoutWrapper.init}


Create a cell with added input and/or output dropout.


Dropout is never used on the state.



Args:



		cell: an RNNCell, a projection to output_size is added to it.


		input_keep_prob: unit Tensor or float between 0 and 1, input keep
probability; if it is float and 1, no input dropout will be added.


		output_keep_prob: unit Tensor or float between 0 and 1, output keep
probability; if it is float and 1, no output dropout will be added.


		seed: (optional) integer, the randomness seed.








Raises:



		TypeError: if cell is not an RNNCell.


		ValueError: if keep_prob is not between 0 and 1.












tf.nn.rnn_cell.DropoutWrapper.output_size {#DropoutWrapper.output_size}







tf.nn.rnn_cell.DropoutWrapper.state_size {#DropoutWrapper.state_size}







tf.nn.rnn_cell.DropoutWrapper.zero_state(batch_size, dtype) {#DropoutWrapper.zero_state}


Return zero-filled state tensor(s).



Args:



		batch_size: int, float, or unit Tensor representing the batch size.


		dtype: the data type to use for the state.








Returns:


If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.


If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.











class tf.nn.rnn_cell.EmbeddingWrapper {#EmbeddingWrapper}


Operator adding input embedding to the given cell.


Note: in many cases it may be more efficient to not use this wrapper,
but instead concatenate the whole sequence of your inputs in time,
do the embedding on this batch-concatenated sequence, then split it and
feed into your RNN.





tf.nn.rnn_cell.EmbeddingWrapper.__call__(inputs, state, scope=None) {#EmbeddingWrapper.call}


Run the cell on embedded inputs.







tf.nn.rnn_cell.EmbeddingWrapper.__init__(cell, embedding_classes, embedding_size, initializer=None) {#EmbeddingWrapper.init}


Create a cell with an added input embedding.



Args:



		cell: an RNNCell, an embedding will be put before its inputs.


		embedding_classes: integer, how many symbols will be embedded.


		embedding_size: integer, the size of the vectors we embed into.


		initializer: an initializer to use when creating the embedding;
if None, the initializer from variable scope or a default one is used.








Raises:



		TypeError: if cell is not an RNNCell.


		ValueError: if embedding_classes is not positive.












tf.nn.rnn_cell.EmbeddingWrapper.output_size {#EmbeddingWrapper.output_size}







tf.nn.rnn_cell.EmbeddingWrapper.state_size {#EmbeddingWrapper.state_size}







tf.nn.rnn_cell.EmbeddingWrapper.zero_state(batch_size, dtype) {#EmbeddingWrapper.zero_state}


Return zero-filled state tensor(s).



Args:



		batch_size: int, float, or unit Tensor representing the batch size.


		dtype: the data type to use for the state.








Returns:


If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.


If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.











class tf.nn.rnn_cell.InputProjectionWrapper {#InputProjectionWrapper}


Operator adding an input projection to the given cell.


Note: in many cases it may be more efficient to not use this wrapper,
but instead concatenate the whole sequence of your inputs in time,
do the projection on this batch-concatenated sequence, then split it.





tf.nn.rnn_cell.InputProjectionWrapper.__call__(inputs, state, scope=None) {#InputProjectionWrapper.call}


Run the input projection and then the cell.







tf.nn.rnn_cell.InputProjectionWrapper.__init__(cell, num_proj, input_size=None) {#InputProjectionWrapper.init}


Create a cell with input projection.



Args:



		cell: an RNNCell, a projection of inputs is added before it.


		num_proj: Python integer.  The dimension to project to.


		input_size: Deprecated and unused.








Raises:



		TypeError: if cell is not an RNNCell.












tf.nn.rnn_cell.InputProjectionWrapper.output_size {#InputProjectionWrapper.output_size}







tf.nn.rnn_cell.InputProjectionWrapper.state_size {#InputProjectionWrapper.state_size}







tf.nn.rnn_cell.InputProjectionWrapper.zero_state(batch_size, dtype) {#InputProjectionWrapper.zero_state}


Return zero-filled state tensor(s).



Args:



		batch_size: int, float, or unit Tensor representing the batch size.


		dtype: the data type to use for the state.








Returns:


If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.


If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.











class tf.nn.rnn_cell.OutputProjectionWrapper {#OutputProjectionWrapper}


Operator adding an output projection to the given cell.


Note: in many cases it may be more efficient to not use this wrapper,
but instead concatenate the whole sequence of your outputs in time,
do the projection on this batch-concatenated sequence, then split it
if needed or directly feed into a softmax.





tf.nn.rnn_cell.OutputProjectionWrapper.__call__(inputs, state, scope=None) {#OutputProjectionWrapper.call}


Run the cell and output projection on inputs, starting from state.







tf.nn.rnn_cell.OutputProjectionWrapper.__init__(cell, output_size) {#OutputProjectionWrapper.init}


Create a cell with output projection.



Args:



		cell: an RNNCell, a projection to output_size is added to it.


		output_size: integer, the size of the output after projection.








Raises:



		TypeError: if cell is not an RNNCell.


		ValueError: if output_size is not positive.












tf.nn.rnn_cell.OutputProjectionWrapper.output_size {#OutputProjectionWrapper.output_size}







tf.nn.rnn_cell.OutputProjectionWrapper.state_size {#OutputProjectionWrapper.state_size}







tf.nn.rnn_cell.OutputProjectionWrapper.zero_state(batch_size, dtype) {#OutputProjectionWrapper.zero_state}


Return zero-filled state tensor(s).



Args:



		batch_size: int, float, or unit Tensor representing the batch size.


		dtype: the data type to use for the state.








Returns:


If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.


If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.














          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/contrib.bayesflow.monte_carlo.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
BayesFlow Monte Carlo (contrib)


[TOC]


Monte Carlo integration and helpers.



Background


Monte Carlo integration refers to the practice of estimating an expectation with
a sample mean.  For example, given random variable Z in R^k with density p,
the expectation of function f can be approximated like:


E_p[f(Z)] = \int f(z) p(z) dz
          ~ S_n
          := n^{-1} \sum_{i=1}^n f(z_i),  z_i iid samples from p.






If E_p[|f(Z)|] < infinity, then S_n --> E_p[f(Z)] by the strong law of large
numbers.  If E_p[f(Z)^2] < infinity, then S_n is asymptotically normal with
variance Var[f(Z)] / n.


Practicioners of Bayesian statistics often find themselves wanting to estimate
E_p[f(Z)] when the distribution p is known only up to a constant.  For
example, the joint distribution p(z, x) may be known, but the evidence
p(x) = \int p(z, x) dz may be intractable.  In that case, a parameterized
distribution family q_lambda(z) may be chosen, and the optimal lambda is the
one minimizing the KL divergence between q_lambda(z) and
p(z | x).  We only know p(z, x), but that is sufficient to find lambda.





Log-space evaluation and subtracting the maximum.


Care must be taken when the random variable lives in a high dimensional space.
For example, the naive importance sample estimate E_q[f(Z) p(Z) / q(Z)]
involves the ratio of two terms p(Z) / q(Z), each of which must have tails
dropping off faster than O(|z|^{-(k + 1)}) in order to have finite integral.
This ratio would often be zero or infinity up to numerical precision.


For that reason, we write


Log E_q[ f(Z) p(Z) / q(Z) ]
   = Log E_q[ exp{Log[f(Z)] + Log[p(Z)] - Log[q(Z)] - C} ] + C,  where
C := Max[ Log[f(Z)] + Log[p(Z)] - Log[q(Z)] ].






The maximum value of the exponentiated term will be 0.0, and the the expectation
can be evaluated in a stable manner.





Ops





tf.contrib.bayesflow.monte_carlo.expectation(f, p, z=None, n=None, seed=None, name='expectation') {#expectation}


Monte Carlo estimate of an expectation:  E_p[f(Z)] with sample mean.


This Op returns


n^{-1} sum_{i=1}^n f(z_i),  where z_i ~ p
\approx E_p[f(Z)]






User supplies either Tensor of samples z, or number of samples to draw n



Args:



		f: Callable mapping samples from p to Tensors.


		p: tf.contrib.distributions.BaseDistribution.


		z: Tensor of samples from p, produced by p.sample_n.


		n: Integer Tensor.  Number of samples to generate if z is not provided.


		seed: Python integer to seed the random number generator.


		name: A name to give this Op.








Returns:


A Tensor with the same dtype as p.



		Example:





N_samples = 10000

distributions = tf.contrib.distributions

dist = distributions.Uniform([0.0, 0.0], [1.0, 2.0])
elementwise_mean = lambda x: x
mean_sum = lambda x: tf.reduce_sum(x, 1)

estimate_elementwise_mean_tf = monte_carlo.expectation(elementwise_mean,
                                                       dist,
                                                       n=N_samples)
estimate_mean_sum_tf = monte_carlo.expectation(mean_sum,
                                               dist,
                                               n=N_samples)

with tf.Session() as sess:
  estimate_elementwise_mean, estimate_mean_sum = (
      sess.run([estimate_elementwise_mean_tf, estimate_mean_sum_tf]))
print estimate_elementwise_mean
>>> np.array([ 0.50018013  1.00097895], dtype=np.float32)
print estimate_mean_sum
>>> 1.49571













tf.contrib.bayesflow.monte_carlo.expectation_importance_sampler(f, log_p, sampling_dist_q, z=None, n=None, seed=None, name='expectation_importance_sampler') {#expectation_importance_sampler}


Monte Carlo estimate of E_p[f(Z)] = E_q[f(Z) p(Z) / q(Z)].


With p(z) := exp{log_p(z)}, this Op returns


n^{-1} sum_{i=1}^n [ f(z_i) p(z_i) / q(z_i) ],  z_i ~ q,
\approx E_q[ f(Z) p(Z) / q(Z) ]
=       E_p[f(Z)]






This integral is done in log-space with max-subtraction to better handle the
often extreme values that f(z) p(z) / q(z) can take on.


If f >= 0, it is up to 2x more efficient to exponentiate the result of
expectation_importance_sampler_logspace applied to Log[f].


User supplies either Tensor of samples z, or number of samples to draw n



Args:



		f: Callable mapping samples from sampling_dist_q to Tensors with shape
broadcastable to q.batch_shape.
For example, f works “just like” q.log_prob.


		log_p: Callable mapping samples from sampling_dist_q to Tensors with
shape broadcastable to q.batch_shape.
For example, log_p works “just like” sampling_dist_q.log_prob.


		sampling_dist_q: The sampling distribution.
tf.contrib.distributions.BaseDistribution.
float64 dtype recommended.
log_p and q should be supported on the same set.


		z: Tensor of samples from q, produced by q.sample_n.


		n: Integer Tensor.  Number of samples to generate if z is not provided.


		seed: Python integer to seed the random number generator.


		name: A name to give this Op.








Returns:


The importance sampling estimate.  Tensor with shape equal
to batch shape of q, and dtype = q.dtype.









tf.contrib.bayesflow.monte_carlo.expectation_importance_sampler_logspace(log_f, log_p, sampling_dist_q, z=None, n=None, seed=None, name='expectation_importance_sampler_logspace') {#expectation_importance_sampler_logspace}


Importance sampling with a positive function, in log-space.


With p(z) := exp{log_p(z)}, and f(z) = exp{log_f(z)}, this Op
returns


Log[ n^{-1} sum_{i=1}^n [ f(z_i) p(z_i) / q(z_i) ] ],  z_i ~ q,
\approx Log[ E_q[ f(Z) p(Z) / q(Z) ] ]
=       Log[E_p[f(Z)]]






This integral is done in log-space with max-subtraction to better handle the
often extreme values that f(z) p(z) / q(z) can take on.


In contrast to expectation_importance_sampler, this Op returns values in
log-space.


User supplies either Tensor of samples z, or number of samples to draw n



Args:



		log_f: Callable mapping samples from sampling_dist_q to Tensors with
shape broadcastable to q.batch_shape.
For example, log_f works “just like” sampling_dist_q.log_prob.


		log_p: Callable mapping samples from sampling_dist_q to Tensors with
shape broadcastable to q.batch_shape.
For example, log_p works “just like” q.log_prob.


		sampling_dist_q: The sampling distribution.
tf.contrib.distributions.BaseDistribution.
float64 dtype recommended.
log_p and q should be supported on the same set.


		z: Tensor of samples from q, produced by q.sample_n.


		n: Integer Tensor.  Number of samples to generate if z is not provided.


		seed: Python integer to seed the random number generator.


		name: A name to give this Op.








Returns:


Logarithm of the importance sampling estimate.  Tensor with shape equal
to batch shape of q, and dtype = q.dtype.












          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/tensor_array_ops.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
TensorArray Operations


Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.


[TOC]


TensorArray operations.



Classes containing dynamically sized arrays of Tensors.





class tf.TensorArray {#TensorArray}


Class wrapping dynamic-sized, per-time-step, write-once Tensor arrays.


This class is meant to be used with dynamic iteration primitives such as
while_loop and map_fn.  It supports gradient back-propagation via special
“flow” control flow dependencies.





tf.TensorArray.handle {#TensorArray.handle}


The reference to the TensorArray.







tf.TensorArray.flow {#TensorArray.flow}


The flow Tensor forcing ops leading to this TensorArray state.







tf.TensorArray.read(index, name=None) {#TensorArray.read}


Read the value at location index in the TensorArray.



Args:



		index: 0-D.  int32 tensor with the index to read from.


		name: A name for the operation (optional).








Returns:


The tensor at index index.









tf.TensorArray.gather(indices, name=None) {#TensorArray.gather}


Return selected values in the TensorArray as a packed Tensor.


All of selected values must have been written and their shapes
must all match.



Args:



		indices: A 1-D Tensor taking values in [0, max_value).  If
the TensorArray is not dynamic, max_value=size().


		name: A name for the operation (optional).








Returns:


The in the TensorArray selected by indices, packed into one tensor.









tf.TensorArray.pack(name=None) {#TensorArray.pack}


Return the values in the TensorArray as a packed Tensor.


All of the values must have been written and their shapes must all match.



Args:



		name: A name for the operation (optional).








Returns:


All the tensors in the TensorArray packed into one tensor.









tf.TensorArray.concat(name=None) {#TensorArray.concat}


Return the values in the TensorArray as a concatenated Tensor.


All of the values must have been written, their ranks must match, and
and their shapes must all match for all dimensions except the first.



Args:



		name: A name for the operation (optional).








Returns:


All the tensors in the TensorArray concatenated into one tensor.









tf.TensorArray.write(index, value, name=None) {#TensorArray.write}


Write value into index index of the TensorArray.



Args:



		index: 0-D.  int32 scalar with the index to write to.


		value: N-D.  Tensor of type dtype.  The Tensor to write to this index.


		name: A name for the operation (optional).








Returns:


A new TensorArray object with flow that ensures the write occurs.
Use this object all for subsequent operations.





Raises:



		ValueError: if there are more writers than specified.












tf.TensorArray.scatter(indices, value, name=None) {#TensorArray.scatter}


Scatter the values of a Tensor in specific indices of a TensorArray.



Args:



		indices: A 1-D Tensor taking values in [0, max_value).  If
the TensorArray is not dynamic, max_value=size().


		value: (N+1)-D.  Tensor of type dtype.  The Tensor to unpack.


		name: A name for the operation (optional).








Returns:


A new TensorArray object with flow that ensures the scatter occurs.
Use this object all for subsequent operations.





Raises:



		ValueError: if the shape inference fails.












tf.TensorArray.unpack(value, name=None) {#TensorArray.unpack}


Pack the values of a Tensor in the TensorArray.



Args:



		value: (N+1)-D.  Tensor of type dtype.  The Tensor to unpack.


		name: A name for the operation (optional).








Returns:


A new TensorArray object with flow that ensures the unpack occurs.
Use this object all for subsequent operations.





Raises:



		ValueError: if the shape inference fails.












tf.TensorArray.split(value, lengths, name=None) {#TensorArray.split}


Split the values of a Tensor into the TensorArray.



Args:



		value: (N+1)-D.  Tensor of type dtype.  The Tensor to split.


		lengths: 1-D.  int32 vector with the lengths to use when splitting
value along its first dimension.


		name: A name for the operation (optional).








Returns:


A new TensorArray object with flow that ensures the split occurs.
Use this object all for subsequent operations.





Raises:



		ValueError: if the shape inference fails.












tf.TensorArray.grad(source, flow=None, name=None) {#TensorArray.grad}





Other Methods







tf.TensorArray.__init__(dtype, size=None, dynamic_size=None, clear_after_read=None, tensor_array_name=None, handle=None, flow=None, infer_shape=True, name=None) {#TensorArray.init}


Construct a new TensorArray or wrap an existing TensorArray handle.


A note about the parameter name:


The name of the TensorArray (even if passed in) is uniquified: each time
a new TensorArray is created at runtime it is assigned its own name for
the duration of the run.  This avoids name collisions if a TensorArray
is created within a while_loop.



Args:



		dtype: (required) data type of the TensorArray.


		size: (optional) int32 scalar Tensor: the size of the TensorArray.
Required if handle is not provided.


		dynamic_size: (optional) Python bool: If true, writes to the TensorArray
can grow the TensorArray past its initial size.  Default: False.


		clear_after_read: Boolean (optional, default: True).  If True, clear
TensorArray values after reading them.  This disables read-many
semantics, but allows early release of memory.


		tensor_array_name: (optional) Python string: the name of the TensorArray.
This is used when creating the TensorArray handle.  If this value is
set, handle should be None.


		handle: (optional) A Tensor handle to an existing TensorArray.  If this
is set, tensor_array_name should be None.


		flow: (optional) A float Tensor scalar coming from an existing
TensorArray.flow.


		infer_shape: (optional, default: True) If True, shape inference
is enabled.  In this case, all elements must have the same shape.


		name: A name for the operation (optional).








Raises:



		ValueError: if both handle and tensor_array_name are provided.


		TypeError: if handle is provided but is not a Tensor.












tf.TensorArray.close(name=None) {#TensorArray.close}


Close the current TensorArray.







tf.TensorArray.dtype {#TensorArray.dtype}


The data type of this TensorArray.







tf.TensorArray.size(name=None) {#TensorArray.size}


Return the size of the TensorArray.












          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/contrib.rnn.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
RNN (contrib)


[TOC]


Additional RNN operations and cells.



This package provides additional contributed RNNCells.



Fused RNNCells







class tf.contrib.rnn.LSTMBlockCell {#LSTMBlockCell}


Basic LSTM recurrent network cell.


The implementation is based on: http://arxiv.org/abs/1409.2329.


We add forget_bias (default: 1) to the biases of the forget gate in order to
reduce the scale of forgetting in the beginning of the training.


Unlike BasicLSTMCell, this is a monolithic op and should be much faster. The
weight and bias matrixes should be compatible as long as the variabel scope
matches.





tf.contrib.rnn.LSTMBlockCell.__call__(x, states_prev, scope=None) {#LSTMBlockCell.call}


Long short-term memory cell (LSTM).







tf.contrib.rnn.LSTMBlockCell.__init__(num_units, forget_bias=1.0, use_peephole=False) {#LSTMBlockCell.init}


Initialize the basic LSTM cell.



Args:



		num_units: int, The number of units in the LSTM cell.


		forget_bias: float, The bias added to forget gates (see above).


		use_peephole: Whether to use peephole connections or not.












tf.contrib.rnn.LSTMBlockCell.output_size {#LSTMBlockCell.output_size}







tf.contrib.rnn.LSTMBlockCell.state_size {#LSTMBlockCell.state_size}







tf.contrib.rnn.LSTMBlockCell.zero_state(batch_size, dtype) {#LSTMBlockCell.zero_state}


Return zero-filled state tensor(s).



Args:



		batch_size: int, float, or unit Tensor representing the batch size.


		dtype: the data type to use for the state.








Returns:


If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.


If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.











class tf.contrib.rnn.GRUBlockCell {#GRUBlockCell}


Block GRU cell implementation.


The implementation is based on:  http://arxiv.org/abs/1406.1078
Computes the LSTM cell forward propagation for 1 time step.


This kernel op implements the following mathematical equations:


Baises are initialized with :
b_ru - constant_initializer(1.0)
b_c - constant_initializer(0.0)


x_h_prev = [x, h_prev]

[r_bar u_bar] = x_h_prev * w_ru + b_ru

r = sigmoid(r_bar)
u = sigmoid(u_bar)

h_prevr = h_prev \circ r

x_h_prevr = [x h_prevr]

c_bar = x_h_prevr * w_c + b_c
c = tanh(c_bar)

h = (1-u) \circ c + u \circ h_prev









tf.contrib.rnn.GRUBlockCell.__call__(x, h_prev, scope=None) {#GRUBlockCell.call}


GRU cell.







tf.contrib.rnn.GRUBlockCell.__init__(cell_size) {#GRUBlockCell.init}


Initialize the Block GRU cell.



Args:



		cell_size: int, GRU cell size.












tf.contrib.rnn.GRUBlockCell.output_size {#GRUBlockCell.output_size}







tf.contrib.rnn.GRUBlockCell.state_size {#GRUBlockCell.state_size}







tf.contrib.rnn.GRUBlockCell.zero_state(batch_size, dtype) {#GRUBlockCell.zero_state}


Return zero-filled state tensor(s).



Args:



		batch_size: int, float, or unit Tensor representing the batch size.


		dtype: the data type to use for the state.








Returns:


If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.


If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.









LSTM-like cells







class tf.contrib.rnn.CoupledInputForgetGateLSTMCell {#CoupledInputForgetGateLSTMCell}


Long short-term memory unit (LSTM) recurrent network cell.


The default non-peephole implementation is based on:


http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf


S. Hochreiter and J. Schmidhuber.
“Long Short-Term Memory”. Neural Computation, 9(8):1735-1780, 1997.


The peephole implementation is based on:


https://research.google.com/pubs/archive/43905.pdf


Hasim Sak, Andrew Senior, and Francoise Beaufays.
“Long short-term memory recurrent neural network architectures for
large scale acoustic modeling.” INTERSPEECH, 2014.


The coupling of input and forget gate is based on:


http://arxiv.org/pdf/1503.04069.pdf


Greff et al. “LSTM: A Search Space Odyssey”


The class uses optional peep-hole connections, and an optional projection
layer.





tf.contrib.rnn.CoupledInputForgetGateLSTMCell.__call__(inputs, state, scope=None) {#CoupledInputForgetGateLSTMCell.call}


Run one step of LSTM.



Args:



		inputs: input Tensor, 2D, batch x num_units.


		state: if state_is_tuple is False, this must be a state Tensor,
2-D, batch x state_size.  If state_is_tuple is True, this must be a
tuple of state Tensors, both 2-D, with column sizes c_state and
m_state.


		scope: VariableScope for the created subgraph; defaults to “LSTMCell”.








Returns:


A tuple containing:



		A 2-D, [batch x output_dim], Tensor representing the output of the
LSTM after reading inputs when previous state was state.
Here output_dim is:
num_proj if num_proj was set,
num_units otherwise.


		Tensor(s) representing the new state of LSTM after reading inputs when
the previous state was state.  Same type and shape(s) as state.








Raises:



		ValueError: If input size cannot be inferred from inputs via
static shape inference.












tf.contrib.rnn.CoupledInputForgetGateLSTMCell.__init__(num_units, use_peepholes=False, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=1, num_proj_shards=1, forget_bias=1.0, state_is_tuple=False, activation=tanh) {#CoupledInputForgetGateLSTMCell.init}


Initialize the parameters for an LSTM cell.



Args:



		num_units: int, The number of units in the LSTM cell


		use_peepholes: bool, set True to enable diagonal/peephole connections.


		initializer: (optional) The initializer to use for the weight and
projection matrices.


		num_proj: (optional) int, The output dimensionality for the projection
matrices.  If None, no projection is performed.


		proj_clip: (optional) A float value.  If num_proj > 0 and proj_clip is
provided, then the projected values are clipped elementwise to within
[-proj_clip, proj_clip].


		num_unit_shards: How to split the weight matrix.  If >1, the weight
matrix is stored across num_unit_shards.


		num_proj_shards: How to split the projection matrix.  If >1, the
projection matrix is stored across num_proj_shards.


		forget_bias: Biases of the forget gate are initialized by default to 1
in order to reduce the scale of forgetting at the beginning of
the training.


		state_is_tuple: If True, accepted and returned states are 2-tuples of
the c_state and m_state.  By default (False), they are concatenated
along the column axis.  This default behavior will soon be deprecated.


		activation: Activation function of the inner states.












tf.contrib.rnn.CoupledInputForgetGateLSTMCell.output_size {#CoupledInputForgetGateLSTMCell.output_size}







tf.contrib.rnn.CoupledInputForgetGateLSTMCell.state_size {#CoupledInputForgetGateLSTMCell.state_size}







tf.contrib.rnn.CoupledInputForgetGateLSTMCell.zero_state(batch_size, dtype) {#CoupledInputForgetGateLSTMCell.zero_state}


Return zero-filled state tensor(s).



Args:



		batch_size: int, float, or unit Tensor representing the batch size.


		dtype: the data type to use for the state.








Returns:


If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.


If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.











class tf.contrib.rnn.TimeFreqLSTMCell {#TimeFreqLSTMCell}


Time-Frequency Long short-term memory unit (LSTM) recurrent network cell.


This implementation is based on:


Tara N. Sainath and Bo Li
“Modeling Time-Frequency Patterns with LSTM vs. Convolutional Architectures
for LVCSR Tasks.” submitted to INTERSPEECH, 2016.


It uses peep-hole connections and optional cell clipping.





tf.contrib.rnn.TimeFreqLSTMCell.__call__(inputs, state, scope=None) {#TimeFreqLSTMCell.call}


Run one step of LSTM.



Args:



		inputs: input Tensor, 2D, batch x num_units.


		state: state Tensor, 2D, batch x state_size.


		scope: VariableScope for the created subgraph; defaults to
“TimeFreqLSTMCell”.








Returns:


A tuple containing:



		A 2D, batch x output_dim, Tensor representing the output of the LSTM
after reading “inputs” when previous state was “state”.
Here output_dim is num_units.


		A 2D, batch x state_size, Tensor representing the new state of LSTM
after reading “inputs” when previous state was “state”.








Raises:



		ValueError: if an input_size was specified and the provided inputs have
a different dimension.












tf.contrib.rnn.TimeFreqLSTMCell.__init__(num_units, use_peepholes=False, cell_clip=None, initializer=None, num_unit_shards=1, forget_bias=1.0, feature_size=None, frequency_skip=None) {#TimeFreqLSTMCell.init}


Initialize the parameters for an LSTM cell.



Args:



		num_units: int, The number of units in the LSTM cell


		use_peepholes: bool, set True to enable diagonal/peephole connections.


		cell_clip: (optional) A float value, if provided the cell state is clipped
by this value prior to the cell output activation.


		initializer: (optional) The initializer to use for the weight and
projection matrices.


		num_unit_shards: int, How to split the weight matrix.  If >1, the weight
matrix is stored across num_unit_shards.


		forget_bias: float, Biases of the forget gate are initialized by default
to 1 in order to reduce the scale of forgetting at the beginning
of the training.


		feature_size: int, The size of the input feature the LSTM spans over.


		frequency_skip: int, The amount the LSTM filter is shifted by in
frequency.












tf.contrib.rnn.TimeFreqLSTMCell.output_size {#TimeFreqLSTMCell.output_size}







tf.contrib.rnn.TimeFreqLSTMCell.state_size {#TimeFreqLSTMCell.state_size}







tf.contrib.rnn.TimeFreqLSTMCell.zero_state(batch_size, dtype) {#TimeFreqLSTMCell.zero_state}


Return zero-filled state tensor(s).



Args:



		batch_size: int, float, or unit Tensor representing the batch size.


		dtype: the data type to use for the state.








Returns:


If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.


If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.











class tf.contrib.rnn.GridLSTMCell {#GridLSTMCell}


Grid Long short-term memory unit (LSTM) recurrent network cell.


The default is based on:
Nal Kalchbrenner, Ivo Danihelka and Alex Graves
“Grid Long Short-Term Memory,” Proc. ICLR 2016.
http://arxiv.org/abs/1507.01526


When peephole connections are used, the implementation is based on:
Tara N. Sainath and Bo Li
“Modeling Time-Frequency Patterns with LSTM vs. Convolutional Architectures
for LVCSR Tasks.” submitted to INTERSPEECH, 2016.


The code uses optional peephole connections, shared_weights and cell clipping.





tf.contrib.rnn.GridLSTMCell.__call__(inputs, state, scope=None) {#GridLSTMCell.call}


Run one step of LSTM.



Args:



		inputs: input Tensor, 2D, batch x num_units.


		state: state Tensor, 2D, batch x state_size.


		scope: VariableScope for the created subgraph; defaults to “LSTMCell”.








Returns:


A tuple containing:



		A 2D, batch x output_dim, Tensor representing the output of the LSTM
after reading “inputs” when previous state was “state”.
Here output_dim is num_units.


		A 2D, batch x state_size, Tensor representing the new state of LSTM
after reading “inputs” when previous state was “state”.








Raises:



		ValueError: if an input_size was specified and the provided inputs have
a different dimension.












tf.contrib.rnn.GridLSTMCell.__init__(num_units, use_peepholes=False, share_time_frequency_weights=False, cell_clip=None, initializer=None, num_unit_shards=1, forget_bias=1.0, feature_size=None, frequency_skip=None, num_frequency_blocks=1, couple_input_forget_gates=False, state_is_tuple=False) {#GridLSTMCell.init}


Initialize the parameters for an LSTM cell.



Args:



		num_units: int, The number of units in the LSTM cell


		use_peepholes: bool, default False. Set True to enable diagonal/peephole
connections.


		share_time_frequency_weights: bool, default False. Set True to enable
shared cell weights between time and frequency LSTMs.


		cell_clip: (optional) A float value, if provided the cell state is clipped
by this value prior to the cell output activation.


		initializer: (optional) The initializer to use for the weight and
projection matrices.


		num_unit_shards: int, How to split the weight matrix.  If >1, the weight
matrix is stored across num_unit_shards.


		forget_bias: float, Biases of the forget gate are initialized by default
to 1 in order to reduce the scale of forgetting at the beginning
of the training.


		feature_size: int, The size of the input feature the LSTM spans over.


		frequency_skip: int, The amount the LSTM filter is shifted by in
frequency.


		num_frequency_blocks: int, The total number of frequency blocks needed to
cover the whole input feature.


		couple_input_forget_gates: bool, Whether to couple the input and forget
gates, i.e. f_gate = 1.0 - i_gate, to reduce model parameters and
computation cost.


		state_is_tuple: If True, accepted and returned states are 2-tuples of
the c_state and m_state.  By default (False), they are concatenated
along the column axis.  This default behavior will soon be deprecated.












tf.contrib.rnn.GridLSTMCell.output_size {#GridLSTMCell.output_size}







tf.contrib.rnn.GridLSTMCell.state_size {#GridLSTMCell.state_size}







tf.contrib.rnn.GridLSTMCell.state_tuple_type {#GridLSTMCell.state_tuple_type}







tf.contrib.rnn.GridLSTMCell.zero_state(batch_size, dtype) {#GridLSTMCell.zero_state}


Return zero-filled state tensor(s).



Args:



		batch_size: int, float, or unit Tensor representing the batch size.


		dtype: the data type to use for the state.








Returns:


If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.


If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.









RNNCell wrappers







class tf.contrib.rnn.AttentionCellWrapper {#AttentionCellWrapper}


Basic attention cell wrapper.


Implementation based on https://arxiv.org/pdf/1601.06733.pdf.





tf.contrib.rnn.AttentionCellWrapper.__call__(inputs, state, scope=None) {#AttentionCellWrapper.call}


Long short-term memory cell with attention (LSTMA).







tf.contrib.rnn.AttentionCellWrapper.__init__(cell, attn_length, attn_size=None, attn_vec_size=None, input_size=None, state_is_tuple=False) {#AttentionCellWrapper.init}


Create a cell with attention.



Args:



		cell: an RNNCell, an attention is added to it.


		attn_length: integer, the size of an attention window.


		attn_size: integer, the size of an attention vector. Equal to
cell.output_size by default.


		attn_vec_size: integer, the number of convolutional features calculated
on attention state and a size of the hidden layer built from
base cell state. Equal attn_size to by default.


		input_size: integer, the size of a hidden linear layer,
built from inputs and attention. Derived from the input tensor
by default.


		state_is_tuple: If True, accepted and returned states are n-tuples, where
n = len(cells).  By default (False), the states are all
concatenated along the column axis.








Raises:



		TypeError: if cell is not an RNNCell.


		ValueError: if cell returns a state tuple but the flag
state_is_tuple is False or if attn_length is zero or less.












tf.contrib.rnn.AttentionCellWrapper.output_size {#AttentionCellWrapper.output_size}







tf.contrib.rnn.AttentionCellWrapper.state_size {#AttentionCellWrapper.state_size}







tf.contrib.rnn.AttentionCellWrapper.zero_state(batch_size, dtype) {#AttentionCellWrapper.zero_state}


Return zero-filled state tensor(s).



Args:



		batch_size: int, float, or unit Tensor representing the batch size.


		dtype: the data type to use for the state.








Returns:


If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.


If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.











Other Functions and Classes





class tf.contrib.rnn.LayerNormBasicLSTMCell {#LayerNormBasicLSTMCell}


LSTM unit with layer normalization and recurrent dropout.


This class adds layer normalization and recurrent dropout to a
basic LSTM unit. Layer normalization implementation is based on:


https://arxiv.org/abs/1607.06450.


“Layer Normalization”
Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton


and is applied before the internal nonlinearities.
Recurrent dropout is base on:


https://arxiv.org/abs/1603.05118


“Recurrent Dropout without Memory Loss”
Stanislau Semeniuta, Aliaksei Severyn, Erhardt Barth.





tf.contrib.rnn.LayerNormBasicLSTMCell.__call__(inputs, state, scope=None) {#LayerNormBasicLSTMCell.call}


LSTM cell with layer normalization and recurrent dropout.







tf.contrib.rnn.LayerNormBasicLSTMCell.__init__(num_units, forget_bias=1.0, input_size=None, activation=tanh, layer_norm=True, norm_gain=1.0, norm_shift=0.0, dropout_keep_prob=1.0, dropout_prob_seed=None) {#LayerNormBasicLSTMCell.init}


Initializes the basic LSTM cell.



Args:



		num_units: int, The number of units in the LSTM cell.


		forget_bias: float, The bias added to forget gates (see above).


		input_size: Deprecated and unused.


		activation: Activation function of the inner states.


		layer_norm: If True, layer normalization will be applied.


		norm_gain: float, The layer normalization gain initial value. If
layer_norm has been set to False, this argument will be ignored.


		norm_shift: float, The layer normalization shift initial value. If
layer_norm has been set to False, this argument will be ignored.


		dropout_keep_prob: unit Tensor or float between 0 and 1 representing the
recurrent dropout probability value. If float and 1.0, no dropout will
be applied.


		dropout_prob_seed: (optional) integer, the randomness seed.












tf.contrib.rnn.LayerNormBasicLSTMCell.output_size {#LayerNormBasicLSTMCell.output_size}







tf.contrib.rnn.LayerNormBasicLSTMCell.state_size {#LayerNormBasicLSTMCell.state_size}







tf.contrib.rnn.LayerNormBasicLSTMCell.zero_state(batch_size, dtype) {#LayerNormBasicLSTMCell.zero_state}


Return zero-filled state tensor(s).



Args:



		batch_size: int, float, or unit Tensor representing the batch size.


		dtype: the data type to use for the state.








Returns:


If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.


If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.














          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/client.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
Running Graphs


[TOC]


This library contains classes for launching graphs and executing operations.


The basic usage guide has
examples of how a graph is launched in a tf.Session.



Session management





class tf.Session {#Session}


A class for running TensorFlow operations.


A Session object encapsulates the environment in which Operation
objects are executed, and Tensor objects are evaluated. For
example:


# Build a graph.
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b

# Launch the graph in a session.
sess = tf.Session()

# Evaluate the tensor `c`.
print(sess.run(c))






A session may own resources, such as
variables, queues,
and readers. It is important to release
these resources when they are no longer required. To do this, either
invoke the close() method on the session, or use
the session as a context manager. The following two examples are
equivalent:


# Using the `close()` method.
sess = tf.Session()
sess.run(...)
sess.close()

# Using the context manager.
with tf.Session() as sess:
  sess.run(...)






The [ConfigProto]
(https://www.tensorflow.org/code/tensorflow/core/protobuf/config.proto)
protocol buffer exposes various configuration options for a
session. For example, to create a session that uses soft constraints
for device placement, and log the resulting placement decisions,
create a session as follows:


# Launch the graph in a session that allows soft device placement and
# logs the placement decisions.
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
                                        log_device_placement=True))









tf.Session.__init__(target='', graph=None, config=None) {#Session.init}


Creates a new TensorFlow session.


If no graph argument is specified when constructing the session,
the default graph will be launched in the session. If you are
using more than one graph (created with tf.Graph() in the same
process, you will have to use different sessions for each graph,
but each graph can be used in multiple sessions. In this case, it
is often clearer to pass the graph to be launched explicitly to
the session constructor.



Args:



		target: (Optional.) The execution engine to connect to.
Defaults to using an in-process engine. See [Distributed Tensorflow]
(https://www.tensorflow.org/how_tos/distributed/index.html)
for more examples.


		graph: (Optional.) The Graph to be launched (described above).


		config: (Optional.) A ConfigProto [https://www.tensorflow.org/code/tensorflow/core/protobuf/config.proto]
protocol buffer with configuration options for the session.












tf.Session.run(fetches, feed_dict=None, options=None, run_metadata=None) {#Session.run}


Runs operations and evaluates tensors in fetches.


This method runs one “step” of TensorFlow computation, by
running the necessary graph fragment to execute every Operation
and evaluate every Tensor in fetches, substituting the values in
feed_dict for the corresponding input values.


The fetches argument may be a single graph element, or an arbitrarily
nested list, tuple, namedtuple, or dict containing graph elements at its
leaves.  A graph element can be one of the following types:



		An Operation.
The corresponding fetched value will be None.


		A Tensor.
The corresponding fetched value will be a numpy ndarray containing the
value of that tensor.


		A SparseTensor.
The corresponding fetched value will be a
SparseTensorValue
containing the value of that sparse tensor.


		A get_tensor_handle op.  The corresponding fetched value will be a
numpy ndarray containing the handle of that tensor.


		A string which is the name of a tensor or operation in the graph.





The value returned by run() has the same shape as the fetches argument,
where the leaves are replaced by the corresponding values returned by
TensorFlow.


Example:


   a = tf.constant([10, 20])
   b = tf.constant([1.0, 2.0])
   # 'fetches' can be a singleton
   v = session.run(a)
   # v is the numpy array [10, 20]
   # 'fetches' can be a list.
   v = session.run([a, b])
   # v a Python list with 2 numpy arrays: the numpy array [10, 20] and the
   # 1-D array [1.0, 2.0]
   # 'fetches' can be arbitrary lists, tuples, namedtuple, dicts:
   MyData = collections.namedtuple('MyData', ['a', 'b'])
   v = session.run({'k1': MyData(a, b), 'k2': [b, a]})
   # v is a dict with
   # v['k1'] is a MyData namedtuple with 'a' the numpy array [10, 20] and
   # 'b' the numpy array [1.0, 2.0]
   # v['k2'] is a list with the numpy array [1.0, 2.0] and the numpy array
   # [10, 20].






The optional feed_dict argument allows the caller to override
the value of tensors in the graph. Each key in feed_dict can be
one of the following types:



		If the key is a Tensor, the
value may be a Python scalar, string, list, or numpy ndarray
that can be converted to the same dtype as that
tensor. Additionally, if the key is a
placeholder, the shape of
the value will be checked for compatibility with the placeholder.


		If the key is a
SparseTensor,
the value should be a
SparseTensorValue.


		If the key is a nested tuple of Tensors or SparseTensors, the value
should be a nested tuple with the same structure that maps to their
corresponding values as above.





Each value in feed_dict must be convertible to a numpy array of the dtype
of the corresponding key.


The optional options argument expects a [RunOptions] proto. The options
allow controlling the behavior of this particular step (e.g. turning tracing
on).


The optional run_metadata argument expects a [RunMetadata] proto. When
appropriate, the non-Tensor output of this step will be collected there. For
example, when users turn on tracing in options, the profiled info will be
collected into this argument and passed back.



Args:



		fetches: A single graph element, a list of graph elements,
or a dictionary whose values are graph elements or lists of graph
elements (described above).


		feed_dict: A dictionary that maps graph elements to values
(described above).


		options: A [RunOptions] protocol buffer


		run_metadata: A [RunMetadata] protocol buffer








Returns:


Either a single value if fetches is a single graph element, or
a list of values if fetches is a list, or a dictionary with the
same keys as fetches if that is a dictionary (described above).





Raises:



		RuntimeError: If this Session is in an invalid state (e.g. has been
closed).


		TypeError: If fetches or feed_dict keys are of an inappropriate type.


		ValueError: If fetches or feed_dict keys are invalid or refer to a
Tensor that doesn’t exist.












tf.Session.close() {#Session.close}


Closes this session.


Calling this method frees all resources associated with the session.



Raises:


tf.errors.OpError: Or one of its subclasses if an error occurs while
closing the TensorFlow session.









tf.Session.graph {#Session.graph}


The graph that was launched in this session.







tf.Session.as_default() {#Session.as_default}


Returns a context manager that makes this object the default session.


Use with the with keyword to specify that calls to
Operation.run() or
Tensor.eval() should be
executed in this session.


c = tf.constant(..)
sess = tf.Session()

with sess.as_default():
  assert tf.get_default_session() is sess
  print(c.eval())






To get the current default session, use
tf.get_default_session().


N.B. The as_default context manager does not close the
session when you exit the context, and you must close the session
explicitly.


c = tf.constant(...)
sess = tf.Session()
with sess.as_default():
  print(c.eval())
# ...
with sess.as_default():
  print(c.eval())

sess.close()






Alternatively, you can use with tf.Session(): to create a
session that is automatically closed on exiting the context,
including when an uncaught exception is raised.


N.B. The default graph is a property of the current thread. If you
create a new thread, and wish to use the default session in that
thread, you must explicitly add a with sess.as_default(): in that
thread’s function.



Returns:


A context manager using this session as the default session.









tf.Session.reset(target, containers=None, config=None) {#Session.reset}


Resets resource containers on target, and close all connected sessions.


A resource container is distributed across all workers in the
same cluster as target.  When a resource container on target
is reset, resources associated with that container will be cleared.
In particular, all Variables in the container will become undefined:
they lose their values and shapes.


NOTE:
(i) reset() is currently only implemented for distributed sessions.
(ii) Any sessions on the master named by target will be closed.


If no resource containers are provided, all containers are reset.



Args:



		target: The execution engine to connect to.


		containers: A list of resource container name strings, or None if all of
all the containers are to be reset.


		config: (Optional.) Protocol buffer with configuration options.








Raises:


tf.errors.OpError: Or one of its subclasses if an error occurs while
resetting containers.







Other Methods







tf.Session.__enter__() {#Session.enter}







tf.Session.__exit__(exec_type, exec_value, exec_tb) {#Session.exit}









class tf.InteractiveSession {#InteractiveSession}


A TensorFlow Session for use in interactive contexts, such as a shell.


The only difference with a regular Session is that an InteractiveSession
installs itself as the default session on construction.
The methods Tensor.eval()
and Operation.run()
will use that session to run ops.


This is convenient in interactive shells and IPython
notebooks [http://ipython.org], as it avoids having to pass an explicit
Session object to run ops.


For example:


sess = tf.InteractiveSession()
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
# We can just use 'c.eval()' without passing 'sess'
print(c.eval())
sess.close()






Note that a regular session installs itself as the default session when it
is created in a with statement.  The common usage in non-interactive
programs is to follow that pattern:


a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
with tf.Session():
  # We can also use 'c.eval()' here.
  print(c.eval())









tf.InteractiveSession.__init__(target='', graph=None, config=None) {#InteractiveSession.init}


Creates a new interactive TensorFlow session.


If no graph argument is specified when constructing the session,
the default graph will be launched in the session. If you are
using more than one graph (created with tf.Graph() in the same
process, you will have to use different sessions for each graph,
but each graph can be used in multiple sessions. In this case, it
is often clearer to pass the graph to be launched explicitly to
the session constructor.



Args:



		target: (Optional.) The execution engine to connect to.
Defaults to using an in-process engine.


		graph: (Optional.) The Graph to be launched (described above).


		config: (Optional) ConfigProto proto used to configure the session.












tf.InteractiveSession.close() {#InteractiveSession.close}


Closes an InteractiveSession.









tf.get_default_session() {#get_default_session}


Returns the default session for the current thread.


The returned Session will be the innermost session on which a
Session or Session.as_default() context has been entered.


NOTE: The default session is a property of the current thread. If you
create a new thread, and wish to use the default session in that
thread, you must explicitly add a with sess.as_default(): in that
thread’s function.



Returns:


The default Session being used in the current thread.









Error classes





class tf.OpError {#OpError}


A generic error that is raised when TensorFlow execution fails.


Whenever possible, the session will raise a more specific subclass
of OpError from the tf.errors module.





tf.OpError.op {#OpError.op}


The operation that failed, if known.


N.B. If the failed op was synthesized at runtime, e.g. a Send
or Recv op, there will be no corresponding
Operation
object.  In that case, this will return None, and you should
instead use the OpError.node_def to
discover information about the op.



Returns:


The Operation that failed, or None.









tf.OpError.node_def {#OpError.node_def}


The NodeDef proto representing the op that failed.





Other Methods







tf.OpError.__init__(node_def, op, message, error_code) {#OpError.init}


Creates a new OpError indicating that a particular op failed.



Args:



		node_def: The node_def_pb2.NodeDef proto representing the op that
failed, if known; otherwise None.


		op: The ops.Operation that failed, if known; otherwise None.


		message: The message string describing the failure.


		error_code: The error_codes_pb2.Code describing the error.












tf.OpError.__str__() {#OpError.str}







tf.OpError.error_code {#OpError.error_code}


The integer error code that describes the error.







tf.OpError.message {#OpError.message}


The error message that describes the error.









class tf.errors.CancelledError {#CancelledError}


Raised when an operation or step is cancelled.


For example, a long-running operation (e.g.
queue.enqueue() may be
cancelled by running another operation (e.g.
queue.close(cancel_pending_enqueues=True),
or by closing the session.
A step that is running such a long-running operation will fail by raising
CancelledError.





tf.errors.CancelledError.__init__(node_def, op, message) {#CancelledError.init}


Creates a CancelledError.









class tf.errors.UnknownError {#UnknownError}


Unknown error.


An example of where this error may be returned is if a Status value
received from another address space belongs to an error-space that
is not known to this address space. Also errors raised by APIs that
do not return enough error information may be converted to this
error.





tf.errors.UnknownError.__init__(node_def, op, message, error_code=2) {#UnknownError.init}


Creates an UnknownError.









class tf.errors.InvalidArgumentError {#InvalidArgumentError}


Raised when an operation receives an invalid argument.


This may occur, for example, if an operation is receives an input
tensor that has an invalid value or shape. For example, the
tf.matmul() op will raise this
error if it receives an input that is not a matrix, and the
tf.reshape() op will raise
this error if the new shape does not match the number of elements in the input
tensor.





tf.errors.InvalidArgumentError.__init__(node_def, op, message) {#InvalidArgumentError.init}


Creates an InvalidArgumentError.









class tf.errors.DeadlineExceededError {#DeadlineExceededError}


Raised when a deadline expires before an operation could complete.


This exception is not currently used.





tf.errors.DeadlineExceededError.__init__(node_def, op, message) {#DeadlineExceededError.init}


Creates a DeadlineExceededError.









class tf.errors.NotFoundError {#NotFoundError}


Raised when a requested entity (e.g., a file or directory) was not found.


For example, running the
tf.WholeFileReader.read()
operation could raise NotFoundError if it receives the name of a file that
does not exist.





tf.errors.NotFoundError.__init__(node_def, op, message) {#NotFoundError.init}


Creates a NotFoundError.









class tf.errors.AlreadyExistsError {#AlreadyExistsError}


Raised when an entity that we attempted to create already exists.


For example, running an operation that saves a file
(e.g. tf.train.Saver.save())
could potentially raise this exception if an explicit filename for an
existing file was passed.





tf.errors.AlreadyExistsError.__init__(node_def, op, message) {#AlreadyExistsError.init}


Creates an AlreadyExistsError.









class tf.errors.PermissionDeniedError {#PermissionDeniedError}


Raised when the caller does not have permission to run an operation.


For example, running the
tf.WholeFileReader.read()
operation could raise PermissionDeniedError if it receives the name of a
file for which the user does not have the read file permission.





tf.errors.PermissionDeniedError.__init__(node_def, op, message) {#PermissionDeniedError.init}


Creates a PermissionDeniedError.









class tf.errors.UnauthenticatedError {#UnauthenticatedError}


The request does not have valid authentication credentials.


This exception is not currently used.





tf.errors.UnauthenticatedError.__init__(node_def, op, message) {#UnauthenticatedError.init}


Creates an UnauthenticatedError.









class tf.errors.ResourceExhaustedError {#ResourceExhaustedError}


Some resource has been exhausted.


For example, this error might be raised if a per-user quota is
exhausted, or perhaps the entire file system is out of space.





tf.errors.ResourceExhaustedError.__init__(node_def, op, message) {#ResourceExhaustedError.init}


Creates a ResourceExhaustedError.









class tf.errors.FailedPreconditionError {#FailedPreconditionError}


Operation was rejected because the system is not in a state to execute it.


This exception is most commonly raised when running an operation
that reads a tf.Variable
before it has been initialized.





tf.errors.FailedPreconditionError.__init__(node_def, op, message) {#FailedPreconditionError.init}


Creates a FailedPreconditionError.









class tf.errors.AbortedError {#AbortedError}


The operation was aborted, typically due to a concurrent action.


For example, running a
queue.enqueue()
operation may raise AbortedError if a
queue.close() operation
previously ran.





tf.errors.AbortedError.__init__(node_def, op, message) {#AbortedError.init}


Creates an AbortedError.









class tf.errors.OutOfRangeError {#OutOfRangeError}


Raised when an operation iterates past the valid input range.


This exception is raised in “end-of-file” conditions, such as when a
queue.dequeue()
operation is blocked on an empty queue, and a
queue.close()
operation executes.





tf.errors.OutOfRangeError.__init__(node_def, op, message) {#OutOfRangeError.init}


Creates an OutOfRangeError.









class tf.errors.UnimplementedError {#UnimplementedError}


Raised when an operation has not been implemented.


Some operations may raise this error when passed otherwise-valid
arguments that it does not currently support. For example, running
the tf.nn.max_pool() operation
would raise this error if pooling was requested on the batch dimension,
because this is not yet supported.





tf.errors.UnimplementedError.__init__(node_def, op, message) {#UnimplementedError.init}


Creates an UnimplementedError.









class tf.errors.InternalError {#InternalError}


Raised when the system experiences an internal error.


This exception is raised when some invariant expected by the runtime
has been broken. Catching this exception is not recommended.





tf.errors.InternalError.__init__(node_def, op, message) {#InternalError.init}


Creates an InternalError.









class tf.errors.UnavailableError {#UnavailableError}


Raised when the runtime is currently unavailable.


This exception is not currently used.





tf.errors.UnavailableError.__init__(node_def, op, message) {#UnavailableError.init}


Creates an UnavailableError.









class tf.errors.DataLossError {#DataLossError}


Raised when unrecoverable data loss or corruption is encountered.


For example, this may be raised by running a
tf.WholeFileReader.read()
operation, if the file is truncated while it is being read.





tf.errors.DataLossError.__init__(node_def, op, message) {#DataLossError.init}


Creates a DataLossError.












          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/contrib.distributions.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
Statistical distributions (contrib)


[TOC]


Classes representing statistical distributions and ops for working with them.



Classes for statistical distributions.


Classes that represent batches of statistical distributions.  Each class is
initialized with parameters that define the distributions.



Base classes







class tf.contrib.distributions.Distribution {#Distribution}


A generic probability distribution base class.


Distribution is a base class for constructing and organizing properties
(e.g., mean, variance) of random variables (e.g, Bernoulli, Gaussian).





Subclassing


Subclasess are expected to implement a leading-underscore version of the
same-named function.  The argument signature should be identical except for
the omission of name="...".  For example, to enable log_prob(value, name="log_prob") a subclass should implement _log_prob(value).


Subclasses can rewrite/append to public-level docstrings. For example,


Subclass.prob.__func__.__doc__ += "Some other details."






would add the string “Some other details.” to the prob function docstring.





Broadcasting, batching, and shapes


All distributions support batches of independent distributions of that type.
The batch shape is determined by broadcasting together the parameters.


The shape of arguments to __init__, cdf, log_cdf, prob, and
log_prob reflect this broadcasting, as does the return value of sample and
sample_n.


sample_n_shape = (n,) + batch_shape + event_shape, where sample_n_shape is
the shape of the Tensor returned from sample_n, n is the number of
samples, batch_shape defines how many independent distributions there are,
and event_shape defines the shape of samples from each of those independent
distributions. Samples are independent along the batch_shape dimensions, but
not necessarily so along the event_shape dimensions (dependending on the
particulars of the underlying distribution).


Using the Uniform distribution as an example:


minval = 3.0
maxval = [[4.0, 6.0],
          [10.0, 12.0]]

# Broadcasting:
# This instance represents 4 Uniform distributions. Each has a lower bound at
# 3.0 as the `minval` parameter was broadcasted to match `maxval`'s shape.
u = Uniform(minval, maxval)

# `event_shape` is `TensorShape([])`.
event_shape = u.get_event_shape()
# `event_shape_t` is a `Tensor` which will evaluate to [].
event_shape_t = u.event_shape

# Sampling returns a sample per distribution.  `samples` has shape
# (5, 2, 2), which is (n,) + batch_shape + event_shape, where n=5,
# batch_shape=(2, 2), and event_shape=().
samples = u.sample_n(5)

# The broadcasting holds across methods. Here we use `cdf` as an example. The
# same holds for `log_cdf` and the likelihood functions.

# `cum_prob` has shape (2, 2) as the `value` argument was broadcasted to the
# shape of the `Uniform` instance.
cum_prob_broadcast = u.cdf(4.0)

# `cum_prob`'s shape is (2, 2), one per distribution. No broadcasting
# occurred.
cum_prob_per_dist = u.cdf([[4.0, 5.0],
                           [6.0, 7.0]])

# INVALID as the `value` argument is not broadcastable to the distribution's
# shape.
cum_prob_invalid = u.cdf([4.0, 5.0, 6.0])

### Parameter values leading to undefined statistics or distributions.

Some distributions do not have well-defined statistics for all initialization
parameter values.  For example, the beta distribution is parameterized by
positive real numbers `a` and `b`, and does not have well-defined mode if
`a < 1` or `b < 1`.

The user is given the option of raising an exception or returning `NaN`.

```python
a = tf.exp(tf.matmul(logits, weights_a))
b = tf.exp(tf.matmul(logits, weights_b))

Will raise exception if ANY batch member has a < 1 or b < 1.
dist = distributions.beta(a, b, allow_nan_stats=False)
mode = dist.mode().eval()

Will return NaN for batch members with either a < 1 or b < 1.
dist = distributions.beta(a, b, allow_nan_stats=True) # Default behavior
mode = dist.mode().eval()

In all cases, an exception is raised if invalid parameters are passed, e.g.

Will raise an exception if any Op is run.
negative_a = -1.0 * a # beta distribution by definition has a > 0.
dist = distributions.beta(negative_a, b, allow_nan_stats=True)
dist.mean().eval()

tf.contrib.distributions.Distribution.__init__(dtype, parameters, is_continuous, is_reparameterized, validate_args, allow_nan_stats, name=None) {#Distribution.init}

Constructs the Distribution.

This is a private method for subclass use.

Args:

		dtype: The type of the event samples. None implies no type-enforcement.

		parameters: Python dictionary of parameters used by this Distribution.

		is_continuous: Python boolean. If True this
Distribution is continuous over its supported domain.

		is_reparameterized: Python boolean. If True this
Distribution can be reparameterized in terms of some standard
distribution with a function whose Jacobian is constant for the support
of the standard distribution.

		validate_args: Python boolean. Whether to validate input with asserts.
If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.

		allow_nan_stats: Pytho nboolean. If False, raise an
exception if a statistic (e.g., mean, mode) is undefined for any batch
member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: A name for this distribution (optional).

tf.contrib.distributions.Distribution.allow_nan_stats {#Distribution.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Distribution.batch_shape(name='batch_shape') {#Distribution.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Distribution.cdf(value, name='cdf') {#Distribution.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Distribution.dtype {#Distribution.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Distribution.entropy(name='entropy') {#Distribution.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Distribution.event_shape(name='event_shape') {#Distribution.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Distribution.get_batch_shape() {#Distribution.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Distribution.get_event_shape() {#Distribution.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Distribution.is_continuous {#Distribution.is_continuous}

tf.contrib.distributions.Distribution.is_reparameterized {#Distribution.is_reparameterized}

tf.contrib.distributions.Distribution.log_cdf(value, name='log_cdf') {#Distribution.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Distribution.log_pdf(value, name='log_pdf') {#Distribution.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Distribution.log_pmf(value, name='log_pmf') {#Distribution.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Distribution.log_prob(value, name='log_prob') {#Distribution.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Distribution.log_survival_function(value, name='log_survival_function') {#Distribution.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Distribution.mean(name='mean') {#Distribution.mean}

Mean.

tf.contrib.distributions.Distribution.mode(name='mode') {#Distribution.mode}

Mode.

tf.contrib.distributions.Distribution.name {#Distribution.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Distribution.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Distribution.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Distribution.param_static_shapes(cls, sample_shape) {#Distribution.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Distribution.parameters {#Distribution.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Distribution.pdf(value, name='pdf') {#Distribution.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Distribution.pmf(value, name='pmf') {#Distribution.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Distribution.prob(value, name='prob') {#Distribution.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Distribution.sample(sample_shape=(), seed=None, name='sample') {#Distribution.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Distribution.sample_n(n, seed=None, name='sample_n') {#Distribution.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Distribution.std(name='std') {#Distribution.std}

Standard deviation.

tf.contrib.distributions.Distribution.survival_function(value, name='survival_function') {#Distribution.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Distribution.validate_args {#Distribution.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Distribution.variance(name='variance') {#Distribution.variance}

Variance.

Univariate (scalar) distributions

class tf.contrib.distributions.Binomial {#Binomial}

Binomial distribution.

This distribution is parameterized by a vector p of probabilities and n,
the total counts.

Mathematical details

The Binomial is a distribution over the number of successes in n independent
trials, with each trial having the same probability of success p.
The probability mass function (pmf):

pmf(k) = n! / (k! * (n - k)!) * (p)^k * (1 - p)^(n - k)

Examples

Create a single distribution, corresponding to 5 coin flips.

dist = Binomial(n=5., p=.5)

Create a single distribution (using logits), corresponding to 5 coin flips.

dist = Binomial(n=5., logits=0.)

Creates 3 distributions with the third distribution most likely to have
successes.

p = [.2, .3, .8]
n will be broadcast to [4., 4., 4.], to match p.
dist = Binomial(n=4., p=p)

The distribution functions can be evaluated on counts.

counts same shape as p.
counts = [1., 2, 3]
dist.prob(counts) # Shape [3]

p will be broadcast to [[.2, .3, .8], [.2, .3, .8]] to match counts.
counts = [[1., 2, 1], [2, 2, 4]]
dist.prob(counts) # Shape [2, 3]

p will be broadcast to shape [5, 7, 3] to match counts.
counts = [[...]] # Shape [5, 7, 3]
dist.prob(counts) # Shape [5, 7, 3]

tf.contrib.distributions.Binomial.__init__(n, logits=None, p=None, validate_args=False, allow_nan_stats=True, name='Binomial') {#Binomial.init}

Initialize a batch of Binomial distributions.

Args:

		n: Non-negative floating point tensor with shape broadcastable to
[N1,..., Nm] with m >= 0 and the same dtype as p or logits.
Defines this as a batch of N1 x ... x Nm different Binomial
distributions. Its components should be equal to integer values.

		logits: Floating point tensor representing the log-odds of a
positive event with shape broadcastable to [N1,..., Nm] m >= 0, and
the same dtype as n. Each entry represents logits for the probability
of success for independent Binomial distributions.

		p: Positive floating point tensor with shape broadcastable to
[N1,..., Nm] m >= 0, p in [0, 1]. Each entry represents the
probability of success for independent Binomial distributions.

		validate_args: Boolean, default False. Whether to assert valid values
for parameters n, p, and x in prob and log_prob.
If False and inputs are invalid, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to prefix Ops created by this distribution class.

		Examples:

Define 1-batch of a binomial distribution.
dist = Binomial(n=2., p=.9)

Define a 2-batch.
dist = Binomial(n=[4., 5], p=[.1, .3])

tf.contrib.distributions.Binomial.allow_nan_stats {#Binomial.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Binomial.batch_shape(name='batch_shape') {#Binomial.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Binomial.cdf(value, name='cdf') {#Binomial.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Binomial.dtype {#Binomial.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Binomial.entropy(name='entropy') {#Binomial.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Binomial.event_shape(name='event_shape') {#Binomial.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Binomial.get_batch_shape() {#Binomial.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Binomial.get_event_shape() {#Binomial.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Binomial.is_continuous {#Binomial.is_continuous}

tf.contrib.distributions.Binomial.is_reparameterized {#Binomial.is_reparameterized}

tf.contrib.distributions.Binomial.log_cdf(value, name='log_cdf') {#Binomial.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Binomial.log_pdf(value, name='log_pdf') {#Binomial.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Binomial.log_pmf(value, name='log_pmf') {#Binomial.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Binomial.log_prob(value, name='log_prob') {#Binomial.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Binomial.log_survival_function(value, name='log_survival_function') {#Binomial.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Binomial.logits {#Binomial.logits}

Log-odds.

tf.contrib.distributions.Binomial.mean(name='mean') {#Binomial.mean}

Mean.

tf.contrib.distributions.Binomial.mode(name='mode') {#Binomial.mode}

Mode.

tf.contrib.distributions.Binomial.n {#Binomial.n}

Number of trials.

tf.contrib.distributions.Binomial.name {#Binomial.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Binomial.p {#Binomial.p}

Probability of success.

tf.contrib.distributions.Binomial.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Binomial.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Binomial.param_static_shapes(cls, sample_shape) {#Binomial.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Binomial.parameters {#Binomial.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Binomial.pdf(value, name='pdf') {#Binomial.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Binomial.pmf(value, name='pmf') {#Binomial.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Binomial.prob(value, name='prob') {#Binomial.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Binomial.sample(sample_shape=(), seed=None, name='sample') {#Binomial.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Binomial.sample_n(n, seed=None, name='sample_n') {#Binomial.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Binomial.std(name='std') {#Binomial.std}

Standard deviation.

tf.contrib.distributions.Binomial.survival_function(value, name='survival_function') {#Binomial.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Binomial.validate_args {#Binomial.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Binomial.variance(name='variance') {#Binomial.variance}

Variance.

class tf.contrib.distributions.Bernoulli {#Bernoulli}

Bernoulli distribution.

The Bernoulli distribution is parameterized by p, the probability of a
positive event.

tf.contrib.distributions.Bernoulli.__init__(logits=None, p=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='Bernoulli') {#Bernoulli.init}

Construct Bernoulli distributions.

Args:

		logits: An N-D Tensor representing the log-odds
of a positive event. Each entry in the Tensor parametrizes
an independent Bernoulli distribution where the probability of an event
is sigmoid(logits).

		p: An N-D Tensor representing the probability of a positive
event. Each entry in the Tensor parameterizes an independent
Bernoulli distribution.

		dtype: dtype for samples.

		validate_args: Boolean, default False. Whether to validate that
0 <= p <= 1. If validate_args is False, and the inputs are
invalid, methods like log_pmf may return NaN values.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: A name for this distribution.

Raises:

		ValueError: If p and logits are passed, or if neither are passed.

tf.contrib.distributions.Bernoulli.allow_nan_stats {#Bernoulli.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Bernoulli.batch_shape(name='batch_shape') {#Bernoulli.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Bernoulli.cdf(value, name='cdf') {#Bernoulli.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Bernoulli.dtype {#Bernoulli.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Bernoulli.entropy(name='entropy') {#Bernoulli.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Bernoulli.event_shape(name='event_shape') {#Bernoulli.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Bernoulli.get_batch_shape() {#Bernoulli.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Bernoulli.get_event_shape() {#Bernoulli.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Bernoulli.is_continuous {#Bernoulli.is_continuous}

tf.contrib.distributions.Bernoulli.is_reparameterized {#Bernoulli.is_reparameterized}

tf.contrib.distributions.Bernoulli.log_cdf(value, name='log_cdf') {#Bernoulli.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Bernoulli.log_pdf(value, name='log_pdf') {#Bernoulli.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Bernoulli.log_pmf(value, name='log_pmf') {#Bernoulli.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Bernoulli.log_prob(value, name='log_prob') {#Bernoulli.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Bernoulli.log_survival_function(value, name='log_survival_function') {#Bernoulli.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Bernoulli.logits {#Bernoulli.logits}

tf.contrib.distributions.Bernoulli.mean(name='mean') {#Bernoulli.mean}

Mean.

tf.contrib.distributions.Bernoulli.mode(name='mode') {#Bernoulli.mode}

Mode.

tf.contrib.distributions.Bernoulli.name {#Bernoulli.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Bernoulli.p {#Bernoulli.p}

tf.contrib.distributions.Bernoulli.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Bernoulli.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Bernoulli.param_static_shapes(cls, sample_shape) {#Bernoulli.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Bernoulli.parameters {#Bernoulli.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Bernoulli.pdf(value, name='pdf') {#Bernoulli.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Bernoulli.pmf(value, name='pmf') {#Bernoulli.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Bernoulli.prob(value, name='prob') {#Bernoulli.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Bernoulli.q {#Bernoulli.q}

1-p.

tf.contrib.distributions.Bernoulli.sample(sample_shape=(), seed=None, name='sample') {#Bernoulli.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Bernoulli.sample_n(n, seed=None, name='sample_n') {#Bernoulli.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Bernoulli.std(name='std') {#Bernoulli.std}

Standard deviation.

tf.contrib.distributions.Bernoulli.survival_function(value, name='survival_function') {#Bernoulli.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Bernoulli.validate_args {#Bernoulli.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Bernoulli.variance(name='variance') {#Bernoulli.variance}

Variance.

class tf.contrib.distributions.Beta {#Beta}

Beta distribution.

This distribution is parameterized by a and b which are shape
parameters.

Mathematical details

The Beta is a distribution over the interval (0, 1).
The distribution has hyperparameters a and b and
probability mass function (pdf):

pdf(x) = 1 / Beta(a, b) * x^(a - 1) * (1 - x)^(b - 1)

where Beta(a, b) = Gamma(a) * Gamma(b) / Gamma(a + b)
is the beta function.

This class provides methods to create indexed batches of Beta
distributions. One entry of the broacasted
shape represents of a and b represents one single Beta distribution.
When calling distribution functions (e.g. dist.pdf(x)), a, b
and x are broadcast to the same shape (if possible).
Every entry in a/b/x corresponds to a single Beta distribution.

Examples

Creates 3 distributions.
The distribution functions can be evaluated on x.

a = [1, 2, 3]
b = [1, 2, 3]
dist = Beta(a, b)

x same shape as a.
x = [.2, .3, .7]
dist.pdf(x) # Shape [3]

a/b will be broadcast to [[1, 2, 3], [1, 2, 3]] to match x.
x = [[.1, .4, .5], [.2, .3, .5]]
dist.pdf(x) # Shape [2, 3]

a/b will be broadcast to shape [5, 7, 3] to match x.
x = [[...]] # Shape [5, 7, 3]
dist.pdf(x) # Shape [5, 7, 3]

Creates a 2-batch of 3-class distributions.

a = [[1, 2, 3], [4, 5, 6]] # Shape [2, 3]
b = 5 # Shape []
dist = Beta(a, b)

x will be broadcast to [[.2, .3, .9], [.2, .3, .9]] to match a/b.
x = [.2, .3, .9]
dist.pdf(x) # Shape [2]

tf.contrib.distributions.Beta.__init__(a, b, validate_args=False, allow_nan_stats=True, name='Beta') {#Beta.init}

Initialize a batch of Beta distributions.

Args:

		a: Positive floating point tensor with shape broadcastable to
[N1,..., Nm] m >= 0. Defines this as a batch of N1 x ... x Nm
different Beta distributions. This also defines the
dtype of the distribution.

		b: Positive floating point tensor with shape broadcastable to
[N1,..., Nm] m >= 0. Defines this as a batch of N1 x ... x Nm
different Beta distributions.

		validate_args: Boolean, default False. Whether to assert valid
values for parameters a, b, and x in prob and log_prob.
If False and inputs are invalid, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to prefix Ops created by this distribution class.

		Examples:

Define 1-batch.
dist = Beta(1.1, 2.0)

Define a 2-batch.
dist = Beta([1.0, 2.0], [4.0, 5.0])

tf.contrib.distributions.Beta.a {#Beta.a}

Shape parameter.

tf.contrib.distributions.Beta.a_b_sum {#Beta.a_b_sum}

Sum of parameters.

tf.contrib.distributions.Beta.allow_nan_stats {#Beta.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Beta.b {#Beta.b}

Shape parameter.

tf.contrib.distributions.Beta.batch_shape(name='batch_shape') {#Beta.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Beta.cdf(value, name='cdf') {#Beta.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Beta.dtype {#Beta.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Beta.entropy(name='entropy') {#Beta.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Beta.event_shape(name='event_shape') {#Beta.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Beta.get_batch_shape() {#Beta.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Beta.get_event_shape() {#Beta.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Beta.is_continuous {#Beta.is_continuous}

tf.contrib.distributions.Beta.is_reparameterized {#Beta.is_reparameterized}

tf.contrib.distributions.Beta.log_cdf(value, name='log_cdf') {#Beta.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Beta.log_pdf(value, name='log_pdf') {#Beta.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Beta.log_pmf(value, name='log_pmf') {#Beta.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Beta.log_prob(value, name='log_prob') {#Beta.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Beta.log_survival_function(value, name='log_survival_function') {#Beta.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Beta.mean(name='mean') {#Beta.mean}

Mean.

tf.contrib.distributions.Beta.mode(name='mode') {#Beta.mode}

Mode.

tf.contrib.distributions.Beta.name {#Beta.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Beta.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Beta.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Beta.param_static_shapes(cls, sample_shape) {#Beta.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Beta.parameters {#Beta.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Beta.pdf(value, name='pdf') {#Beta.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Beta.pmf(value, name='pmf') {#Beta.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Beta.prob(value, name='prob') {#Beta.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Beta.sample(sample_shape=(), seed=None, name='sample') {#Beta.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Beta.sample_n(n, seed=None, name='sample_n') {#Beta.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Beta.std(name='std') {#Beta.std}

Standard deviation.

tf.contrib.distributions.Beta.survival_function(value, name='survival_function') {#Beta.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Beta.validate_args {#Beta.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Beta.variance(name='variance') {#Beta.variance}

Variance.

class tf.contrib.distributions.Categorical {#Categorical}

Categorical distribution.

The categorical distribution is parameterized by the log-probabilities
of a set of classes.

tf.contrib.distributions.Categorical.__init__(logits, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='Categorical') {#Categorical.init}

Initialize Categorical distributions using class log-probabilities.

Args:

		logits: An N-D Tensor, N >= 1, representing the log probabilities
of a set of Categorical distributions. The first N - 1 dimensions
index into a batch of independent distributions and the last dimension
indexes into the classes.

		dtype: The type of the event samples (default: int32).

		validate_args: Unused in this distribution.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: A name for this distribution (optional).

tf.contrib.distributions.Categorical.allow_nan_stats {#Categorical.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Categorical.batch_shape(name='batch_shape') {#Categorical.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Categorical.cdf(value, name='cdf') {#Categorical.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Categorical.dtype {#Categorical.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Categorical.entropy(name='entropy') {#Categorical.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Categorical.event_shape(name='event_shape') {#Categorical.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Categorical.get_batch_shape() {#Categorical.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Categorical.get_event_shape() {#Categorical.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Categorical.is_continuous {#Categorical.is_continuous}

tf.contrib.distributions.Categorical.is_reparameterized {#Categorical.is_reparameterized}

tf.contrib.distributions.Categorical.log_cdf(value, name='log_cdf') {#Categorical.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Categorical.log_pdf(value, name='log_pdf') {#Categorical.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Categorical.log_pmf(value, name='log_pmf') {#Categorical.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Categorical.log_prob(value, name='log_prob') {#Categorical.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Categorical.log_survival_function(value, name='log_survival_function') {#Categorical.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Categorical.logits {#Categorical.logits}

tf.contrib.distributions.Categorical.mean(name='mean') {#Categorical.mean}

Mean.

tf.contrib.distributions.Categorical.mode(name='mode') {#Categorical.mode}

Mode.

tf.contrib.distributions.Categorical.name {#Categorical.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Categorical.num_classes {#Categorical.num_classes}

Scalar int32 tensor: the number of classes.

tf.contrib.distributions.Categorical.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Categorical.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Categorical.param_static_shapes(cls, sample_shape) {#Categorical.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Categorical.parameters {#Categorical.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Categorical.pdf(value, name='pdf') {#Categorical.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Categorical.pmf(value, name='pmf') {#Categorical.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Categorical.prob(value, name='prob') {#Categorical.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Categorical.sample(sample_shape=(), seed=None, name='sample') {#Categorical.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Categorical.sample_n(n, seed=None, name='sample_n') {#Categorical.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Categorical.std(name='std') {#Categorical.std}

Standard deviation.

tf.contrib.distributions.Categorical.survival_function(value, name='survival_function') {#Categorical.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Categorical.validate_args {#Categorical.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Categorical.variance(name='variance') {#Categorical.variance}

Variance.

class tf.contrib.distributions.Chi2 {#Chi2}

The Chi2 distribution with degrees of freedom df.

The PDF of this distribution is:

pdf(x) = (x^(df/2 - 1)e^(-x/2))/(2^(df/2)Gamma(df/2)), x > 0

Note that the Chi2 distribution is a special case of the Gamma distribution,
with Chi2(df) = Gamma(df/2, 1/2).

tf.contrib.distributions.Chi2.__init__(df, validate_args=False, allow_nan_stats=True, name='Chi2') {#Chi2.init}

Construct Chi2 distributions with parameter df.

Args:

		df: Floating point tensor, the degrees of freedom of the
distribution(s). df must contain only positive values.

		validate_args: Boolean, default False. Whether to assert that
df > 0, and that x > 0 in the methods prob(x) and log_prob(x).
If validate_args is False and the inputs are invalid, correct
behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to prepend to all ops created by this distribution.

tf.contrib.distributions.Chi2.allow_nan_stats {#Chi2.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Chi2.alpha {#Chi2.alpha}

Shape parameter.

tf.contrib.distributions.Chi2.batch_shape(name='batch_shape') {#Chi2.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Chi2.beta {#Chi2.beta}

Inverse scale parameter.

tf.contrib.distributions.Chi2.cdf(value, name='cdf') {#Chi2.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Chi2.df {#Chi2.df}

tf.contrib.distributions.Chi2.dtype {#Chi2.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Chi2.entropy(name='entropy') {#Chi2.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Chi2.event_shape(name='event_shape') {#Chi2.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Chi2.get_batch_shape() {#Chi2.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Chi2.get_event_shape() {#Chi2.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Chi2.is_continuous {#Chi2.is_continuous}

tf.contrib.distributions.Chi2.is_reparameterized {#Chi2.is_reparameterized}

tf.contrib.distributions.Chi2.log_cdf(value, name='log_cdf') {#Chi2.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Chi2.log_pdf(value, name='log_pdf') {#Chi2.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Chi2.log_pmf(value, name='log_pmf') {#Chi2.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Chi2.log_prob(value, name='log_prob') {#Chi2.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Chi2.log_survival_function(value, name='log_survival_function') {#Chi2.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Chi2.mean(name='mean') {#Chi2.mean}

Mean.

tf.contrib.distributions.Chi2.mode(name='mode') {#Chi2.mode}

Mode.

tf.contrib.distributions.Chi2.name {#Chi2.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Chi2.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Chi2.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Chi2.param_static_shapes(cls, sample_shape) {#Chi2.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Chi2.parameters {#Chi2.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Chi2.pdf(value, name='pdf') {#Chi2.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Chi2.pmf(value, name='pmf') {#Chi2.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Chi2.prob(value, name='prob') {#Chi2.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Chi2.sample(sample_shape=(), seed=None, name='sample') {#Chi2.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Chi2.sample_n(n, seed=None, name='sample_n') {#Chi2.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Chi2.std(name='std') {#Chi2.std}

Standard deviation.

tf.contrib.distributions.Chi2.survival_function(value, name='survival_function') {#Chi2.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Chi2.validate_args {#Chi2.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Chi2.variance(name='variance') {#Chi2.variance}

Variance.

class tf.contrib.distributions.Exponential {#Exponential}

The Exponential distribution with rate parameter lam.

The PDF of this distribution is:

prob(x) = (lam * e^(-lam * x)), x > 0

Note that the Exponential distribution is a special case of the Gamma
distribution, with Exponential(lam) = Gamma(1, lam).

tf.contrib.distributions.Exponential.__init__(lam, validate_args=False, allow_nan_stats=True, name='Exponential') {#Exponential.init}

Construct Exponential distribution with parameter lam.

Args:

		lam: Floating point tensor, the rate of the distribution(s).
lam must contain only positive values.

		validate_args: Boolean, default False. Whether to assert that
lam > 0, and that x > 0 in the methods prob(x) and log_prob(x).
If validate_args is False and the inputs are invalid, correct
behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to prepend to all ops created by this distribution.

tf.contrib.distributions.Exponential.allow_nan_stats {#Exponential.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Exponential.alpha {#Exponential.alpha}

Shape parameter.

tf.contrib.distributions.Exponential.batch_shape(name='batch_shape') {#Exponential.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Exponential.beta {#Exponential.beta}

Inverse scale parameter.

tf.contrib.distributions.Exponential.cdf(value, name='cdf') {#Exponential.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Exponential.dtype {#Exponential.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Exponential.entropy(name='entropy') {#Exponential.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Exponential.event_shape(name='event_shape') {#Exponential.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Exponential.get_batch_shape() {#Exponential.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Exponential.get_event_shape() {#Exponential.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Exponential.is_continuous {#Exponential.is_continuous}

tf.contrib.distributions.Exponential.is_reparameterized {#Exponential.is_reparameterized}

tf.contrib.distributions.Exponential.lam {#Exponential.lam}

tf.contrib.distributions.Exponential.log_cdf(value, name='log_cdf') {#Exponential.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Exponential.log_pdf(value, name='log_pdf') {#Exponential.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Exponential.log_pmf(value, name='log_pmf') {#Exponential.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Exponential.log_prob(value, name='log_prob') {#Exponential.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Exponential.log_survival_function(value, name='log_survival_function') {#Exponential.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Exponential.mean(name='mean') {#Exponential.mean}

Mean.

tf.contrib.distributions.Exponential.mode(name='mode') {#Exponential.mode}

Mode.

tf.contrib.distributions.Exponential.name {#Exponential.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Exponential.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Exponential.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Exponential.param_static_shapes(cls, sample_shape) {#Exponential.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Exponential.parameters {#Exponential.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Exponential.pdf(value, name='pdf') {#Exponential.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Exponential.pmf(value, name='pmf') {#Exponential.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Exponential.prob(value, name='prob') {#Exponential.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Exponential.sample(sample_shape=(), seed=None, name='sample') {#Exponential.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Exponential.sample_n(n, seed=None, name='sample_n') {#Exponential.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Exponential.std(name='std') {#Exponential.std}

Standard deviation.

tf.contrib.distributions.Exponential.survival_function(value, name='survival_function') {#Exponential.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Exponential.validate_args {#Exponential.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Exponential.variance(name='variance') {#Exponential.variance}

Variance.

class tf.contrib.distributions.Gamma {#Gamma}

The Gamma distribution with parameter alpha and beta.

The parameters are the shape and inverse scale parameters alpha, beta.

The PDF of this distribution is:

pdf(x) = (beta^alpha)(x^(alpha-1))e^(-x*beta)/Gamma(alpha), x > 0

and the CDF of this distribution is:

cdf(x) = GammaInc(alpha, beta * x) / Gamma(alpha), x > 0

where GammaInc is the incomplete lower Gamma function.

WARNING: This distribution may draw 0-valued samples for small alpha values.
See the note on tf.random_gamma.

Examples:

dist = Gamma(alpha=3.0, beta=2.0)
dist2 = Gamma(alpha=[3.0, 4.0], beta=[2.0, 3.0])

tf.contrib.distributions.Gamma.__init__(alpha, beta, validate_args=False, allow_nan_stats=True, name='Gamma') {#Gamma.init}

Construct Gamma distributions with parameters alpha and beta.

The parameters alpha and beta must be shaped in a way that supports
broadcasting (e.g. alpha + beta is a valid operation).

Args:

		alpha: Floating point tensor, the shape params of the
distribution(s).
alpha must contain only positive values.

		beta: Floating point tensor, the inverse scale params of the
distribution(s).
beta must contain only positive values.

		validate_args: Boolean, default False. Whether to assert that
a > 0, b > 0, and that x > 0 in the methods prob(x) and
log_prob(x). If validate_args is False and the inputs are
invalid, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to prepend to all ops created by this distribution.

Raises:

		TypeError: if alpha and beta are different dtypes.

tf.contrib.distributions.Gamma.allow_nan_stats {#Gamma.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Gamma.alpha {#Gamma.alpha}

Shape parameter.

tf.contrib.distributions.Gamma.batch_shape(name='batch_shape') {#Gamma.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Gamma.beta {#Gamma.beta}

Inverse scale parameter.

tf.contrib.distributions.Gamma.cdf(value, name='cdf') {#Gamma.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Gamma.dtype {#Gamma.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Gamma.entropy(name='entropy') {#Gamma.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Gamma.event_shape(name='event_shape') {#Gamma.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Gamma.get_batch_shape() {#Gamma.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Gamma.get_event_shape() {#Gamma.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Gamma.is_continuous {#Gamma.is_continuous}

tf.contrib.distributions.Gamma.is_reparameterized {#Gamma.is_reparameterized}

tf.contrib.distributions.Gamma.log_cdf(value, name='log_cdf') {#Gamma.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Gamma.log_pdf(value, name='log_pdf') {#Gamma.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Gamma.log_pmf(value, name='log_pmf') {#Gamma.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Gamma.log_prob(value, name='log_prob') {#Gamma.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Gamma.log_survival_function(value, name='log_survival_function') {#Gamma.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Gamma.mean(name='mean') {#Gamma.mean}

Mean.

tf.contrib.distributions.Gamma.mode(name='mode') {#Gamma.mode}

Mode.

tf.contrib.distributions.Gamma.name {#Gamma.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Gamma.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Gamma.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Gamma.param_static_shapes(cls, sample_shape) {#Gamma.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Gamma.parameters {#Gamma.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Gamma.pdf(value, name='pdf') {#Gamma.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Gamma.pmf(value, name='pmf') {#Gamma.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Gamma.prob(value, name='prob') {#Gamma.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Gamma.sample(sample_shape=(), seed=None, name='sample') {#Gamma.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Gamma.sample_n(n, seed=None, name='sample_n') {#Gamma.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Gamma.std(name='std') {#Gamma.std}

Standard deviation.

tf.contrib.distributions.Gamma.survival_function(value, name='survival_function') {#Gamma.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Gamma.validate_args {#Gamma.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Gamma.variance(name='variance') {#Gamma.variance}

Variance.

class tf.contrib.distributions.InverseGamma {#InverseGamma}

The InverseGamma distribution with parameter alpha and beta.

The parameters are the shape and inverse scale parameters alpha, beta.

The PDF of this distribution is:

pdf(x) = (beta^alpha)/Gamma(alpha)(x^(-alpha-1))e^(-beta/x), x > 0

and the CDF of this distribution is:

cdf(x) = GammaInc(alpha, beta / x) / Gamma(alpha), x > 0

where GammaInc is the upper incomplete Gamma function.

Examples:

dist = InverseGamma(alpha=3.0, beta=2.0)
dist2 = InverseGamma(alpha=[3.0, 4.0], beta=[2.0, 3.0])

tf.contrib.distributions.InverseGamma.__init__(alpha, beta, validate_args=False, allow_nan_stats=True, name='InverseGamma') {#InverseGamma.init}

Construct InverseGamma distributions with parameters alpha and beta.

The parameters alpha and beta must be shaped in a way that supports
broadcasting (e.g. alpha + beta is a valid operation).

Args:

		alpha: Floating point tensor, the shape params of the
distribution(s).
alpha must contain only positive values.

		beta: Floating point tensor, the scale params of the distribution(s).
beta must contain only positive values.

		validate_args: Boolean, default False. Whether to assert that
a > 0, b > 0, and that x > 0 in the methods prob(x) and
log_prob(x). If validate_args is False and the inputs are
invalid, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to prepend to all ops created by this distribution.

Raises:

		TypeError: if alpha and beta are different dtypes.

tf.contrib.distributions.InverseGamma.allow_nan_stats {#InverseGamma.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.InverseGamma.alpha {#InverseGamma.alpha}

Shape parameter.

tf.contrib.distributions.InverseGamma.batch_shape(name='batch_shape') {#InverseGamma.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.InverseGamma.beta {#InverseGamma.beta}

Scale parameter.

tf.contrib.distributions.InverseGamma.cdf(value, name='cdf') {#InverseGamma.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.InverseGamma.dtype {#InverseGamma.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.InverseGamma.entropy(name='entropy') {#InverseGamma.entropy}

Shanon entropy in nats.

tf.contrib.distributions.InverseGamma.event_shape(name='event_shape') {#InverseGamma.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.InverseGamma.get_batch_shape() {#InverseGamma.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.InverseGamma.get_event_shape() {#InverseGamma.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.InverseGamma.is_continuous {#InverseGamma.is_continuous}

tf.contrib.distributions.InverseGamma.is_reparameterized {#InverseGamma.is_reparameterized}

tf.contrib.distributions.InverseGamma.log_cdf(value, name='log_cdf') {#InverseGamma.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.InverseGamma.log_pdf(value, name='log_pdf') {#InverseGamma.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.InverseGamma.log_pmf(value, name='log_pmf') {#InverseGamma.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.InverseGamma.log_prob(value, name='log_prob') {#InverseGamma.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.InverseGamma.log_survival_function(value, name='log_survival_function') {#InverseGamma.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.InverseGamma.mean(name='mean') {#InverseGamma.mean}

Mean.

tf.contrib.distributions.InverseGamma.mode(name='mode') {#InverseGamma.mode}

Mode.

tf.contrib.distributions.InverseGamma.name {#InverseGamma.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.InverseGamma.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#InverseGamma.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.InverseGamma.param_static_shapes(cls, sample_shape) {#InverseGamma.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.InverseGamma.parameters {#InverseGamma.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.InverseGamma.pdf(value, name='pdf') {#InverseGamma.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.InverseGamma.pmf(value, name='pmf') {#InverseGamma.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.InverseGamma.prob(value, name='prob') {#InverseGamma.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.InverseGamma.sample(sample_shape=(), seed=None, name='sample') {#InverseGamma.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.InverseGamma.sample_n(n, seed=None, name='sample_n') {#InverseGamma.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.InverseGamma.std(name='std') {#InverseGamma.std}

Standard deviation.

tf.contrib.distributions.InverseGamma.survival_function(value, name='survival_function') {#InverseGamma.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.InverseGamma.validate_args {#InverseGamma.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.InverseGamma.variance(name='variance') {#InverseGamma.variance}

Variance.

class tf.contrib.distributions.Laplace {#Laplace}

The Laplace distribution with location and scale > 0 parameters.

Mathematical details

The PDF of this distribution is:

f(x | mu, b, b > 0) = 0.5 / b exp(-|x - mu| / b)

Note that the Laplace distribution can be thought of two exponential
distributions spliced together “back-to-back.”

tf.contrib.distributions.Laplace.__init__(loc, scale, validate_args=False, allow_nan_stats=True, name='Laplace') {#Laplace.init}

Construct Laplace distribution with parameters loc and scale.

The parameters loc and scale must be shaped in a way that supports
broadcasting (e.g., loc / scale is a valid operation).

Args:

		loc: Floating point tensor which characterizes the location (center)
of the distribution.

		scale: Positive floating point tensor which characterizes the spread of
the distribution.

		validate_args: Boolean, default False. Whether to validate input
with asserts. If validate_args is False, and the inputs are
invalid, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to give Ops created by the initializer.

Raises:

		TypeError: if loc and scale are of different dtype.

tf.contrib.distributions.Laplace.allow_nan_stats {#Laplace.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Laplace.batch_shape(name='batch_shape') {#Laplace.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Laplace.cdf(value, name='cdf') {#Laplace.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Laplace.dtype {#Laplace.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Laplace.entropy(name='entropy') {#Laplace.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Laplace.event_shape(name='event_shape') {#Laplace.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Laplace.get_batch_shape() {#Laplace.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Laplace.get_event_shape() {#Laplace.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Laplace.is_continuous {#Laplace.is_continuous}

tf.contrib.distributions.Laplace.is_reparameterized {#Laplace.is_reparameterized}

tf.contrib.distributions.Laplace.loc {#Laplace.loc}

Distribution parameter for the location.

tf.contrib.distributions.Laplace.log_cdf(value, name='log_cdf') {#Laplace.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Laplace.log_pdf(value, name='log_pdf') {#Laplace.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Laplace.log_pmf(value, name='log_pmf') {#Laplace.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Laplace.log_prob(value, name='log_prob') {#Laplace.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Laplace.log_survival_function(value, name='log_survival_function') {#Laplace.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Laplace.mean(name='mean') {#Laplace.mean}

Mean.

tf.contrib.distributions.Laplace.mode(name='mode') {#Laplace.mode}

Mode.

tf.contrib.distributions.Laplace.name {#Laplace.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Laplace.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Laplace.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Laplace.param_static_shapes(cls, sample_shape) {#Laplace.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Laplace.parameters {#Laplace.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Laplace.pdf(value, name='pdf') {#Laplace.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Laplace.pmf(value, name='pmf') {#Laplace.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Laplace.prob(value, name='prob') {#Laplace.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Laplace.sample(sample_shape=(), seed=None, name='sample') {#Laplace.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Laplace.sample_n(n, seed=None, name='sample_n') {#Laplace.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Laplace.scale {#Laplace.scale}

Distribution parameter for scale.

tf.contrib.distributions.Laplace.std(name='std') {#Laplace.std}

Standard deviation.

tf.contrib.distributions.Laplace.survival_function(value, name='survival_function') {#Laplace.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Laplace.validate_args {#Laplace.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Laplace.variance(name='variance') {#Laplace.variance}

Variance.

class tf.contrib.distributions.Normal {#Normal}

The scalar Normal distribution with mean and stddev parameters mu, sigma.

Mathematical details

The PDF of this distribution is:

f(x) = sqrt(1/(2*pi*sigma^2)) exp(-(x-mu)^2/(2*sigma^2))

Examples

Examples of initialization of one or a batch of distributions.

Define a single scalar Normal distribution.
dist = tf.contrib.distributions.Normal(mu=0., sigma=3.)

Evaluate the cdf at 1, returning a scalar.
dist.cdf(1.)

Define a batch of two scalar valued Normals.
The first has mean 1 and standard deviation 11, the second 2 and 22.
dist = tf.contrib.distributions.Normal(mu=[1, 2.], sigma=[11, 22.])

Evaluate the pdf of the first distribution on 0, and the second on 1.5,
returning a length two tensor.
dist.pdf([0, 1.5])

Get 3 samples, returning a 3 x 2 tensor.
dist.sample([3])

Arguments are broadcast when possible.

Define a batch of two scalar valued Normals.
Both have mean 1, but different standard deviations.
dist = tf.contrib.distributions.Normal(mu=1., sigma=[11, 22.])

Evaluate the pdf of both distributions on the same point, 3.0,
returning a length 2 tensor.
dist.pdf(3.0)

tf.contrib.distributions.Normal.__init__(mu, sigma, validate_args=False, allow_nan_stats=True, name='Normal') {#Normal.init}

Construct Normal distributions with mean and stddev mu and sigma.

The parameters mu and sigma must be shaped in a way that supports
broadcasting (e.g. mu + sigma is a valid operation).

Args:

		mu: Floating point tensor, the means of the distribution(s).

		sigma: Floating point tensor, the stddevs of the distribution(s).
sigma must contain only positive values.

		validate_args: Boolean, default False. Whether to assert that
sigma > 0. If validate_args is False, correct output is not
guaranteed when input is invalid.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to give Ops created by the initializer.

Raises:

		TypeError: if mu and sigma are different dtypes.

tf.contrib.distributions.Normal.allow_nan_stats {#Normal.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Normal.batch_shape(name='batch_shape') {#Normal.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Normal.cdf(value, name='cdf') {#Normal.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Normal.dtype {#Normal.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Normal.entropy(name='entropy') {#Normal.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Normal.event_shape(name='event_shape') {#Normal.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Normal.get_batch_shape() {#Normal.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Normal.get_event_shape() {#Normal.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Normal.is_continuous {#Normal.is_continuous}

tf.contrib.distributions.Normal.is_reparameterized {#Normal.is_reparameterized}

tf.contrib.distributions.Normal.log_cdf(value, name='log_cdf') {#Normal.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Normal.log_pdf(value, name='log_pdf') {#Normal.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Normal.log_pmf(value, name='log_pmf') {#Normal.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Normal.log_prob(value, name='log_prob') {#Normal.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Normal.log_survival_function(value, name='log_survival_function') {#Normal.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Normal.mean(name='mean') {#Normal.mean}

Mean.

tf.contrib.distributions.Normal.mode(name='mode') {#Normal.mode}

Mode.

tf.contrib.distributions.Normal.mu {#Normal.mu}

Distribution parameter for the mean.

tf.contrib.distributions.Normal.name {#Normal.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Normal.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Normal.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Normal.param_static_shapes(cls, sample_shape) {#Normal.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Normal.parameters {#Normal.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Normal.pdf(value, name='pdf') {#Normal.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Normal.pmf(value, name='pmf') {#Normal.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Normal.prob(value, name='prob') {#Normal.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Normal.sample(sample_shape=(), seed=None, name='sample') {#Normal.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Normal.sample_n(n, seed=None, name='sample_n') {#Normal.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Normal.sigma {#Normal.sigma}

Distribution parameter for standard deviation.

tf.contrib.distributions.Normal.std(name='std') {#Normal.std}

Standard deviation.

tf.contrib.distributions.Normal.survival_function(value, name='survival_function') {#Normal.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Normal.validate_args {#Normal.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Normal.variance(name='variance') {#Normal.variance}

Variance.

class tf.contrib.distributions.Poisson {#Poisson}

Poisson distribution.

The Poisson distribution is parameterized by lam, the rate parameter.

The pmf of this distribution is:

pmf(k) = e^(-lam) * lam^k / k!, k >= 0

tf.contrib.distributions.Poisson.__init__(lam, validate_args=False, allow_nan_stats=True, name='Poisson') {#Poisson.init}

Construct Poisson distributions.

Args:

		lam: Floating point tensor, the rate parameter of the
distribution(s). lam must be positive.

		validate_args: Boolean, default False. Whether to assert that
lam > 0 as well as inputs to pmf computations are non-negative
integers. If validate_args is False, then pmf computations might
return NaN, but can be evaluated at any real value.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: A name for this distribution.

tf.contrib.distributions.Poisson.allow_nan_stats {#Poisson.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Poisson.batch_shape(name='batch_shape') {#Poisson.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Poisson.cdf(value, name='cdf') {#Poisson.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Poisson.dtype {#Poisson.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Poisson.entropy(name='entropy') {#Poisson.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Poisson.event_shape(name='event_shape') {#Poisson.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Poisson.get_batch_shape() {#Poisson.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Poisson.get_event_shape() {#Poisson.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Poisson.is_continuous {#Poisson.is_continuous}

tf.contrib.distributions.Poisson.is_reparameterized {#Poisson.is_reparameterized}

tf.contrib.distributions.Poisson.lam {#Poisson.lam}

Rate parameter.

tf.contrib.distributions.Poisson.log_cdf(value, name='log_cdf') {#Poisson.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Poisson.log_pdf(value, name='log_pdf') {#Poisson.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Poisson.log_pmf(value, name='log_pmf') {#Poisson.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Poisson.log_prob(value, name='log_prob') {#Poisson.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Poisson.log_survival_function(value, name='log_survival_function') {#Poisson.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Poisson.mean(name='mean') {#Poisson.mean}

Mean.

tf.contrib.distributions.Poisson.mode(name='mode') {#Poisson.mode}

Mode.

tf.contrib.distributions.Poisson.name {#Poisson.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Poisson.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Poisson.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Poisson.param_static_shapes(cls, sample_shape) {#Poisson.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Poisson.parameters {#Poisson.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Poisson.pdf(value, name='pdf') {#Poisson.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Poisson.pmf(value, name='pmf') {#Poisson.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Poisson.prob(value, name='prob') {#Poisson.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Poisson.sample(sample_shape=(), seed=None, name='sample') {#Poisson.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Poisson.sample_n(n, seed=None, name='sample_n') {#Poisson.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Poisson.std(name='std') {#Poisson.std}

Standard deviation.

tf.contrib.distributions.Poisson.survival_function(value, name='survival_function') {#Poisson.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Poisson.validate_args {#Poisson.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Poisson.variance(name='variance') {#Poisson.variance}

Variance.

class tf.contrib.distributions.StudentT {#StudentT}

Student’s t distribution with degree-of-freedom parameter df.

Mathematical details

The PDF of this distribution is:

f(t) = gamma((df+1)/2)/sqrt(df*pi)/gamma(df/2)*(1+t^2/df)^(-(df+1)/2)

Examples

Examples of initialization of one or a batch of distributions.

Define a single scalar Student t distribution.
single_dist = tf.contrib.distributions.StudentT(df=3)

Evaluate the pdf at 1, returning a scalar Tensor.
single_dist.pdf(1.)

Define a batch of two scalar valued Student t's.
The first has degrees of freedom 2, mean 1, and scale 11.
The second 3, 2 and 22.
multi_dist = tf.contrib.distributions.StudentT(df=[2, 3],
 mu=[1, 2.],
 sigma=[11, 22.])

Evaluate the pdf of the first distribution on 0, and the second on 1.5,
returning a length two tensor.
multi_dist.pdf([0, 1.5])

Get 3 samples, returning a 3 x 2 tensor.
multi_dist.sample(3)

Arguments are broadcast when possible.

Define a batch of two Student's t distributions.
Both have df 2 and mean 1, but different scales.
dist = tf.contrib.distributions.StudentT(df=2, mu=1, sigma=[11, 22.])

Evaluate the pdf of both distributions on the same point, 3.0,
returning a length 2 tensor.
dist.pdf(3.0)

tf.contrib.distributions.StudentT.__init__(df, mu, sigma, validate_args=False, allow_nan_stats=True, name='StudentT') {#StudentT.init}

Construct Student’s t distributions.

The distributions have degree of freedom df, mean mu, and scale sigma.

The parameters df, mu, and sigma must be shaped in a way that supports
broadcasting (e.g. df + mu + sigma is a valid operation).

Args:

		df: Floating point tensor, the degrees of freedom of the
distribution(s). df must contain only positive values.

		mu: Floating point tensor, the means of the distribution(s).

		sigma: Floating point tensor, the scaling factor for the
distribution(s). sigma must contain only positive values.
Note that sigma is not the standard deviation of this distribution.

		validate_args: Boolean, default False. Whether to assert that
df > 0 and sigma > 0. If validate_args is False and inputs are
invalid, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to give Ops created by the initializer.

Raises:

		TypeError: if mu and sigma are different dtypes.

tf.contrib.distributions.StudentT.allow_nan_stats {#StudentT.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.StudentT.batch_shape(name='batch_shape') {#StudentT.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.StudentT.cdf(value, name='cdf') {#StudentT.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.StudentT.df {#StudentT.df}

Degrees of freedom in these Student’s t distribution(s).

tf.contrib.distributions.StudentT.dtype {#StudentT.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.StudentT.entropy(name='entropy') {#StudentT.entropy}

Shanon entropy in nats.

tf.contrib.distributions.StudentT.event_shape(name='event_shape') {#StudentT.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.StudentT.get_batch_shape() {#StudentT.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.StudentT.get_event_shape() {#StudentT.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.StudentT.is_continuous {#StudentT.is_continuous}

tf.contrib.distributions.StudentT.is_reparameterized {#StudentT.is_reparameterized}

tf.contrib.distributions.StudentT.log_cdf(value, name='log_cdf') {#StudentT.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.StudentT.log_pdf(value, name='log_pdf') {#StudentT.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.StudentT.log_pmf(value, name='log_pmf') {#StudentT.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.StudentT.log_prob(value, name='log_prob') {#StudentT.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.StudentT.log_survival_function(value, name='log_survival_function') {#StudentT.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.StudentT.mean(name='mean') {#StudentT.mean}

Mean.

tf.contrib.distributions.StudentT.mode(name='mode') {#StudentT.mode}

Mode.

tf.contrib.distributions.StudentT.mu {#StudentT.mu}

Locations of these Student’s t distribution(s).

tf.contrib.distributions.StudentT.name {#StudentT.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.StudentT.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#StudentT.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.StudentT.param_static_shapes(cls, sample_shape) {#StudentT.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.StudentT.parameters {#StudentT.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.StudentT.pdf(value, name='pdf') {#StudentT.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.StudentT.pmf(value, name='pmf') {#StudentT.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.StudentT.prob(value, name='prob') {#StudentT.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.StudentT.sample(sample_shape=(), seed=None, name='sample') {#StudentT.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.StudentT.sample_n(n, seed=None, name='sample_n') {#StudentT.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.StudentT.sigma {#StudentT.sigma}

Scaling factors of these Student’s t distribution(s).

tf.contrib.distributions.StudentT.std(name='std') {#StudentT.std}

Standard deviation.

tf.contrib.distributions.StudentT.survival_function(value, name='survival_function') {#StudentT.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.StudentT.validate_args {#StudentT.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.StudentT.variance(name='variance') {#StudentT.variance}

Variance.

class tf.contrib.distributions.Uniform {#Uniform}

Uniform distribution with a and b parameters.

The PDF of this distribution is constant between [a, b], and 0 elsewhere.

tf.contrib.distributions.Uniform.__init__(a=0.0, b=1.0, validate_args=False, allow_nan_stats=True, name='Uniform') {#Uniform.init}

Construct Uniform distributions with a and b.

The parameters a and b must be shaped in a way that supports
broadcasting (e.g. b - a is a valid operation).

Here are examples without broadcasting:

Without broadcasting
u1 = Uniform(3.0, 4.0) # a single uniform distribution [3, 4]
u2 = Uniform([1.0, 2.0], [3.0, 4.0]) # 2 distributions [1, 3], [2, 4]
u3 = Uniform([[1.0, 2.0],
 [3.0, 4.0]],
 [[1.5, 2.5],
 [3.5, 4.5]]) # 4 distributions

And with broadcasting:

u1 = Uniform(3.0, [5.0, 6.0, 7.0]) # 3 distributions

Args:

		a: Floating point tensor, the minimum endpoint.

		b: Floating point tensor, the maximum endpoint. Must be > a.

		validate_args: Boolean, default False. Whether to validate input with
asserts. If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to prefix Ops created by this distribution class.

Raises:

		InvalidArgumentError: if a >= b and validate_args=False.

tf.contrib.distributions.Uniform.a {#Uniform.a}

tf.contrib.distributions.Uniform.allow_nan_stats {#Uniform.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Uniform.b {#Uniform.b}

tf.contrib.distributions.Uniform.batch_shape(name='batch_shape') {#Uniform.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Uniform.cdf(value, name='cdf') {#Uniform.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Uniform.dtype {#Uniform.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Uniform.entropy(name='entropy') {#Uniform.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Uniform.event_shape(name='event_shape') {#Uniform.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Uniform.get_batch_shape() {#Uniform.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Uniform.get_event_shape() {#Uniform.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Uniform.is_continuous {#Uniform.is_continuous}

tf.contrib.distributions.Uniform.is_reparameterized {#Uniform.is_reparameterized}

tf.contrib.distributions.Uniform.log_cdf(value, name='log_cdf') {#Uniform.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Uniform.log_pdf(value, name='log_pdf') {#Uniform.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Uniform.log_pmf(value, name='log_pmf') {#Uniform.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Uniform.log_prob(value, name='log_prob') {#Uniform.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Uniform.log_survival_function(value, name='log_survival_function') {#Uniform.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Uniform.mean(name='mean') {#Uniform.mean}

Mean.

tf.contrib.distributions.Uniform.mode(name='mode') {#Uniform.mode}

Mode.

tf.contrib.distributions.Uniform.name {#Uniform.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Uniform.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Uniform.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Uniform.param_static_shapes(cls, sample_shape) {#Uniform.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Uniform.parameters {#Uniform.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Uniform.pdf(value, name='pdf') {#Uniform.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Uniform.pmf(value, name='pmf') {#Uniform.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Uniform.prob(value, name='prob') {#Uniform.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Uniform.range(name='range') {#Uniform.range}

b - a.

tf.contrib.distributions.Uniform.sample(sample_shape=(), seed=None, name='sample') {#Uniform.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Uniform.sample_n(n, seed=None, name='sample_n') {#Uniform.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Uniform.std(name='std') {#Uniform.std}

Standard deviation.

tf.contrib.distributions.Uniform.survival_function(value, name='survival_function') {#Uniform.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Uniform.validate_args {#Uniform.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Uniform.variance(name='variance') {#Uniform.variance}

Variance.

Multivariate distributions

Multivariate normal

class tf.contrib.distributions.MultivariateNormalDiag {#MultivariateNormalDiag}

The multivariate normal distribution on R^k.

This distribution is defined by a 1-D mean mu and a 1-D diagonal
diag_stdev, representing the standard deviations. This distribution
assumes the random variables, (X_1,...,X_k) are independent, thus no
non-diagonal terms of the covariance matrix are needed.

This allows for O(k) pdf evaluation, sampling, and storage.

Mathematical details

The PDF of this distribution is defined in terms of the diagonal covariance
determined by diag_stdev: C_{ii} = diag_stdev[i]**2.

f(x) = (2 pi)^(-k/2) |det(C)|^(-1/2) exp(-1/2 (x - mu)^T C^{-1} (x - mu))

Examples

A single multi-variate Gaussian distribution is defined by a vector of means
of length k, and the square roots of the (independent) random variables.

Extra leading dimensions, if provided, allow for batches.

Initialize a single 3-variate Gaussian with diagonal standard deviation.
mu = [1, 2, 3.]
diag_stdev = [4, 5, 6.]
dist = tf.contrib.distributions.MultivariateNormalDiag(mu, diag_stdev)

Evaluate this on an observation in R^3, returning a scalar.
dist.pdf([-1, 0, 1])

Initialize a batch of two 3-variate Gaussians.
mu = [[1, 2, 3], [11, 22, 33]] # shape 2 x 3
diag_stdev = ... # shape 2 x 3, positive.
dist = tf.contrib.distributions.MultivariateNormalDiag(mu, diag_stdev)

Evaluate this on a two observations, each in R^3, returning a length two
tensor.
x = [[-1, 0, 1], [-11, 0, 11]] # Shape 2 x 3.
dist.pdf(x)

tf.contrib.distributions.MultivariateNormalDiag.__init__(mu, diag_stdev, validate_args=False, allow_nan_stats=True, name='MultivariateNormalDiag') {#MultivariateNormalDiag.init}

Multivariate Normal distributions on R^k.

User must provide means mu and standard deviations diag_stdev.
Each batch member represents a random vector (X_1,...,X_k) of independent
random normals.
The mean of X_i is mu[i], and the standard deviation is diag_stdev[i].

Args:

		mu: Rank N + 1 floating point tensor with shape [N1,...,Nb, k],
b >= 0.

		diag_stdev: Rank N + 1 Tensor with same dtype and shape as mu,
representing the standard deviations. Must be positive.

		validate_args: Boolean, default False. Whether to validate
input with asserts. If validate_args is False,
and the inputs are invalid, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to give Ops created by the initializer.

Raises:

		TypeError: If mu and diag_stdev are different dtypes.

tf.contrib.distributions.MultivariateNormalDiag.allow_nan_stats {#MultivariateNormalDiag.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.MultivariateNormalDiag.batch_shape(name='batch_shape') {#MultivariateNormalDiag.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.MultivariateNormalDiag.cdf(value, name='cdf') {#MultivariateNormalDiag.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiag.dtype {#MultivariateNormalDiag.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.MultivariateNormalDiag.entropy(name='entropy') {#MultivariateNormalDiag.entropy}

Shanon entropy in nats.

tf.contrib.distributions.MultivariateNormalDiag.event_shape(name='event_shape') {#MultivariateNormalDiag.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.MultivariateNormalDiag.get_batch_shape() {#MultivariateNormalDiag.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.MultivariateNormalDiag.get_event_shape() {#MultivariateNormalDiag.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.MultivariateNormalDiag.is_continuous {#MultivariateNormalDiag.is_continuous}

tf.contrib.distributions.MultivariateNormalDiag.is_reparameterized {#MultivariateNormalDiag.is_reparameterized}

tf.contrib.distributions.MultivariateNormalDiag.log_cdf(value, name='log_cdf') {#MultivariateNormalDiag.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiag.log_pdf(value, name='log_pdf') {#MultivariateNormalDiag.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.MultivariateNormalDiag.log_pmf(value, name='log_pmf') {#MultivariateNormalDiag.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalDiag.log_prob(value, name='log_prob') {#MultivariateNormalDiag.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiag.log_sigma_det(name='log_sigma_det') {#MultivariateNormalDiag.log_sigma_det}

Log of determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalDiag.log_survival_function(value, name='log_survival_function') {#MultivariateNormalDiag.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.MultivariateNormalDiag.mean(name='mean') {#MultivariateNormalDiag.mean}

Mean.

tf.contrib.distributions.MultivariateNormalDiag.mode(name='mode') {#MultivariateNormalDiag.mode}

Mode.

tf.contrib.distributions.MultivariateNormalDiag.mu {#MultivariateNormalDiag.mu}

tf.contrib.distributions.MultivariateNormalDiag.name {#MultivariateNormalDiag.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.MultivariateNormalDiag.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#MultivariateNormalDiag.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.MultivariateNormalDiag.param_static_shapes(cls, sample_shape) {#MultivariateNormalDiag.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.MultivariateNormalDiag.parameters {#MultivariateNormalDiag.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.MultivariateNormalDiag.pdf(value, name='pdf') {#MultivariateNormalDiag.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.MultivariateNormalDiag.pmf(value, name='pmf') {#MultivariateNormalDiag.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalDiag.prob(value, name='prob') {#MultivariateNormalDiag.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiag.sample(sample_shape=(), seed=None, name='sample') {#MultivariateNormalDiag.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.MultivariateNormalDiag.sample_n(n, seed=None, name='sample_n') {#MultivariateNormalDiag.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.MultivariateNormalDiag.sigma {#MultivariateNormalDiag.sigma}

Dense (batch) covariance matrix, if available.

tf.contrib.distributions.MultivariateNormalDiag.sigma_det(name='sigma_det') {#MultivariateNormalDiag.sigma_det}

Determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalDiag.std(name='std') {#MultivariateNormalDiag.std}

Standard deviation.

tf.contrib.distributions.MultivariateNormalDiag.survival_function(value, name='survival_function') {#MultivariateNormalDiag.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.MultivariateNormalDiag.validate_args {#MultivariateNormalDiag.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.MultivariateNormalDiag.variance(name='variance') {#MultivariateNormalDiag.variance}

Variance.

class tf.contrib.distributions.MultivariateNormalFull {#MultivariateNormalFull}

The multivariate normal distribution on R^k.

This distribution is defined by a 1-D mean mu and covariance matrix sigma.
Evaluation of the pdf, determinant, and sampling are all O(k^3) operations.

Mathematical details

With C = sigma, the PDF of this distribution is:

f(x) = (2 pi)^(-k/2) |det(C)|^(-1/2) exp(-1/2 (x - mu)^T C^{-1} (x - mu))

Examples

A single multi-variate Gaussian distribution is defined by a vector of means
of length k, and a covariance matrix of shape k x k.

Extra leading dimensions, if provided, allow for batches.

Initialize a single 3-variate Gaussian with diagonal covariance.
mu = [1, 2, 3.]
sigma = [[1, 0, 0], [0, 3, 0], [0, 0, 2.]]
dist = tf.contrib.distributions.MultivariateNormalFull(mu, chol)

Evaluate this on an observation in R^3, returning a scalar.
dist.pdf([-1, 0, 1])

Initialize a batch of two 3-variate Gaussians.
mu = [[1, 2, 3], [11, 22, 33.]]
sigma = ... # shape 2 x 3 x 3, positive definite.
dist = tf.contrib.distributions.MultivariateNormalFull(mu, sigma)

Evaluate this on a two observations, each in R^3, returning a length two
tensor.
x = [[-1, 0, 1], [-11, 0, 11.]] # Shape 2 x 3.
dist.pdf(x)

tf.contrib.distributions.MultivariateNormalFull.__init__(mu, sigma, validate_args=False, allow_nan_stats=True, name='MultivariateNormalFull') {#MultivariateNormalFull.init}

Multivariate Normal distributions on R^k.

User must provide means mu and sigma, the mean and covariance.

Args:

		mu: (N+1)-D floating point tensor with shape [N1,...,Nb, k],
b >= 0.

		sigma: (N+2)-D Tensor with same dtype as mu and shape
[N1,...,Nb, k, k]. Each batch member must be positive definite.

		validate_args: Boolean, default False. Whether to validate input
with asserts. If validate_args is False, and the inputs are
invalid, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to give Ops created by the initializer.

Raises:

		TypeError: If mu and sigma are different dtypes.

tf.contrib.distributions.MultivariateNormalFull.allow_nan_stats {#MultivariateNormalFull.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.MultivariateNormalFull.batch_shape(name='batch_shape') {#MultivariateNormalFull.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.MultivariateNormalFull.cdf(value, name='cdf') {#MultivariateNormalFull.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalFull.dtype {#MultivariateNormalFull.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.MultivariateNormalFull.entropy(name='entropy') {#MultivariateNormalFull.entropy}

Shanon entropy in nats.

tf.contrib.distributions.MultivariateNormalFull.event_shape(name='event_shape') {#MultivariateNormalFull.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.MultivariateNormalFull.get_batch_shape() {#MultivariateNormalFull.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.MultivariateNormalFull.get_event_shape() {#MultivariateNormalFull.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.MultivariateNormalFull.is_continuous {#MultivariateNormalFull.is_continuous}

tf.contrib.distributions.MultivariateNormalFull.is_reparameterized {#MultivariateNormalFull.is_reparameterized}

tf.contrib.distributions.MultivariateNormalFull.log_cdf(value, name='log_cdf') {#MultivariateNormalFull.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalFull.log_pdf(value, name='log_pdf') {#MultivariateNormalFull.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.MultivariateNormalFull.log_pmf(value, name='log_pmf') {#MultivariateNormalFull.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalFull.log_prob(value, name='log_prob') {#MultivariateNormalFull.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalFull.log_sigma_det(name='log_sigma_det') {#MultivariateNormalFull.log_sigma_det}

Log of determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalFull.log_survival_function(value, name='log_survival_function') {#MultivariateNormalFull.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.MultivariateNormalFull.mean(name='mean') {#MultivariateNormalFull.mean}

Mean.

tf.contrib.distributions.MultivariateNormalFull.mode(name='mode') {#MultivariateNormalFull.mode}

Mode.

tf.contrib.distributions.MultivariateNormalFull.mu {#MultivariateNormalFull.mu}

tf.contrib.distributions.MultivariateNormalFull.name {#MultivariateNormalFull.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.MultivariateNormalFull.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#MultivariateNormalFull.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.MultivariateNormalFull.param_static_shapes(cls, sample_shape) {#MultivariateNormalFull.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.MultivariateNormalFull.parameters {#MultivariateNormalFull.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.MultivariateNormalFull.pdf(value, name='pdf') {#MultivariateNormalFull.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.MultivariateNormalFull.pmf(value, name='pmf') {#MultivariateNormalFull.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalFull.prob(value, name='prob') {#MultivariateNormalFull.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalFull.sample(sample_shape=(), seed=None, name='sample') {#MultivariateNormalFull.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.MultivariateNormalFull.sample_n(n, seed=None, name='sample_n') {#MultivariateNormalFull.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.MultivariateNormalFull.sigma {#MultivariateNormalFull.sigma}

Dense (batch) covariance matrix, if available.

tf.contrib.distributions.MultivariateNormalFull.sigma_det(name='sigma_det') {#MultivariateNormalFull.sigma_det}

Determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalFull.std(name='std') {#MultivariateNormalFull.std}

Standard deviation.

tf.contrib.distributions.MultivariateNormalFull.survival_function(value, name='survival_function') {#MultivariateNormalFull.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.MultivariateNormalFull.validate_args {#MultivariateNormalFull.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.MultivariateNormalFull.variance(name='variance') {#MultivariateNormalFull.variance}

Variance.

class tf.contrib.distributions.MultivariateNormalCholesky {#MultivariateNormalCholesky}

The multivariate normal distribution on R^k.

This distribution is defined by a 1-D mean mu and a Cholesky factor chol.
Providing the Cholesky factor allows for O(k^2) pdf evaluation and sampling,
and requires O(k^2) storage.

Mathematical details

The Cholesky factor chol defines the covariance matrix: C = chol chol^T.

The PDF of this distribution is then:

f(x) = (2 pi)^(-k/2) |det(C)|^(-1/2) exp(-1/2 (x - mu)^T C^{-1} (x - mu))

Examples

A single multi-variate Gaussian distribution is defined by a vector of means
of length k, and a covariance matrix of shape k x k.

Extra leading dimensions, if provided, allow for batches.

Initialize a single 3-variate Gaussian with diagonal covariance.
Note, this would be more efficient with MultivariateNormalDiag.
mu = [1, 2, 3.]
chol = [[1, 0, 0], [0, 3, 0], [0, 0, 2]]
dist = tf.contrib.distributions.MultivariateNormalCholesky(mu, chol)

Evaluate this on an observation in R^3, returning a scalar.
dist.pdf([-1, 0, 1])

Initialize a batch of two 3-variate Gaussians.
mu = [[1, 2, 3], [11, 22, 33]]
chol = ... # shape 2 x 3 x 3, lower triangular, positive diagonal.
dist = tf.contrib.distributions.MultivariateNormalCholesky(mu, chol)

Evaluate this on a two observations, each in R^3, returning a length two
tensor.
x = [[-1, 0, 1], [-11, 0, 11]] # Shape 2 x 3.
dist.pdf(x)

Trainable (batch) Choesky matrices can be created with
tf.contrib.distributions.matrix_diag_transform()

tf.contrib.distributions.MultivariateNormalCholesky.__init__(mu, chol, validate_args=False, allow_nan_stats=True, name='MultivariateNormalCholesky') {#MultivariateNormalCholesky.init}

Multivariate Normal distributions on R^k.

User must provide means mu and chol which holds the (batch) Cholesky
factors, such that the covariance of each batch member is chol chol^T.

Args:

		mu: (N+1)-D floating point tensor with shape [N1,...,Nb, k],
b >= 0.

		chol: (N+2)-D Tensor with same dtype as mu and shape
[N1,...,Nb, k, k]. The upper triangular part is ignored (treated as
though it is zero), and the diagonal must be positive.

		validate_args: Boolean, default False. Whether to validate input
with asserts. If validate_args is False, and the inputs are
invalid, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to give Ops created by the initializer.

Raises:

		TypeError: If mu and chol are different dtypes.

tf.contrib.distributions.MultivariateNormalCholesky.allow_nan_stats {#MultivariateNormalCholesky.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.MultivariateNormalCholesky.batch_shape(name='batch_shape') {#MultivariateNormalCholesky.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.MultivariateNormalCholesky.cdf(value, name='cdf') {#MultivariateNormalCholesky.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalCholesky.dtype {#MultivariateNormalCholesky.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.MultivariateNormalCholesky.entropy(name='entropy') {#MultivariateNormalCholesky.entropy}

Shanon entropy in nats.

tf.contrib.distributions.MultivariateNormalCholesky.event_shape(name='event_shape') {#MultivariateNormalCholesky.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.MultivariateNormalCholesky.get_batch_shape() {#MultivariateNormalCholesky.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.MultivariateNormalCholesky.get_event_shape() {#MultivariateNormalCholesky.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.MultivariateNormalCholesky.is_continuous {#MultivariateNormalCholesky.is_continuous}

tf.contrib.distributions.MultivariateNormalCholesky.is_reparameterized {#MultivariateNormalCholesky.is_reparameterized}

tf.contrib.distributions.MultivariateNormalCholesky.log_cdf(value, name='log_cdf') {#MultivariateNormalCholesky.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalCholesky.log_pdf(value, name='log_pdf') {#MultivariateNormalCholesky.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.MultivariateNormalCholesky.log_pmf(value, name='log_pmf') {#MultivariateNormalCholesky.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalCholesky.log_prob(value, name='log_prob') {#MultivariateNormalCholesky.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalCholesky.log_sigma_det(name='log_sigma_det') {#MultivariateNormalCholesky.log_sigma_det}

Log of determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalCholesky.log_survival_function(value, name='log_survival_function') {#MultivariateNormalCholesky.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.MultivariateNormalCholesky.mean(name='mean') {#MultivariateNormalCholesky.mean}

Mean.

tf.contrib.distributions.MultivariateNormalCholesky.mode(name='mode') {#MultivariateNormalCholesky.mode}

Mode.

tf.contrib.distributions.MultivariateNormalCholesky.mu {#MultivariateNormalCholesky.mu}

tf.contrib.distributions.MultivariateNormalCholesky.name {#MultivariateNormalCholesky.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.MultivariateNormalCholesky.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#MultivariateNormalCholesky.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.MultivariateNormalCholesky.param_static_shapes(cls, sample_shape) {#MultivariateNormalCholesky.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.MultivariateNormalCholesky.parameters {#MultivariateNormalCholesky.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.MultivariateNormalCholesky.pdf(value, name='pdf') {#MultivariateNormalCholesky.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.MultivariateNormalCholesky.pmf(value, name='pmf') {#MultivariateNormalCholesky.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalCholesky.prob(value, name='prob') {#MultivariateNormalCholesky.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalCholesky.sample(sample_shape=(), seed=None, name='sample') {#MultivariateNormalCholesky.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.MultivariateNormalCholesky.sample_n(n, seed=None, name='sample_n') {#MultivariateNormalCholesky.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.MultivariateNormalCholesky.sigma {#MultivariateNormalCholesky.sigma}

Dense (batch) covariance matrix, if available.

tf.contrib.distributions.MultivariateNormalCholesky.sigma_det(name='sigma_det') {#MultivariateNormalCholesky.sigma_det}

Determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalCholesky.std(name='std') {#MultivariateNormalCholesky.std}

Standard deviation.

tf.contrib.distributions.MultivariateNormalCholesky.survival_function(value, name='survival_function') {#MultivariateNormalCholesky.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.MultivariateNormalCholesky.validate_args {#MultivariateNormalCholesky.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.MultivariateNormalCholesky.variance(name='variance') {#MultivariateNormalCholesky.variance}

Variance.

tf.contrib.distributions.matrix_diag_transform(matrix, transform=None, name=None) {#matrix_diag_transform}

Transform diagonal of [batch-]matrix, leave rest of matrix unchanged.

Create a trainable covariance defined by a Cholesky factor:

Transform network layer into 2 x 2 array.
matrix_values = tf.contrib.layers.fully_connected(activations, 4)
matrix = tf.reshape(matrix_values, (batch_size, 2, 2))

Make the diagonal positive. If the upper triangle was zero, this would be a
valid Cholesky factor.
chol = matrix_diag_transform(matrix, transform=tf.nn.softplus)

OperatorPDCholesky ignores the upper triangle.
operator = OperatorPDCholesky(chol)

Example of heteroskedastic 2-D linear regression.

Get a trainable Cholesky factor.
matrix_values = tf.contrib.layers.fully_connected(activations, 4)
matrix = tf.reshape(matrix_values, (batch_size, 2, 2))
chol = matrix_diag_transform(matrix, transform=tf.nn.softplus)

Get a trainable mean.
mu = tf.contrib.layers.fully_connected(activations, 2)

This is a fully trainable multivariate normal!
dist = tf.contrib.distributions.MVNCholesky(mu, chol)

Standard log loss. Minimizing this will "train" mu and chol, and then dist
will be a distribution predicting labels as multivariate Gaussians.
loss = -1 * tf.reduce_mean(dist.log_pdf(labels))

Args:

		matrix: Rank R Tensor, R >= 2, where the last two dimensions are
equal.

		transform: Element-wise function mapping Tensors to Tensors. To
be applied to the diagonal of matrix. If None, matrix is returned
unchanged. Defaults to None.

		name: A name to give created ops.
Defaults to “matrix_diag_transform”.

Returns:

A Tensor with same shape and dtype as matrix.

Other multivariate distributions

class tf.contrib.distributions.Dirichlet {#Dirichlet}

Dirichlet distribution.

This distribution is parameterized by a vector alpha of concentration
parameters for k classes.

Mathematical details

The Dirichlet is a distribution over the standard n-simplex, where the
standard n-simplex is defined by:
{ (x_1, ..., x_n) in R^(n+1) | sum_j x_j = 1 and x_j >= 0 for all j }.
The distribution has hyperparameters alpha = (alpha_1,...,alpha_k),
and probability mass function (prob):

prob(x) = 1 / Beta(alpha) * prod_j x_j^(alpha_j - 1)

where Beta(x) = prod_j Gamma(x_j) / Gamma(sum_j x_j) is the multivariate
beta function.

This class provides methods to create indexed batches of Dirichlet
distributions. If the provided alpha is rank 2 or higher, for
every fixed set of leading dimensions, the last dimension represents one
single Dirichlet distribution. When calling distribution
functions (e.g. dist.prob(x)), alpha and x are broadcast to the
same shape (if possible). In all cases, the last dimension of alpha/x
represents single Dirichlet distributions.

Examples

alpha = [1, 2, 3]
dist = Dirichlet(alpha)

Creates a 3-class distribution, with the 3rd class is most likely to be drawn.
The distribution functions can be evaluated on x.

x same shape as alpha.
x = [.2, .3, .5]
dist.prob(x) # Shape []

alpha will be broadcast to [[1, 2, 3], [1, 2, 3]] to match x.
x = [[.1, .4, .5], [.2, .3, .5]]
dist.prob(x) # Shape [2]

alpha will be broadcast to shape [5, 7, 3] to match x.
x = [[...]] # Shape [5, 7, 3]
dist.prob(x) # Shape [5, 7]

Creates a 2-batch of 3-class distributions.

alpha = [[1, 2, 3], [4, 5, 6]] # Shape [2, 3]
dist = Dirichlet(alpha)

x will be broadcast to [[2, 1, 0], [2, 1, 0]] to match alpha.
x = [.2, .3, .5]
dist.prob(x) # Shape [2]

tf.contrib.distributions.Dirichlet.__init__(alpha, validate_args=False, allow_nan_stats=True, name='Dirichlet') {#Dirichlet.init}

Initialize a batch of Dirichlet distributions.

Args:

		alpha: Positive floating point tensor with shape broadcastable to
[N1,..., Nm, k] m >= 0. Defines this as a batch of N1 x ... x Nm
different k class Dirichlet distributions.

		validate_args: Boolean, default False. Whether to assert valid values
for parameters alpha and x in prob and log_prob. If False,
correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to prefix Ops created by this distribution class.

		Examples:

Define 1-batch of 2-class Dirichlet distributions,
also known as a Beta distribution.
dist = Dirichlet([1.1, 2.0])

Define a 2-batch of 3-class distributions.
dist = Dirichlet([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])

tf.contrib.distributions.Dirichlet.allow_nan_stats {#Dirichlet.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Dirichlet.alpha {#Dirichlet.alpha}

Shape parameter.

tf.contrib.distributions.Dirichlet.alpha_sum {#Dirichlet.alpha_sum}

Sum of shape parameter.

tf.contrib.distributions.Dirichlet.batch_shape(name='batch_shape') {#Dirichlet.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Dirichlet.cdf(value, name='cdf') {#Dirichlet.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Dirichlet.dtype {#Dirichlet.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Dirichlet.entropy(name='entropy') {#Dirichlet.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Dirichlet.event_shape(name='event_shape') {#Dirichlet.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Dirichlet.get_batch_shape() {#Dirichlet.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Dirichlet.get_event_shape() {#Dirichlet.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Dirichlet.is_continuous {#Dirichlet.is_continuous}

tf.contrib.distributions.Dirichlet.is_reparameterized {#Dirichlet.is_reparameterized}

tf.contrib.distributions.Dirichlet.log_cdf(value, name='log_cdf') {#Dirichlet.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Dirichlet.log_pdf(value, name='log_pdf') {#Dirichlet.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Dirichlet.log_pmf(value, name='log_pmf') {#Dirichlet.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Dirichlet.log_prob(value, name='log_prob') {#Dirichlet.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Dirichlet.log_survival_function(value, name='log_survival_function') {#Dirichlet.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Dirichlet.mean(name='mean') {#Dirichlet.mean}

Mean.

tf.contrib.distributions.Dirichlet.mode(name='mode') {#Dirichlet.mode}

Mode.

tf.contrib.distributions.Dirichlet.name {#Dirichlet.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Dirichlet.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Dirichlet.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Dirichlet.param_static_shapes(cls, sample_shape) {#Dirichlet.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Dirichlet.parameters {#Dirichlet.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Dirichlet.pdf(value, name='pdf') {#Dirichlet.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Dirichlet.pmf(value, name='pmf') {#Dirichlet.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Dirichlet.prob(value, name='prob') {#Dirichlet.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Dirichlet.sample(sample_shape=(), seed=None, name='sample') {#Dirichlet.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Dirichlet.sample_n(n, seed=None, name='sample_n') {#Dirichlet.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Dirichlet.std(name='std') {#Dirichlet.std}

Standard deviation.

tf.contrib.distributions.Dirichlet.survival_function(value, name='survival_function') {#Dirichlet.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Dirichlet.validate_args {#Dirichlet.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Dirichlet.variance(name='variance') {#Dirichlet.variance}

Variance.

class tf.contrib.distributions.DirichletMultinomial {#DirichletMultinomial}

DirichletMultinomial mixture distribution.

This distribution is parameterized by a vector alpha of concentration
parameters for k classes and n, the counts per each class..

Mathematical details

The Dirichlet Multinomial is a distribution over k-class count data, meaning
for each k-tuple of non-negative integer counts = [c_1,...,c_k], we have a
probability of these draws being made from the distribution. The distribution
has hyperparameters alpha = (alpha_1,...,alpha_k), and probability mass
function (pmf):

pmf(counts) = N! / (n_1!...n_k!) * Beta(alpha + c) / Beta(alpha)

where above N = sum_j n_j, N! is N factorial, and
Beta(x) = prod_j Gamma(x_j) / Gamma(sum_j x_j) is the multivariate beta
function.

This is a mixture distribution in that M samples can be produced by:

		Choose class probabilities p = (p_1,...,p_k) ~ Dir(alpha)

		Draw integers m = (n_1,...,n_k) ~ Multinomial(N, p)

This class provides methods to create indexed batches of Dirichlet
Multinomial distributions. If the provided alpha is rank 2 or higher, for
every fixed set of leading dimensions, the last dimension represents one
single Dirichlet Multinomial distribution. When calling distribution
functions (e.g. dist.pmf(counts)), alpha and counts are broadcast to the
same shape (if possible). In all cases, the last dimension of alpha/counts
represents single Dirichlet Multinomial distributions.

Examples

alpha = [1, 2, 3]
n = 2
dist = DirichletMultinomial(n, alpha)

Creates a 3-class distribution, with the 3rd class is most likely to be drawn.
The distribution functions can be evaluated on counts.

counts same shape as alpha.
counts = [0, 0, 2]
dist.pmf(counts) # Shape []

alpha will be broadcast to [[1, 2, 3], [1, 2, 3]] to match counts.
counts = [[1, 1, 0], [1, 0, 1]]
dist.pmf(counts) # Shape [2]

alpha will be broadcast to shape [5, 7, 3] to match counts.
counts = [[...]] # Shape [5, 7, 3]
dist.pmf(counts) # Shape [5, 7]

Creates a 2-batch of 3-class distributions.

alpha = [[1, 2, 3], [4, 5, 6]] # Shape [2, 3]
n = [3, 3]
dist = DirichletMultinomial(n, alpha)

counts will be broadcast to [[2, 1, 0], [2, 1, 0]] to match alpha.
counts = [2, 1, 0]
dist.pmf(counts) # Shape [2]

tf.contrib.distributions.DirichletMultinomial.__init__(n, alpha, validate_args=False, allow_nan_stats=True, name='DirichletMultinomial') {#DirichletMultinomial.init}

Initialize a batch of DirichletMultinomial distributions.

Args:

		n: Non-negative floating point tensor, whose dtype is the same as
alpha. The shape is broadcastable to [N1,..., Nm] with m >= 0.
Defines this as a batch of N1 x ... x Nm different Dirichlet
multinomial distributions. Its components should be equal to integer
values.

		alpha: Positive floating point tensor, whose dtype is the same as
n with shape broadcastable to [N1,..., Nm, k] m >= 0. Defines
this as a batch of N1 x ... x Nm different k class Dirichlet
multinomial distributions.

		validate_args: Boolean, default False. Whether to assert valid
values for parameters alpha and n, and x in prob and
log_prob. If False, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to prefix Ops created by this distribution class.

		Examples:

Define 1-batch of 2-class Dirichlet multinomial distribution,
also known as a beta-binomial.
dist = DirichletMultinomial(2.0, [1.1, 2.0])

Define a 2-batch of 3-class distributions.
dist = DirichletMultinomial([3., 4], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])

tf.contrib.distributions.DirichletMultinomial.allow_nan_stats {#DirichletMultinomial.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.DirichletMultinomial.alpha {#DirichletMultinomial.alpha}

Parameter defining this distribution.

tf.contrib.distributions.DirichletMultinomial.alpha_sum {#DirichletMultinomial.alpha_sum}

Summation of alpha parameter.

tf.contrib.distributions.DirichletMultinomial.batch_shape(name='batch_shape') {#DirichletMultinomial.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.DirichletMultinomial.cdf(value, name='cdf') {#DirichletMultinomial.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.DirichletMultinomial.dtype {#DirichletMultinomial.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.DirichletMultinomial.entropy(name='entropy') {#DirichletMultinomial.entropy}

Shanon entropy in nats.

tf.contrib.distributions.DirichletMultinomial.event_shape(name='event_shape') {#DirichletMultinomial.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.DirichletMultinomial.get_batch_shape() {#DirichletMultinomial.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.DirichletMultinomial.get_event_shape() {#DirichletMultinomial.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.DirichletMultinomial.is_continuous {#DirichletMultinomial.is_continuous}

tf.contrib.distributions.DirichletMultinomial.is_reparameterized {#DirichletMultinomial.is_reparameterized}

tf.contrib.distributions.DirichletMultinomial.log_cdf(value, name='log_cdf') {#DirichletMultinomial.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.DirichletMultinomial.log_pdf(value, name='log_pdf') {#DirichletMultinomial.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.DirichletMultinomial.log_pmf(value, name='log_pmf') {#DirichletMultinomial.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.DirichletMultinomial.log_prob(value, name='log_prob') {#DirichletMultinomial.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.DirichletMultinomial.log_survival_function(value, name='log_survival_function') {#DirichletMultinomial.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.DirichletMultinomial.mean(name='mean') {#DirichletMultinomial.mean}

Mean.

tf.contrib.distributions.DirichletMultinomial.mode(name='mode') {#DirichletMultinomial.mode}

Mode.

tf.contrib.distributions.DirichletMultinomial.n {#DirichletMultinomial.n}

Parameter defining this distribution.

tf.contrib.distributions.DirichletMultinomial.name {#DirichletMultinomial.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.DirichletMultinomial.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#DirichletMultinomial.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.DirichletMultinomial.param_static_shapes(cls, sample_shape) {#DirichletMultinomial.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.DirichletMultinomial.parameters {#DirichletMultinomial.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.DirichletMultinomial.pdf(value, name='pdf') {#DirichletMultinomial.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.DirichletMultinomial.pmf(value, name='pmf') {#DirichletMultinomial.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.DirichletMultinomial.prob(value, name='prob') {#DirichletMultinomial.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.DirichletMultinomial.sample(sample_shape=(), seed=None, name='sample') {#DirichletMultinomial.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.DirichletMultinomial.sample_n(n, seed=None, name='sample_n') {#DirichletMultinomial.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.DirichletMultinomial.std(name='std') {#DirichletMultinomial.std}

Standard deviation.

tf.contrib.distributions.DirichletMultinomial.survival_function(value, name='survival_function') {#DirichletMultinomial.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.DirichletMultinomial.validate_args {#DirichletMultinomial.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.DirichletMultinomial.variance(name='variance') {#DirichletMultinomial.variance}

Variance.

class tf.contrib.distributions.Multinomial {#Multinomial}

Multinomial distribution.

This distribution is parameterized by a vector p of probability
parameters for k classes and n, the counts per each class..

Mathematical details

The Multinomial is a distribution over k-class count data, meaning
for each k-tuple of non-negative integer counts = [n_1,...,n_k], we have a
probability of these draws being made from the distribution. The distribution
has hyperparameters p = (p_1,...,p_k), and probability mass
function (pmf):

pmf(counts) = n! / (n_1!...n_k!) * (p_1)^n_1*(p_2)^n_2*...(p_k)^n_k

where above n = sum_j n_j, n! is n factorial.

Examples

Create a 3-class distribution, with the 3rd class is most likely to be drawn,
using logits..

logits = [-50., -43, 0]
dist = Multinomial(n=4., logits=logits)

Create a 3-class distribution, with the 3rd class is most likely to be drawn.

p = [.2, .3, .5]
dist = Multinomial(n=4., p=p)

The distribution functions can be evaluated on counts.

counts same shape as p.
counts = [1., 0, 3]
dist.prob(counts) # Shape []

p will be broadcast to [[.2, .3, .5], [.2, .3, .5]] to match counts.
counts = [[1., 2, 1], [2, 2, 0]]
dist.prob(counts) # Shape [2]

p will be broadcast to shape [5, 7, 3] to match counts.
counts = [[...]] # Shape [5, 7, 3]
dist.prob(counts) # Shape [5, 7]

Create a 2-batch of 3-class distributions.

p = [[.1, .2, .7], [.3, .3, .4]] # Shape [2, 3]
dist = Multinomial(n=[4., 5], p=p)

counts = [[2., 1, 1], [3, 1, 1]]
dist.prob(counts) # Shape [2]

tf.contrib.distributions.Multinomial.__init__(n, logits=None, p=None, validate_args=False, allow_nan_stats=True, name='Multinomial') {#Multinomial.init}

Initialize a batch of Multinomial distributions.

Args:

		n: Non-negative floating point tensor with shape broadcastable to
[N1,..., Nm] with m >= 0. Defines this as a batch of
N1 x ... x Nm different Multinomial distributions. Its components
should be equal to integer values.

		logits: Floating point tensor representing the log-odds of a
positive event with shape broadcastable to [N1,..., Nm, k], m >= 0,
and the same dtype as n. Defines this as a batch of N1 x ... x Nm
different k class Multinomial distributions.

		p: Positive floating point tensor with shape broadcastable to
[N1,..., Nm, k] m >= 0 and same dtype as n. Defines this as
a batch of N1 x ... x Nm different k class Multinomial
distributions. p‘s components in the last portion of its shape should
sum up to 1.

		validate_args: Boolean, default False. Whether to assert valid
values for parameters n and p, and x in prob and log_prob.
If False, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to prefix Ops created by this distribution class.

		Examples:

Define 1-batch of 2-class multinomial distribution,
also known as a Binomial distribution.
dist = Multinomial(n=2., p=[.1, .9])

Define a 2-batch of 3-class distributions.
dist = Multinomial(n=[4., 5], p=[[.1, .3, .6], [.4, .05, .55]])

tf.contrib.distributions.Multinomial.allow_nan_stats {#Multinomial.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Multinomial.batch_shape(name='batch_shape') {#Multinomial.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Multinomial.cdf(value, name='cdf') {#Multinomial.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Multinomial.dtype {#Multinomial.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Multinomial.entropy(name='entropy') {#Multinomial.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Multinomial.event_shape(name='event_shape') {#Multinomial.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Multinomial.get_batch_shape() {#Multinomial.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Multinomial.get_event_shape() {#Multinomial.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Multinomial.is_continuous {#Multinomial.is_continuous}

tf.contrib.distributions.Multinomial.is_reparameterized {#Multinomial.is_reparameterized}

tf.contrib.distributions.Multinomial.log_cdf(value, name='log_cdf') {#Multinomial.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Multinomial.log_pdf(value, name='log_pdf') {#Multinomial.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Multinomial.log_pmf(value, name='log_pmf') {#Multinomial.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Multinomial.log_prob(value, name='log_prob') {#Multinomial.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Multinomial.log_survival_function(value, name='log_survival_function') {#Multinomial.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Multinomial.logits {#Multinomial.logits}

Log-odds.

tf.contrib.distributions.Multinomial.mean(name='mean') {#Multinomial.mean}

Mean.

tf.contrib.distributions.Multinomial.mode(name='mode') {#Multinomial.mode}

Mode.

tf.contrib.distributions.Multinomial.n {#Multinomial.n}

Number of trials.

tf.contrib.distributions.Multinomial.name {#Multinomial.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Multinomial.p {#Multinomial.p}

Event probabilities.

tf.contrib.distributions.Multinomial.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Multinomial.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Multinomial.param_static_shapes(cls, sample_shape) {#Multinomial.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Multinomial.parameters {#Multinomial.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Multinomial.pdf(value, name='pdf') {#Multinomial.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Multinomial.pmf(value, name='pmf') {#Multinomial.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Multinomial.prob(value, name='prob') {#Multinomial.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Multinomial.sample(sample_shape=(), seed=None, name='sample') {#Multinomial.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Multinomial.sample_n(n, seed=None, name='sample_n') {#Multinomial.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Multinomial.std(name='std') {#Multinomial.std}

Standard deviation.

tf.contrib.distributions.Multinomial.survival_function(value, name='survival_function') {#Multinomial.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Multinomial.validate_args {#Multinomial.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Multinomial.variance(name='variance') {#Multinomial.variance}

Variance.

class tf.contrib.distributions.WishartCholesky {#WishartCholesky}

The matrix Wishart distribution on positive definite matrices.

This distribution is defined by a scalar degrees of freedom df and a
lower, triangular Cholesky factor which characterizes the scale matrix.

Using WishartCholesky is a constant-time improvement over WishartFull. It
saves an O(nbk^3) operation, i.e., a matrix-product operation for sampling
and a Cholesky factorization in log_prob. For most use-cases it often saves
another O(nbk^3) operation since most uses of Wishart will also use the
Cholesky factorization.

Mathematical details.

The PDF of this distribution is,

f(X) = det(X)^(0.5 (df-k-1)) exp(-0.5 tr[inv(scale) X]) / B(scale, df)

where df >= k denotes the degrees of freedom, scale is a symmetric, pd,
k x k matrix, and the normalizing constant B(scale, df) is given by:

B(scale, df) = 2^(0.5 df k) |det(scale)|^(0.5 df) Gamma_k(0.5 df)

where Gamma_k is the multivariate Gamma function.

Examples

Initialize a single 3x3 Wishart with Cholesky factored scale matrix and 5
degrees-of-freedom.(*)
df = 5
chol_scale = tf.cholesky(...) # Shape is [3, 3].
dist = tf.contrib.distributions.WishartCholesky(df=df, scale=chol_scale)

Evaluate this on an observation in R^3, returning a scalar.
x = ... # A 3x3 positive definite matrix.
dist.pdf(x) # Shape is [], a scalar.

Evaluate this on a two observations, each in R^{3x3}, returning a length two
Tensor.
x = [x0, x1] # Shape is [2, 3, 3].
dist.pdf(x) # Shape is [2].

Initialize two 3x3 Wisharts with Cholesky factored scale matrices.
df = [5, 4]
chol_scale = tf.cholesky(...) # Shape is [2, 3, 3].
dist = tf.contrib.distributions.WishartCholesky(df=df, scale=chol_scale)

Evaluate this on four observations.
x = [[x0, x1], [x2, x3]] # Shape is [2, 2, 3, 3].
dist.pdf(x) # Shape is [2, 2].

(*) - To efficiently create a trainable covariance matrix, see the example
in tf.contrib.distributions.matrix_diag_transform.

tf.contrib.distributions.WishartCholesky.__init__(df, scale, cholesky_input_output_matrices=False, validate_args=False, allow_nan_stats=True, name='WishartCholesky') {#WishartCholesky.init}

Construct Wishart distributions.

Args:

		df: float or double Tensor. Degrees of freedom, must be greater than
or equal to dimension of the scale matrix.

		scale: float or double Tensor. The Cholesky factorization of
the symmetric positive definite scale matrix of the distribution.

		cholesky_input_output_matrices: Boolean. Any function which whose input
or output is a matrix assumes the input is Cholesky and returns a
Cholesky factored matrix. Examplelog_pdf input takes a Cholesky and
sample_n returns a Cholesky when
cholesky_input_output_matrices=True.

		validate_args: Boolean, default False. Whether to validate input
with asserts. If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g., mean, mode) is undefined for any batch
member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name scope to give class member ops.

tf.contrib.distributions.WishartCholesky.allow_nan_stats {#WishartCholesky.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.WishartCholesky.batch_shape(name='batch_shape') {#WishartCholesky.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.WishartCholesky.cdf(value, name='cdf') {#WishartCholesky.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.WishartCholesky.cholesky_input_output_matrices {#WishartCholesky.cholesky_input_output_matrices}

Boolean indicating if Tensor input/outputs are Cholesky factorized.

tf.contrib.distributions.WishartCholesky.df {#WishartCholesky.df}

Wishart distribution degree(s) of freedom.

tf.contrib.distributions.WishartCholesky.dimension {#WishartCholesky.dimension}

Dimension of underlying vector space. The p in R^(p*p).

tf.contrib.distributions.WishartCholesky.dtype {#WishartCholesky.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.WishartCholesky.entropy(name='entropy') {#WishartCholesky.entropy}

Shanon entropy in nats.

tf.contrib.distributions.WishartCholesky.event_shape(name='event_shape') {#WishartCholesky.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.WishartCholesky.get_batch_shape() {#WishartCholesky.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.WishartCholesky.get_event_shape() {#WishartCholesky.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.WishartCholesky.is_continuous {#WishartCholesky.is_continuous}

tf.contrib.distributions.WishartCholesky.is_reparameterized {#WishartCholesky.is_reparameterized}

tf.contrib.distributions.WishartCholesky.log_cdf(value, name='log_cdf') {#WishartCholesky.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.WishartCholesky.log_normalizing_constant(name='log_normalizing_constant') {#WishartCholesky.log_normalizing_constant}

Computes the log normalizing constant, log(Z).

tf.contrib.distributions.WishartCholesky.log_pdf(value, name='log_pdf') {#WishartCholesky.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.WishartCholesky.log_pmf(value, name='log_pmf') {#WishartCholesky.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.WishartCholesky.log_prob(value, name='log_prob') {#WishartCholesky.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.WishartCholesky.log_survival_function(value, name='log_survival_function') {#WishartCholesky.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.WishartCholesky.mean(name='mean') {#WishartCholesky.mean}

Mean.

tf.contrib.distributions.WishartCholesky.mean_log_det(name='mean_log_det') {#WishartCholesky.mean_log_det}

Computes E[log(det(X))] under this Wishart distribution.

tf.contrib.distributions.WishartCholesky.mode(name='mode') {#WishartCholesky.mode}

Mode.

tf.contrib.distributions.WishartCholesky.name {#WishartCholesky.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.WishartCholesky.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#WishartCholesky.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.WishartCholesky.param_static_shapes(cls, sample_shape) {#WishartCholesky.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.WishartCholesky.parameters {#WishartCholesky.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.WishartCholesky.pdf(value, name='pdf') {#WishartCholesky.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.WishartCholesky.pmf(value, name='pmf') {#WishartCholesky.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.WishartCholesky.prob(value, name='prob') {#WishartCholesky.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.WishartCholesky.sample(sample_shape=(), seed=None, name='sample') {#WishartCholesky.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.WishartCholesky.sample_n(n, seed=None, name='sample_n') {#WishartCholesky.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.WishartCholesky.scale() {#WishartCholesky.scale}

Wishart distribution scale matrix.

tf.contrib.distributions.WishartCholesky.scale_operator_pd {#WishartCholesky.scale_operator_pd}

Wishart distribution scale matrix as an OperatorPD.

tf.contrib.distributions.WishartCholesky.std(name='std') {#WishartCholesky.std}

Standard deviation.

tf.contrib.distributions.WishartCholesky.survival_function(value, name='survival_function') {#WishartCholesky.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.WishartCholesky.validate_args {#WishartCholesky.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.WishartCholesky.variance(name='variance') {#WishartCholesky.variance}

Variance.

class tf.contrib.distributions.WishartFull {#WishartFull}

The matrix Wishart distribution on positive definite matrices.

This distribution is defined by a scalar degrees of freedom df and a
symmetric, positive definite scale matrix.

Evaluation of the pdf, determinant, and sampling are all O(k^3) operations
where (k, k) is the event space shape.

Mathematical details.

The PDF of this distribution is,

f(X) = det(X)^(0.5 (df-k-1)) exp(-0.5 tr[inv(scale) X]) / B(scale, df)

where df >= k denotes the degrees of freedom, scale is a symmetric, pd,
k x k matrix, and the normalizing constant B(scale, df) is given by:

B(scale, df) = 2^(0.5 df k) |det(scale)|^(0.5 df) Gamma_k(0.5 df)

where Gamma_k is the multivariate Gamma function.

Examples

Initialize a single 3x3 Wishart with Full factored scale matrix and 5
degrees-of-freedom.(*)
df = 5
scale = ... # Shape is [3, 3]; positive definite.
dist = tf.contrib.distributions.WishartFull(df=df, scale=scale)

Evaluate this on an observation in R^3, returning a scalar.
x = ... # A 3x3 positive definite matrix.
dist.pdf(x) # Shape is [], a scalar.

Evaluate this on a two observations, each in R^{3x3}, returning a length two
Tensor.
x = [x0, x1] # Shape is [2, 3, 3].
dist.pdf(x) # Shape is [2].

Initialize two 3x3 Wisharts with Full factored scale matrices.
df = [5, 4]
scale = ... # Shape is [2, 3, 3].
dist = tf.contrib.distributions.WishartFull(df=df, scale=scale)

Evaluate this on four observations.
x = [[x0, x1], [x2, x3]] # Shape is [2, 2, 3, 3]; xi is positive definite.
dist.pdf(x) # Shape is [2, 2].

(*) - To efficiently create a trainable covariance matrix, see the example
in tf.contrib.distributions.matrix_diag_transform.

tf.contrib.distributions.WishartFull.__init__(df, scale, cholesky_input_output_matrices=False, validate_args=False, allow_nan_stats=True, name='WishartFull') {#WishartFull.init}

Construct Wishart distributions.

Args:

		df: float or double Tensor. Degrees of freedom, must be greater than
or equal to dimension of the scale matrix.

		scale: float or double Tensor. The symmetric positive definite
scale matrix of the distribution.

		cholesky_input_output_matrices: Boolean. Any function which whose input
or output is a matrix assumes the input is Cholesky and returns a
Cholesky factored matrix. Examplelog_pdf input takes a Cholesky and
sample_n returns a Cholesky when
cholesky_input_output_matrices=True.

		validate_args: Boolean, default False. Whether to validate input with
asserts. If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g., mean, mode) is undefined for any batch
member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name scope to give class member ops.

tf.contrib.distributions.WishartFull.allow_nan_stats {#WishartFull.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.WishartFull.batch_shape(name='batch_shape') {#WishartFull.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.WishartFull.cdf(value, name='cdf') {#WishartFull.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.WishartFull.cholesky_input_output_matrices {#WishartFull.cholesky_input_output_matrices}

Boolean indicating if Tensor input/outputs are Cholesky factorized.

tf.contrib.distributions.WishartFull.df {#WishartFull.df}

Wishart distribution degree(s) of freedom.

tf.contrib.distributions.WishartFull.dimension {#WishartFull.dimension}

Dimension of underlying vector space. The p in R^(p*p).

tf.contrib.distributions.WishartFull.dtype {#WishartFull.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.WishartFull.entropy(name='entropy') {#WishartFull.entropy}

Shanon entropy in nats.

tf.contrib.distributions.WishartFull.event_shape(name='event_shape') {#WishartFull.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.WishartFull.get_batch_shape() {#WishartFull.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.WishartFull.get_event_shape() {#WishartFull.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.WishartFull.is_continuous {#WishartFull.is_continuous}

tf.contrib.distributions.WishartFull.is_reparameterized {#WishartFull.is_reparameterized}

tf.contrib.distributions.WishartFull.log_cdf(value, name='log_cdf') {#WishartFull.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.WishartFull.log_normalizing_constant(name='log_normalizing_constant') {#WishartFull.log_normalizing_constant}

Computes the log normalizing constant, log(Z).

tf.contrib.distributions.WishartFull.log_pdf(value, name='log_pdf') {#WishartFull.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.WishartFull.log_pmf(value, name='log_pmf') {#WishartFull.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.WishartFull.log_prob(value, name='log_prob') {#WishartFull.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.WishartFull.log_survival_function(value, name='log_survival_function') {#WishartFull.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.WishartFull.mean(name='mean') {#WishartFull.mean}

Mean.

tf.contrib.distributions.WishartFull.mean_log_det(name='mean_log_det') {#WishartFull.mean_log_det}

Computes E[log(det(X))] under this Wishart distribution.

tf.contrib.distributions.WishartFull.mode(name='mode') {#WishartFull.mode}

Mode.

tf.contrib.distributions.WishartFull.name {#WishartFull.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.WishartFull.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#WishartFull.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.WishartFull.param_static_shapes(cls, sample_shape) {#WishartFull.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.WishartFull.parameters {#WishartFull.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.WishartFull.pdf(value, name='pdf') {#WishartFull.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.WishartFull.pmf(value, name='pmf') {#WishartFull.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.WishartFull.prob(value, name='prob') {#WishartFull.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.WishartFull.sample(sample_shape=(), seed=None, name='sample') {#WishartFull.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.WishartFull.sample_n(n, seed=None, name='sample_n') {#WishartFull.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.WishartFull.scale() {#WishartFull.scale}

Wishart distribution scale matrix.

tf.contrib.distributions.WishartFull.scale_operator_pd {#WishartFull.scale_operator_pd}

Wishart distribution scale matrix as an OperatorPD.

tf.contrib.distributions.WishartFull.std(name='std') {#WishartFull.std}

Standard deviation.

tf.contrib.distributions.WishartFull.survival_function(value, name='survival_function') {#WishartFull.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.WishartFull.validate_args {#WishartFull.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.WishartFull.variance(name='variance') {#WishartFull.variance}

Variance.

Transformed distributions

class tf.contrib.distributions.TransformedDistribution {#TransformedDistribution}

A Transformed Distribution.

A Transformed Distribution models p(y) given a base distribution p(x),
an invertible transform, y = f(x), and the determinant of the Jacobian of
f(x).

Shapes, type, and reparameterization are taken from the base distribution.

Mathematical details

		p(x) - probability distribution for random variable X

		p(y) - probability distribution for random variable Y

		f - transform

		g - inverse transform, g(f(x)) = x

		J(x) - Jacobian of f(x)

A Transformed Distribution exposes sample and pdf:

		sample: y = f(x), after drawing a sample of X.

		pdf: p(y) = p(x) / det|J(x)| = p(g(y)) / det|J(g(y))|

A simple example constructing a Log-Normal distribution from a Normal
distribution:

logit_normal = TransformedDistribution(
 base_dist_cls=tf.contrib.distributions.Normal,
 mu=mu,
 sigma=sigma,
 transform=lambda x: tf.sigmoid(x),
 inverse=lambda y: tf.log(y) - tf.log(1. - y),
 log_det_jacobian=(lambda x:
 tf.reduce_sum(tf.log(tf.sigmoid(x)) + tf.log(1. - tf.sigmoid(x)),
 reduction_indices=[-1])))
 name="LogitNormalTransformedDistribution"
)

tf.contrib.distributions.TransformedDistribution.__init__(base_dist_cls, transform, inverse, log_det_jacobian, name='TransformedDistribution', **base_dist_args) {#TransformedDistribution.init}

Construct a Transformed Distribution.

Args:

		base_dist_cls: the base distribution class to transform. Must be a
subclass of Distribution.

		transform: a callable that takes a Tensor sample from base_dist and
returns a Tensor of the same shape and type. x => y.

		inverse: a callable that computes the inverse of transform. y => x. If
None, users can only call log_pdf on values returned by sample.

		log_det_jacobian: a callable that takes a Tensor sample from base_dist
and returns the log of the determinant of the Jacobian of transform.

		name: The name for the distribution.

		**base_dist_args: kwargs to pass on to dist_cls on construction.

Raises:

		TypeError: if base_dist_cls is not a subclass of
Distribution.

tf.contrib.distributions.TransformedDistribution.allow_nan_stats {#TransformedDistribution.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.TransformedDistribution.base_distribution {#TransformedDistribution.base_distribution}

Base distribution, p(x).

tf.contrib.distributions.TransformedDistribution.batch_shape(name='batch_shape') {#TransformedDistribution.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.TransformedDistribution.cdf(value, name='cdf') {#TransformedDistribution.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.TransformedDistribution.dtype {#TransformedDistribution.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.TransformedDistribution.entropy(name='entropy') {#TransformedDistribution.entropy}

Shanon entropy in nats.

tf.contrib.distributions.TransformedDistribution.event_shape(name='event_shape') {#TransformedDistribution.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.TransformedDistribution.get_batch_shape() {#TransformedDistribution.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.TransformedDistribution.get_event_shape() {#TransformedDistribution.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.TransformedDistribution.inverse {#TransformedDistribution.inverse}

Inverse function of transform, y => x.

tf.contrib.distributions.TransformedDistribution.is_continuous {#TransformedDistribution.is_continuous}

tf.contrib.distributions.TransformedDistribution.is_reparameterized {#TransformedDistribution.is_reparameterized}

tf.contrib.distributions.TransformedDistribution.log_cdf(value, name='log_cdf') {#TransformedDistribution.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.TransformedDistribution.log_det_jacobian {#TransformedDistribution.log_det_jacobian}

Function computing the log determinant of the Jacobian of transform.

tf.contrib.distributions.TransformedDistribution.log_pdf(value, name='log_pdf') {#TransformedDistribution.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.TransformedDistribution.log_pmf(value, name='log_pmf') {#TransformedDistribution.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.TransformedDistribution.log_prob(value, name='log_prob') {#TransformedDistribution.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.TransformedDistribution.log_survival_function(value, name='log_survival_function') {#TransformedDistribution.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.TransformedDistribution.mean(name='mean') {#TransformedDistribution.mean}

Mean.

tf.contrib.distributions.TransformedDistribution.mode(name='mode') {#TransformedDistribution.mode}

Mode.

tf.contrib.distributions.TransformedDistribution.name {#TransformedDistribution.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.TransformedDistribution.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#TransformedDistribution.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.TransformedDistribution.param_static_shapes(cls, sample_shape) {#TransformedDistribution.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.TransformedDistribution.parameters {#TransformedDistribution.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.TransformedDistribution.pdf(value, name='pdf') {#TransformedDistribution.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.TransformedDistribution.pmf(value, name='pmf') {#TransformedDistribution.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.TransformedDistribution.prob(value, name='prob') {#TransformedDistribution.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.TransformedDistribution.sample(sample_shape=(), seed=None, name='sample') {#TransformedDistribution.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.TransformedDistribution.sample_n(n, seed=None, name='sample_n') {#TransformedDistribution.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.TransformedDistribution.std(name='std') {#TransformedDistribution.std}

Standard deviation.

tf.contrib.distributions.TransformedDistribution.survival_function(value, name='survival_function') {#TransformedDistribution.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.TransformedDistribution.transform {#TransformedDistribution.transform}

Function transforming x => y.

tf.contrib.distributions.TransformedDistribution.validate_args {#TransformedDistribution.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.TransformedDistribution.variance(name='variance') {#TransformedDistribution.variance}

Variance.

class tf.contrib.distributions.QuantizedDistribution {#QuantizedDistribution}

Distribution representing the quantization Y = ceiling(X).

Definition in terms of sampling.

1. Draw X
2. Set Y <-- ceiling(X)
3. If Y < lower_cutoff, reset Y <-- lower_cutoff
4. If Y > upper_cutoff, reset Y <-- upper_cutoff
5. Return Y

Definition in terms of the probability mass function.

Given scalar random variable X, we define a discrete random variable Y
supported on the integers as follows:

P[Y = j] := P[X <= lower_cutoff], if j == lower_cutoff,
 := P[X > upper_cutoff - 1], j == upper_cutoff,
 := 0, if j < lower_cutoff or j > upper_cutoff,
 := P[j - 1 < X <= j], all other j.

Conceptually, without cutoffs, the quantization process partitions the real
line R into half open intervals, and identifies an integer j with the
right endpoints:

R = ... (-2, -1](-1, 0](0, 1](1, 2](2, 3](3, 4] ...
j = ... -1 0 1 2 3 4 ...

P[Y = j] is the mass of X within the jth interval.
If lower_cutoff = 0, and upper_cutoff = 2, then the intervals are redrawn
and j is re-assigned:

R = (-infty, 0](0, 1](1, infty)
j = 0 1 2

P[Y = j] is still the mass of X within the jth interval.

Caveats

Since evaluation of each P[Y = j] involves a cdf evaluation (rather than
a closed form function such as for a Poisson), computations such as mean and
entropy are better done with samples or approximations, and are not
implemented by this class.

tf.contrib.distributions.QuantizedDistribution.__init__(base_dist_cls, lower_cutoff=None, upper_cutoff=None, name='QuantizedDistribution', **base_dist_args) {#QuantizedDistribution.init}

Construct a Quantized Distribution.

Some properties are inherited from the distribution defining X.
In particular, validate_args and allow_nan_stats are determined for this
QuantizedDistribution by reading the additional kwargs passed as
base_dist_args.

Args:

		base_dist_cls: the base distribution class to transform. Must be a
subclass of Distribution implementing cdf.

		lower_cutoff: Tensor with same dtype as this distribution and shape
able to be added to samples. Should be a whole number. Default None.
If provided, base distribution’s pdf/pmf should be defined at
lower_cutoff.

		upper_cutoff: Tensor with same dtype as this distribution and shape
able to be added to samples. Should be a whole number. Default None.
If provided, base distribution’s pdf/pmf should be defined at
upper_cutoff - 1.
upper_cutoff must be strictly greater than lower_cutoff.

		name: The name for the distribution.

		**base_dist_args: kwargs to pass on to dist_cls on construction.
These determine the shape and dtype of this distribution.

Raises:

		TypeError: If base_dist_cls is not a subclass of
Distribution or continuous.

		AttributeError: If the base distribution does not implement cdf.

tf.contrib.distributions.QuantizedDistribution.allow_nan_stats {#QuantizedDistribution.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.QuantizedDistribution.base_distribution {#QuantizedDistribution.base_distribution}

Base distribution, p(x).

tf.contrib.distributions.QuantizedDistribution.batch_shape(name='batch_shape') {#QuantizedDistribution.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.QuantizedDistribution.cdf(value, name='cdf') {#QuantizedDistribution.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.QuantizedDistribution.dtype {#QuantizedDistribution.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.QuantizedDistribution.entropy(name='entropy') {#QuantizedDistribution.entropy}

Shanon entropy in nats.

tf.contrib.distributions.QuantizedDistribution.event_shape(name='event_shape') {#QuantizedDistribution.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.QuantizedDistribution.get_batch_shape() {#QuantizedDistribution.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.QuantizedDistribution.get_event_shape() {#QuantizedDistribution.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.QuantizedDistribution.is_continuous {#QuantizedDistribution.is_continuous}

tf.contrib.distributions.QuantizedDistribution.is_reparameterized {#QuantizedDistribution.is_reparameterized}

tf.contrib.distributions.QuantizedDistribution.log_cdf(value, name='log_cdf') {#QuantizedDistribution.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.QuantizedDistribution.log_pdf(value, name='log_pdf') {#QuantizedDistribution.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.QuantizedDistribution.log_pmf(value, name='log_pmf') {#QuantizedDistribution.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.QuantizedDistribution.log_prob(value, name='log_prob') {#QuantizedDistribution.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.QuantizedDistribution.log_survival_function(value, name='log_survival_function') {#QuantizedDistribution.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.QuantizedDistribution.mean(name='mean') {#QuantizedDistribution.mean}

Mean.

tf.contrib.distributions.QuantizedDistribution.mode(name='mode') {#QuantizedDistribution.mode}

Mode.

tf.contrib.distributions.QuantizedDistribution.name {#QuantizedDistribution.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.QuantizedDistribution.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#QuantizedDistribution.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.QuantizedDistribution.param_static_shapes(cls, sample_shape) {#QuantizedDistribution.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.QuantizedDistribution.parameters {#QuantizedDistribution.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.QuantizedDistribution.pdf(value, name='pdf') {#QuantizedDistribution.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.QuantizedDistribution.pmf(value, name='pmf') {#QuantizedDistribution.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.QuantizedDistribution.prob(value, name='prob') {#QuantizedDistribution.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.QuantizedDistribution.sample(sample_shape=(), seed=None, name='sample') {#QuantizedDistribution.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.QuantizedDistribution.sample_n(n, seed=None, name='sample_n') {#QuantizedDistribution.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.QuantizedDistribution.std(name='std') {#QuantizedDistribution.std}

Standard deviation.

tf.contrib.distributions.QuantizedDistribution.survival_function(value, name='survival_function') {#QuantizedDistribution.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.QuantizedDistribution.validate_args {#QuantizedDistribution.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.QuantizedDistribution.variance(name='variance') {#QuantizedDistribution.variance}

Variance.

Mixture Models

class tf.contrib.distributions.Mixture {#Mixture}

Mixture distribution.

The Mixture object implements batched mixture distributions.
The mixture model is defined by a Categorical distribution (the mixture)
and a python list of Distribution objects.

Methods supported include log_prob, prob, mean, sample, and
entropy_lower_bound.

tf.contrib.distributions.Mixture.__init__(cat, components, validate_args=False, allow_nan_stats=True, name='Mixture') {#Mixture.init}

Initialize a Mixture distribution.

A Mixture is defined by a Categorical (cat, representing the
mixture probabilities) and a list of Distribution objects
all having matching dtype, batch shape, event shape, and continuity
properties (the components).

The num_classes of cat must be possible to infer at graph construction
time and match len(components).

Args:

		cat: A Categorical distribution instance, representing the probabilities
of distributions.

		components: A list or tuple of Distribution instances.
Each instance must have the same type, be defined on the same domain,
and have matching event_shape and batch_shape.

		validate_args: Boolean, default False. If True, raise a runtime
error if batch or event ranks are inconsistent between cat and any of
the distributions. This is only checked if the ranks cannot be
determined statically at graph construction time.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: A name for this distribution (optional).

Raises:

		TypeError: If cat is not a Categorical, or components is not
a list or tuple, or the elements of components are not
instances of Distribution, or do not have matching dtype.

		ValueError: If components is an empty list or tuple, or its
elements do not have a statically known event rank.
If cat.num_classes cannot be inferred at graph creation time,
or the constant value of cat.num_classes is not equal to
len(components), or all components and cat do not have
matching static batch shapes, or all components do not
have matching static event shapes.

tf.contrib.distributions.Mixture.allow_nan_stats {#Mixture.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Mixture.batch_shape(name='batch_shape') {#Mixture.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Mixture.cat {#Mixture.cat}

tf.contrib.distributions.Mixture.cdf(value, name='cdf') {#Mixture.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Mixture.components {#Mixture.components}

tf.contrib.distributions.Mixture.dtype {#Mixture.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Mixture.entropy(name='entropy') {#Mixture.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Mixture.entropy_lower_bound(name='entropy_lower_bound') {#Mixture.entropy_lower_bound}

A lower bound on the entropy of this mixture model.

The bound below is not always very tight, and its usefulness depends
on the mixture probabilities and the components in use.

A lower bound is useful for ELBO when the Mixture is the variational
distribution:

\(
\log p(x) >= ELBO = \int q(z) \log p(x, z) dz + H[q]
\)

where \(p \) is the prior disribution, \(q \) is the variational,
and \(H[q] \) is the entropy of \(q \). If there is a lower bound
\(G[q] \) such that \(H[q] \geq G[q] \) then it can be used in
place of \(H[q] \).

For a mixture of distributions \(q(Z) = \sum_i c_i q_i(Z) \) with
\(\sum_i c_i = 1 \), by the concavity of \(f(x) = -x \log x \), a
simple lower bound is:

\(
\begin{align}
H[q] & = - \int q(z) \log q(z) dz \& = - \int (\sum_i c_i q_i(z)) \log(\sum_i c_i q_i(z)) dz \& \geq - \sum_i c_i \int q_i(z) \log q_i(z) dz \& = \sum_i c_i H[q_i]
\end{align}
\)

This is the term we calculate below for \(G[q] \).

Args:

		name: A name for this operation (optional).

Returns:

A lower bound on the Mixture’s entropy.

tf.contrib.distributions.Mixture.event_shape(name='event_shape') {#Mixture.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Mixture.get_batch_shape() {#Mixture.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Mixture.get_event_shape() {#Mixture.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Mixture.is_continuous {#Mixture.is_continuous}

tf.contrib.distributions.Mixture.is_reparameterized {#Mixture.is_reparameterized}

tf.contrib.distributions.Mixture.log_cdf(value, name='log_cdf') {#Mixture.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Mixture.log_pdf(value, name='log_pdf') {#Mixture.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Mixture.log_pmf(value, name='log_pmf') {#Mixture.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Mixture.log_prob(value, name='log_prob') {#Mixture.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Mixture.log_survival_function(value, name='log_survival_function') {#Mixture.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Mixture.mean(name='mean') {#Mixture.mean}

Mean.

tf.contrib.distributions.Mixture.mode(name='mode') {#Mixture.mode}

Mode.

tf.contrib.distributions.Mixture.name {#Mixture.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Mixture.num_components {#Mixture.num_components}

tf.contrib.distributions.Mixture.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Mixture.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Mixture.param_static_shapes(cls, sample_shape) {#Mixture.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Mixture.parameters {#Mixture.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Mixture.pdf(value, name='pdf') {#Mixture.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Mixture.pmf(value, name='pmf') {#Mixture.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Mixture.prob(value, name='prob') {#Mixture.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Mixture.sample(sample_shape=(), seed=None, name='sample') {#Mixture.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Mixture.sample_n(n, seed=None, name='sample_n') {#Mixture.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Mixture.std(name='std') {#Mixture.std}

Standard deviation.

tf.contrib.distributions.Mixture.survival_function(value, name='survival_function') {#Mixture.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Mixture.validate_args {#Mixture.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Mixture.variance(name='variance') {#Mixture.variance}

Variance.

Posterior inference with conjugate priors.

Functions that transform conjugate prior/likelihood pairs to distributions
representing the posterior or posterior predictive.

Normal likelihood with conjugate prior.

tf.contrib.distributions.normal_conjugates_known_sigma_posterior(prior, sigma, s, n) {#normal_conjugates_known_sigma_posterior}

Posterior Normal distribution with conjugate prior on the mean.

This model assumes that n observations (with sum s) come from a
Normal with unknown mean mu (described by the Normal prior)
and known variance sigma^2. The “known sigma posterior” is
the distribution of the unknown mu.

Accepts a prior Normal distribution object, having parameters
mu0 and sigma0, as well as known sigma values of the predictive
distribution(s) (also assumed Normal),
and statistical estimates s (the sum(s) of the observations) and
n (the number(s) of observations).

Returns a posterior (also Normal) distribution object, with parameters
(mu', sigma'^2), where:

mu ~ N(mu', sigma'^2)
sigma'^2 = 1/(1/sigma0^2 + n/sigma^2),
mu' = (mu0/sigma0^2 + s/sigma^2) * sigma'^2.

Distribution parameters from prior, as well as sigma, s, and n.
will broadcast in the case of multidimensional sets of parameters.

Args:

		prior: Normal object of type dtype:
the prior distribution having parameters (mu0, sigma0).

		sigma: tensor of type dtype, taking values sigma > 0.
The known stddev parameter(s).

		s: Tensor of type dtype. The sum(s) of observations.

		n: Tensor of type int. The number(s) of observations.

Returns:

A new Normal posterior distribution object for the unknown observation
mean mu.

Raises:

		TypeError: if dtype of s does not match dtype, or prior is not a
Normal object.

tf.contrib.distributions.normal_congugates_known_sigma_predictive(prior, sigma, s, n) {#normal_congugates_known_sigma_predictive}

Posterior predictive Normal distribution w. conjugate prior on the mean.

This model assumes that n observations (with sum s) come from a
Normal with unknown mean mu (described by the Normal prior)
and known variance sigma^2. The “known sigma predictive”
is the distribution of new observations, conditioned on the existing
observations and our prior.

Accepts a prior Normal distribution object, having parameters
mu0 and sigma0, as well as known sigma values of the predictive
distribution(s) (also assumed Normal),
and statistical estimates s (the sum(s) of the observations) and
n (the number(s) of observations).

Calculates the Normal distribution(s) p(x | sigma^2):

 p(x | sigma^2) = int N(x | mu, sigma^2) N(mu | prior.mu, prior.sigma^2) dmu
 = N(x | prior.mu, 1/(sigma^2 + prior.sigma^2))

Returns the predictive posterior distribution object, with parameters
(mu', sigma'^2), where:

sigma_n^2 = 1/(1/sigma0^2 + n/sigma^2),
mu' = (mu0/sigma0^2 + s/sigma^2) * sigma_n^2.
sigma'^2 = sigma_n^2 + sigma^2,

Distribution parameters from prior, as well as sigma, s, and n.
will broadcast in the case of multidimensional sets of parameters.

Args:

		prior: Normal object of type dtype:
the prior distribution having parameters (mu0, sigma0).

		sigma: tensor of type dtype, taking values sigma > 0.
The known stddev parameter(s).

		s: Tensor of type dtype. The sum(s) of observations.

		n: Tensor of type int. The number(s) of observations.

Returns:

A new Normal predictive distribution object.

Raises:

		TypeError: if dtype of s does not match dtype, or prior is not a
Normal object.

Kullback Leibler Divergence

tf.contrib.distributions.kl(dist_a, dist_b, allow_nan=False, name=None) {#kl}

Get the KL-divergence KL(dist_a || dist_b).

Args:

		dist_a: The first distribution.

		dist_b: The second distribution.

		allow_nan: If False (default), a runtime error is raised
if the KL returns NaN values for any batch entry of the given
distributions. If True, the KL may return a NaN for the given entry.

		name: (optional) Name scope to use for created operations.

Returns:

A Tensor with the batchwise KL-divergence between dist_a and dist_b.

Raises:

		NotImplementedError: If no KL method is defined for distribution types
of dist_a and dist_b.

class tf.contrib.distributions.RegisterKL {#RegisterKL}

Decorator to register a KL divergence implementation function.

Usage:

@distributions.RegisterKL(distributions.Normal, distributions.Normal)
def _kl_normal_mvn(norm_a, norm_b):

Return KL(norm_a || norm_b)

tf.contrib.distributions.RegisterKL.__call__(kl_fn) {#RegisterKL.call}

Perform the KL registration.

Args:

		kl_fn: The function to use for the KL divergence.

Returns:

kl_fn

Raises:

		TypeError: if kl_fn is not a callable.

		ValueError: if a KL divergence function has already been registered for
the given argument classes.

tf.contrib.distributions.RegisterKL.__init__(dist_cls_a, dist_cls_b) {#RegisterKL.init}

Initialize the KL registrar.

Args:

		dist_cls_a: the class of the first argument of the KL divergence.

		dist_cls_b: the class of the second argument of the KL divergence.

Other Functions and Classes

class tf.contrib.distributions.BaseDistribution {#BaseDistribution}

Simple abstract base class for probability distributions.

Implementations of core distributions to be included in the distributions
module should subclass Distribution. This base class may be useful to users
that want to fulfill a simpler distribution contract.

tf.contrib.distributions.BaseDistribution.log_prob(value, name='log_prob') {#BaseDistribution.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.BaseDistribution.sample_n(n, seed=None, name='sample') {#BaseDistribution.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

class tf.contrib.distributions.BernoulliWithSigmoidP {#BernoulliWithSigmoidP}

Bernoulli with p = sigmoid(p).

tf.contrib.distributions.BernoulliWithSigmoidP.__init__(p=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='BernoulliWithSigmoidP') {#BernoulliWithSigmoidP.init}

tf.contrib.distributions.BernoulliWithSigmoidP.allow_nan_stats {#BernoulliWithSigmoidP.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.BernoulliWithSigmoidP.batch_shape(name='batch_shape') {#BernoulliWithSigmoidP.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.BernoulliWithSigmoidP.cdf(value, name='cdf') {#BernoulliWithSigmoidP.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.BernoulliWithSigmoidP.dtype {#BernoulliWithSigmoidP.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.BernoulliWithSigmoidP.entropy(name='entropy') {#BernoulliWithSigmoidP.entropy}

Shanon entropy in nats.

tf.contrib.distributions.BernoulliWithSigmoidP.event_shape(name='event_shape') {#BernoulliWithSigmoidP.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.BernoulliWithSigmoidP.get_batch_shape() {#BernoulliWithSigmoidP.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.BernoulliWithSigmoidP.get_event_shape() {#BernoulliWithSigmoidP.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.BernoulliWithSigmoidP.is_continuous {#BernoulliWithSigmoidP.is_continuous}

tf.contrib.distributions.BernoulliWithSigmoidP.is_reparameterized {#BernoulliWithSigmoidP.is_reparameterized}

tf.contrib.distributions.BernoulliWithSigmoidP.log_cdf(value, name='log_cdf') {#BernoulliWithSigmoidP.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.BernoulliWithSigmoidP.log_pdf(value, name='log_pdf') {#BernoulliWithSigmoidP.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.BernoulliWithSigmoidP.log_pmf(value, name='log_pmf') {#BernoulliWithSigmoidP.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.BernoulliWithSigmoidP.log_prob(value, name='log_prob') {#BernoulliWithSigmoidP.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.BernoulliWithSigmoidP.log_survival_function(value, name='log_survival_function') {#BernoulliWithSigmoidP.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.BernoulliWithSigmoidP.logits {#BernoulliWithSigmoidP.logits}

tf.contrib.distributions.BernoulliWithSigmoidP.mean(name='mean') {#BernoulliWithSigmoidP.mean}

Mean.

tf.contrib.distributions.BernoulliWithSigmoidP.mode(name='mode') {#BernoulliWithSigmoidP.mode}

Mode.

tf.contrib.distributions.BernoulliWithSigmoidP.name {#BernoulliWithSigmoidP.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.BernoulliWithSigmoidP.p {#BernoulliWithSigmoidP.p}

tf.contrib.distributions.BernoulliWithSigmoidP.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#BernoulliWithSigmoidP.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.BernoulliWithSigmoidP.param_static_shapes(cls, sample_shape) {#BernoulliWithSigmoidP.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.BernoulliWithSigmoidP.parameters {#BernoulliWithSigmoidP.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.BernoulliWithSigmoidP.pdf(value, name='pdf') {#BernoulliWithSigmoidP.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.BernoulliWithSigmoidP.pmf(value, name='pmf') {#BernoulliWithSigmoidP.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.BernoulliWithSigmoidP.prob(value, name='prob') {#BernoulliWithSigmoidP.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.BernoulliWithSigmoidP.q {#BernoulliWithSigmoidP.q}

1-p.

tf.contrib.distributions.BernoulliWithSigmoidP.sample(sample_shape=(), seed=None, name='sample') {#BernoulliWithSigmoidP.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.BernoulliWithSigmoidP.sample_n(n, seed=None, name='sample_n') {#BernoulliWithSigmoidP.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.BernoulliWithSigmoidP.std(name='std') {#BernoulliWithSigmoidP.std}

Standard deviation.

tf.contrib.distributions.BernoulliWithSigmoidP.survival_function(value, name='survival_function') {#BernoulliWithSigmoidP.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.BernoulliWithSigmoidP.validate_args {#BernoulliWithSigmoidP.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.BernoulliWithSigmoidP.variance(name='variance') {#BernoulliWithSigmoidP.variance}

Variance.

class tf.contrib.distributions.BetaWithSoftplusAB {#BetaWithSoftplusAB}

Beta with softplus transform on a and b.

tf.contrib.distributions.BetaWithSoftplusAB.__init__(a, b, validate_args=False, allow_nan_stats=True, name='BetaWithSoftplusAB') {#BetaWithSoftplusAB.init}

tf.contrib.distributions.BetaWithSoftplusAB.a {#BetaWithSoftplusAB.a}

Shape parameter.

tf.contrib.distributions.BetaWithSoftplusAB.a_b_sum {#BetaWithSoftplusAB.a_b_sum}

Sum of parameters.

tf.contrib.distributions.BetaWithSoftplusAB.allow_nan_stats {#BetaWithSoftplusAB.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.BetaWithSoftplusAB.b {#BetaWithSoftplusAB.b}

Shape parameter.

tf.contrib.distributions.BetaWithSoftplusAB.batch_shape(name='batch_shape') {#BetaWithSoftplusAB.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.BetaWithSoftplusAB.cdf(value, name='cdf') {#BetaWithSoftplusAB.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.BetaWithSoftplusAB.dtype {#BetaWithSoftplusAB.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.BetaWithSoftplusAB.entropy(name='entropy') {#BetaWithSoftplusAB.entropy}

Shanon entropy in nats.

tf.contrib.distributions.BetaWithSoftplusAB.event_shape(name='event_shape') {#BetaWithSoftplusAB.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.BetaWithSoftplusAB.get_batch_shape() {#BetaWithSoftplusAB.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.BetaWithSoftplusAB.get_event_shape() {#BetaWithSoftplusAB.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.BetaWithSoftplusAB.is_continuous {#BetaWithSoftplusAB.is_continuous}

tf.contrib.distributions.BetaWithSoftplusAB.is_reparameterized {#BetaWithSoftplusAB.is_reparameterized}

tf.contrib.distributions.BetaWithSoftplusAB.log_cdf(value, name='log_cdf') {#BetaWithSoftplusAB.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.BetaWithSoftplusAB.log_pdf(value, name='log_pdf') {#BetaWithSoftplusAB.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.BetaWithSoftplusAB.log_pmf(value, name='log_pmf') {#BetaWithSoftplusAB.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.BetaWithSoftplusAB.log_prob(value, name='log_prob') {#BetaWithSoftplusAB.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.BetaWithSoftplusAB.log_survival_function(value, name='log_survival_function') {#BetaWithSoftplusAB.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.BetaWithSoftplusAB.mean(name='mean') {#BetaWithSoftplusAB.mean}

Mean.

tf.contrib.distributions.BetaWithSoftplusAB.mode(name='mode') {#BetaWithSoftplusAB.mode}

Mode.

tf.contrib.distributions.BetaWithSoftplusAB.name {#BetaWithSoftplusAB.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.BetaWithSoftplusAB.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#BetaWithSoftplusAB.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.BetaWithSoftplusAB.param_static_shapes(cls, sample_shape) {#BetaWithSoftplusAB.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.BetaWithSoftplusAB.parameters {#BetaWithSoftplusAB.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.BetaWithSoftplusAB.pdf(value, name='pdf') {#BetaWithSoftplusAB.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.BetaWithSoftplusAB.pmf(value, name='pmf') {#BetaWithSoftplusAB.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.BetaWithSoftplusAB.prob(value, name='prob') {#BetaWithSoftplusAB.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.BetaWithSoftplusAB.sample(sample_shape=(), seed=None, name='sample') {#BetaWithSoftplusAB.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.BetaWithSoftplusAB.sample_n(n, seed=None, name='sample_n') {#BetaWithSoftplusAB.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.BetaWithSoftplusAB.std(name='std') {#BetaWithSoftplusAB.std}

Standard deviation.

tf.contrib.distributions.BetaWithSoftplusAB.survival_function(value, name='survival_function') {#BetaWithSoftplusAB.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.BetaWithSoftplusAB.validate_args {#BetaWithSoftplusAB.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.BetaWithSoftplusAB.variance(name='variance') {#BetaWithSoftplusAB.variance}

Variance.

class tf.contrib.distributions.Chi2WithAbsDf {#Chi2WithAbsDf}

Chi2 with parameter transform df = floor(abs(df)).

tf.contrib.distributions.Chi2WithAbsDf.__init__(df, validate_args=False, allow_nan_stats=True, name='Chi2WithAbsDf') {#Chi2WithAbsDf.init}

tf.contrib.distributions.Chi2WithAbsDf.allow_nan_stats {#Chi2WithAbsDf.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Chi2WithAbsDf.alpha {#Chi2WithAbsDf.alpha}

Shape parameter.

tf.contrib.distributions.Chi2WithAbsDf.batch_shape(name='batch_shape') {#Chi2WithAbsDf.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Chi2WithAbsDf.beta {#Chi2WithAbsDf.beta}

Inverse scale parameter.

tf.contrib.distributions.Chi2WithAbsDf.cdf(value, name='cdf') {#Chi2WithAbsDf.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Chi2WithAbsDf.df {#Chi2WithAbsDf.df}

tf.contrib.distributions.Chi2WithAbsDf.dtype {#Chi2WithAbsDf.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Chi2WithAbsDf.entropy(name='entropy') {#Chi2WithAbsDf.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Chi2WithAbsDf.event_shape(name='event_shape') {#Chi2WithAbsDf.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Chi2WithAbsDf.get_batch_shape() {#Chi2WithAbsDf.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Chi2WithAbsDf.get_event_shape() {#Chi2WithAbsDf.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Chi2WithAbsDf.is_continuous {#Chi2WithAbsDf.is_continuous}

tf.contrib.distributions.Chi2WithAbsDf.is_reparameterized {#Chi2WithAbsDf.is_reparameterized}

tf.contrib.distributions.Chi2WithAbsDf.log_cdf(value, name='log_cdf') {#Chi2WithAbsDf.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Chi2WithAbsDf.log_pdf(value, name='log_pdf') {#Chi2WithAbsDf.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Chi2WithAbsDf.log_pmf(value, name='log_pmf') {#Chi2WithAbsDf.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Chi2WithAbsDf.log_prob(value, name='log_prob') {#Chi2WithAbsDf.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Chi2WithAbsDf.log_survival_function(value, name='log_survival_function') {#Chi2WithAbsDf.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Chi2WithAbsDf.mean(name='mean') {#Chi2WithAbsDf.mean}

Mean.

tf.contrib.distributions.Chi2WithAbsDf.mode(name='mode') {#Chi2WithAbsDf.mode}

Mode.

tf.contrib.distributions.Chi2WithAbsDf.name {#Chi2WithAbsDf.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Chi2WithAbsDf.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Chi2WithAbsDf.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Chi2WithAbsDf.param_static_shapes(cls, sample_shape) {#Chi2WithAbsDf.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Chi2WithAbsDf.parameters {#Chi2WithAbsDf.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Chi2WithAbsDf.pdf(value, name='pdf') {#Chi2WithAbsDf.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Chi2WithAbsDf.pmf(value, name='pmf') {#Chi2WithAbsDf.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Chi2WithAbsDf.prob(value, name='prob') {#Chi2WithAbsDf.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Chi2WithAbsDf.sample(sample_shape=(), seed=None, name='sample') {#Chi2WithAbsDf.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Chi2WithAbsDf.sample_n(n, seed=None, name='sample_n') {#Chi2WithAbsDf.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Chi2WithAbsDf.std(name='std') {#Chi2WithAbsDf.std}

Standard deviation.

tf.contrib.distributions.Chi2WithAbsDf.survival_function(value, name='survival_function') {#Chi2WithAbsDf.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Chi2WithAbsDf.validate_args {#Chi2WithAbsDf.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Chi2WithAbsDf.variance(name='variance') {#Chi2WithAbsDf.variance}

Variance.

class tf.contrib.distributions.ExponentialWithSoftplusLam {#ExponentialWithSoftplusLam}

Exponential with softplus transform on lam.

tf.contrib.distributions.ExponentialWithSoftplusLam.__init__(lam, validate_args=False, allow_nan_stats=True, name='ExponentialWithSoftplusLam') {#ExponentialWithSoftplusLam.init}

tf.contrib.distributions.ExponentialWithSoftplusLam.allow_nan_stats {#ExponentialWithSoftplusLam.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.ExponentialWithSoftplusLam.alpha {#ExponentialWithSoftplusLam.alpha}

Shape parameter.

tf.contrib.distributions.ExponentialWithSoftplusLam.batch_shape(name='batch_shape') {#ExponentialWithSoftplusLam.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.ExponentialWithSoftplusLam.beta {#ExponentialWithSoftplusLam.beta}

Inverse scale parameter.

tf.contrib.distributions.ExponentialWithSoftplusLam.cdf(value, name='cdf') {#ExponentialWithSoftplusLam.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.ExponentialWithSoftplusLam.dtype {#ExponentialWithSoftplusLam.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.ExponentialWithSoftplusLam.entropy(name='entropy') {#ExponentialWithSoftplusLam.entropy}

Shanon entropy in nats.

tf.contrib.distributions.ExponentialWithSoftplusLam.event_shape(name='event_shape') {#ExponentialWithSoftplusLam.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.ExponentialWithSoftplusLam.get_batch_shape() {#ExponentialWithSoftplusLam.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.ExponentialWithSoftplusLam.get_event_shape() {#ExponentialWithSoftplusLam.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.ExponentialWithSoftplusLam.is_continuous {#ExponentialWithSoftplusLam.is_continuous}

tf.contrib.distributions.ExponentialWithSoftplusLam.is_reparameterized {#ExponentialWithSoftplusLam.is_reparameterized}

tf.contrib.distributions.ExponentialWithSoftplusLam.lam {#ExponentialWithSoftplusLam.lam}

tf.contrib.distributions.ExponentialWithSoftplusLam.log_cdf(value, name='log_cdf') {#ExponentialWithSoftplusLam.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.ExponentialWithSoftplusLam.log_pdf(value, name='log_pdf') {#ExponentialWithSoftplusLam.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.ExponentialWithSoftplusLam.log_pmf(value, name='log_pmf') {#ExponentialWithSoftplusLam.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.ExponentialWithSoftplusLam.log_prob(value, name='log_prob') {#ExponentialWithSoftplusLam.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.ExponentialWithSoftplusLam.log_survival_function(value, name='log_survival_function') {#ExponentialWithSoftplusLam.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.ExponentialWithSoftplusLam.mean(name='mean') {#ExponentialWithSoftplusLam.mean}

Mean.

tf.contrib.distributions.ExponentialWithSoftplusLam.mode(name='mode') {#ExponentialWithSoftplusLam.mode}

Mode.

tf.contrib.distributions.ExponentialWithSoftplusLam.name {#ExponentialWithSoftplusLam.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.ExponentialWithSoftplusLam.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#ExponentialWithSoftplusLam.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.ExponentialWithSoftplusLam.param_static_shapes(cls, sample_shape) {#ExponentialWithSoftplusLam.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.ExponentialWithSoftplusLam.parameters {#ExponentialWithSoftplusLam.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.ExponentialWithSoftplusLam.pdf(value, name='pdf') {#ExponentialWithSoftplusLam.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.ExponentialWithSoftplusLam.pmf(value, name='pmf') {#ExponentialWithSoftplusLam.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.ExponentialWithSoftplusLam.prob(value, name='prob') {#ExponentialWithSoftplusLam.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.ExponentialWithSoftplusLam.sample(sample_shape=(), seed=None, name='sample') {#ExponentialWithSoftplusLam.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.ExponentialWithSoftplusLam.sample_n(n, seed=None, name='sample_n') {#ExponentialWithSoftplusLam.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.ExponentialWithSoftplusLam.std(name='std') {#ExponentialWithSoftplusLam.std}

Standard deviation.

tf.contrib.distributions.ExponentialWithSoftplusLam.survival_function(value, name='survival_function') {#ExponentialWithSoftplusLam.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.ExponentialWithSoftplusLam.validate_args {#ExponentialWithSoftplusLam.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.ExponentialWithSoftplusLam.variance(name='variance') {#ExponentialWithSoftplusLam.variance}

Variance.

class tf.contrib.distributions.GammaWithSoftplusAlphaBeta {#GammaWithSoftplusAlphaBeta}

Gamma with softplus transform on alpha and beta.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.__init__(alpha, beta, validate_args=False, allow_nan_stats=True, name='GammaWithSoftplusAlphaBeta') {#GammaWithSoftplusAlphaBeta.init}

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.allow_nan_stats {#GammaWithSoftplusAlphaBeta.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.alpha {#GammaWithSoftplusAlphaBeta.alpha}

Shape parameter.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.batch_shape(name='batch_shape') {#GammaWithSoftplusAlphaBeta.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.beta {#GammaWithSoftplusAlphaBeta.beta}

Inverse scale parameter.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.cdf(value, name='cdf') {#GammaWithSoftplusAlphaBeta.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.dtype {#GammaWithSoftplusAlphaBeta.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.entropy(name='entropy') {#GammaWithSoftplusAlphaBeta.entropy}

Shanon entropy in nats.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.event_shape(name='event_shape') {#GammaWithSoftplusAlphaBeta.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.get_batch_shape() {#GammaWithSoftplusAlphaBeta.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.get_event_shape() {#GammaWithSoftplusAlphaBeta.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.is_continuous {#GammaWithSoftplusAlphaBeta.is_continuous}

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.is_reparameterized {#GammaWithSoftplusAlphaBeta.is_reparameterized}

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_cdf(value, name='log_cdf') {#GammaWithSoftplusAlphaBeta.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_pdf(value, name='log_pdf') {#GammaWithSoftplusAlphaBeta.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_pmf(value, name='log_pmf') {#GammaWithSoftplusAlphaBeta.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_prob(value, name='log_prob') {#GammaWithSoftplusAlphaBeta.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_survival_function(value, name='log_survival_function') {#GammaWithSoftplusAlphaBeta.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.mean(name='mean') {#GammaWithSoftplusAlphaBeta.mean}

Mean.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.mode(name='mode') {#GammaWithSoftplusAlphaBeta.mode}

Mode.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.name {#GammaWithSoftplusAlphaBeta.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#GammaWithSoftplusAlphaBeta.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.param_static_shapes(cls, sample_shape) {#GammaWithSoftplusAlphaBeta.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.parameters {#GammaWithSoftplusAlphaBeta.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.pdf(value, name='pdf') {#GammaWithSoftplusAlphaBeta.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.pmf(value, name='pmf') {#GammaWithSoftplusAlphaBeta.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.prob(value, name='prob') {#GammaWithSoftplusAlphaBeta.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.sample(sample_shape=(), seed=None, name='sample') {#GammaWithSoftplusAlphaBeta.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.sample_n(n, seed=None, name='sample_n') {#GammaWithSoftplusAlphaBeta.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.std(name='std') {#GammaWithSoftplusAlphaBeta.std}

Standard deviation.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.survival_function(value, name='survival_function') {#GammaWithSoftplusAlphaBeta.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.validate_args {#GammaWithSoftplusAlphaBeta.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.variance(name='variance') {#GammaWithSoftplusAlphaBeta.variance}

Variance.

class tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta {#InverseGammaWithSoftplusAlphaBeta}

Inverse Gamma with softplus applied to alpha and beta.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.__init__(alpha, beta, validate_args=False, allow_nan_stats=True, name='InverseGammaWithSoftplusAlphaBeta') {#InverseGammaWithSoftplusAlphaBeta.init}

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.allow_nan_stats {#InverseGammaWithSoftplusAlphaBeta.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.alpha {#InverseGammaWithSoftplusAlphaBeta.alpha}

Shape parameter.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.batch_shape(name='batch_shape') {#InverseGammaWithSoftplusAlphaBeta.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.beta {#InverseGammaWithSoftplusAlphaBeta.beta}

Scale parameter.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.cdf(value, name='cdf') {#InverseGammaWithSoftplusAlphaBeta.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.dtype {#InverseGammaWithSoftplusAlphaBeta.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.entropy(name='entropy') {#InverseGammaWithSoftplusAlphaBeta.entropy}

Shanon entropy in nats.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.event_shape(name='event_shape') {#InverseGammaWithSoftplusAlphaBeta.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.get_batch_shape() {#InverseGammaWithSoftplusAlphaBeta.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.get_event_shape() {#InverseGammaWithSoftplusAlphaBeta.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.is_continuous {#InverseGammaWithSoftplusAlphaBeta.is_continuous}

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.is_reparameterized {#InverseGammaWithSoftplusAlphaBeta.is_reparameterized}

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.log_cdf(value, name='log_cdf') {#InverseGammaWithSoftplusAlphaBeta.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.log_pdf(value, name='log_pdf') {#InverseGammaWithSoftplusAlphaBeta.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.log_pmf(value, name='log_pmf') {#InverseGammaWithSoftplusAlphaBeta.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.log_prob(value, name='log_prob') {#InverseGammaWithSoftplusAlphaBeta.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.log_survival_function(value, name='log_survival_function') {#InverseGammaWithSoftplusAlphaBeta.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.mean(name='mean') {#InverseGammaWithSoftplusAlphaBeta.mean}

Mean.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.mode(name='mode') {#InverseGammaWithSoftplusAlphaBeta.mode}

Mode.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.name {#InverseGammaWithSoftplusAlphaBeta.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#InverseGammaWithSoftplusAlphaBeta.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.param_static_shapes(cls, sample_shape) {#InverseGammaWithSoftplusAlphaBeta.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.parameters {#InverseGammaWithSoftplusAlphaBeta.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.pdf(value, name='pdf') {#InverseGammaWithSoftplusAlphaBeta.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.pmf(value, name='pmf') {#InverseGammaWithSoftplusAlphaBeta.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.prob(value, name='prob') {#InverseGammaWithSoftplusAlphaBeta.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.sample(sample_shape=(), seed=None, name='sample') {#InverseGammaWithSoftplusAlphaBeta.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.sample_n(n, seed=None, name='sample_n') {#InverseGammaWithSoftplusAlphaBeta.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.std(name='std') {#InverseGammaWithSoftplusAlphaBeta.std}

Standard deviation.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.survival_function(value, name='survival_function') {#InverseGammaWithSoftplusAlphaBeta.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.validate_args {#InverseGammaWithSoftplusAlphaBeta.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.variance(name='variance') {#InverseGammaWithSoftplusAlphaBeta.variance}

Variance.

class tf.contrib.distributions.LaplaceWithSoftplusScale {#LaplaceWithSoftplusScale}

Laplace with softplus applied to scale.

tf.contrib.distributions.LaplaceWithSoftplusScale.__init__(loc, scale, validate_args=False, allow_nan_stats=True, name='LaplaceWithSoftplusScale') {#LaplaceWithSoftplusScale.init}

tf.contrib.distributions.LaplaceWithSoftplusScale.allow_nan_stats {#LaplaceWithSoftplusScale.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.LaplaceWithSoftplusScale.batch_shape(name='batch_shape') {#LaplaceWithSoftplusScale.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.LaplaceWithSoftplusScale.cdf(value, name='cdf') {#LaplaceWithSoftplusScale.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.LaplaceWithSoftplusScale.dtype {#LaplaceWithSoftplusScale.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.LaplaceWithSoftplusScale.entropy(name='entropy') {#LaplaceWithSoftplusScale.entropy}

Shanon entropy in nats.

tf.contrib.distributions.LaplaceWithSoftplusScale.event_shape(name='event_shape') {#LaplaceWithSoftplusScale.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.LaplaceWithSoftplusScale.get_batch_shape() {#LaplaceWithSoftplusScale.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.LaplaceWithSoftplusScale.get_event_shape() {#LaplaceWithSoftplusScale.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.LaplaceWithSoftplusScale.is_continuous {#LaplaceWithSoftplusScale.is_continuous}

tf.contrib.distributions.LaplaceWithSoftplusScale.is_reparameterized {#LaplaceWithSoftplusScale.is_reparameterized}

tf.contrib.distributions.LaplaceWithSoftplusScale.loc {#LaplaceWithSoftplusScale.loc}

Distribution parameter for the location.

tf.contrib.distributions.LaplaceWithSoftplusScale.log_cdf(value, name='log_cdf') {#LaplaceWithSoftplusScale.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.LaplaceWithSoftplusScale.log_pdf(value, name='log_pdf') {#LaplaceWithSoftplusScale.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.LaplaceWithSoftplusScale.log_pmf(value, name='log_pmf') {#LaplaceWithSoftplusScale.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.LaplaceWithSoftplusScale.log_prob(value, name='log_prob') {#LaplaceWithSoftplusScale.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.LaplaceWithSoftplusScale.log_survival_function(value, name='log_survival_function') {#LaplaceWithSoftplusScale.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.LaplaceWithSoftplusScale.mean(name='mean') {#LaplaceWithSoftplusScale.mean}

Mean.

tf.contrib.distributions.LaplaceWithSoftplusScale.mode(name='mode') {#LaplaceWithSoftplusScale.mode}

Mode.

tf.contrib.distributions.LaplaceWithSoftplusScale.name {#LaplaceWithSoftplusScale.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.LaplaceWithSoftplusScale.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#LaplaceWithSoftplusScale.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.LaplaceWithSoftplusScale.param_static_shapes(cls, sample_shape) {#LaplaceWithSoftplusScale.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.LaplaceWithSoftplusScale.parameters {#LaplaceWithSoftplusScale.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.LaplaceWithSoftplusScale.pdf(value, name='pdf') {#LaplaceWithSoftplusScale.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.LaplaceWithSoftplusScale.pmf(value, name='pmf') {#LaplaceWithSoftplusScale.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.LaplaceWithSoftplusScale.prob(value, name='prob') {#LaplaceWithSoftplusScale.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.LaplaceWithSoftplusScale.sample(sample_shape=(), seed=None, name='sample') {#LaplaceWithSoftplusScale.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.LaplaceWithSoftplusScale.sample_n(n, seed=None, name='sample_n') {#LaplaceWithSoftplusScale.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.LaplaceWithSoftplusScale.scale {#LaplaceWithSoftplusScale.scale}

Distribution parameter for scale.

tf.contrib.distributions.LaplaceWithSoftplusScale.std(name='std') {#LaplaceWithSoftplusScale.std}

Standard deviation.

tf.contrib.distributions.LaplaceWithSoftplusScale.survival_function(value, name='survival_function') {#LaplaceWithSoftplusScale.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.LaplaceWithSoftplusScale.validate_args {#LaplaceWithSoftplusScale.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.LaplaceWithSoftplusScale.variance(name='variance') {#LaplaceWithSoftplusScale.variance}

Variance.

class tf.contrib.distributions.MultivariateNormalDiagPlusVDVT {#MultivariateNormalDiagPlusVDVT}

The multivariate normal distribution on R^k.

Every batch member of this distribution is defined by a mean and a lightweight
covariance matrix C.

Mathematical details

The PDF of this distribution in terms of the mean mu and covariance C is:

f(x) = (2 pi)^(-k/2) |det(C)|^(-1/2) exp(-1/2 (x - mu)^T C^{-1} (x - mu))

For every batch member, this distribution represents k random variables
(X_1,...,X_k), with mean E[X_i] = mu[i], and covariance matrix
C_{ij} := E[(X_i - mu[i])(X_j - mu[j])]

The user initializes this class by providing the mean mu, and a lightweight
definition of C:

C = SS^T = SS = (M + V D V^T) (M + V D V^T)
M is diagonal (k x k)
V = is shape (k x r), typically r << k
D = is diagonal (r x r), optional (defaults to identity).

This allows for O(kr + r^3) pdf evaluation and determinant, and O(kr)
sampling and storage (per batch member).

Examples

A single multi-variate Gaussian distribution is defined by a vector of means
of length k, and square root of the covariance S = M + V D V^T. Extra
leading dimensions, if provided, allow for batches.

Initialize a single 3-variate Gaussian with covariance square root
S = M + V D V^T, where V D V^T is a matrix-rank 2 update.
mu = [1, 2, 3.]
diag_large = [1.1, 2.2, 3.3]
v = ... # shape 3 x 2
diag_small = [4., 5.]
dist = tf.contrib.distributions.MultivariateNormalDiagPlusVDVT(
 mu, diag_large, v, diag_small=diag_small)

Evaluate this on an observation in R^3, returning a scalar.
dist.pdf([-1, 0, 1])

Initialize a batch of two 3-variate Gaussians. This time, don't provide
diag_small. This means S = M + V V^T.
mu = [[1, 2, 3], [11, 22, 33]] # shape 2 x 3
diag_large = ... # shape 2 x 3
v = ... # shape 2 x 3 x 1, a matrix-rank 1 update.
dist = tf.contrib.distributions.MultivariateNormalDiagPlusVDVT(
 mu, diag_large, v)

Evaluate this on a two observations, each in R^3, returning a length two
tensor.
x = [[-1, 0, 1], [-11, 0, 11]] # Shape 2 x 3.
dist.pdf(x)

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.__init__(mu, diag_large, v, diag_small=None, validate_args=False, allow_nan_stats=True, name='MultivariateNormalDiagPlusVDVT') {#MultivariateNormalDiagPlusVDVT.init}

Multivariate Normal distributions on R^k.

For every batch member, this distribution represents k random variables
(X_1,...,X_k), with mean E[X_i] = mu[i], and covariance matrix
C_{ij} := E[(X_i - mu[i])(X_j - mu[j])]

The user initializes this class by providing the mean mu, and a
lightweight definition of C:

C = SS^T = SS = (M + V D V^T) (M + V D V^T)
M is diagonal (k x k)
V = is shape (k x r), typically r << k
D = is diagonal (r x r), optional (defaults to identity).

Args:

		mu: Rank n + 1 floating point tensor with shape [N1,...,Nn, k],
n >= 0. The means.

		diag_large: Optional rank n + 1 floating point tensor, shape
[N1,...,Nn, k] n >= 0. Defines the diagonal matrix M.

		v: Rank n + 1 floating point tensor, shape [N1,...,Nn, k, r]
n >= 0. Defines the matrix V.

		diag_small: Rank n + 1 floating point tensor, shape
[N1,...,Nn, k] n >= 0. Defines the diagonal matrix D. Default
is None, which means D will be the identity matrix.

		validate_args: Boolean, default False. Whether to validate input
with asserts. If validate_args is False,
and the inputs are invalid, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to give Ops created by the initializer.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.allow_nan_stats {#MultivariateNormalDiagPlusVDVT.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.batch_shape(name='batch_shape') {#MultivariateNormalDiagPlusVDVT.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.cdf(value, name='cdf') {#MultivariateNormalDiagPlusVDVT.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.dtype {#MultivariateNormalDiagPlusVDVT.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.entropy(name='entropy') {#MultivariateNormalDiagPlusVDVT.entropy}

Shanon entropy in nats.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.event_shape(name='event_shape') {#MultivariateNormalDiagPlusVDVT.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.get_batch_shape() {#MultivariateNormalDiagPlusVDVT.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.get_event_shape() {#MultivariateNormalDiagPlusVDVT.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.is_continuous {#MultivariateNormalDiagPlusVDVT.is_continuous}

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.is_reparameterized {#MultivariateNormalDiagPlusVDVT.is_reparameterized}

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.log_cdf(value, name='log_cdf') {#MultivariateNormalDiagPlusVDVT.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.log_pdf(value, name='log_pdf') {#MultivariateNormalDiagPlusVDVT.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.log_pmf(value, name='log_pmf') {#MultivariateNormalDiagPlusVDVT.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.log_prob(value, name='log_prob') {#MultivariateNormalDiagPlusVDVT.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.log_sigma_det(name='log_sigma_det') {#MultivariateNormalDiagPlusVDVT.log_sigma_det}

Log of determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.log_survival_function(value, name='log_survival_function') {#MultivariateNormalDiagPlusVDVT.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.mean(name='mean') {#MultivariateNormalDiagPlusVDVT.mean}

Mean.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.mode(name='mode') {#MultivariateNormalDiagPlusVDVT.mode}

Mode.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.mu {#MultivariateNormalDiagPlusVDVT.mu}

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.name {#MultivariateNormalDiagPlusVDVT.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#MultivariateNormalDiagPlusVDVT.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.param_static_shapes(cls, sample_shape) {#MultivariateNormalDiagPlusVDVT.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.parameters {#MultivariateNormalDiagPlusVDVT.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.pdf(value, name='pdf') {#MultivariateNormalDiagPlusVDVT.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.pmf(value, name='pmf') {#MultivariateNormalDiagPlusVDVT.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.prob(value, name='prob') {#MultivariateNormalDiagPlusVDVT.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sample(sample_shape=(), seed=None, name='sample') {#MultivariateNormalDiagPlusVDVT.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sample_n(n, seed=None, name='sample_n') {#MultivariateNormalDiagPlusVDVT.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sigma {#MultivariateNormalDiagPlusVDVT.sigma}

Dense (batch) covariance matrix, if available.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sigma_det(name='sigma_det') {#MultivariateNormalDiagPlusVDVT.sigma_det}

Determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.std(name='std') {#MultivariateNormalDiagPlusVDVT.std}

Standard deviation.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.survival_function(value, name='survival_function') {#MultivariateNormalDiagPlusVDVT.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.validate_args {#MultivariateNormalDiagPlusVDVT.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.variance(name='variance') {#MultivariateNormalDiagPlusVDVT.variance}

Variance.

class tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev {#MultivariateNormalDiagWithSoftplusStDev}

MultivariateNormalDiag with diag_stddev = softplus(diag_stddev).

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.__init__(mu, diag_stdev, validate_args=False, allow_nan_stats=True, name='MultivariateNormalDiagWithSoftplusStdDev') {#MultivariateNormalDiagWithSoftplusStDev.init}

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.allow_nan_stats {#MultivariateNormalDiagWithSoftplusStDev.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.batch_shape(name='batch_shape') {#MultivariateNormalDiagWithSoftplusStDev.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.cdf(value, name='cdf') {#MultivariateNormalDiagWithSoftplusStDev.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.dtype {#MultivariateNormalDiagWithSoftplusStDev.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.entropy(name='entropy') {#MultivariateNormalDiagWithSoftplusStDev.entropy}

Shanon entropy in nats.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.event_shape(name='event_shape') {#MultivariateNormalDiagWithSoftplusStDev.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.get_batch_shape() {#MultivariateNormalDiagWithSoftplusStDev.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.get_event_shape() {#MultivariateNormalDiagWithSoftplusStDev.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.is_continuous {#MultivariateNormalDiagWithSoftplusStDev.is_continuous}

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.is_reparameterized {#MultivariateNormalDiagWithSoftplusStDev.is_reparameterized}

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_cdf(value, name='log_cdf') {#MultivariateNormalDiagWithSoftplusStDev.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_pdf(value, name='log_pdf') {#MultivariateNormalDiagWithSoftplusStDev.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_pmf(value, name='log_pmf') {#MultivariateNormalDiagWithSoftplusStDev.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_prob(value, name='log_prob') {#MultivariateNormalDiagWithSoftplusStDev.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_sigma_det(name='log_sigma_det') {#MultivariateNormalDiagWithSoftplusStDev.log_sigma_det}

Log of determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_survival_function(value, name='log_survival_function') {#MultivariateNormalDiagWithSoftplusStDev.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.mean(name='mean') {#MultivariateNormalDiagWithSoftplusStDev.mean}

Mean.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.mode(name='mode') {#MultivariateNormalDiagWithSoftplusStDev.mode}

Mode.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.mu {#MultivariateNormalDiagWithSoftplusStDev.mu}

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.name {#MultivariateNormalDiagWithSoftplusStDev.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#MultivariateNormalDiagWithSoftplusStDev.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.param_static_shapes(cls, sample_shape) {#MultivariateNormalDiagWithSoftplusStDev.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.parameters {#MultivariateNormalDiagWithSoftplusStDev.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.pdf(value, name='pdf') {#MultivariateNormalDiagWithSoftplusStDev.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.pmf(value, name='pmf') {#MultivariateNormalDiagWithSoftplusStDev.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.prob(value, name='prob') {#MultivariateNormalDiagWithSoftplusStDev.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.sample(sample_shape=(), seed=None, name='sample') {#MultivariateNormalDiagWithSoftplusStDev.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.sample_n(n, seed=None, name='sample_n') {#MultivariateNormalDiagWithSoftplusStDev.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.sigma {#MultivariateNormalDiagWithSoftplusStDev.sigma}

Dense (batch) covariance matrix, if available.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.sigma_det(name='sigma_det') {#MultivariateNormalDiagWithSoftplusStDev.sigma_det}

Determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.std(name='std') {#MultivariateNormalDiagWithSoftplusStDev.std}

Standard deviation.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.survival_function(value, name='survival_function') {#MultivariateNormalDiagWithSoftplusStDev.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.validate_args {#MultivariateNormalDiagWithSoftplusStDev.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.variance(name='variance') {#MultivariateNormalDiagWithSoftplusStDev.variance}

Variance.

class tf.contrib.distributions.NormalWithSoftplusSigma {#NormalWithSoftplusSigma}

Normal with softplus applied to sigma.

tf.contrib.distributions.NormalWithSoftplusSigma.__init__(mu, sigma, validate_args=False, allow_nan_stats=True, name='NormalWithSoftplusSigma') {#NormalWithSoftplusSigma.init}

tf.contrib.distributions.NormalWithSoftplusSigma.allow_nan_stats {#NormalWithSoftplusSigma.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.NormalWithSoftplusSigma.batch_shape(name='batch_shape') {#NormalWithSoftplusSigma.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.NormalWithSoftplusSigma.cdf(value, name='cdf') {#NormalWithSoftplusSigma.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.NormalWithSoftplusSigma.dtype {#NormalWithSoftplusSigma.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.NormalWithSoftplusSigma.entropy(name='entropy') {#NormalWithSoftplusSigma.entropy}

Shanon entropy in nats.

tf.contrib.distributions.NormalWithSoftplusSigma.event_shape(name='event_shape') {#NormalWithSoftplusSigma.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.NormalWithSoftplusSigma.get_batch_shape() {#NormalWithSoftplusSigma.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.NormalWithSoftplusSigma.get_event_shape() {#NormalWithSoftplusSigma.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.NormalWithSoftplusSigma.is_continuous {#NormalWithSoftplusSigma.is_continuous}

tf.contrib.distributions.NormalWithSoftplusSigma.is_reparameterized {#NormalWithSoftplusSigma.is_reparameterized}

tf.contrib.distributions.NormalWithSoftplusSigma.log_cdf(value, name='log_cdf') {#NormalWithSoftplusSigma.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.NormalWithSoftplusSigma.log_pdf(value, name='log_pdf') {#NormalWithSoftplusSigma.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.NormalWithSoftplusSigma.log_pmf(value, name='log_pmf') {#NormalWithSoftplusSigma.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.NormalWithSoftplusSigma.log_prob(value, name='log_prob') {#NormalWithSoftplusSigma.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.NormalWithSoftplusSigma.log_survival_function(value, name='log_survival_function') {#NormalWithSoftplusSigma.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.NormalWithSoftplusSigma.mean(name='mean') {#NormalWithSoftplusSigma.mean}

Mean.

tf.contrib.distributions.NormalWithSoftplusSigma.mode(name='mode') {#NormalWithSoftplusSigma.mode}

Mode.

tf.contrib.distributions.NormalWithSoftplusSigma.mu {#NormalWithSoftplusSigma.mu}

Distribution parameter for the mean.

tf.contrib.distributions.NormalWithSoftplusSigma.name {#NormalWithSoftplusSigma.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.NormalWithSoftplusSigma.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#NormalWithSoftplusSigma.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.NormalWithSoftplusSigma.param_static_shapes(cls, sample_shape) {#NormalWithSoftplusSigma.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.NormalWithSoftplusSigma.parameters {#NormalWithSoftplusSigma.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.NormalWithSoftplusSigma.pdf(value, name='pdf') {#NormalWithSoftplusSigma.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.NormalWithSoftplusSigma.pmf(value, name='pmf') {#NormalWithSoftplusSigma.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.NormalWithSoftplusSigma.prob(value, name='prob') {#NormalWithSoftplusSigma.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.NormalWithSoftplusSigma.sample(sample_shape=(), seed=None, name='sample') {#NormalWithSoftplusSigma.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.NormalWithSoftplusSigma.sample_n(n, seed=None, name='sample_n') {#NormalWithSoftplusSigma.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.NormalWithSoftplusSigma.sigma {#NormalWithSoftplusSigma.sigma}

Distribution parameter for standard deviation.

tf.contrib.distributions.NormalWithSoftplusSigma.std(name='std') {#NormalWithSoftplusSigma.std}

Standard deviation.

tf.contrib.distributions.NormalWithSoftplusSigma.survival_function(value, name='survival_function') {#NormalWithSoftplusSigma.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.NormalWithSoftplusSigma.validate_args {#NormalWithSoftplusSigma.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.NormalWithSoftplusSigma.variance(name='variance') {#NormalWithSoftplusSigma.variance}

Variance.

class tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma {#StudentTWithAbsDfSoftplusSigma}

StudentT with df = floor(abs(df)) and sigma = softplus(sigma).

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.__init__(df, mu, sigma, validate_args=False, allow_nan_stats=True, name='StudentTWithAbsDfSoftplusSigma') {#StudentTWithAbsDfSoftplusSigma.init}

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.allow_nan_stats {#StudentTWithAbsDfSoftplusSigma.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.batch_shape(name='batch_shape') {#StudentTWithAbsDfSoftplusSigma.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.cdf(value, name='cdf') {#StudentTWithAbsDfSoftplusSigma.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.df {#StudentTWithAbsDfSoftplusSigma.df}

Degrees of freedom in these Student’s t distribution(s).

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.dtype {#StudentTWithAbsDfSoftplusSigma.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.entropy(name='entropy') {#StudentTWithAbsDfSoftplusSigma.entropy}

Shanon entropy in nats.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.event_shape(name='event_shape') {#StudentTWithAbsDfSoftplusSigma.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.get_batch_shape() {#StudentTWithAbsDfSoftplusSigma.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.get_event_shape() {#StudentTWithAbsDfSoftplusSigma.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.is_continuous {#StudentTWithAbsDfSoftplusSigma.is_continuous}

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.is_reparameterized {#StudentTWithAbsDfSoftplusSigma.is_reparameterized}

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_cdf(value, name='log_cdf') {#StudentTWithAbsDfSoftplusSigma.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_pdf(value, name='log_pdf') {#StudentTWithAbsDfSoftplusSigma.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_pmf(value, name='log_pmf') {#StudentTWithAbsDfSoftplusSigma.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_prob(value, name='log_prob') {#StudentTWithAbsDfSoftplusSigma.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_survival_function(value, name='log_survival_function') {#StudentTWithAbsDfSoftplusSigma.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.mean(name='mean') {#StudentTWithAbsDfSoftplusSigma.mean}

Mean.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.mode(name='mode') {#StudentTWithAbsDfSoftplusSigma.mode}

Mode.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.mu {#StudentTWithAbsDfSoftplusSigma.mu}

Locations of these Student’s t distribution(s).

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.name {#StudentTWithAbsDfSoftplusSigma.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#StudentTWithAbsDfSoftplusSigma.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.param_static_shapes(cls, sample_shape) {#StudentTWithAbsDfSoftplusSigma.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.parameters {#StudentTWithAbsDfSoftplusSigma.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.pdf(value, name='pdf') {#StudentTWithAbsDfSoftplusSigma.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.pmf(value, name='pmf') {#StudentTWithAbsDfSoftplusSigma.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.prob(value, name='prob') {#StudentTWithAbsDfSoftplusSigma.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.sample(sample_shape=(), seed=None, name='sample') {#StudentTWithAbsDfSoftplusSigma.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.sample_n(n, seed=None, name='sample_n') {#StudentTWithAbsDfSoftplusSigma.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.sigma {#StudentTWithAbsDfSoftplusSigma.sigma}

Scaling factors of these Student’s t distribution(s).

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.std(name='std') {#StudentTWithAbsDfSoftplusSigma.std}

Standard deviation.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.survival_function(value, name='survival_function') {#StudentTWithAbsDfSoftplusSigma.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.validate_args {#StudentTWithAbsDfSoftplusSigma.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.variance(name='variance') {#StudentTWithAbsDfSoftplusSigma.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.losses.log_loss.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.losses.log_loss(predictions, targets, weight=1.0, epsilon=1e-07, scope=None) {#log_loss}

Adds a Log Loss term to the training procedure.

weight acts as a coefficient for the loss. If a scalar is provided, then the
loss is simply scaled by the given value. If weight is a tensor of size
[batch_size], then the total loss for each sample of the batch is rescaled
by the corresponding element in the weight vector. If the shape of
weight matches the shape of predictions, then the loss of each
measurable element of predictions is scaled by the corresponding value of
weight.

Args:

		predictions: The predicted outputs.

		targets: The ground truth output tensor, same dimensions as ‘predictions’.

		weight: Coefficients for the loss a scalar, a tensor of shape
[batch_size] or a tensor whose shape matches predictions.

		epsilon: A small increment to add to avoid taking a log of zero.

		scope: The scope for the operations performed in computing the loss.

Returns:

A scalar Tensor representing the loss value.

Raises:

		ValueError: If the shape of predictions doesn’t match that of targets or
if the shape of weight is invalid.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.framework.deprecated.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.deprecated(date, instructions) {#deprecated}

Decorator for marking functions or methods deprecated.

This decorator logs a deprecation warning whenever the decorated function is
called. It has the following format:

 (from) is deprecated and will be removed after .
Instructions for updating:

 will include the class name if it is a method.

It also edits the docstring of the function: ‘ (deprecated)’ is appended
to the first line of the docstring and a deprecation notice is prepended
to the rest of the docstring.

Args:

		date: String. The date the function is scheduled to be removed. Must be
ISO 8601 (YYYY-MM-DD).

		instructions: String. Instructions on how to update code using the
deprecated function.

Returns:

Decorated function or method.

Raises:

		ValueError: If date is not in ISO 8601 format, or instructions are empty.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.errors.AbortedError.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 The operation was aborted, typically due to a concurrent action.

For example, running a
queue.enqueue()
operation may raise AbortedError if a
queue.close() operation
previously ran.

tf.errors.AbortedError.__init__(node_def, op, message) {#AbortedError.init}

Creates an AbortedError.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.learn.monitors.EveryN.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Base class for monitors that execute callbacks every N steps.

This class adds three new callbacks:

		every_n_step_begin

		every_n_step_end

		every_n_post_step

The callbacks are executed every n steps, or optionally every step for the
first m steps, where m and n can both be user-specified.

When extending this class, note that if you wish to use any of the
BaseMonitor callbacks, you must call their respective super implementation:

def step_begin(self, step):
super(ExampleMonitor, self).step_begin(step)
return []

Failing to call the super implementation will cause unpredictible behavior.

The every_n_post_step() callback is also called after the last step if it
was not already called through the regular conditions. Note that
every_n_step_begin() and every_n_step_end() do not receive that special
treatment.

tf.contrib.learn.monitors.EveryN.__init__(every_n_steps=100, first_n_steps=1) {#EveryN.init}

Initializes an EveryN monitor.

Args:

		every_n_steps: int, the number of steps to allow between callbacks.

		first_n_steps: int, specifying the number of initial steps during
which the callbacks will always be executed, regardless of the value
of every_n_steps. Note that this value is relative to the global step

tf.contrib.learn.monitors.EveryN.begin(max_steps=None) {#EveryN.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.EveryN.end(session=None) {#EveryN.end}

tf.contrib.learn.monitors.EveryN.epoch_begin(epoch) {#EveryN.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.EveryN.epoch_end(epoch) {#EveryN.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.EveryN.every_n_post_step(step, session) {#EveryN.every_n_post_step}

Callback after a step is finished or end() is called.

Args:

		step: int, the current value of the global step.

		session: Session object.

tf.contrib.learn.monitors.EveryN.every_n_step_begin(step) {#EveryN.every_n_step_begin}

Callback before every n’th step begins.

Args:

		step: int, the current value of the global step.

Returns:

A list of tensors that will be evaluated at this step.

tf.contrib.learn.monitors.EveryN.every_n_step_end(step, outputs) {#EveryN.every_n_step_end}

Callback after every n’th step finished.

This callback provides access to the tensors/ops evaluated at this step,
including the additional tensors for which evaluation was requested in
step_begin.

In addition, the callback has the opportunity to stop training by returning
True. This is useful for early stopping, for example.

Args:

		step: int, the current value of the global step.

		outputs: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool. True if training should stop.

tf.contrib.learn.monitors.EveryN.post_step(step, session) {#EveryN.post_step}

tf.contrib.learn.monitors.EveryN.run_on_all_workers {#EveryN.run_on_all_workers}

tf.contrib.learn.monitors.EveryN.set_estimator(estimator) {#EveryN.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.EveryN.step_begin(step) {#EveryN.step_begin}

Overrides BaseMonitor.step_begin.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

Returns:

A list, the result of every_n_step_begin, if that was called this step,
or an empty list otherwise.

Raises:

		ValueError: if called more than once during a step.

tf.contrib.learn.monitors.EveryN.step_end(step, output) {#EveryN.step_end}

Overrides BaseMonitor.step_end.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool, the result of every_n_step_end, if that was called this step,
or False otherwise.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.as_string.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.as_string(input, precision=None, scientific=None, shortest=None, width=None, fill=None, name=None) {#as_string}

Converts each entry in the given tensor to strings. Supports many numeric

types and boolean.

Args:

		input: A Tensor. Must be one of the following types: int32, int64, complex64, float32, float64, bool, int8.

		precision: An optional int. Defaults to -1.
The post-decimal precision to use for floating point numbers.
Only used if precision > -1.

		scientific: An optional bool. Defaults to False.
Use scientific notation for floating point numbers.

		shortest: An optional bool. Defaults to False.
Use shortest representation (either scientific or standard) for
floating point numbers.

		width: An optional int. Defaults to -1.
Pad pre-decimal numbers to this width.
Applies to both floating point and integer numbers.
Only used if width > -1.

		fill: An optional string. Defaults to "".
The value to pad if width > -1. If empty, pads with spaces.
Another typical value is ‘0’. String cannot be longer than 1 character.

		name: A name for the operation (optional).

Returns:

A Tensor of type string.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.framework.assign_from_values_fn.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.assign_from_values_fn(var_names_to_values) {#assign_from_values_fn}

Returns a function that assigns specific variables from the given values.

This function provides a mechanism for performing assignment of variables
to values in a way that does not fill the graph with large assignment values.

Args:

		var_names_to_values: A map from variable names to values.

Returns:

A function that takes a single argument, a tf.Session, that applies the
assignment operation.

Raises:

		ValueError: if any of the given variable names were not found.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.sparse_segment_mean.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_segment_mean(data, indices, segment_ids, name=None) {#sparse_segment_mean}

Computes the mean along sparse segments of a tensor.

Read the section on
Segmentation for an explanation
of segments.

Like SegmentMean, but segment_ids can have rank less than data‘s first
dimension, selecting a subset of dimension 0, specified by indices.

Args:

		data: A Tensor. Must be one of the following types: float32, float64.

		indices: A Tensor. Must be one of the following types: int32, int64.
A 1-D tensor. Has same rank as segment_ids.

		segment_ids: A Tensor of type int32.
A 1-D tensor. Values should be sorted and can be repeated.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.
Has same shape as data, except for dimension 0 which
has size k, the number of segments.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.distributions.Normal.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 The scalar Normal distribution with mean and stddev parameters mu, sigma.

Mathematical details

The PDF of this distribution is:

f(x) = sqrt(1/(2*pi*sigma^2)) exp(-(x-mu)^2/(2*sigma^2))

Examples

Examples of initialization of one or a batch of distributions.

Define a single scalar Normal distribution.
dist = tf.contrib.distributions.Normal(mu=0., sigma=3.)

Evaluate the cdf at 1, returning a scalar.
dist.cdf(1.)

Define a batch of two scalar valued Normals.
The first has mean 1 and standard deviation 11, the second 2 and 22.
dist = tf.contrib.distributions.Normal(mu=[1, 2.], sigma=[11, 22.])

Evaluate the pdf of the first distribution on 0, and the second on 1.5,
returning a length two tensor.
dist.pdf([0, 1.5])

Get 3 samples, returning a 3 x 2 tensor.
dist.sample([3])

Arguments are broadcast when possible.

Define a batch of two scalar valued Normals.
Both have mean 1, but different standard deviations.
dist = tf.contrib.distributions.Normal(mu=1., sigma=[11, 22.])

Evaluate the pdf of both distributions on the same point, 3.0,
returning a length 2 tensor.
dist.pdf(3.0)

tf.contrib.distributions.Normal.__init__(mu, sigma, validate_args=False, allow_nan_stats=True, name='Normal') {#Normal.init}

Construct Normal distributions with mean and stddev mu and sigma.

The parameters mu and sigma must be shaped in a way that supports
broadcasting (e.g. mu + sigma is a valid operation).

Args:

		mu: Floating point tensor, the means of the distribution(s).

		sigma: Floating point tensor, the stddevs of the distribution(s).
sigma must contain only positive values.

		validate_args: Boolean, default False. Whether to assert that
sigma > 0. If validate_args is False, correct output is not
guaranteed when input is invalid.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to give Ops created by the initializer.

Raises:

		TypeError: if mu and sigma are different dtypes.

tf.contrib.distributions.Normal.allow_nan_stats {#Normal.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Normal.batch_shape(name='batch_shape') {#Normal.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Normal.cdf(value, name='cdf') {#Normal.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Normal.dtype {#Normal.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Normal.entropy(name='entropy') {#Normal.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Normal.event_shape(name='event_shape') {#Normal.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Normal.get_batch_shape() {#Normal.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Normal.get_event_shape() {#Normal.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Normal.is_continuous {#Normal.is_continuous}

tf.contrib.distributions.Normal.is_reparameterized {#Normal.is_reparameterized}

tf.contrib.distributions.Normal.log_cdf(value, name='log_cdf') {#Normal.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Normal.log_pdf(value, name='log_pdf') {#Normal.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Normal.log_pmf(value, name='log_pmf') {#Normal.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Normal.log_prob(value, name='log_prob') {#Normal.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Normal.log_survival_function(value, name='log_survival_function') {#Normal.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Normal.mean(name='mean') {#Normal.mean}

Mean.

tf.contrib.distributions.Normal.mode(name='mode') {#Normal.mode}

Mode.

tf.contrib.distributions.Normal.mu {#Normal.mu}

Distribution parameter for the mean.

tf.contrib.distributions.Normal.name {#Normal.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Normal.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Normal.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Normal.param_static_shapes(cls, sample_shape) {#Normal.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Normal.parameters {#Normal.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Normal.pdf(value, name='pdf') {#Normal.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Normal.pmf(value, name='pmf') {#Normal.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Normal.prob(value, name='prob') {#Normal.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Normal.sample(sample_shape=(), seed=None, name='sample') {#Normal.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Normal.sample_n(n, seed=None, name='sample_n') {#Normal.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Normal.sigma {#Normal.sigma}

Distribution parameter for standard deviation.

tf.contrib.distributions.Normal.std(name='std') {#Normal.std}

Standard deviation.

tf.contrib.distributions.Normal.survival_function(value, name='survival_function') {#Normal.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Normal.validate_args {#Normal.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Normal.variance(name='variance') {#Normal.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.parse_example.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.parse_example(serialized, features, name=None, example_names=None) {#parse_example}

Parses Example protos into a dict of tensors.

Parses a number of serialized [Example]
(https://www.tensorflow.org/code/tensorflow/core/example/example.proto)
protos given in serialized.

example_names may contain descriptive names for the corresponding serialized
protos. These may be useful for debugging purposes, but they have no effect on
the output. If not None, example_names must be the same length as serialized.

This op parses serialized examples into a dictionary mapping keys to Tensor
and SparseTensor objects. features is a dict from keys to VarLenFeature
and FixedLenFeature objects. Each VarLenFeature is mapped to a
SparseTensor, and each FixedLenFeature is mapped to a Tensor.

Each VarLenFeature maps to a SparseTensor of the specified type
representing a ragged matrix. Its indices are [batch, index] where batch
is the batch entry the value is from in serialized, and index is the
value’s index in the list of values associated with that feature and example.

Each FixedLenFeature df maps to a Tensor of the specified type (or
tf.float32 if not specified) and shape (serialized.size(),) + df.shape.

FixedLenFeature entries with a default_value are optional. With no default
value, we will fail if that Feature is missing from any example in
serialized.

Examples:

For example, if one expects a tf.float32 sparse feature ft and three
serialized Examples are provided:

serialized = [
 features
 { feature { key: "ft" value { float_list { value: [1.0, 2.0] } } } },
 features
 { feature []},
 features
 { feature { key: "ft" value { float_list { value: [3.0] } } }
]

then the output will look like:

{"ft": SparseTensor(indices=[[0, 0], [0, 1], [2, 0]],
 values=[1.0, 2.0, 3.0],
 shape=(3, 2)) }

Given two Example input protos in serialized:

[
 features {
 feature { key: "kw" value { bytes_list { value: ["knit", "big"] } } }
 feature { key: "gps" value { float_list { value: [] } } }
 },
 features {
 feature { key: "kw" value { bytes_list { value: ["emmy"] } } }
 feature { key: "dank" value { int64_list { value: [42] } } }
 feature { key: "gps" value { } }
 }
]

And arguments

example_names: ["input0", "input1"],
features: {
 "kw": VarLenFeature(tf.string),
 "dank": VarLenFeature(tf.int64),
 "gps": VarLenFeature(tf.float32),
}

Then the output is a dictionary:

{
 "kw": SparseTensor(
 indices=[[0, 0], [0, 1], [1, 0]],
 values=["knit", "big", "emmy"]
 shape=[2, 2]),
 "dank": SparseTensor(
 indices=[[1, 0]],
 values=[42],
 shape=[2, 1]),
 "gps": SparseTensor(
 indices=[],
 values=[],
 shape=[2, 0]),
}

For dense results in two serialized Examples:

[
 features {
 feature { key: "age" value { int64_list { value: [0] } } }
 feature { key: "gender" value { bytes_list { value: ["f"] } } }
 },
 features {
 feature { key: "age" value { int64_list { value: [] } } }
 feature { key: "gender" value { bytes_list { value: ["f"] } } }
 }
]

We can use arguments:

example_names: ["input0", "input1"],
features: {
 "age": FixedLenFeature([], dtype=tf.int64, default_value=-1),
 "gender": FixedLenFeature([], dtype=tf.string),
}

And the expected output is:

{
 "age": [[0], [-1]],
 "gender": [["f"], ["f"]],
}

Args:

		serialized: A vector (1-D Tensor) of strings, a batch of binary
serialized Example protos.

		features: A dict mapping feature keys to FixedLenFeature or
VarLenFeature values.

		name: A name for this operation (optional).

		example_names: A vector (1-D Tensor) of strings (optional), the names of
the serialized protos in the batch.

Returns:

A dict mapping feature keys to Tensor and SparseTensor values.

Raises:

		ValueError: if any feature is invalid.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.logical_or.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.logical_or(x, y, name=None) {#logical_or}

Returns the truth value of x OR y element-wise.

NOTE: LogicalOr supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor of type bool.

		y: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.graph_editor.assign_renamed_collections_handler.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.assign_renamed_collections_handler(info, elem, elem_) {#assign_renamed_collections_handler}

Add the transformed elem to the (renamed) collections of elem.

Args:

		info: Transform._Info instance.

		elem: the original element (tf.Tensor or tf.Operation)

		elem_: the transformed element

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.graph_editor.reroute_a2b_ts.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.reroute_a2b_ts(ts0, ts1, can_modify=None, cannot_modify=None) {#reroute_a2b_ts}

For each tensor’s pair, replace the end of t1 by the end of t0.

B0 B1 B0 B1
| | => |/
A0 A1 A0 A1

The end of the tensors in ts1 are left dangling.

Args:

		ts0: an object convertible to a list of tf.Tensor.

		ts1: an object convertible to a list of tf.Tensor.

		can_modify: iterable of operations which can be modified. Any operation
outside within_ops will be left untouched by this function.

		cannot_modify: iterable of operations which cannot be modified. Any
operation within cannot_modify will be left untouched by this function.

Returns:

The number of individual modifications made by the function.

Raises:

		TypeError: if ts0 or ts1 cannot be converted to a list of tf.Tensor.

		TypeError: if can_modify or cannot_modify is not None and cannot be
converted to a list of tf.Operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.random_crop.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.random_crop(value, size, seed=None, name=None) {#random_crop}

Randomly crops a tensor to a given size.

Slices a shape size portion out of value at a uniformly chosen offset.
Requires value.shape >= size.

If a dimension should not be cropped, pass the full size of that dimension.
For example, RGB images can be cropped with
size = [crop_height, crop_width, 3].

Args:

		value: Input tensor to crop.

		size: 1-D tensor with size the rank of value.

		seed: Python integer. Used to create a random seed. See
set_random_seed
for behavior.

		name: A name for this operation (optional).

Returns:

A cropped tensor of the same rank as value and shape size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 StudentTWithAbsDfSoftplusSigmaTensor is a StochasticTensor backed by the distribution StudentTWithAbsDfSoftplusSigma.

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#StudentTWithAbsDfSoftplusSigmaTensor.init}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.clone(name=None, **dist_args) {#StudentTWithAbsDfSoftplusSigmaTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.distribution {#StudentTWithAbsDfSoftplusSigmaTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.dtype {#StudentTWithAbsDfSoftplusSigmaTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.entropy(name='entropy') {#StudentTWithAbsDfSoftplusSigmaTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.graph {#StudentTWithAbsDfSoftplusSigmaTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.input_dict {#StudentTWithAbsDfSoftplusSigmaTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.loss(final_loss, name='Loss') {#StudentTWithAbsDfSoftplusSigmaTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.mean(name='mean') {#StudentTWithAbsDfSoftplusSigmaTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.name {#StudentTWithAbsDfSoftplusSigmaTensor.name}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.value(name='value') {#StudentTWithAbsDfSoftplusSigmaTensor.value}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.value_type {#StudentTWithAbsDfSoftplusSigmaTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.distributions.Laplace.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 The Laplace distribution with location and scale > 0 parameters.

Mathematical details

The PDF of this distribution is:

f(x | mu, b, b > 0) = 0.5 / b exp(-|x - mu| / b)

Note that the Laplace distribution can be thought of two exponential
distributions spliced together “back-to-back.”

tf.contrib.distributions.Laplace.__init__(loc, scale, validate_args=False, allow_nan_stats=True, name='Laplace') {#Laplace.init}

Construct Laplace distribution with parameters loc and scale.

The parameters loc and scale must be shaped in a way that supports
broadcasting (e.g., loc / scale is a valid operation).

Args:

		loc: Floating point tensor which characterizes the location (center)
of the distribution.

		scale: Positive floating point tensor which characterizes the spread of
the distribution.

		validate_args: Boolean, default False. Whether to validate input
with asserts. If validate_args is False, and the inputs are
invalid, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to give Ops created by the initializer.

Raises:

		TypeError: if loc and scale are of different dtype.

tf.contrib.distributions.Laplace.allow_nan_stats {#Laplace.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Laplace.batch_shape(name='batch_shape') {#Laplace.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Laplace.cdf(value, name='cdf') {#Laplace.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Laplace.dtype {#Laplace.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Laplace.entropy(name='entropy') {#Laplace.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Laplace.event_shape(name='event_shape') {#Laplace.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Laplace.get_batch_shape() {#Laplace.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Laplace.get_event_shape() {#Laplace.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Laplace.is_continuous {#Laplace.is_continuous}

tf.contrib.distributions.Laplace.is_reparameterized {#Laplace.is_reparameterized}

tf.contrib.distributions.Laplace.loc {#Laplace.loc}

Distribution parameter for the location.

tf.contrib.distributions.Laplace.log_cdf(value, name='log_cdf') {#Laplace.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Laplace.log_pdf(value, name='log_pdf') {#Laplace.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Laplace.log_pmf(value, name='log_pmf') {#Laplace.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Laplace.log_prob(value, name='log_prob') {#Laplace.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Laplace.log_survival_function(value, name='log_survival_function') {#Laplace.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Laplace.mean(name='mean') {#Laplace.mean}

Mean.

tf.contrib.distributions.Laplace.mode(name='mode') {#Laplace.mode}

Mode.

tf.contrib.distributions.Laplace.name {#Laplace.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Laplace.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Laplace.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Laplace.param_static_shapes(cls, sample_shape) {#Laplace.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Laplace.parameters {#Laplace.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Laplace.pdf(value, name='pdf') {#Laplace.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Laplace.pmf(value, name='pmf') {#Laplace.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Laplace.prob(value, name='prob') {#Laplace.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Laplace.sample(sample_shape=(), seed=None, name='sample') {#Laplace.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Laplace.sample_n(n, seed=None, name='sample_n') {#Laplace.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Laplace.scale {#Laplace.scale}

Distribution parameter for scale.

tf.contrib.distributions.Laplace.std(name='std') {#Laplace.std}

Standard deviation.

tf.contrib.distributions.Laplace.survival_function(value, name='survival_function') {#Laplace.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Laplace.validate_args {#Laplace.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Laplace.variance(name='variance') {#Laplace.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.layers.convolution2d_transpose.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.convolution2d_transpose(*args, **kwargs) {#convolution2d_transpose}

Adds a convolution2d_transpose with an optional batch normalization layer.

The function creates a variable called weights, representing the
kernel, that is convolved with the input. If batch_norm_params is None, a
second variable called ‘biases’ is added to the result of the operation.

Args:

		inputs: a tensor of size [batch_size, height, width, channels].

		num_outputs: integer, the number of output filters.

		kernel_size: a list of length 2 holding the [kernel_height, kernel_width] of
of the filters. Can be an int if both values are the same.

		stride: a list of length 2: [stride_height, stride_width].
Can be an int if both strides are the same. Note that presently
both strides must have the same value.

		padding: one of ‘VALID’ or ‘SAME’.

		activation_fn: activation function, set to None to skip it and maintain
a linear activation.

		normalizer_fn: normalization function to use instead of biases. If
normalizer_fn is provided then biases_initializer and
biases_regularizer are ignored and biases are not created nor added.
default set to None for no normalizer function

		normalizer_params: normalization function parameters.

		weights_initializer: An initializer for the weights.

		weights_regularizer: Optional regularizer for the weights.

		biases_initializer: An initializer for the biases. If None skip biases.

		biases_regularizer: Optional regularizer for the biases.

		reuse: whether or not the layer and its variables should be reused. To be
able to reuse the layer scope must be given.

		variables_collections: optional list of collections for all the variables or
a dictionay containing a different list of collection per variable.

		outputs_collections: collection to add the outputs.

		trainable: whether or not the variables should be trainable or not.

		scope: Optional scope for variable_scope.

Returns:

a tensor representing the output of the operation.

Raises:

		ValueError: if ‘kernel_size’ is not a list of length 2.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.losses.sum_of_squares.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.losses.sum_of_squares(*args, **kwargs) {#sum_of_squares}

Adds a Sum-of-Squares loss to the training procedure. (deprecated)

THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-01.
Instructions for updating:
Use mean_squared_error.

weight acts as a coefficient for the loss. If a scalar is provided, then the
loss is simply scaled by the given value. If weight is a tensor of size
[batch_size], then the total loss for each sample of the batch is rescaled
by the corresponding element in the weight vector. If the shape of
weight matches the shape of predictions, then the loss of each
measurable element of predictions is scaled by the corresponding value of
weight.

Args:
predictions: The predicted outputs.
targets: The ground truth output tensor, same dimensions as ‘predictions’.
weight: Coefficients for the loss a scalar, a tensor of shape
[batch_size] or a tensor whose shape matches predictions.
scope: The scope for the operations performed in computing the loss.

Returns:
A scalar Tensor representing the loss value.

Raises:
ValueError: If the shape of predictions doesn’t match that of targets or
if the shape of weight is invalid.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.DeviceSpec.from_string.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.DeviceSpec.from_string(spec) {#DeviceSpec.from_string}

Construct a DeviceSpec from a string.

Args:

		spec: a string of the form
/job:/replica:/task:/device:CPU:
or
/job:/replica:/task:/device:GPU:
as cpu and gpu are mutually exclusive.
All entries are optional.

Returns:

A DeviceSpec.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.pow.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.pow(x, y, name=None) {#pow}

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for
corresponding elements in x and y. For example:

tensor 'x' is [[2, 2], [3, 3]]
tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]

Args:

		x: A Tensor of type float32, float64, int32, int64, complex64,
or complex128.

		y: A Tensor of type float32, float64, int32, int64, complex64,
or complex128.

		name: A name for the operation (optional).

Returns:

A Tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.matrix_diag_part.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.matrix_diag_part(input, name=None) {#matrix_diag_part}

Returns the batched diagonal part of a batched tensor.

This operation returns a tensor with the diagonal part
of the batched input. The diagonal part is computed as follows:

Assume input has k dimensions [I, J, K, ..., N, N], then the output is a
tensor of rank k - 1 with dimensions [I, J, K, ..., N] where:

diagonal[i, j, k, ..., n] = input[i, j, k, ..., n, n].

The input must be at least a matrix.

For example:

'input' is [[[1, 0, 0, 0]
 [0, 2, 0, 0]
 [0, 0, 3, 0]
 [0, 0, 0, 4]],
 [[5, 0, 0, 0]
 [0, 6, 0, 0]
 [0, 0, 7, 0]
 [0, 0, 0, 8]]]

and input.shape = (2, 4, 4)

tf.matrix_diag_part(input) ==> [[1, 2, 3, 4], [5, 6, 7, 8]]

which has shape (2, 4)

Args:

		input: A Tensor.
Rank k tensor where k >= 2 and the last two dimensions are equal.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
The extracted diagonal(s) having shape
diagonal.shape = input.shape[:-1].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.nn.in_top_k.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.in_top_k(predictions, targets, k, name=None) {#in_top_k}

Says whether the targets are in the top K predictions.

This outputs a batch_size bool array, an entry out[i] is true if the
prediction for the target class is among the top k predictions among
all predictions for example i. Note that the behavior of InTopK differs
from the TopK op in its handling of ties; if multiple classes have the
same prediction value and straddle the top-k boundary, all of those
classes are considered to be in the top k.

More formally, let

\(predictions_i\) be the predictions for all classes for example i,
\(targets_i\) be the target class for example i,
\(out_i\) be the output for example i,

$$out_i = predictions_{i, targets_i} \in TopKIncludingTies(predictions_i)$$

Args:

		predictions: A Tensor of type float32.
A batch_size x classes tensor.

		targets: A Tensor. Must be one of the following types: int32, int64.
A batch_size vector of class ids.

		k: An int. Number of top elements to look at for computing precision.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool. Computed Precision at k as a bool Tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/contrib.crf.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

CRF (contrib)

[TOC]

Linear-chain CRF layer.

This package provides functions for building a linear-chain CRF layer.

tf.contrib.crf.crf_sequence_score(inputs, tag_indices, sequence_lengths, transition_params) {#crf_sequence_score}

Computes the unnormalized score for a tag sequence.

Args:

		inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials
to use as input to the CRF layer.

		tag_indices: A [batch_size, max_seq_len] matrix of tag indices for which we
compute the unnormalized score.

		sequence_lengths: A [batch_size] vector of true sequence lengths.

		transition_params: A [num_tags, num_tags] transition matrix.

Returns:

		sequence_scores: A [batch_size] vector of unnormalized sequence scores.

tf.contrib.crf.crf_log_norm(inputs, sequence_lengths, transition_params) {#crf_log_norm}

Computes the normalization for a CRF.

Args:

		inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials
to use as input to the CRF layer.

		sequence_lengths: A [batch_size] vector of true sequence lengths.

		transition_params: A [num_tags, num_tags] transition matrix.

Returns:

		log_norm: A [batch_size] vector of normalizers for a CRF.

tf.contrib.crf.crf_log_likelihood(inputs, tag_indices, sequence_lengths, transition_params=None) {#crf_log_likelihood}

Computes the log-likehood of tag sequences in a CRF.

Args:

		inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials
to use as input to the CRF layer.

		tag_indices: A [batch_size, max_seq_len] matrix of tag indices for which we
compute the log-likehood.

		sequence_lengths: A [batch_size] vector of true sequence lengths.

		transition_params: A [num_tags, num_tags] transition matrix, if available.

Returns:

		log_likelihood: A scalar containing the log-likelihood of the given sequence
of tag indices.

		transition_params: A [num_tags, num_tags] transition matrix. This is either
provided by the caller or created in this function.

tf.contrib.crf.crf_unary_score(tag_indices, sequence_lengths, inputs) {#crf_unary_score}

Computes the unary scores of tag sequences.

Args:

		tag_indices: A [batch_size, max_seq_len] matrix of tag indices.

		sequence_lengths: A [batch_size] vector of true sequence lengths.

		inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials.

Returns:

		unary_scores: A [batch_size] vector of unary scores.

tf.contrib.crf.crf_binary_score(tag_indices, sequence_lengths, transition_params) {#crf_binary_score}

Computes the binary scores of tag sequences.

Args:

		tag_indices: A [batch_size, max_seq_len] matrix of tag indices.

		sequence_lengths: A [batch_size] vector of true sequence lengths.

		transition_params: A [num_tags, num_tags] matrix of binary potentials.

Returns:

		binary_scores: A [batch_size] vector of binary scores.

class tf.contrib.crf.CrfForwardRnnCell {#CrfForwardRnnCell}

Computes the alpha values in a linear-chain CRF.

See http://www.cs.columbia.edu/~mcollins/fb.pdf for reference.

tf.contrib.crf.CrfForwardRnnCell.__call__(inputs, state, scope=None) {#CrfForwardRnnCell.call}

Build the CrfForwardRnnCell.

Args:

		inputs: A [batch_size, num_tags] matrix of unary potentials.

		state: A [batch_size, num_tags] matrix containing the previous alpha
values.

		scope: Unused variable scope of this cell.

Returns:

new_alphas, new_alphas: A pair of [batch_size, num_tags] matrices
values containing the new alpha values.

tf.contrib.crf.CrfForwardRnnCell.__init__(transition_params) {#CrfForwardRnnCell.init}

Initialize the CrfForwardRnnCell.

Args:

		transition_params: A [num_tags, num_tags] matrix of binary potentials.
This matrix is expanded into a [1, num_tags, num_tags] in preparation
for the broadcast summation occurring within the cell.

tf.contrib.crf.CrfForwardRnnCell.output_size {#CrfForwardRnnCell.output_size}

tf.contrib.crf.CrfForwardRnnCell.state_size {#CrfForwardRnnCell.state_size}

tf.contrib.crf.CrfForwardRnnCell.zero_state(batch_size, dtype) {#CrfForwardRnnCell.zero_state}

Return zero-filled state tensor(s).

Args:

		batch_size: int, float, or unit Tensor representing the batch size.

		dtype: the data type to use for the state.

Returns:

If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.

tf.contrib.crf.viterbi_decode(score, transition_params) {#viterbi_decode}

Decode the highest scoring sequence of tags outside of TensorFlow.

This should only be used at test time.

Args:

		score: A [seq_len, num_tags] matrix of unary potentials.

		transition_params: A [num_tags, num_tags] matrix of binary potentials.

Returns:

		viterbi: A [seq_len] list of integers containing the highest scoring tag
indicies.

		viterbi_score: A float containing the score for the viterbi sequence.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/check_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Asserts and boolean checks.

[TOC]

Asserts and Boolean Checks

tf.assert_negative(x, data=None, summarize=None, message=None, name=None) {#assert_negative}

Assert the condition x < 0 holds element-wise.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_negative(x)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_negative(x)], x)

Negative means, for every element x[i] of x, we have x[i] < 0.
If x is empty this is trivially satisfied.

Args:

		x: Numeric Tensor.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional). Defaults to “assert_negative”.

Returns:

Op raising InvalidArgumentError unless x is all negative.

tf.assert_positive(x, data=None, summarize=None, message=None, name=None) {#assert_positive}

Assert the condition x > 0 holds element-wise.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_positive(x)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_positive(x)], x)

Positive means, for every element x[i] of x, we have x[i] > 0.
If x is empty this is trivially satisfied.

Args:

		x: Numeric Tensor.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional). Defaults to “assert_positive”.

Returns:

Op raising InvalidArgumentError unless x is all positive.

tf.assert_proper_iterable(values) {#assert_proper_iterable}

Static assert that values is a “proper” iterable.

Ops that expect iterables of Tensor can call this to validate input.
Useful since Tensor, ndarray, byte/text type are all iterables themselves.

Args:

		values: Object to be checked.

Raises:

		TypeError: If values is not iterable or is one of
Tensor, SparseTensor, np.array, tf.compat.bytes_or_text_types.

tf.assert_non_negative(x, data=None, summarize=None, message=None, name=None) {#assert_non_negative}

Assert the condition x >= 0 holds element-wise.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_non_negative(x)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_non_negative(x)], x)

Non-negative means, for every element x[i] of x, we have x[i] >= 0.
If x is empty this is trivially satisfied.

Args:

		x: Numeric Tensor.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional).
Defaults to “assert_non_negative”.

Returns:

Op raising InvalidArgumentError unless x is all non-negative.

tf.assert_non_positive(x, data=None, summarize=None, message=None, name=None) {#assert_non_positive}

Assert the condition x <= 0 holds element-wise.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_non_positive(x)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_non_positive(x)], x)

Non-positive means, for every element x[i] of x, we have x[i] <= 0.
If x is empty this is trivially satisfied.

Args:

		x: Numeric Tensor.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional).
Defaults to “assert_non_positive”.

Returns:

Op raising InvalidArgumentError unless x is all non-positive.

tf.assert_equal(x, y, data=None, summarize=None, message=None, name=None) {#assert_equal}

Assert the condition x == y holds element-wise.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_equal(x, y)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_equal(x, y)], x)

This condition holds if for every pair of (possibly broadcast) elements
x[i], y[i], we have x[i] == y[i].
If both x and y are empty, this is trivially satisfied.

Args:

		x: Numeric Tensor.

		y: Numeric Tensor, same dtype as and broadcastable to x.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x, y.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional). Defaults to “assert_equal”.

Returns:

Op that raises InvalidArgumentError if x == y is False.

tf.assert_integer(x, message=None, name=None) {#assert_integer}

Assert that x is of integer dtype.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_integer(x)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_integer(x)], x)

Args:

		x: Tensor whose basetype is integer and is not quantized.

		message: A string to prefix to the default message.

		name: A name for this operation (optional). Defaults to “assert_integer”.

Raises:

		TypeError: If x.dtype is anything other than non-quantized integer.

Returns:

A no_op that does nothing. Type can be determined statically.

tf.assert_less(x, y, data=None, summarize=None, message=None, name=None) {#assert_less}

Assert the condition x < y holds element-wise.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_less(x, y)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_less(x, y)], x)

This condition holds if for every pair of (possibly broadcast) elements
x[i], y[i], we have x[i] < y[i].
If both x and y are empty, this is trivially satisfied.

Args:

		x: Numeric Tensor.

		y: Numeric Tensor, same dtype as and broadcastable to x.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x, y.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional). Defaults to “assert_less”.

Returns:

Op that raises InvalidArgumentError if x < y is False.

tf.assert_less_equal(x, y, data=None, summarize=None, message=None, name=None) {#assert_less_equal}

Assert the condition x <= y holds element-wise.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_less_equal(x, y)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_less_equal(x, y)], x)

This condition holds if for every pair of (possibly broadcast) elements
x[i], y[i], we have x[i] <= y[i].
If both x and y are empty, this is trivially satisfied.

Args:

		x: Numeric Tensor.

		y: Numeric Tensor, same dtype as and broadcastable to x.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x, y.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional). Defaults to “assert_less_equal”

Returns:

Op that raises InvalidArgumentError if x <= y is False.

tf.assert_greater(x, y, data=None, summarize=None, message=None, name=None) {#assert_greater}

Assert the condition x > y holds element-wise.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_greater(x, y)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_greater(x, y)], x)

This condition holds if for every pair of (possibly broadcast) elements
x[i], y[i], we have x[i] > y[i].
If both x and y are empty, this is trivially satisfied.

Args:

		x: Numeric Tensor.

		y: Numeric Tensor, same dtype as and broadcastable to x.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x, y.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional). Defaults to “assert_greater”.

Returns:

Op that raises InvalidArgumentError if x > y is False.

tf.assert_greater_equal(x, y, data=None, summarize=None, message=None, name=None) {#assert_greater_equal}

Assert the condition x >= y holds element-wise.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_greater_equal(x, y)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_greater_equal(x, y)], x)

This condition holds if for every pair of (possibly broadcast) elements
x[i], y[i], we have x[i] >= y[i].
If both x and y are empty, this is trivially satisfied.

Args:

		x: Numeric Tensor.

		y: Numeric Tensor, same dtype as and broadcastable to x.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x, y.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional). Defaults to
“assert_greater_equal”

Returns:

Op that raises InvalidArgumentError if x >= y is False.

tf.assert_rank(x, rank, data=None, summarize=None, message=None, name=None) {#assert_rank}

Assert x has rank equal to rank.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_rank(x, 2)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_rank(x, 2)], x)

Args:

		x: Numeric Tensor.

		rank: Scalar integer Tensor.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional). Defaults to “assert_rank”.

Returns:

Op raising InvalidArgumentError unless x has specified rank.
If static checks determine x has correct rank, a no_op is returned.

Raises:

		ValueError: If static checks determine x has wrong rank.

tf.assert_rank_at_least(x, rank, data=None, summarize=None, message=None, name=None) {#assert_rank_at_least}

Assert x has rank equal to rank or higher.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_rank_at_least(x, 2)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_rank_at_least(x, 2)], x)

Args:

		x: Numeric Tensor.

		rank: Scalar Tensor.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional).
Defaults to “assert_rank_at_least”.

Returns:

Op raising InvalidArgumentError unless x has specified rank or higher.
If static checks determine x has correct rank, a no_op is returned.

Raises:

		ValueError: If static checks determine x has wrong rank.

tf.assert_type(tensor, tf_type, message=None, name=None) {#assert_type}

Statically asserts that the given Tensor is of the specified type.

Args:

		tensor: A tensorflow Tensor.

		tf_type: A tensorflow type (dtypes.float32, tf.int64, dtypes.bool, etc).

		message: A string to prefix to the default message.

		name: A name to give this Op. Defaults to “assert_type”

Raises:

		TypeError: If the tensors data type doesn’t match tf_type.

Returns:

A no_op that does nothing. Type can be determined statically.

tf.is_non_decreasing(x, name=None) {#is_non_decreasing}

Returns True if x is non-decreasing.

Elements of x are compared in row-major order. The tensor [x[0],...]
is non-decreasing if for every adjacent pair we have x[i] <= x[i+1].
If x has less than two elements, it is trivially non-decreasing.

See also: is_strictly_increasing

Args:

		x: Numeric Tensor.

		name: A name for this operation (optional). Defaults to “is_non_decreasing”

Returns:

Boolean Tensor, equal to True iff x is non-decreasing.

Raises:

		TypeError: if x is not a numeric tensor.

tf.is_numeric_tensor(tensor) {#is_numeric_tensor}

tf.is_strictly_increasing(x, name=None) {#is_strictly_increasing}

Returns True if x is strictly increasing.

Elements of x are compared in row-major order. The tensor [x[0],...]
is strictly increasing if for every adjacent pair we have x[i] < x[i+1].
If x has less than two elements, it is trivially strictly increasing.

See also: is_non_decreasing

Args:

		x: Numeric Tensor.

		name: A name for this operation (optional).
Defaults to “is_strictly_increasing”

Returns:

Boolean Tensor, equal to True iff x is strictly increasing.

Raises:

		TypeError: if x is not a numeric tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functional_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Higher Order Functions

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Functional operations.

Higher Order Operators

TensorFlow provides several higher order operators to simplify the common
map-reduce programming patterns.

tf.map_fn(fn, elems, dtype=None, parallel_iterations=10, back_prop=True, swap_memory=False, infer_shape=True, name=None) {#map_fn}

map on the list of tensors unpacked from elems on dimension 0.

The simplest version of map repeatedly applies the callable fn to a
sequence of elements from first to last. The elements are made of the
tensors unpacked from elems. dtype is the data type of the return
value of fn. Users must provide dtype if it is different from
the data type of elems.

Suppose that elems is unpacked into values, a list of tensors. The shape
of the result tensor is [values.shape[0]] + fn(values[0]).shape.

This method also allows multi-arity elems and output of fn. If elems
is a (possibly nested) list or tuple of tensors, then each of these tensors
must have a matching first (unpack) dimension. The signature of fn may
match the structure of elems. That is, if elems is
(t1, [t2, t3, [t4, t5]]), then an appropriate signature for fn is:
fn = lambda (t1, [t2, t3, [t4, t5]]):.

Furthermore, fn may emit a different structure than its input. For example,
fn may look like: fn = lambda t1: return (t1 + 1, t1 - 1). In this case,
the dtype parameter is not optional: dtype must be a type or (possibly
nested) tuple of types matching the output of fn.

Args:

		fn: The callable to be performed. It accepts one argument, which will
have the same (possibly nested) structure as elems. Its output
must have the same structure as dtype if one is provided, otherwise
it must have the same structure as elems.

		elems: A tensor or (possibly nested) sequence of tensors, each of which
will be unpacked along their first dimension. The nested sequence
of the resulting slices will be applied to fn.

		dtype: (optional) The output type(s) of fn. If fn returns a structure
of Tensors differing from the structure of elems, then dtype is not
optional and must have the same structure as the output of fn.

		parallel_iterations: (optional) The number of iterations allowed to run
in parallel.

		back_prop: (optional) True enables support for back propagation.

		swap_memory: (optional) True enables GPU-CPU memory swapping.

		infer_shape: (optional) False disables tests for consistent output shapes.

		name: (optional) Name prefix for the returned tensors.

Returns:

A tensor or (possibly nested) sequence of tensors. Each tensor packs the
results of applying fn to tensors unpacked from elems along the first
dimension, from first to last.

Raises:

		TypeError: if fn is not callable or the structure of the output of
fn and dtype do not match.

		ValueError: if the lengths of the output of fn and dtype do not match.

Examples:

elems = np.array([1, 2, 3, 4, 5, 6])
squares = map_fn(lambda x: x * x, elems)
squares == [1, 4, 9, 16, 25, 36]

elems = (np.array([1, 2, 3]), np.array([-1, 1, -1]))
alternate = map_fn(lambda x: x[0] * x[1], elems, dtype=tf.int64)
alternate == [-1, 2, -3]

elems = np.array([1, 2, 3])
alternates = map_fn(lambda x: (x, -x), elems, dtype=(tf.int64, tf.int64))
alternates[0] == [1, 2, 3]
alternates[1] == [-1, -2, -3]

tf.foldl(fn, elems, initializer=None, parallel_iterations=10, back_prop=True, swap_memory=False, name=None) {#foldl}

foldl on the list of tensors unpacked from elems on dimension 0.

This foldl operator repeatedly applies the callable fn to a sequence
of elements from first to last. The elements are made of the tensors
unpacked from elems on dimension 0. The callable fn takes two tensors as
arguments. The first argument is the accumulated value computed from the
preceding invocation of fn. If initializer is None, elems must contain
at least one element, and its first element is used as the initializer.

Suppose that elems is unpacked into values, a list of tensors. The shape
of the result tensor is fn(initializer, values[0]).shape`.

Args:

		fn: The callable to be performed.

		elems: A tensor to be unpacked on dimension 0.

		initializer: (optional) The initial value for the accumulator.

		parallel_iterations: (optional) The number of iterations allowed to run
in parallel.

		back_prop: (optional) True enables support for back propagation.

		swap_memory: (optional) True enables GPU-CPU memory swapping.

		name: (optional) Name prefix for the returned tensors.

Returns:

A tensor resulting from applying fn consecutively to the list of tensors
unpacked from elems, from first to last.

Raises:

		TypeError: if fn is not callable.

Example:

elems = [1, 2, 3, 4, 5, 6]
sum = foldl(lambda a, x: a + x, elems)
sum == 21

tf.foldr(fn, elems, initializer=None, parallel_iterations=10, back_prop=True, swap_memory=False, name=None) {#foldr}

foldr on the list of tensors unpacked from elems on dimension 0.

This foldr operator repeatedly applies the callable fn to a sequence
of elements from last to first. The elements are made of the tensors
unpacked from elems. The callable fn takes two tensors as arguments.
The first argument is the accumulated value computed from the preceding
invocation of fn. If initializer is None, elems must contain at least
one element, and its first element is used as the initializer.

Suppose that elems is unpacked into values, a list of tensors. The shape
of the result tensor is fn(initializer, values[0]).shape.

Args:

		fn: The callable to be performed.

		elems: A tensor that is unpacked into a sequence of tensors to apply fn.

		initializer: (optional) The initial value for the accumulator.

		parallel_iterations: (optional) The number of iterations allowed to run
in parallel.

		back_prop: (optional) True enables support for back propagation.

		swap_memory: (optional) True enables GPU-CPU memory swapping.

		name: (optional) Name prefix for the returned tensors.

Returns:

A tensor resulting from applying fn consecutively to the list of tensors
unpacked from elems, from last to first.

Raises:

		TypeError: if fn is not callable.

Example:

elems = [1, 2, 3, 4, 5, 6]
sum = foldr(lambda a, x: a + x, elems)
sum == 21

tf.scan(fn, elems, initializer=None, parallel_iterations=10, back_prop=True, swap_memory=False, infer_shape=True, name=None) {#scan}

scan on the list of tensors unpacked from elems on dimension 0.

The simplest version of scan repeatedly applies the callable fn to a
sequence of elements from first to last. The elements are made of the tensors
unpacked from elems on dimension 0. The callable fn takes two tensors as
arguments. The first argument is the accumulated value computed from the
preceding invocation of fn. If initializer is None, elems must contain
at least one element, and its first element is used as the initializer.

Suppose that elems is unpacked into values, a list of tensors. The shape
of the result tensor is [len(values)] + fn(initializer, values[0]).shape.

This method also allows multi-arity elems and accumulator. If elems
is a (possibly nested) list or tuple of tensors, then each of these tensors
must have a matching first (unpack) dimension. The second argument of
fn must match the structure of elems.

If no initializer is provided, the output structure and dtypes of fn
are assumed to be the same as its input; and in this case, the first
argument of fn must match the structure of elems.

If an initializer is provided, then the output of fn must have the same
structure as initializer; and the first argument of fn must match
this structure.

For example, if elems is (t1, [t2, t3]) and initializer is
[i1, i2] then an appropriate signature for fn in python2 is:
fn = lambda (acc_p1, acc_p2), (t1 [t2, t3]): and fn must return a list,
[acc_n1, acc_n2]. An alternative correct signature for fn, and the
one that works in python3, is:
fn = lambda a, t:, where a and t correspond to the input tuples.

Args:

		fn: The callable to be performed. It accepts two arguments. The first
will have the same (possibly nested) structure as elems. The second
will have the same structure as initializer if one is provided,
otherwise it will have the same structure as elems. Its output
must have the same structure as initializer if one is provided,
otherwise it must have the same structure as elems.

		elems: A tensor or (possibly nested) sequence of tensors, each of which
will be unpacked along their first dimension. The nested sequence
of the resulting slices will be the first argument to fn.

		initializer: (optional) A tensor or (possibly nested) sequence of tensors,
initial value for the accumulator, and the expected output type of fn.

		parallel_iterations: (optional) The number of iterations allowed to run
in parallel.

		back_prop: (optional) True enables support for back propagation.

		swap_memory: (optional) True enables GPU-CPU memory swapping.

		infer_shape: (optional) False disables tests for consistent output shapes.

		name: (optional) Name prefix for the returned tensors.

Returns:

A tensor or (possibly nested) sequence of tensors. Each tensor packs the
results of applying fn to tensors unpacked from elems along the first
dimension, and the previous accumulator value(s), from first to last.

Raises:

		TypeError: if fn is not callable or the structure of the output of
fn and initializer do not match.

		ValueError: if the lengths of the output of fn and initializer
do not match.

Examples:

elems = np.array([1, 2, 3, 4, 5, 6])
sum = scan(lambda a, x: a + x, elems)
sum == [1, 3, 6, 10, 15, 21]

elems = np.array([1, 2, 3, 4, 5, 6])
initializer = np.array(0)
sum_one = scan(
 lambda a, x: x[0] - x[1] + a, (elems + 1, elems), initializer)
sum_one == [1, 2, 3, 4, 5, 6]

elems = np.array([1, 0, 0, 0, 0, 0])
initializer = (np.array(0), np.array(1))
fibonaccis = scan(lambda a, _: (a[1], a[0] + a[1]), elems, initializer)
fibonaccis == ([1, 1, 2, 3, 5, 8], [1, 2, 3, 5, 8, 13])

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/python_io.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Data IO (Python functions)

[TOC]

Data IO (Python Functions)

A TFRecords file represents a sequence of (binary) strings. The format is not
random access, so it is suitable for streaming large amounts of data but not
suitable if fast sharding or other non-sequential access is desired.

class tf.python_io.TFRecordWriter {#TFRecordWriter}

A class to write records to a TFRecords file.

This class implements __enter__ and __exit__, and can be used
in with blocks like a normal file.

tf.python_io.TFRecordWriter.__init__(path, options=None) {#TFRecordWriter.init}

Opens file path and creates a TFRecordWriter writing to it.

Args:

		path: The path to the TFRecords file.

		options: (optional) A TFRecordOptions object.

Raises:

		IOError: If path cannot be opened for writing.

tf.python_io.TFRecordWriter.write(record) {#TFRecordWriter.write}

Write a string record to the file.

Args:

		record: str

tf.python_io.TFRecordWriter.close() {#TFRecordWriter.close}

Close the file.

Other Methods

tf.python_io.TFRecordWriter.__enter__() {#TFRecordWriter.enter}

Enter a with block.

tf.python_io.TFRecordWriter.__exit__(unused_type, unused_value, unused_traceback) {#TFRecordWriter.exit}

Exit a with block, closing the file.

tf.python_io.tf_record_iterator(path, options=None) {#tf_record_iterator}

An iterator that read the records from a TFRecords file.

Args:

		path: The path to the TFRecords file.

		options: (optional) A TFRecordOptions object.

Yields:

Strings.

Raises:

		IOError: If path cannot be opened for reading.

TFRecords Format Details

A TFRecords file contains a sequence of strings with CRC hashes. Each record
has the format

uint64 length
uint32 masked_crc32_of_length
byte data[length]
uint32 masked_crc32_of_data

and the records are concatenated together to produce the file. The CRC32s
are described here [https://en.wikipedia.org/wiki/Cyclic_redundancy_check],
and the mask of a CRC is

masked_crc = ((crc >> 15) | (crc << 17)) + 0xa282ead8ul

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.to_float.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.to_float(x, name='ToFloat') {#to_float}

Casts a tensor to type float32.

Args:

		x: A Tensor or SparseTensor.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x with type float32.

Raises:

		TypeError: If x cannot be cast to the float32.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.trainable_variables.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.trainable_variables() {#trainable_variables}

Returns all variables created with trainable=True.

When passed trainable=True, the Variable() constructor automatically
adds new variables to the graph collection
GraphKeys.TRAINABLE_VARIABLES. This convenience function returns the
contents of that collection.

Returns:

A list of Variable objects.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.string_join.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.string_join(inputs, separator=None, name=None) {#string_join}

Joins the strings in the given list of string tensors into one tensor;

with the given separator (default is an empty separator).

Args:

		inputs: A list of at least 1 Tensor objects of type string.
A list of string tensors. The tensors must all have the same shape,
or be scalars. Scalars may be mixed in; these will be broadcast to the shape
of non-scalar inputs.

		separator: An optional string. Defaults to "".
string, an optional join separator.

		name: A name for the operation (optional).

Returns:

A Tensor of type string.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.self_adjoint_eig.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.self_adjoint_eig(tensor, name=None) {#self_adjoint_eig}

Computes the eigen decomposition of a batch of self-adjoint matrices.

Computes the eigenvalues and eigenvectors of the innermost N-by-N matrices
in tensor such that
tensor[...,:,:] * v[..., :,i] = e[..., i] * v[...,:,i], for i=0...N-1.

Args:

		tensor: Tensor of shape [..., N, N]. Only the lower triangular part of
each inner inner matrix is referenced.

		name: string, optional name of the operation.

Returns:

		e: Eigenvalues. Shape is [..., N].

		v: Eigenvectors. Shape is [..., N, N]. The columns of the inner most
matrices contain eigenvectors of the corresponding matrices in tensor

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.sigmoid.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sigmoid(x, name=None) {#sigmoid}

Computes sigmoid of x element-wise.

Specifically, y = 1 / (1 + exp(-x)).

Args:

		x: A Tensor with type float32, float64, int32, complex64, int64,
or qint32.

		name: A name for the operation (optional).

Returns:

A Tensor with the same type as x if x.dtype != qint32
otherwise the return type is quint8.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.metrics.streaming_recall.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.streaming_recall(*args, **kwargs) {#streaming_recall}

Computes the recall of the predictions with respect to the labels. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-10-19.
Instructions for updating:
ignore_mask is being deprecated. Instead use weights with values 0.0 and 1.0 to mask values. For example, weights=tf.logical_not(mask).

The streaming_recall function creates two local variables, true_positives
and false_negatives, that are used to compute the recall. This value is
ultimately returned as recall, an idempotent operation that simply divides
true_positives by the sum of true_positives and false_negatives.

For estimation of the metric over a stream of data, the function creates an
update_op that updates these variables and returns the recall. update_op
weights each prediction by the corresponding value in weights.

If weights is None, weights default to 1. Use weights of 0 to mask values.
Alternatively, if ignore_mask is not None, then mask values where
ignore_mask is True.

Args:
predictions: The predicted values, a bool Tensor of arbitrary shape.
labels: The ground truth values, a bool Tensor whose dimensions must
match predictions.
ignore_mask: An optional, bool Tensor whose shape matches predictions.
weights: An optional Tensor whose shape is broadcastable to predictions.
metrics_collections: An optional list of collections that recall should
be added to.
updates_collections: An optional list of collections that update_op should
be added to.
name: An optional variable_scope name.

Returns:
recall: Scalar float Tensor with the value of true_positives divided
by the sum of true_positives and false_negatives.
update_op: Operation that increments true_positives and
false_negatives variables appropriately and whose value matches
recall.

Raises:
ValueError: If predictions and labels have mismatched shapes, or if
ignore_mask is not None and its shape doesn’t match predictions, or
if weights is not None and its shape doesn’t match predictions, or
if either metrics_collections or updates_collections are not a list or
tuple.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.QueueBase.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Base class for queue implementations.

A queue is a TensorFlow data structure that stores tensors across
multiple steps, and exposes operations that enqueue and dequeue
tensors.

Each queue element is a tuple of one or more tensors, where each
tuple component has a static dtype, and may have a static shape. The
queue implementations support versions of enqueue and dequeue that
handle single elements, versions that support enqueuing and
dequeuing a batch of elements at once.

See tf.FIFOQueue and
tf.RandomShuffleQueue for concrete
implementations of this class, and instructions on how to create
them.

tf.QueueBase.enqueue(vals, name=None) {#QueueBase.enqueue}

Enqueues one element to this queue.

If the queue is full when this operation executes, it will block
until the element has been enqueued.

At runtime, this operation may raise an error if the queue is
closed before or during its execution. If the
queue is closed before this operation runs,
tf.errors.CancelledError will be raised. If this operation is
blocked, and either (i) the queue is closed by a close operation
with cancel_pending_enqueues=True, or (ii) the session is
closed,
tf.errors.CancelledError will be raised.

Args:

		vals: A tensor, a list or tuple of tensors, or a dictionary containing
the values to enqueue.

		name: A name for the operation (optional).

Returns:

The operation that enqueues a new tuple of tensors to the queue.

tf.QueueBase.enqueue_many(vals, name=None) {#QueueBase.enqueue_many}

Enqueues zero or more elements to this queue.

This operation slices each component tensor along the 0th dimension to
make multiple queue elements. All of the tensors in vals must have the
same size in the 0th dimension.

If the queue is full when this operation executes, it will block
until all of the elements have been enqueued.

At runtime, this operation may raise an error if the queue is
closed before or during its execution. If the
queue is closed before this operation runs,
tf.errors.CancelledError will be raised. If this operation is
blocked, and either (i) the queue is closed by a close operation
with cancel_pending_enqueues=True, or (ii) the session is
closed,
tf.errors.CancelledError will be raised.

Args:

		vals: A tensor, a list or tuple of tensors, or a dictionary
from which the queue elements are taken.

		name: A name for the operation (optional).

Returns:

The operation that enqueues a batch of tuples of tensors to the queue.

tf.QueueBase.dequeue(name=None) {#QueueBase.dequeue}

Dequeues one element from this queue.

If the queue is empty when this operation executes, it will block
until there is an element to dequeue.

At runtime, this operation may raise an error if the queue is
closed before or during its execution. If the
queue is closed, the queue is empty, and there are no pending
enqueue operations that can fulfil this request,
tf.errors.OutOfRangeError will be raised. If the session is
closed,
tf.errors.CancelledError will be raised.

Args:

		name: A name for the operation (optional).

Returns:

The tuple of tensors that was dequeued.

tf.QueueBase.dequeue_many(n, name=None) {#QueueBase.dequeue_many}

Dequeues and concatenates n elements from this queue.

This operation concatenates queue-element component tensors along
the 0th dimension to make a single component tensor. All of the
components in the dequeued tuple will have size n in the 0th dimension.

If the queue is closed and there are less than n elements left, then an
OutOfRange exception is raised.

At runtime, this operation may raise an error if the queue is
closed before or during its execution. If the
queue is closed, the queue contains fewer than n elements, and
there are no pending enqueue operations that can fulfil this
request, tf.errors.OutOfRangeError will be raised. If the
session is closed,
tf.errors.CancelledError will be raised.

Args:

		n: A scalar Tensor containing the number of elements to dequeue.

		name: A name for the operation (optional).

Returns:

The tuple of concatenated tensors that was dequeued.

tf.QueueBase.size(name=None) {#QueueBase.size}

Compute the number of elements in this queue.

Args:

		name: A name for the operation (optional).

Returns:

A scalar tensor containing the number of elements in this queue.

tf.QueueBase.close(cancel_pending_enqueues=False, name=None) {#QueueBase.close}

Closes this queue.

This operation signals that no more elements will be enqueued in
the given queue. Subsequent enqueue and enqueue_many
operations will fail. Subsequent dequeue and dequeue_many
operations will continue to succeed if sufficient elements remain
in the queue. Subsequent dequeue and dequeue_many operations
that would block will fail immediately.

If cancel_pending_enqueues is True, all pending requests will also
be cancelled.

Args:

		cancel_pending_enqueues: (Optional.) A boolean, defaulting to
False (described above).

		name: A name for the operation (optional).

Returns:

The operation that closes the queue.

Other Methods

tf.QueueBase.__init__(dtypes, shapes, names, queue_ref) {#QueueBase.init}

Constructs a queue object from a queue reference.

The two optional lists, shapes and names, must be of the same length
as dtypes if provided. The values at a given index i indicate the
shape and name to use for the corresponding queue component in dtypes.

Args:

		dtypes: A list of types. The length of dtypes must equal the number
of tensors in each element.

		shapes: Constraints on the shapes of tensors in an element:
A list of shape tuples or None. This list is the same length
as dtypes. If the shape of any tensors in the element are constrained,
all must be; shapes can be None if the shapes should not be constrained.

		names: Optional list of names. If provided, the enqueue() and
dequeue() methods will use dictionaries with these names as keys.
Must be None or a list or tuple of the same length as dtypes.

		queue_ref: The queue reference, i.e. the output of the queue op.

Raises:

		ValueError: If one of the arguments is invalid.

tf.QueueBase.dequeue_up_to(n, name=None) {#QueueBase.dequeue_up_to}

Dequeues and concatenates n elements from this queue.

Note This operation is not supported by all queues. If a queue does not
support DequeueUpTo, then a tf.errors.UnimplementedError is raised.

This operation concatenates queue-element component tensors along
the 0th dimension to make a single component tensor. If the queue
has not been closed, all of the components in the dequeued tuple
will have size n in the 0th dimension.

If the queue is closed and there are more than 0 but fewer than
n elements remaining, then instead of raising a
tf.errors.OutOfRangeError like dequeue_many,
less than n elements are returned immediately. If the queue is
closed and there are 0 elements left in the queue, then a
tf.errors.OutOfRangeError is raised just like in dequeue_many.
Otherwise the behavior is identical to dequeue_many.

Args:

		n: A scalar Tensor containing the number of elements to dequeue.

		name: A name for the operation (optional).

Returns:

The tuple of concatenated tensors that was dequeued.

tf.QueueBase.dtypes {#QueueBase.dtypes}

The list of dtypes for each component of a queue element.

tf.QueueBase.from_list(index, queues) {#QueueBase.from_list}

Create a queue using the queue reference from queues[index].

Args:

		index: An integer scalar tensor that determines the input that gets
selected.

		queues: A list of QueueBase objects.

Returns:

A QueueBase object.

Raises:

		TypeError: When queues is not a list of QueueBase objects,
or when the data types of queues are not all the same.

tf.QueueBase.name {#QueueBase.name}

The name of the underlying queue.

tf.QueueBase.names {#QueueBase.names}

The list of names for each component of a queue element.

tf.QueueBase.queue_ref {#QueueBase.queue_ref}

The underlying queue reference.

tf.QueueBase.shapes {#QueueBase.shapes}

The list of shapes for each component of a queue element.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 StudentTTensor is a StochasticTensor backed by the distribution StudentT.

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#StudentTTensor.init}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.clone(name=None, **dist_args) {#StudentTTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.distribution {#StudentTTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.dtype {#StudentTTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.entropy(name='entropy') {#StudentTTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.graph {#StudentTTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.input_dict {#StudentTTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.loss(final_loss, name='Loss') {#StudentTTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.mean(name='mean') {#StudentTTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.name {#StudentTTensor.name}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.value(name='value') {#StudentTTensor.value}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.value_type {#StudentTTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.summary.scalar.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.summary.scalar(display_name, tensor, description='', labels=None, collections=None, name=None) {#scalar}

Outputs a Summary protocol buffer containing a single scalar value.

The generated Summary has a Tensor.proto containing the input Tensor.

Args:

		display_name: A name to associate with the data series. Will be used to
organize output data and as a name in visualizers.

		tensor: A tensor containing a single floating point or integer value.

		description: An optional long description of the data being output.

		labels: a list of strings used to attach metadata.

		collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to [GraphKeys.SUMMARIES].

		name: An optional name for the generated node (optional).

Returns:

A scalar Tensor of type string. Which contains a Summary protobuf.

Raises:

		ValueError: If tensor has the wrong shape or type.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 ExponentialWithSoftplusLamTensor is a StochasticTensor backed by the distribution ExponentialWithSoftplusLam.

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#ExponentialWithSoftplusLamTensor.init}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.clone(name=None, **dist_args) {#ExponentialWithSoftplusLamTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.distribution {#ExponentialWithSoftplusLamTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.dtype {#ExponentialWithSoftplusLamTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.entropy(name='entropy') {#ExponentialWithSoftplusLamTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.graph {#ExponentialWithSoftplusLamTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.input_dict {#ExponentialWithSoftplusLamTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.loss(final_loss, name='Loss') {#ExponentialWithSoftplusLamTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.mean(name='mean') {#ExponentialWithSoftplusLamTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.name {#ExponentialWithSoftplusLamTensor.name}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.value(name='value') {#ExponentialWithSoftplusLamTensor.value}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.value_type {#ExponentialWithSoftplusLamTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.graph_editor.swap_ts.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.swap_ts(ts0, ts1, can_modify=None, cannot_modify=None) {#swap_ts}

For each tensor’s pair, swap the end of (t0,t1).

B0 B1 B0 B1
| | => X
A0 A1 A0 A1

Args:

		ts0: an object convertible to a list of tf.Tensor.

		ts1: an object convertible to a list of tf.Tensor.

		can_modify: iterable of operations which can be modified. Any operation
outside within_ops will be left untouched by this function.

		cannot_modify: iterable of operations which cannot be modified.
Any operation within cannot_modify will be left untouched by this
function.

Returns:

The number of individual modifications made by the function.

Raises:

		TypeError: if ts0 or ts1 cannot be converted to a list of tf.Tensor.

		TypeError: if can_modify or cannot_modify is not None and cannot be
converted to a list of tf.Operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.count_up_to.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.count_up_to(ref, limit, name=None) {#count_up_to}

Increments ‘ref’ until it reaches ‘limit’.

This operation outputs “ref” after the update is done. This makes it
easier to chain operations that need to use the updated value.

Args:

		ref: A mutable Tensor. Must be one of the following types: int32, int64.
Should be from a scalar Variable node.

		limit: An int.
If incrementing ref would bring it above limit, instead generates an
‘OutOfRange’ error.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as ref.
A copy of the input before increment. If nothing else modifies the
input, the values produced will all be distinct.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.train.exponential_decay.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None) {#exponential_decay}

Applies exponential decay to the learning rate.

When training a model, it is often recommended to lower the learning rate as
the training progresses. This function applies an exponential decay function
to a provided initial learning rate. It requires a global_step value to
compute the decayed learning rate. You can just pass a TensorFlow variable
that you increment at each training step.

The function returns the decayed learning rate. It is computed as:

decayed_learning_rate = learning_rate *
 decay_rate ^ (global_step / decay_steps)

If the argument staircase is True, then global_step / decay_steps is an
integer division and the decayed learning rate follows a staircase function.

Example: decay every 100000 steps with a base of 0.96:

...
global_step = tf.Variable(0, trainable=False)
starter_learning_rate = 0.1
learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step,
 100000, 0.96, staircase=True)
Passing global_step to minimize() will increment it at each step.
learning_step = (
 tf.train.GradientDescentOptimizer(learning_rate)
 .minimize(...my loss..., global_step=global_step)
)

Args:

		learning_rate: A scalar float32 or float64 Tensor or a
Python number. The initial learning rate.

		global_step: A scalar int32 or int64 Tensor or a Python number.
Global step to use for the decay computation. Must not be negative.

		decay_steps: A scalar int32 or int64 Tensor or a Python number.
Must be positive. See the decay computation above.

		decay_rate: A scalar float32 or float64 Tensor or a
Python number. The decay rate.

		staircase: Boolean. It True decay the learning rate at discrete intervals

		name: String. Optional name of the operation. Defaults to
‘ExponentialDecay’

Returns:

A scalar Tensor of the same type as learning_rate. The decayed
learning rate.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.graph_editor.get_tensors.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.get_tensors(graph) {#get_tensors}

get all the tensors which are input or output of an op in the graph.

Args:

		graph: a tf.Graph.

Returns:

A list of tf.Tensor.

Raises:

		TypeError: if graph is not a tf.Graph.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.graph_editor.make_placeholder_from_dtype_and_shape.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.make_placeholder_from_dtype_and_shape(dtype, shape=None, scope=None) {#make_placeholder_from_dtype_and_shape}

Create a tf.placeholder for the Graph Editor.

Note that the correct graph scope must be set by the calling function.
The placeholder is named using the function placeholder_name (with no
tensor argument).

Args:

		dtype: the tensor type.

		shape: the tensor shape (optional).

		scope: absolute scope within which to create the placeholder. None
means that the scope of t is preserved. “” means the root scope.

Returns:

A newly created tf.placeholder.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.learn.extract_dask_labels.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.learn.extract_dask_labels(labels) {#extract_dask_labels}

Extract data from dask.Series for labels.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.FixedLenFeature.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Configuration for parsing a fixed-length input feature.

To treat sparse input as dense, provide a default_value; otherwise,
the parse functions will fail on any examples missing this feature.

Fields:
shape: Shape of input data.
dtype: Data type of input.
default_value: Value to be used if an example is missing this feature. It
must be compatible with dtype.

tf.FixedLenFeature.__getnewargs__() {#FixedLenFeature.getnewargs}

Return self as a plain tuple. Used by copy and pickle.

tf.FixedLenFeature.__getstate__() {#FixedLenFeature.getstate}

Exclude the OrderedDict from pickling

tf.FixedLenFeature.__new__(_cls, shape, dtype, default_value=None) {#FixedLenFeature.new}

Create new instance of FixedLenFeature(shape, dtype, default_value)

tf.FixedLenFeature.__repr__() {#FixedLenFeature.repr}

Return a nicely formatted representation string

tf.FixedLenFeature.default_value {#FixedLenFeature.default_value}

Alias for field number 2

tf.FixedLenFeature.dtype {#FixedLenFeature.dtype}

Alias for field number 1

tf.FixedLenFeature.shape {#FixedLenFeature.shape}

Alias for field number 0

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.image.rgb_to_hsv.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.rgb_to_hsv(images, name=None) {#rgb_to_hsv}

Converts one or more images from RGB to HSV.

Outputs a tensor of the same shape as the images tensor, containing the HSV
value of the pixels. The output is only well defined if the value in images
are in [0,1].

output[..., 0] contains hue, output[..., 1] contains saturation, and
output[..., 2] contains value. All HSV values are in [0,1]. A hue of 0
corresponds to pure red, hue 1/3 is pure green, and 2/3 is pure blue.

Args:

		images: A Tensor. Must be one of the following types: float32, float64.
1-D or higher rank. RGB data to convert. Last dimension must be size 3.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as images. images converted to HSV.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.nn.atrous_conv2d.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.atrous_conv2d(value, filters, rate, padding, name=None) {#atrous_conv2d}

Atrous convolution (a.k.a. convolution with holes or dilated convolution).

Computes a 2-D atrous convolution, also known as convolution with holes or
dilated convolution, given 4-D value and filters tensors. If the rate
parameter is equal to one, it performs regular 2-D convolution. If the rate
parameter is greater than one, it performs convolution with holes, sampling
the input values every rate pixels in the height and width dimensions.
This is equivalent to convolving the input with a set of upsampled filters,
produced by inserting rate - 1 zeros between two consecutive values of the
filters along the height and width dimensions, hence the name atrous
convolution or convolution with holes (the French word trous means holes in
English).

More specifically:

output[b, i, j, k] = sum_{di, dj, q} filters[di, dj, q, k] *
 value[b, i + rate * di, j + rate * dj, q]

Atrous convolution allows us to explicitly control how densely to compute
feature responses in fully convolutional networks. Used in conjunction with
bilinear interpolation, it offers an alternative to conv2d_transpose in
dense prediction tasks such as semantic image segmentation, optical flow
computation, or depth estimation. It also allows us to effectively enlarge
the field of view of filters without increasing the number of parameters or
the amount of computation.

For a description of atrous convolution and how it can be used for dense
feature extraction, please see: Semantic Image Segmentation with Deep
Convolutional Nets and Fully Connected CRFs [http://arxiv.org/abs/1412.7062].
The same operation is investigated further in Multi-Scale Context Aggregation
by Dilated Convolutions [http://arxiv.org/abs/1511.07122]. Previous works
that effectively use atrous convolution in different ways are, among others,
OverFeat: Integrated Recognition, Localization and Detection using
Convolutional Networks [http://arxiv.org/abs/1312.6229] and [Fast Image
Scanning with Deep Max-Pooling Convolutional Neural Networks]
(http://arxiv.org/abs/1302.1700). Atrous convolution is also closely related
to the so-called noble identities in multi-rate signal processing.

There are many different ways to implement atrous convolution (see the refs
above). The implementation here reduces

atrous_conv2d(value, filters, rate, padding=padding)

to the following three operations:

paddings = ...
net = space_to_batch(value, paddings, block_size=rate)
net = conv2d(net, filters, strides=[1, 1, 1, 1], padding="VALID")
crops = ...
net = batch_to_space(net, crops, block_size=rate)

Advanced usage. Note the following optimization: A sequence of atrous_conv2d
operations with identical rate parameters, ‘SAME’ padding, and filters
with odd heights/ widths:

net = atrous_conv2d(net, filters1, rate, padding="SAME")
net = atrous_conv2d(net, filters2, rate, padding="SAME")
...
net = atrous_conv2d(net, filtersK, rate, padding="SAME")

can be equivalently performed cheaper in terms of computation and memory as:

pad = ... # padding so that the input dims are multiples of rate
net = space_to_batch(net, paddings=pad, block_size=rate)
net = conv2d(net, filters1, strides=[1, 1, 1, 1], padding="SAME")
net = conv2d(net, filters2, strides=[1, 1, 1, 1], padding="SAME")
...
net = conv2d(net, filtersK, strides=[1, 1, 1, 1], padding="SAME")
net = batch_to_space(net, crops=pad, block_size=rate)

because a pair of consecutive space_to_batch and batch_to_space ops with
the same block_size cancel out when their respective paddings and crops
inputs are identical.

Args:

		value: A 4-D Tensor of type float. It needs to be in the default “NHWC”
format. Its shape is [batch, in_height, in_width, in_channels].

		filters: A 4-D Tensor with the same type as value and shape
[filter_height, filter_width, in_channels, out_channels]. filters‘
in_channels dimension must match that of value. Atrous convolution is
equivalent to standard convolution with upsampled filters with effective
height filter_height + (filter_height - 1) * (rate - 1) and effective
width filter_width + (filter_width - 1) * (rate - 1), produced by
inserting rate - 1 zeros along consecutive elements across the
filters‘ spatial dimensions.

		rate: A positive int32. The stride with which we sample input values across
the height and width dimensions. Equivalently, the rate by which we
upsample the filter values by inserting zeros across the height and
width dimensions. In the literature, the same parameter is sometimes
called input stride or dilation.

		padding: A string, either 'VALID' or 'SAME'. The padding algorithm.

		name: Optional name for the returned tensor.

Returns:

A Tensor with the same type as value.

Raises:

		ValueError: If input/output depth does not match filters‘ shape, or if
padding is other than 'VALID' or 'SAME'.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.sparse_segment_sum.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_segment_sum(data, indices, segment_ids, name=None) {#sparse_segment_sum}

Computes the sum along sparse segments of a tensor.

Read the section on
Segmentation for an explanation
of segments.

Like SegmentSum, but segment_ids can have rank less than data‘s first
dimension, selecting a subset of dimension 0, specified by indices.

For example:

c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])

Select two rows, one segment.
tf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 0]))
 ==> [[0 0 0 0]]

Select two rows, two segment.
tf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 1]))
 ==> [[1 2 3 4]
 [-1 -2 -3 -4]]

Select all rows, two segments.
tf.sparse_segment_sum(c, tf.constant([0, 1, 2]), tf.constant([0, 0, 1]))
 ==> [[0 0 0 0]
 [5 6 7 8]]

Which is equivalent to:
tf.segment_sum(c, tf.constant([0, 0, 1]))

Args:

		data: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		indices: A Tensor. Must be one of the following types: int32, int64.
A 1-D tensor. Has same rank as segment_ids.

		segment_ids: A Tensor of type int32.
A 1-D tensor. Values should be sorted and can be repeated.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.
Has same shape as data, except for dimension 0 which
has size k, the number of segments.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.matrix_solve_ls.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.matrix_solve_ls(matrix, rhs, l2_regularizer=0.0, fast=True, name=None) {#matrix_solve_ls}

Solves one or more linear least-squares problems.

matrix is a tensor of shape [..., M, N] whose inner-most 2 dimensions
form M-by-N matrices. Rhs is a tensor of shape [..., M, K] whose
inner-most 2 dimensions form M-by-K matrices. The computed output is a
Tensor of shape [..., N, K] whose inner-most 2 dimensions form M-by-K
matrices that solve the equations
matrix[..., :, :] * output[..., :, :] = rhs[..., :, :] in the least squares
sense.

Below we will use the following notation for each pair of matrix and
right-hand sides in the batch:

matrix=\(A \in \Re^{m \times n}\),
rhs=\(B \in \Re^{m \times k}\),
output=\(X \in \Re^{n \times k}\),
l2_regularizer=\(\lambda\).

If fast is True, then the solution is computed by solving the normal
equations using Cholesky decomposition. Specifically, if \(m \ge n\) then
\(X = (A^T A + \lambda I)^{-1} A^T B\), which solves the least-squares
problem \(X = \mathrm{argmin}_{Z \in \Re^{n \times k}} ||A Z - B||_F^2 +
\lambda ||Z||F^2\). If \(m \lt n\) then output is computed as
\(X = A^T (A A^T + \lambda I)^{-1} B\), which (for \(\lambda = 0\)) is
the minimum-norm solution to the under-determined linear system, i.e.
\(X = \mathrm{argmin}{Z \in \Re^{n \times k}} ||Z||F^2 \), subject to
\(A Z = B\). Notice that the fast path is only numerically stable when
\(A\) is numerically full rank and has a condition number
\(\mathrm{cond}(A) \lt \frac{1}{\sqrt{\epsilon{mach}}}\) or\(\lambda\)
is sufficiently large.

If fast is False an algorithm based on the numerically robust complete
orthogonal decomposition is used. This computes the minimum-norm
least-squares solution, even when \(A\) is rank deficient. This path is
typically 6-7 times slower than the fast path. If fast is False then
l2_regularizer is ignored.

Args:

		matrix: Tensor of shape [..., M, N].

		rhs: Tensor of shape [..., M, K].

		l2_regularizer: 0-D double Tensor. Ignored if fast=False.

		fast: bool. Defaults to True.

		name: string, optional name of the operation.

Returns:

		output: Tensor of shape [..., N, K] whose inner-most 2 dimensions form
M-by-K matrices that solve the equations
matrix[..., :, :] * output[..., :, :] = rhs[..., :, :] in the least
squares sense.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.graph_editor.ts.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.ts(*args, **kwargs) {#ts}

Helper to select tensors.

Args:

		*args: list of 1) regular expressions (compiled or not) or 2) (array of)
tf.Tensor. tf.Operation instances are silently ignored.

		**kwargs: ‘graph’: tf.Graph in which to perform the regex query.This is
required when using regex.
‘positive_filter’: an elem if selected only if positive_filter(elem) is
True. This is optional.
‘restrict_ts_regex’: a regular expression is ignored if it doesn’t start
with the substring “(?#ts)”.

Returns:

A list of tf.Tensor.

Raises:

		TypeError: if the optional keyword argument graph is not a tf.Graph
or if an argument in args is not an (array of) tf.Tensor
or an (array of) tf.Operation (silently ignored) or a string
or a regular expression.

		ValueError: if one of the keyword arguments is unexpected or if a regular
expression is used without passing a graph as a keyword argument.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.util.make_ndarray.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.util.make_ndarray(tensor) {#make_ndarray}

Create a numpy ndarray from a tensor.

Create a numpy ndarray with the same shape and data as the tensor.

Args:

		tensor: A TensorProto.

Returns:

A numpy array with the tensor contents.

Raises:

		TypeError: if tensor has unsupported type.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 StudentT with df = floor(abs(df)) and sigma = softplus(sigma).

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.__init__(df, mu, sigma, validate_args=False, allow_nan_stats=True, name='StudentTWithAbsDfSoftplusSigma') {#StudentTWithAbsDfSoftplusSigma.init}

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.allow_nan_stats {#StudentTWithAbsDfSoftplusSigma.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.batch_shape(name='batch_shape') {#StudentTWithAbsDfSoftplusSigma.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.cdf(value, name='cdf') {#StudentTWithAbsDfSoftplusSigma.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.df {#StudentTWithAbsDfSoftplusSigma.df}

Degrees of freedom in these Student’s t distribution(s).

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.dtype {#StudentTWithAbsDfSoftplusSigma.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.entropy(name='entropy') {#StudentTWithAbsDfSoftplusSigma.entropy}

Shanon entropy in nats.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.event_shape(name='event_shape') {#StudentTWithAbsDfSoftplusSigma.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.get_batch_shape() {#StudentTWithAbsDfSoftplusSigma.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.get_event_shape() {#StudentTWithAbsDfSoftplusSigma.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.is_continuous {#StudentTWithAbsDfSoftplusSigma.is_continuous}

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.is_reparameterized {#StudentTWithAbsDfSoftplusSigma.is_reparameterized}

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_cdf(value, name='log_cdf') {#StudentTWithAbsDfSoftplusSigma.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_pdf(value, name='log_pdf') {#StudentTWithAbsDfSoftplusSigma.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_pmf(value, name='log_pmf') {#StudentTWithAbsDfSoftplusSigma.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_prob(value, name='log_prob') {#StudentTWithAbsDfSoftplusSigma.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_survival_function(value, name='log_survival_function') {#StudentTWithAbsDfSoftplusSigma.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.mean(name='mean') {#StudentTWithAbsDfSoftplusSigma.mean}

Mean.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.mode(name='mode') {#StudentTWithAbsDfSoftplusSigma.mode}

Mode.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.mu {#StudentTWithAbsDfSoftplusSigma.mu}

Locations of these Student’s t distribution(s).

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.name {#StudentTWithAbsDfSoftplusSigma.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#StudentTWithAbsDfSoftplusSigma.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.param_static_shapes(cls, sample_shape) {#StudentTWithAbsDfSoftplusSigma.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.parameters {#StudentTWithAbsDfSoftplusSigma.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.pdf(value, name='pdf') {#StudentTWithAbsDfSoftplusSigma.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.pmf(value, name='pmf') {#StudentTWithAbsDfSoftplusSigma.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.prob(value, name='prob') {#StudentTWithAbsDfSoftplusSigma.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.sample(sample_shape=(), seed=None, name='sample') {#StudentTWithAbsDfSoftplusSigma.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.sample_n(n, seed=None, name='sample_n') {#StudentTWithAbsDfSoftplusSigma.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.sigma {#StudentTWithAbsDfSoftplusSigma.sigma}

Scaling factors of these Student’s t distribution(s).

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.std(name='std') {#StudentTWithAbsDfSoftplusSigma.std}

Standard deviation.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.survival_function(value, name='survival_function') {#StudentTWithAbsDfSoftplusSigma.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.validate_args {#StudentTWithAbsDfSoftplusSigma.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.variance(name='variance') {#StudentTWithAbsDfSoftplusSigma.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.scatter_sub.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.scatter_sub(ref, indices, updates, use_locking=None, name=None) {#scatter_sub}

Subtracts sparse updates to a variable reference.

Scalar indices
ref[indices, ...] -= updates[...]

Vector indices (for each i)
ref[indices[i], ...] -= updates[i, ...]

High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] -= updates[i, ..., j, ...]

This operation outputs ref after the update is done.
This makes it easier to chain operations that need to use the reset value.

Duplicate entries are handled correctly: if multiple indices reference
the same location, their (negated) contributions add.

Requires updates.shape = indices.shape + ref.shape[1:].

[image:]

Args:

		ref: A mutable Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
Should be from a Variable node.

		indices: A Tensor. Must be one of the following types: int32, int64.
A tensor of indices into the first dimension of ref.

		updates: A Tensor. Must have the same type as ref.
A tensor of updated values to subtract from ref.

		use_locking: An optional bool. Defaults to False.
If True, the subtraction will be protected by a lock;
otherwise the behavior is undefined, but may exhibit less contention.

		name: A name for the operation (optional).

Returns:

Same as ref. Returned as a convenience for operations that want
to use the updated values after the update is done.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.framework.create_global_step.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.create_global_step(graph=None) {#create_global_step}

Create global step tensor in graph.

Args:

		graph: The graph in which to create the global step. If missing, use default
graph.

Returns:

Global step tensor.

Raises:

		ValueError: if global step key is already defined.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.train.MomentumOptimizer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Optimizer that implements the Momentum algorithm.

tf.train.MomentumOptimizer.__init__(learning_rate, momentum, use_locking=False, name='Momentum', use_nesterov=False) {#MomentumOptimizer.init}

Construct a new Momentum optimizer.

Args:

		learning_rate: A Tensor or a floating point value. The learning rate.

		momentum: A Tensor or a floating point value. The momentum.

		use_locking: If True use locks for update operations.

		name: Optional name prefix for the operations created when applying
gradients. Defaults to “Momentum”.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.layers.summarize_activations.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.summarize_activations(name_filter=None, summarizer=summarize_activation) {#summarize_activations}

Summarize activations, using summarize_activation to summarize.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.graph_editor.make_view.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.make_view(*args, **kwargs) {#make_view}

Create a SubGraphView from selected operations and passthrough tensors.

Args:

		*args: list of 1) regular expressions (compiled or not) or 2) (array of)
tf.Operation 3) (array of) tf.Tensor. Those objects will be converted
into a list of operations and a list of candidate for passthrough tensors.

		**kwargs: keyword graph is used 1) to check that the ops and ts are from
the correct graph 2) for regular expression query

Returns:

A subgraph view.

Raises:

		TypeError: if the optional keyword argument graph is not a tf.Graph
or if an argument in args is not an (array of) tf.Tensor
or an (array of) tf.Operation or a string or a regular expression.

		ValueError: if one of the keyword arguments is unexpected.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.space_to_depth.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.space_to_depth(input, block_size, name=None) {#space_to_depth}

SpaceToDepth for tensors of type T.

Rearranges blocks of spatial data, into depth. More specifically,
this op outputs a copy of the input tensor where values from the height
and width dimensions are moved to the depth dimension.
The attr block_size indicates the input block size and how the data is moved.

		Non-overlapping blocks of size block_size x block size are rearranged
into depth at each location.

		The depth of the output tensor is input_depth * block_size * block_size.

		The input tensor’s height and width must be divisible by block_size.

That is, assuming the input is in the shape:
[batch, height, width, depth],
the shape of the output will be:
[batch, height/block_size, width/block_size, depth*block_size*block_size]

This operation requires that the input tensor be of rank 4, and that
block_size be >=1 and a divisor of both the input height and width.

This operation is useful for resizing the activations between convolutions
(but keeping all data), e.g. instead of pooling. It is also useful for training
purely convolutional models.

For example, given this input of shape [1, 2, 2, 1], and block_size of 2:

x = [[[[1], [2]],
 [[3], [4]]]]

This operation will output a tensor of shape [1, 1, 1, 4]:

[[[[1, 2, 3, 4]]]]

Here, the input has a batch of 1 and each batch element has shape [2, 2, 1],
the corresponding output will have a single element (i.e. width and height are
both 1) and will have a depth of 4 channels (1 * block_size * block_size).
The output element shape is [1, 1, 4].

For an input tensor with larger depth, here of shape [1, 2, 2, 3], e.g.

x = [[[[1, 2, 3], [4, 5, 6]],
 [[7, 8, 9], [10, 11, 12]]]]

This operation, for block_size of 2, will return the following tensor of shape
[1, 1, 1, 12]

[[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]]

Similarly, for the following input of shape [1 4 4 1], and a block size of 2:

x = [[[[1], [2], [5], [6]],
 [[3], [4], [7], [8]],
 [[9], [10], [13], [14]],
 [[11], [12], [15], [16]]]]

the operator will return the following tensor of shape [1 2 2 4]:

x = [[[[1, 2, 3, 4],
 [5, 6, 7, 8]],
 [[9, 10, 11, 12],
 [13, 14, 15, 16]]]]

Args:

		input: A Tensor.

		block_size: An int that is >= 2. The size of the spatial block.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.random_normal.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None) {#random_normal}

Outputs random values from a normal distribution.

Args:

		shape: A 1-D integer Tensor or Python array. The shape of the output tensor.

		mean: A 0-D Tensor or Python value of type dtype. The mean of the normal
distribution.

		stddev: A 0-D Tensor or Python value of type dtype. The standard deviation
of the normal distribution.

		dtype: The type of the output.

		seed: A Python integer. Used to create a random seed for the distribution.
See
set_random_seed
for behavior.

		name: A name for the operation (optional).

Returns:

A tensor of the specified shape filled with random normal values.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.nn.softmax_cross_entropy_with_logits.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.softmax_cross_entropy_with_logits(logits, labels, dim=-1, name=None) {#softmax_cross_entropy_with_logits}

Computes softmax cross entropy between logits and labels.

Measures the probability error in discrete classification tasks in which the
classes are mutually exclusive (each entry is in exactly one class). For
example, each CIFAR-10 image is labeled with one and only one label: an image
can be a dog or a truck, but not both.

NOTE: While the classes are mutually exclusive, their probabilities
need not be. All that is required is that each row of labels is
a valid probability distribution. If they are not, the computation of the
gradient will be incorrect.

If using exclusive labels (wherein one and only
one class is true at a time), see sparse_softmax_cross_entropy_with_logits.

WARNING: This op expects unscaled logits, since it performs a softmax
on logits internally for efficiency. Do not call this op with the
output of softmax, as it will produce incorrect results.

logits and labels must have the same shape [batch_size, num_classes]
and the same dtype (either float16, float32, or float64).

Args:

		logits: Unscaled log probabilities.

		labels: Each row labels[i] must be a valid probability distribution.

		dim: The class dimension. Defaulted to -1 which is the last dimension.

		name: A name for the operation (optional).

Returns:

A 1-D Tensor of length batch_size of the same type as logits with the
softmax cross entropy loss.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.bayesflow.monte_carlo.expectation_importance_sampler.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.bayesflow.monte_carlo.expectation_importance_sampler(f, log_p, sampling_dist_q, z=None, n=None, seed=None, name='expectation_importance_sampler') {#expectation_importance_sampler}

Monte Carlo estimate of E_p[f(Z)] = E_q[f(Z) p(Z) / q(Z)].

With p(z) := exp{log_p(z)}, this Op returns

n^{-1} sum_{i=1}^n [f(z_i) p(z_i) / q(z_i)], z_i ~ q,
\approx E_q[f(Z) p(Z) / q(Z)]
= E_p[f(Z)]

This integral is done in log-space with max-subtraction to better handle the
often extreme values that f(z) p(z) / q(z) can take on.

If f >= 0, it is up to 2x more efficient to exponentiate the result of
expectation_importance_sampler_logspace applied to Log[f].

User supplies either Tensor of samples z, or number of samples to draw n

Args:

		f: Callable mapping samples from sampling_dist_q to Tensors with shape
broadcastable to q.batch_shape.
For example, f works “just like” q.log_prob.

		log_p: Callable mapping samples from sampling_dist_q to Tensors with
shape broadcastable to q.batch_shape.
For example, log_p works “just like” sampling_dist_q.log_prob.

		sampling_dist_q: The sampling distribution.
tf.contrib.distributions.BaseDistribution.
float64 dtype recommended.
log_p and q should be supported on the same set.

		z: Tensor of samples from q, produced by q.sample_n.

		n: Integer Tensor. Number of samples to generate if z is not provided.

		seed: Python integer to seed the random number generator.

		name: A name to give this Op.

Returns:

The importance sampling estimate. Tensor with shape equal
to batch shape of q, and dtype = q.dtype.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.nn.ctc_greedy_decoder.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.ctc_greedy_decoder(inputs, sequence_length, merge_repeated=True) {#ctc_greedy_decoder}

Performs greedy decoding on the logits given in input (best path).

Note: Regardless of the value of merge_repeated, if the maximum index of a
given time and batch corresponds to the blank index (num_classes - 1), no
new element is emitted.

If merge_repeated is True, merge repeated classes in output.
This means that if consecutive logits’ maximum indices are the same,
only the first of these is emitted. The sequence A B B * B * B (where ‘*‘
is the blank label) becomes

		A B if merge_repeated=True.

		A B B B B B if merge_repeated=False.

Args:

		inputs: 3-D float Tensor sized
[max_time x batch_size x num_classes]. The logits.

		sequence_length: 1-D int32 vector containing sequence lengths,
having size [batch_size].

		merge_repeated: Boolean. Default: True.

Returns:

A tuple (decoded, log_probabilities) where

		decoded: A single-element list. decoded[0]
is an SparseTensor containing the decoded outputs s.t.:
decoded.indices: Indices matrix (total_decoded_outputs x 2).
The rows store: [batch, time].
decoded.values: Values vector, size (total_decoded_outputs).
The vector stores the decoded classes.
decoded.shape: Shape vector, size (2).
The shape values are: [batch_size, max_decoded_length]

		log_probability: A float matrix (batch_size x 1) containing sequence
log-probabilities.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.train.export_meta_graph.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.export_meta_graph(filename=None, meta_info_def=None, graph_def=None, saver_def=None, collection_list=None, as_text=False) {#export_meta_graph}

Returns MetaGraphDef proto. Optionally writes it to filename.

This function exports the graph, saver, and collection objects into
MetaGraphDef protocol buffer with the intention of it being imported
at a later time or location to restart training, run inference, or be
a subgraph.

Args:

		filename: Optional filename including the path for writing the
generated MetaGraphDef protocol buffer.

		meta_info_def: MetaInfoDef protocol buffer.

		graph_def: GraphDef protocol buffer.

		saver_def: SaverDef protocol buffer.

		collection_list: List of string keys to collect.

		as_text: If True, writes the MetaGraphDef as an ASCII proto.

Returns:

A MetaGraphDef proto.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.erfc.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.erfc(x, name=None) {#erfc}

Computes the complementary error function of x element-wise.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.truncated_normal.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None) {#truncated_normal}

Outputs random values from a truncated normal distribution.

The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.

Args:

		shape: A 1-D integer Tensor or Python array. The shape of the output tensor.

		mean: A 0-D Tensor or Python value of type dtype. The mean of the
truncated normal distribution.

		stddev: A 0-D Tensor or Python value of type dtype. The standard deviation
of the truncated normal distribution.

		dtype: The type of the output.

		seed: A Python integer. Used to create a random seed for the distribution.
See
set_random_seed
for behavior.

		name: A name for the operation (optional).

Returns:

A tensor of the specified shape filled with random truncated normal values.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.fft3d.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.fft3d(input, name=None) {#fft3d}

Compute the 3-dimensional discrete Fourier Transform over the inner-most 3

dimensions of input.

Args:

		input: A Tensor of type complex64. A complex64 tensor.

		name: A name for the operation (optional).

Returns:

A Tensor of type complex64.
A complex64 tensor of the same shape as input. The inner-most 3
dimensions of input are replaced with their 3D Fourier Transform.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.Dimension.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Represents the value of one dimension in a TensorShape.

tf.Dimension.__add__(other) {#Dimension.add}

Returns the sum of self and other.

Dimensions are summed as follows:

Dimension(m) + Dimension(n) == Dimension(m + n)
Dimension(m) + Dimension(None) == Dimension(None)
Dimension(None) + Dimension(n) == Dimension(None)
Dimension(None) + Dimension(None) == Dimension(None)

Args:

		other: Another Dimension.

Returns:

A Dimension whose value is the sum of self and other.

tf.Dimension.__div__(other) {#Dimension.div}

DEPRECATED: Use __floordiv__ via x // y instead.

This function exists only for backwards compatibility purposes; new code
should use __floordiv__ via the syntax x // y. Using x // y
communicates clearly that the result rounds down, and is forward compatible
to Python 3.

Args:

		other: Another Dimension.

Returns:

A Dimension whose value is the integer quotient of self and other.

tf.Dimension.__eq__(other) {#Dimension.eq}

Returns true if other has the same known value as this Dimension.

tf.Dimension.__floordiv__(other) {#Dimension.floordiv}

Returns the quotient of self and other rounded down.

Dimensions are divided as follows:

Dimension(m) // Dimension(n) == Dimension(m // n)
Dimension(m) // Dimension(None) == Dimension(None)
Dimension(None) // Dimension(n) == Dimension(None)
Dimension(None) // Dimension(None) == Dimension(None)

Args:

		other: Another Dimension.

Returns:

A Dimension whose value is the integer quotient of self and other.

tf.Dimension.__ge__(other) {#Dimension.ge}

Returns True if self is known to be greater than or equal to other.

Dimensions are compared as follows:

Dimension(m) >= Dimension(n) == m >= n
Dimension(m) >= Dimension(None) == None
Dimension(None) >= Dimension(n) == None
Dimension(None) >= Dimension(None) == None

Args:

		other: Another Dimension.

Returns:

The value of self.value >= other.value if both are known, otherwise
None.

tf.Dimension.__gt__(other) {#Dimension.gt}

Returns True if self is known to be greater than other.

Dimensions are compared as follows:

Dimension(m) > Dimension(n) == m > n
Dimension(m) > Dimension(None) == None
Dimension(None) > Dimension(n) == None
Dimension(None) > Dimension(None) == None

Args:

		other: Another Dimension.

Returns:

The value of self.value > other.value if both are known, otherwise
None.

tf.Dimension.__index__() {#Dimension.index}

tf.Dimension.__init__(value) {#Dimension.init}

Creates a new Dimension with the given value.

tf.Dimension.__int__() {#Dimension.int}

tf.Dimension.__le__(other) {#Dimension.le}

Returns True if self is known to be less than or equal to other.

Dimensions are compared as follows:

Dimension(m) <= Dimension(n) == m <= n
Dimension(m) <= Dimension(None) == None
Dimension(None) <= Dimension(n) == None
Dimension(None) <= Dimension(None) == None

Args:

		other: Another Dimension.

Returns:

The value of self.value <= other.value if both are known, otherwise
None.

tf.Dimension.__lt__(other) {#Dimension.lt}

Returns True if self is known to be less than other.

Dimensions are compared as follows:

Dimension(m) < Dimension(n) == m < n
Dimension(m) < Dimension(None) == None
Dimension(None) < Dimension(n) == None
Dimension(None) < Dimension(None) == None

Args:

		other: Another Dimension.

Returns:

The value of self.value < other.value if both are known, otherwise
None.

tf.Dimension.__mod__(other) {#Dimension.mod}

Returns self modulo `other.

Dimension moduli are computed as follows:

Dimension(m) % Dimension(n) == Dimension(m % n)
Dimension(m) % Dimension(None) == Dimension(None)
Dimension(None) % Dimension(n) == Dimension(None)
Dimension(None) % Dimension(None) == Dimension(None)

Args:

		other: Another Dimension.

Returns:

A Dimension whose value is self modulo other.

tf.Dimension.__mul__(other) {#Dimension.mul}

Returns the product of self and other.

Dimensions are summed as follows:

Dimension(m) * Dimension(n) == Dimension(m * n)
Dimension(m) * Dimension(None) == Dimension(None)
Dimension(None) * Dimension(n) == Dimension(None)
Dimension(None) * Dimension(None) == Dimension(None)

Args:

		other: Another Dimension.

Returns:

A Dimension whose value is the product of self and other.

tf.Dimension.__ne__(other) {#Dimension.ne}

Returns true if other has a different known value from self.

tf.Dimension.__repr__() {#Dimension.repr}

tf.Dimension.__str__() {#Dimension.str}

tf.Dimension.__sub__(other) {#Dimension.sub}

Returns the subtraction of other from self.

Dimensions are subtracted as follows:

Dimension(m) - Dimension(n) == Dimension(m - n)
Dimension(m) - Dimension(None) == Dimension(None)
Dimension(None) - Dimension(n) == Dimension(None)
Dimension(None) - Dimension(None) == Dimension(None)

Args:

		other: Another Dimension.

Returns:

A Dimension whose value is the subtraction of sum of other from self.

tf.Dimension.assert_is_compatible_with(other) {#Dimension.assert_is_compatible_with}

Raises an exception if other is not compatible with this Dimension.

Args:

		other: Another Dimension.

Raises:

		ValueError: If self and other are not compatible (see
is_compatible_with).

tf.Dimension.is_compatible_with(other) {#Dimension.is_compatible_with}

Returns true if other is compatible with this Dimension.

Two known Dimensions are compatible if they have the same value.
An unknown Dimension is compatible with all other Dimensions.

Args:

		other: Another Dimension.

Returns:

True if this Dimension and other are compatible.

tf.Dimension.merge_with(other) {#Dimension.merge_with}

Returns a Dimension that combines the information in self and other.

Dimensions are combined as follows:

Dimension(n) .merge_with(Dimension(n)) == Dimension(n)
Dimension(n) .merge_with(Dimension(None)) == Dimension(n)
Dimension(None).merge_with(Dimension(n)) == Dimension(n)
Dimension(None).merge_with(Dimension(None)) == Dimension(None)
Dimension(n) .merge_with(Dimension(m)) raises ValueError for n != m

Args:

		other: Another Dimension.

Returns:

A Dimension containing the combined information of self and
other.

Raises:

		ValueError: If self and other are not compatible (see
is_compatible_with).

tf.Dimension.value {#Dimension.value}

The value of this dimension, or None if it is unknown.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.ifft.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.ifft(input, name=None) {#ifft}

Compute the inverse 1-dimensional discrete Fourier Transform over the inner-most

dimension of input.

Args:

		input: A Tensor of type complex64. A complex64 tensor.

		name: A name for the operation (optional).

Returns:

A Tensor of type complex64.
A complex64 tensor of the same shape as input. The inner-most
dimension of input is replaced with its inverse 1D Fourier Transform.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.copy_graph.copy_variable_to_graph.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.copy_graph.copy_variable_to_graph(org_instance, to_graph, scope='') {#copy_variable_to_graph}

Given a Variable instance from one Graph, initializes and returns
a copy of it from another Graph, under the specified scope
(default "").

Args:
org_instance: A Variable from some Graph.
to_graph: The Graph to copy the Variable to.
scope: A scope for the new Variable (default "").

Returns:

The copied `Variable` from `to_graph`.

Raises:

		TypeError: If org_instance is not a Variable.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.polygamma.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.polygamma(a, x, name=None) {#polygamma}

Compute the polygamma function \(\psi^{(n)}(x)\).

The polygamma function is defined as:

\psi^{(n)}(x) = \frac{d^n}{dx^n} \psi(x)

where \(\psi(x)\) is the digamma function.

Args:

		a: A Tensor. Must be one of the following types: float32, float64.

		x: A Tensor. Must have the same type as a.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as a.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.sparse_reset_shape.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_reset_shape(sp_input, new_shape=None) {#sparse_reset_shape}

Resets the shape of a SparseTensor with indices and values unchanged.

If new_shape is None, returns a copy of sp_input with its shape reset
to the tight bounding box of sp_input.

If new_shape is provided, then it must be larger or equal in all dimensions
compared to the shape of sp_input. When this condition is met, the returned
SparseTensor will have its shape reset to new_shape and its indices and
values unchanged from that of sp_input.

For example:

Consider a sp_input with shape [2, 3, 5]:

[0, 0, 1]: a
[0, 1, 0]: b
[0, 2, 2]: c
[1, 0, 3]: d

		It is an error to set new_shape as [3, 7] since this represents a
rank-2 tensor while sp_input is rank-3. This is either a ValueError
during graph construction (if both shapes are known) or an OpError during
run time.

		Setting new_shape as [2, 3, 6] will be fine as this shape is larger or
equal in every dimension compared to the original shape [2, 3, 5].

		On the other hand, setting new_shape as [2, 3, 4] is also an error: The
third dimension is smaller than the original shape [2, 3, 5] (and an
InvalidArgumentError will be raised).

		If new_shape is None, the returned SparseTensor will have a shape
[2, 3, 4], which is the tight bounding box of sp_input.

Args:

		sp_input: The input SparseTensor.

		new_shape: None or a vector representing the new shape for the returned
SparseTensor.

Returns:

A SparseTensor indices and values unchanged from input_sp. Its shape is
new_shape if that is set. Otherwise it is the tight bounding box of
input_sp

Raises:

		TypeError: If sp_input is not a SparseTensor.

		ValueError: If new_shape represents a tensor with a different rank from
that of sp_input (if shapes are known when graph is constructed).

		OpError:
		If new_shape has dimension sizes that are too small.

		If shapes are not known during graph construction time, and during run
time it is found out that the ranks do not match.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.framework.with_shape.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.with_shape(expected_shape, tensor) {#with_shape}

Asserts tensor has expected shape.

If tensor shape and expected_shape, are fully defined, assert they match.
Otherwise, add assert op that will validate the shape when tensor is
evaluated, and set shape on tensor.

Args:

		expected_shape: Expected shape to assert, as a 1D array of ints, or tensor
of same.

		tensor: Tensor whose shape we’re validating.

Returns:

tensor, perhaps with a dependent assert operation.

Raises:

		ValueError: if tensor has an invalid shape.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.decode_json_example.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.decode_json_example(json_examples, name=None) {#decode_json_example}

Convert JSON-encoded Example records to binary protocol buffer strings.

This op translates a tensor containing Example records, encoded using
the standard JSON
mapping [https://developers.google.com/protocol-buffers/docs/proto3#json],
into a tensor containing the same records encoded as binary protocol
buffers. The resulting tensor can then be fed to any of the other
Example-parsing ops.

Args:

		json_examples: A Tensor of type string.
Each string is a JSON object serialized according to the JSON
mapping of the Example proto.

		name: A name for the operation (optional).

Returns:

A Tensor of type string.
Each string is a binary Example protocol buffer corresponding
to the respective element of json_examples.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.python_io.TFRecordWriter.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A class to write records to a TFRecords file.

This class implements __enter__ and __exit__, and can be used
in with blocks like a normal file.

tf.python_io.TFRecordWriter.__init__(path, options=None) {#TFRecordWriter.init}

Opens file path and creates a TFRecordWriter writing to it.

Args:

		path: The path to the TFRecords file.

		options: (optional) A TFRecordOptions object.

Raises:

		IOError: If path cannot be opened for writing.

tf.python_io.TFRecordWriter.write(record) {#TFRecordWriter.write}

Write a string record to the file.

Args:

		record: str

tf.python_io.TFRecordWriter.close() {#TFRecordWriter.close}

Close the file.

Other Methods

tf.python_io.TFRecordWriter.__enter__() {#TFRecordWriter.enter}

Enter a with block.

tf.python_io.TFRecordWriter.__exit__(unused_type, unused_value, unused_traceback) {#TFRecordWriter.exit}

Exit a with block, closing the file.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.slice.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.slice(input_, begin, size, name=None) {#slice}

Extracts a slice from a tensor.

This operation extracts a slice of size size from a tensor input starting
at the location specified by begin. The slice size is represented as a
tensor shape, where size[i] is the number of elements of the ‘i’th dimension
of input that you want to slice. The starting location (begin) for the
slice is represented as an offset in each dimension of input. In other
words, begin[i] is the offset into the ‘i’th dimension of input that you
want to slice from.

begin is zero-based; size is one-based. If size[i] is -1,
all remaining elements in dimension i are included in the
slice. In other words, this is equivalent to setting:

size[i] = input.dim_size(i) - begin[i]

This operation requires that:

0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n]

For example:

'input' is [[[1, 1, 1], [2, 2, 2]],
[[3, 3, 3], [4, 4, 4]],
[[5, 5, 5], [6, 6, 6]]]
tf.slice(input, [1, 0, 0], [1, 1, 3]) ==> [[[3, 3, 3]]]
tf.slice(input, [1, 0, 0], [1, 2, 3]) ==> [[[3, 3, 3],
 [4, 4, 4]]]
tf.slice(input, [1, 0, 0], [2, 1, 3]) ==> [[[3, 3, 3]],
 [[5, 5, 5]]]

Args:

		input_: A Tensor.

		begin: An int32 or int64 Tensor.

		size: An int32 or int64 Tensor.

		name: A name for the operation (optional).

Returns:

A Tensor the same type as input.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.matrix_solve.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.matrix_solve(matrix, rhs, adjoint=None, name=None) {#matrix_solve}

Solves systems of linear equations.

Matrix is a tensor of shape [..., M, M] whose inner-most 2 dimensions
form square matrices. Rhs is a tensor of shape [..., M, K]. The output is
a tensor shape [..., M, K]. If adjoint is False then each output matrix
satisfies matrix[..., :, :] * output[..., :, :] = rhs[..., :, :].
If adjoint is True then each output matrix satisfies
adjoint(matrix[..., :, :]) * output[..., :, :] = rhs[..., :, :].

Args:

		matrix: A Tensor. Must be one of the following types: float64, float32.
Shape is [..., M, M].

		rhs: A Tensor. Must have the same type as matrix.
Shape is [..., M, K].

		adjoint: An optional bool. Defaults to False.
Boolean indicating whether to solve with matrix or its (block-wise)
adjoint.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as matrix. Shape is [..., M, K].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.assert_positive.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.assert_positive(x, data=None, summarize=None, message=None, name=None) {#assert_positive}

Assert the condition x > 0 holds element-wise.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_positive(x)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_positive(x)], x)

Positive means, for every element x[i] of x, we have x[i] > 0.
If x is empty this is trivially satisfied.

Args:

		x: Numeric Tensor.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional). Defaults to “assert_positive”.

Returns:

Op raising InvalidArgumentError unless x is all positive.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.variable_scope.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.variable_scope(name_or_scope, default_name=None, values=None, initializer=None, regularizer=None, caching_device=None, partitioner=None, custom_getter=None, reuse=None, dtype=None) {#variable_scope}

Returns a context manager for defining ops that creates variables (layers).

This context manager validates that the (optional) values are from
the same graph, ensures that graph is the default graph, and pushes a
name scope and a variable scope.

If name_or_scope is not None, it is used as is. If scope is None, then
default_name is used. In that case, if the same name has been previously
used in the same scope, it will made unique be appending _N to it.

Variable scope allows to create new variables and to share already created
ones while providing checks to not create or share by accident. For details,
see the Variable Scope How To,
here we present only a few basic examples.

Simple example of how to create a new variable:

with tf.variable_scope("foo"):
 with tf.variable_scope("bar"):
 v = tf.get_variable("v", [1])
 assert v.name == "foo/bar/v:0"

Basic example of sharing a variable:

with tf.variable_scope("foo"):
 v = tf.get_variable("v", [1])
with tf.variable_scope("foo", reuse=True):
 v1 = tf.get_variable("v", [1])
assert v1 == v

Sharing a variable by capturing a scope and setting reuse:

with tf.variable_scope("foo") as scope:
 v = tf.get_variable("v", [1])
 scope.reuse_variables()
 v1 = tf.get_variable("v", [1])
assert v1 == v

To prevent accidental sharing of variables, we raise an exception when
getting an existing variable in a non-reusing scope.

with tf.variable_scope("foo"):
 v = tf.get_variable("v", [1])
 v1 = tf.get_variable("v", [1])
 # Raises ValueError("... v already exists ...").

Similarly, we raise an exception when trying to get a variable that
does not exist in reuse mode.

with tf.variable_scope("foo", reuse=True):
 v = tf.get_variable("v", [1])
 # Raises ValueError("... v does not exists ...").

Note that the reuse flag is inherited: if we open a reusing scope,
then all its sub-scopes become reusing as well.

Args:

		name_or_scope: string or VariableScope: the scope to open.

		default_name: The default name to use if the name_or_scope argument is
None, this name will be uniquified. If name_or_scope is provided it
won’t be used and therefore it is not required and can be None.

		values: The list of Tensor arguments that are passed to the op function.

		initializer: default initializer for variables within this scope.

		regularizer: default regularizer for variables within this scope.

		caching_device: default caching device for variables within this scope.

		partitioner: default partitioner for variables within this scope.

		custom_getter: default custom getter for variables within this scope.

		reuse: True or None; if True, we go into reuse mode for this scope as
well as all sub-scopes; if None, we just inherit the parent scope reuse.

		dtype: type of variables created in this scope (defaults to the type
in the passed scope, or inherited from parent scope).

Returns:

A scope that can be to captured and reused.

Raises:

		ValueError: when trying to reuse within a create scope, or create within
a reuse scope, or if reuse is not None or True.

		TypeError: when the types of some arguments are not appropriate.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.truediv.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.truediv(x, y, name=None) {#truediv}

Divides x / y elementwise, always producing floating point results.

The same as tf.div for floating point arguments, but casts integer arguments
to floating point before dividing so that the result is always floating point.
This op is generated by normal x / y division in Python 3 and in Python 2.7
with from __future__ import division. If you want integer division that
rounds down, use x // y or tf.floordiv.

x and y must have the same numeric type. If the inputs are floating
point, the output will have the same type. If the inputs are integral, the
inputs are cast to float32 for int8 and int16 and float64 for int32
and int64 (matching the behavior of Numpy).

Args:

		x: Tensor numerator of numeric type.

		y: Tensor denominator of numeric type.

		name: A name for the operation (optional).

Returns:

x / y evaluated in floating point.

Raises:

		TypeError: If x and y have different dtypes.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.moving_average_variables.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.moving_average_variables() {#moving_average_variables}

Returns all variables that maintain their moving averages.

If an ExponentialMovingAverage object is created and the apply()
method is called on a list of variables, these variables will
be added to the GraphKeys.MOVING_AVERAGE_VARIABLES collection.
This convenience function returns the contents of that collection.

Returns:

A list of Variable objects.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.nn.conv3d_transpose.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.conv3d_transpose(value, filter, output_shape, strides, padding='SAME', name=None) {#conv3d_transpose}

The transpose of conv3d.

This operation is sometimes called “deconvolution” after Deconvolutional
Networks [http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf], but is
actually the transpose (gradient) of conv3d rather than an actual
deconvolution.

Args:

		value: A 5-D Tensor of type float and shape
[batch, depth, height, width, in_channels].

		filter: A 5-D Tensor with the same type as value and shape
[depth, height, width, output_channels, in_channels]. filter‘s
in_channels dimension must match that of value.

		output_shape: A 1-D Tensor representing the output shape of the
deconvolution op.

		strides: A list of ints. The stride of the sliding window for each
dimension of the input tensor.

		padding: A string, either 'VALID' or 'SAME'. The padding algorithm.
See the comment here [https://www.tensorflow.org/api_docs/python/nn.html#convolution]

		name: Optional name for the returned tensor.

Returns:

A Tensor with the same type as value.

Raises:

		ValueError: If input/output depth does not match filter‘s shape, or if
padding is other than 'VALID' or 'SAME'.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/how_tos/tool_developers/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

A Tool Developer’s Guide to TensorFlow Model Files

Most users shouldn’t need to care about the internal details of how TensorFlow
stores data on disk, but you might if you’re a tool developer. For example, you
may want to analyze models, or convert back and forth between TensorFlow and
other formats. This guide tries to explain some of the details of how you can
work with the main files that hold model data, to make it easier to develop
those kind of tools.

[TOC]

Protocol Buffers

All of TensorFlow’s file formats are based on [Protocol Buffers]
(https://developers.google.com/protocol-buffers/?hl=en), so to start
it’s worth getting familiar with how they work. The summary is that you define
data structures in text files, and the protobuf tools generate classes in C,
Python, and other languages that can load, save, and access the data in a
friendly way. We often refer to Protocol Buffers as protobufs, and I’ll use
that convention in this guide.

GraphDef

The foundation of computation in TensorFlow is the Graph object. This holds a
network of nodes, each representing one operation, connected to each other as
inputs and outputs. After you’ve created a Graph object, you can save it out
by calling as_graph_def(), which returns a GraphDef object.

The GraphDef class is an object created by the ProtoBuf library from the
definition in
tensorflow/core/framework/graph.proto [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/graph.proto]. The protobuf tools parse
this text file, and generate the code to load, store, and manipulate graph
definitions. If you see a standalone TensorFlow file representing a model, it’s
likely to contain a serialized version of one of these GraphDef objects
saved out by the protobuf code.

This generated code is used to save and load the GraphDef files from disk. A
good example to look at as we dig into this is
graph_metrics.py [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/tools/graph_metrics.py]. This Python script takes a saved graph
definition, and analyzes the model to estimate performance and resource
statistics. The code that actually loads the model looks like this:

graph_def = graph_pb2.GraphDef()

This line creates an empty GraphDef object, the class that’s been created
from the textual definition in graph.proto. This is the object we’re going to
populate with the data from our file.

with open(FLAGS.graph, "rb") as f:

Here we get a file handle for the path we’ve passed in to the script

 if FLAGS.input_binary:
 graph_def.ParseFromString(f.read())
 else:
 text_format.Merge(f.read(), graph_def)

Text or Binary?

There are actually two different formats that a ProtoBuf can be saved in.
TextFormat is a human-readable form, which makes it nice for debugging and
editing, but can get large when there’s numerical data like weights stored in
it. You can see a small example of that in
graph_run_run2.pbtxt [https://github.com/tensorflow/tensorflow/blob/ae3c8479f88da1cd5636b974f653f27755cb0034/tensorflow/tensorboard/components/tf-tensorboard/test/data/graph_run_run2.pbtxt].

Binary format files are a lot smaller than their text equivalents, even though
they’re not as readable for us. In this script, we ask the user to supply a
flag indicating whether the input file is binary or text, so we know the right
function to call. You can find an example of a large binary file inside the
inception_dec_2015.zip
archive [https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_2015.zip], as tensorflow_inception_graph.pb.

The API itself can be a bit confusing - the binary call is actually
ParseFromString(), whereas you use a utility function from the text_format
module to load textual files.

Nodes

Once you’ve loaded a file into the graph_def variable, you can now access the
data inside it. For most practical purposes, the important section is the list
of nodes stored in the node member. Here’s the code that loops through those:

for node in graph_def.node

Each node is a NodeDef object, defined in
tensorflow/core/framework/node_def.proto [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/node_def.proto]. These
are the fundamental building blocks of TensorFlow graphs, with each one defining
a single operation along with its input connections. Here are the members of a
NodeDef, and what they mean.

name

Every node should have a unique identifier that’s not used by any other nodes
in the graph. If you don’t specify one as you’re building a graph using the
Python API, one reflecting the name of operation, such as “MatMul”,
concatenated with a monotonically increasing number, such as “5”, will be
picked for you. an arbitrary one will be picked for you. The name is used when
defining the connections between nodes, and when setting inputs and outputs for
the whole graph when it’s run.

op

This defines what operation to run, for example "Add", "MatMul", or
"Conv2D". When a graph is run, this op name is looked up in a registry to
find an implementation. The registry is populated by calls to the
REGISTER_OP() macro, like those in
tensorflow/core/ops/nn_ops.cc [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/nn_ops.cc].

input

A list of strings, each one of which is the name of another node, optionally
followed by a colon and an output port number. For example, a node with two
inputs might have a list like ["some_node_name", "another_node_name"], which
is equivalent to ["some_node_name:0", "another_node_name:0"], and defines the
node’s first input as the first output from the node with the name
"some_node_name", and a second input from the first output of
`“another_node_name

device

In most cases you can ignore this, since it defines where to run a node in a
distributed environment, or when you want to force the operation onto CPU or
GPU.

attr

This is a key/value store holding all the attributes of a node. These are the
permanent properties of nodes, things that don’t change at runtime such as the
size of filters for convolutions, or the values of constant ops. Because there
can be so many different types of attribute values, from strings, to ints, to
arrays of tensor values, there’s a separate protobuf file defining the data
structure that holds them, in
tensorflow/core/framework/attr_value.proto [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/attr_value.proto].

Each attribute has a unique name string, and the expected attributes are listed
when the operation is defined. If an attribute isn’t present in a node, but it
has a default listed in the operation definition, that default is used when the
graph is created.

You can access all of these members by calling node.name, node.op, etc. in
Python. The list of nodes stored in the GraphDef is a full definition of the
model architecture.

Freezing

One confusing part about this is that the weights usually aren’t stored inside
the file format during training. Instead, they’re held in separate checkpoint
files, and there are Variable ops in the graph that load the latest values
when they’re initialized. It’s often not very convenient to have separate files
when you’re deploying to production, so there’s the
freeze_graph.py [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/tools/freeze_graph.py] script that takes a graph definition and a set
of checkpoints and freezes them together into a single file.

What this does is load the GraphDef, pull in the values for all the variables
from the latest checkpoint file, and then replace each Variable op with a
Const that has the numerical data for the weights stored in its attributes
It then strips away all the extraneous nodes that aren’t used for forward
inference, and saves out the resulting GraphDef into an output file.

Weight Formats

If you’re dealing with TensorFlow models that represent neural networks, one of
the most common problems is extracting and interpreting the weight values. A
common way to store them, for example in graphs created by the freeze_graph
script, is as Const ops containing the weights as Tensors. These are
defined in
tensorflow/core/framework/tensor.proto [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/tensor.proto], and contain information
about the size and type of the data, as well as the values themselves. In
Python, you get a TensorProto object from a NodeDef representing a Const
op by calling something like some_node_def.attr['value'].tensor.

This will give you an object representing the weights data. The data itself
will be stored in one of the lists with the suffix _val as indicated by the
type of the object, for example float_val for 32-bit float data types.

The ordering of convolution weight values is often tricky to deal with when
converting between different frameworks. In TensorFlow, the filter weights for
the Conv2D operation are stored on the second input, and are expected to be
in the order [filter_height, filter_width, input_depth, output_depth], where
filter_count increasing by one means moving to an adjacent value in memory.

Hopefully this rundown gives you a better idea of what’s going on inside
TensorFlow model files, and will help you if you ever need to manipulate them.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/how_tos/documentation/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Writing TensorFlow Documentation

TensorFlow’s documentation is maintained in
Markdown [https://daringfireball.net/projects/markdown/], and resides in the
g3doc/ directory. The Introduction, Overview, Tutorials, and How-Tos
sections are manually edited.

Anything in the g3doc/api_docs directory is generated from comments in the
code, and should not be edited directly. The script tools/docs/gen_docs.sh
generates the API documentation. If called without arguments, it rebuilds the
Python API documentation only (i.e., documentation for Ops, whether defined in
Python or C++). If -a is passed, it also rebuilds the documentation for the
C++ API. It must be called from the tools/docs directory, and if called with
-a, requires doxygen to be installed.

Python API Documentation

Ops, classes, and utility functions are defined in Python modules, such as
image_ops.py. The module docstring is inserted at the beginning of the
Markdown file generated for the Python file. Thus, image_ops.md starts with
the module docstring in image_ops.py. python/framework/gen_docs_combined.py
contains the list of all libraries for which Markdown files are created. If
you are adding a new library (generating a separate section in the API
documentation), you have to add it to the list of libraries in
gen_docs_combined.py. For the C++ api, only a single library file exists, its
Markdown is a string in gen_cc_md.py, from which api_docs/cc/index.md is
created. The rest of the C++ documentation is generated from XML files generated
by doxygen.

In the module docstring of a file registered as a library, you can insert
generated docs for Ops, classes, and functions by calling them out with the
syntax @@<python-name> (at the beginning of an otherwise empty line). The
called-out op, function, or class does not have to be defined in the same file.

This allows you to control the order in which the Ops, classes, and functions
are documented. Group them in a logical order, with interspersed high level
documentation.

Every public op, class or function must be called out with a @@ entry in some
library. If you don’t, you will get doc_gen_test failures.

Docs for Ops are automatically extracted from Python wrappers or C++ Ops
registrations, Python wrappers have priority.

		Python wrappers are in python/ops/*.py.

		C++ Ops registrations are in core/ops/*.cc.

Docs for Classes and Utility Functions are extracted from their docstrings.

Op Documentation Style Guide

Ideally, you should provide the following information, in order of presentation:

		A short sentence that describes what the op does.

		A short description of what happens when you pass arguments to the op.

		An example showing how the op works (pseudocode is best).

		Requirements, caveats, important notes (if there are any).

		Descriptions of inputs, outputs, and Attrs or other parameters of the op
constructor.

Each of these is described in more detail
below.

Write your text in Markdown (.md) format. A basic syntax reference is
here [https://daringfireball.net/projects/markdown/]. You are allowed to use
MathJax [https://www.mathjax.org] notation for equations. Those will be
rendered properly on tensorflow.org [https://www.tensorflow.org], but don’t
show up on github [https://github.com/tensorflow/tensorflow].

Writing About Code

Put backticks around these things when they’re used in text:

		Argument names (e.g. input, x, tensor)

		Returned tensor names (e.g. output, idx, out)

		Data types (e.g. int32, float, uint8)

		Other op names referenced in text (e.g. list_diff(), shuffle())

		Class names (e.g. Tensor when you actually mean a Tensor object; don’t
capitalize or use backticks if you’re just explaining what an op does to a
tensor, or a graph, or an operation in general)

		File names (e.g. image_ops.py, or /path-to-your-data/xml/example-name)

Put three backticks around sample code and pseudocode examples. And use ==>
instead of a single equal sign when you want to show what an op returns. For
example:


```
# 'input' is a tensor of shape [2, 3, 5]
(tf.expand_dims(input, 0)) ==> [1, 2, 3, 5]
```


If you’re providing a Python code sample, add the python style label to ensure proper syntax highlighting:


 ```python
 # some Python code







Put single backticks around math expressions or conditions. For example:

```markdown
This operation requires that `-1-input.dims() <= dim <= input.dims()`.

Tensor Dimensions

When you’re talking about a tensor in general, don’t capitalize the word tensor.
When you’re talking about the specific object that’s provided to an op as an
argument or returned by an op, then you should capitalize the word Tensor and
add backticks around it because you’re talking about a Tensor object that gets
passed.

Don’t use the word Tensors to describe multiple Tensor objects unless you
really are talking about a Tensors object. Better to say “a list of Tensor
objects.”, or, maybe, “Tensors”.

When you’re talking about the size of a tensor, use these guidelines:

Use the term “dimension” to refer to the size of a tensor. If you need to be
specific about the size, use these conventions:

		Refer to a scalar as a “0-D tensor”

		Refer to a vector as a “1-D tensor”

		Refer to a matrix as a “2-D tensor”

		Refer to tensors with 3 or more dimensions as 3-D tensors or n-D tensors. Use
the word “rank” only if it makes sense, but try to use “dimension” instead.
Never use the word “order” to describe the size of a tensor.

Use the word “shape” to describe in detail the dimensions of a tensor, and show
the shape in square brackets with backticks. For example:

If `input` is a 3-D tensor with shape `[3, 4, 3]`, this operation will return
a 3-D tensor with shape `[6, 8, 6]`.

Links

To link to something else in the g3docs tree, use a relative path, like
[tf.parse_example](../api_docs/python/ops.md#parse_example)
Do not use absolute paths for internal links, as this will break the website
generator.

To link to source code, use a link starting with:
https://www.tensorflow.org/code/, followed by
the file name starting at the github root. For instance, a link to this file
should be written as
https://www.tensorflow.org/code/tensorflow/g3doc/how_tos/documentation/index.md.
This ensures that tensorflow.org [https://www.tensorflow.org/] can forward the link to the
branch of the code corresponding to the version of the documentation you’re
viewing. Do not include url parameters in the URL.

Ops defined in C++

All Ops defined in C++ must be documented as part of the REGISTER_OP
declaration. The docstring in the C++ file is processed to automatically add
some information for the input types, output types, and Attr types and default
values.

For example:

REGISTER_OP("PngDecode")
 .Input("contents: string")
 .Attr("channels: int = 0")
 .Output("image: uint8")
 .Doc(R"doc(
Decodes the contents of a PNG file into a uint8 tensor.

contents: PNG file contents.
channels: Number of color channels, or 0 to autodetect based on the input.
 Must be 0 for autodetect, 1 for grayscale, 3 for RGB, or 4 for RGBA.
 If the input has a different number of channels, it will be transformed
 accordingly.
image:= A 3-D uint8 tensor of shape `[height, width, channels]`.
 If `channels` is 0, the last dimension is determined
 from the png contents.
)doc");

Results in this piece of Markdown:

tf.image.png_decode(contents, channels=None, name=None) {#png_decode}

Decodes the contents of a PNG file into a uint8 tensor.

Args:

* contents: A string Tensor. PNG file contents.
* channels: An optional int. Defaults to 0.
 Number of color channels, or 0 to autodetect based on the input.
 Must be 0 for autodetect, 1 for grayscale, 3 for RGB, or 4 for RGBA. If the
 input has a different number of channels, it will be transformed accordingly.
* name: A name for the operation (optional).

Returns:

 A 3-D uint8 tensor of shape `[height, width, channels]`.
 If `channels` is 0, the last dimension is determined
 from the png contents.

Much of the argument description is added automatically. In particular, the doc
generator automatically adds the name and type of all inputs, attrs, and
outputs. In the above example, contents: A string Tensor. was added
automatically. You should write your additional text to flow naturally after
that description.

For inputs and output, you can prefix your additional text with an equal sign to
prevent the automatically added name and type. In the above example, the
description for the output named image starts with = to prevent the addition
of A uint8 Tensor. before our text A 3-D uint8 Tensor.... You cannot prevent
the addition of the name, type, and default value of attrs this way, so write
your text carefully.

Ops defined in Python

If your op is defined in a python/ops/*.py file, then you need to provide
text for all of the arguments and output (returned) tensors.

You should conform to the usual Python docstring conventions, except that you
should use Markdown in the docstring. The doc generator does not auto-generate
any text for ops that are defined in Python, so what you write is what you get.

Here’s a simple example:

def foo(x, y, name="bar"):
 """Computes foo.

 Given two 1-D tensors `x` and `y`, this operation computes the foo.

 For example:

x is [1, 1]

y is [2, 2]

tf.foo(x, y) ==> [3, 3]

Args:
 x: A `Tensor` of type `int32`.
 y: A `Tensor` of type `int32`.
 name: A name for the operation (optional).

Returns:
 A `Tensor` of type `int32` that is the foo of `x` and `y`.

Raises:
 ValueError: If `x` or `y` are not of type `int32`.
"""

...

Description of the Docstring Sections

Here is more detail and examples for each of the elements of the docstrings.

Short sentence that describes what the op does.

Examples:

Concatenates tensors.

Flips an image horizontally from left to right.

Computes the Levenshtein distance between two sequences.

Saves a list of tensors to a file.

Extracts a slice from a tensor.

Short description of what happens when you pass arguments to the op.

Examples:

Given a tensor input of numerical type, this operation returns a tensor of
the same type and size with values reversed along dimension `seq_dim`. A
vector `seq_lengths` determines which elements are reversed for each index
within dimension 0 (usually the batch dimension).

This operation returns a tensor of type `dtype` and dimensions `shape`, with
all elements set to zero.

Example showing how the op works.

The squeeze() op has a nice pseudocode example:

shape(input) => `[1, 2, 1, 3, 1, 1]`
shape(squeeze(input)) => `[2, 3]`

The tile() op provides a good example in descriptive text:

For example, tiling `[a, b, c, d]` by 2 produces
`[[a, b, c, d], [a, b, c, d]]`.

It is often helpful to show code samples in Python. Never put them in the C++
Ops file, and avoid putting them in the Python Ops doc. Put them in the module
or class docstring where the Ops constructors are called out.

Here’s an example from the module docsting in image_ops.py:

TensorFlow can convert between images in RGB or HSV. The conversion
functions work only on `float` images, so you need to convert images in
other formats using [`convert_image_dtype`](#convert-image-dtype).

Example:

```python
# Decode an image and convert it to HSV.
rgb_image = tf.image.decode_png(...,  channels=3)
rgb_image_float = tf.image.convert_image_dtype(rgb_image, tf.float32)
hsv_image = tf.image.rgb_to_hsv(rgb_image)
```


Requirements, caveats, important notes.

Examples:

This operation requires that: `-1-input.dims() <= dim <= input.dims()`

Note: This tensor will produce an error if evaluated. Its value must
be fed using the `feed_dict` optional argument to `Session.run()`,
`Tensor.eval()`, or `Operation.run()`.

Descriptions of arguments and output (returned) tensors.

Keep the descriptions brief and to the point. You should not have to explain
how the operation works in the argument sections.

Mention if the Op has strong constraints on the dimensions of the input or
output tensors. Remember that for C++ Ops, the type of the tensor is
automatically added as either as “A ..type.. Tensor” or “A Tensor with type
in {...list of types...}”. In such cases, if the Op has a constraint on the
dimensions either add text such as “Must be 4-D” or start the description with
= (to prevent the tensor type to be added) and write something like
“A 4-D float tensor”.

For example, here are two ways to document an image argument of a C++ op (note
the “=” sign):

image: Must be 4-D. The image to resize.

image:= A 4-D `float` tensor. The image to resize.

In the documentation, these will be rendered to markdown as

image: A `float` Tensor. Must be 4-D. The image to resize.

image: A 4-D `float` Tensor. The image to resize.

Optional arguments descriptions (“attrs”)

The doc generator always describe attrs type and default value, if any.
You cannot override that with an equal sign because the description is very
different in the C++ and Python generated docs.

Phrase any additional attr description so that it flows well after the type
and default value.

Here’s an example from image_ops.py:

REGISTER_OP("PngDecode")
 .Input("contents: string")
 .Attr("channels: int = 0")
 .Output("image: uint8")
 .Doc(R"doc(
Decode a PNG-encoded image to a uint8 tensor.

The attr `channels` indicates the desired number of color channels for the
decoded image.

Accepted values are:

* 0: Use the number of channels in the PNG-encoded image.
* 1: output a grayscale image.

...

contents: 0-D. The PNG-encoded image.
channels: Number of color channels for the decoded image.
image: 3-D with shape `[height, width, channels]`.
)doc");

This generates the following “Args” section:

 contents: A string Tensor. 0-D. The PNG-encoded image.
 channels: An optional `int`. Defaults to 0. Number of color channels for the
 decoded image.
 name: A name for the operation (optional).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/how_tos/meta_graph/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Exporting and Importing a MetaGraph

A MetaGraph [https://www.tensorflow.org/code/tensorflow/core/protobuf/meta_graph.proto] contains both a TensorFlow GraphDef
as well as associated metadata necessary for running computation in a
graph when crossing a process boundary. It can also be used for long
term storage of graphs. The MetaGraph contains the information required
to continue training, perform evaluation, or run inference on a previously trained graph.

The APIs for exporting and importing the complete model are in
the tf.train.Saver class:
export_meta_graph
and
import_meta_graph.

What’s in a MetaGraph

The information contained in a MetaGraph is expressed as a
MetaGraphDef [https://www.tensorflow.org/code/tensorflow/core/protobuf/meta_graph.proto]
protocol buffer. It contains the following fields:

		MetaInfoDef [https://www.tensorflow.org/code/tensorflow/core/protobuf/meta_graph.proto] for meta information, such as version and other user information.

		GraphDef [https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto] for describing the graph.

		SaverDef [https://www.tensorflow.org/code/tensorflow/core/protobuf/saver.proto] for the saver.

		CollectionDef [https://www.tensorflow.org/code/tensorflow/core/protobuf/meta_graph.proto]
map that further describes additional components of the model, such as
Variables [https://tensorflow.org/api_docs/python/state_ops.html],
QueueRunners [https://tensorflow.org/api_docs/python/train.html#QueueRunner], etc. In order for a Python object to be serialized
to and from MetaGraphDef, the Python class must implement to_proto() and
from_proto() methods, and register them with the system using
register_proto_function.

For example,

def to_proto(self):
 """Converts a `Variable` to a `VariableDef` protocol buffer.

 Returns:
 A `VariableDef` protocol buffer.
 """
 var_def = variable_pb2.VariableDef()
 var_def.variable_name = self._variable.name
 var_def.initializer_name = self.initializer.name
 var_def.snapshot_name = self._snapshot.name
 if self._save_slice_info:
 var_def.save_slice_info_def.MergeFrom(self._save_slice_info.to_proto())
 return var_def

@staticmethod
def from_proto(variable_def):
 """Returns a `Variable` object created from `variable_def`."""
 return Variable(variable_def=variable_def)

ops.register_proto_function(ops.GraphKeys.VARIABLES,
 proto_type=variable_pb2.VariableDef,
 to_proto=Variable.to_proto,
 from_proto=Variable.from_proto)

Exporting a Complete Model to MetaGraph

The API for exporting a running model as a MetaGraph is export_meta_graph().

def export_meta_graph(filename=None, collection_list=None, as_text=False):
 """Writes `MetaGraphDef` to save_path/filename.

 Args:
 filename: Optional meta_graph filename including the path.
 collection_list: List of string keys to collect.
 as_text: If `True`, writes the meta_graph as an ASCII proto.

 Returns:
 A `MetaGraphDef` proto.
 """

A collection can contain any Python objects that users would like to
be able to uniquely identify and easily retrieve. These objects can be
special operations in the graph, such as train_op, or hyper parameters,
such as “learning rate”. Users can specify the list of collections
they would like to export. If no collection_list is specified,
all collections in the model will be exported.

The API returns a serialized protocol buffer. If filename is
specified, the protocol buffer will also be written to a file.

Here are some of the typical usage models:

		Export the default running graph:

Build the model
...
with tf.Session() as sess:
 # Use the model
 ...
Export the model to /tmp/my-model.meta.
meta_graph_def = tf.train.export_meta_graph(filename='/tmp/my-model.meta')

		Export the default running graph and only a subset of the collections.

meta_graph_def = tf.train.export_meta_graph(
 filename='/tmp/my-model.meta',
 collection_list=["input_tensor", "output_tensor"])

The MetaGraph is also automatically exported via the save() API in
tf.train.Saver.

Import a MetaGraph

The API for importing a MetaGraph file into a graph is import_meta_graph().

Here are some of the typical usage models:

		Import and continue training without building the model from scratch.

...
Create a saver.
saver = tf.train.Saver(...variables...)
Remember the training_op we want to run by adding it to a collection.
tf.add_to_collection('train_op', train_op)
sess = tf.Session()
for step in xrange(1000000):
 sess.run(train_op)
 if step % 1000 == 0:
 # Saves checkpoint, which by default also exports a meta_graph
 # named 'my-model-global_step.meta'.
 saver.save(sess, 'my-model', global_step=step)

Later we can continue training from this saved meta_graph without building
the model from scratch.

with tf.Session() as sess:
 new_saver = tf.train.import_meta_graph('my-save-dir/my-model-10000.meta')
 new_saver.restore(sess, 'my-save-dir/my-model-10000')
 # tf.get_collection() returns a list. In this example we only want the
 # first one.
 train_op = tf.get_collection('train_op')[0]
 for step in xrange(1000000):
 sess.run(train_op)

		Import and extend the graph.

For example, we can first build an inference graph, export it as a meta graph:

Creates an inference graph.
Hidden 1
images = tf.constant(1.2, tf.float32, shape=[100, 28])
with tf.name_scope("hidden1"):
 weights = tf.Variable(
 tf.truncated_normal([28, 128],
 stddev=1.0 / math.sqrt(float(28))),
 name="weights")
 biases = tf.Variable(tf.zeros([128]),
 name="biases")
 hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)
Hidden 2
with tf.name_scope("hidden2"):
 weights = tf.Variable(
 tf.truncated_normal([128, 32],
 stddev=1.0 / math.sqrt(float(128))),
 name="weights")
 biases = tf.Variable(tf.zeros([32]),
 name="biases")
 hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
Linear
with tf.name_scope("softmax_linear"):
 weights = tf.Variable(
 tf.truncated_normal([32, 10],
 stddev=1.0 / math.sqrt(float(32))),
 name="weights")
 biases = tf.Variable(tf.zeros([10]),
 name="biases")
 logits = tf.matmul(hidden2, weights) + biases
 tf.add_to_collection("logits", logits)

init_all_op = tf.initialize_all_variables()

with tf.Session() as sess:
 # Initializes all the variables.
 sess.run(init_all_op)
 # Runs to logit.
 sess.run(logits)
 # Creates a saver.
 saver0 = tf.train.Saver()
 saver0.save(sess, saver0_ckpt)
 # Generates MetaGraphDef.
 saver0.export_meta_graph('my-save-dir/my-model-10000.meta')

Then later import it and extend it to a training graph.

with tf.Session() as sess:
 new_saver = tf.train.import_meta_graph('my-save-dir/my-model-10000.meta')
 new_saver.restore(sess, 'my-save-dir/my-model-10000')
 # Addes loss and train.
 labels = tf.constant(0, tf.int32, shape=[100], name="labels")
 batch_size = tf.size(labels)
 labels = tf.expand_dims(labels, 1)
 indices = tf.expand_dims(tf.range(0, batch_size), 1)
 concated = tf.concat(1, [indices, labels])
 onehot_labels = tf.sparse_to_dense(
 concated, tf.pack([batch_size, 10]), 1.0, 0.0)
 logits = tf.get_collection("logits")[0]
 cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits,
 onehot_labels,
 name="xentropy")
 loss = tf.reduce_mean(cross_entropy, name="xentropy_mean")

 tf.scalar_summary(loss.op.name, loss)
 # Creates the gradient descent optimizer with the given learning rate.
 optimizer = tf.train.GradientDescentOptimizer(0.01)

 # Runs train_op.
 train_op = optimizer.minimize(loss)
 sess.run(train_op)

		Retrieve Hyper Parameters

filename = ".".join([tf.latest_checkpoint(train_dir), "meta"])
tf.train.import_meta_graph(filename)
hparams = tf.get_collection("hparams")

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/how_tos/variables/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Variables: Creation, Initialization, Saving, and Loading

When you train a model, you use variables
to hold and update parameters. Variables are in-memory buffers containing
tensors. They must be explicitly initialized and can be saved to disk during
and after training. You can later restore saved values to exercise or analyze
the model.

This document references the following TensorFlow classes. Follow the links to
their reference manual for a complete description of their API:

		The tf.Variable class.

		The tf.train.Saver class.

Creation

When you create a Variable you pass a
Tensor as its initial value to the Variable() constructor. TensorFlow
provides a collection of ops that produce tensors often used for initialization
from constants or random values.

Note that all these ops require you to specify the shape of the tensors. That
shape automatically becomes the shape of the variable. Variables generally
have a fixed shape, but TensorFlow provides advanced mechanisms to reshape
variables.

Create two variables.
weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35),
 name="weights")
biases = tf.Variable(tf.zeros([200]), name="biases")

Calling tf.Variable() adds several ops to the graph:

		A variable op that holds the variable value.

		An initializer op that sets the variable to its initial value. This is
actually a tf.assign op.

		The ops for the initial value, such as the zeros op for the biases
variable in the example are also added to the graph.

The value returned by tf.Variable() value is an instance of the Python class
tf.Variable.

Device placement

A variable can be pinned to a particular device when it is created, using a
with tf.device(...): block:

Pin a variable to CPU.
with tf.device("/cpu:0"):
 v = tf.Variable(...)

Pin a variable to GPU.
with tf.device("/gpu:0"):
 v = tf.Variable(...)

Pin a variable to a particular parameter server task.
with tf.device("/job:ps/task:7"):
 v = tf.Variable(...)

N.B. Operations that mutate a variable, such as
v.assign() and the parameter
update operations in a
tf.train.Optimizer must run on
the same device as the variable. Incompatible device placement directives will
be ignored when creating these operations.

Device placement is particularly important when running in a replicated
setting. See
tf.train.replica_device_setter()
for details of a device function that can simplify the configuration for devices
for a replicated model.

Initialization

Variable initializers must be run explicitly before other ops in your model can
be run. The easiest way to do that is to add an op that runs all the variable
initializers, and run that op before using the model.

You can alternatively restore variable values from a checkpoint file, see
below.

Use tf.initialize_all_variables() to add an op to run variable initializers.
Only run that op after you have fully constructed your model and launched it in
a session.

Create two variables.
weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35),
 name="weights")
biases = tf.Variable(tf.zeros([200]), name="biases")
...
Add an op to initialize the variables.
init_op = tf.initialize_all_variables()

Later, when launching the model
with tf.Session() as sess:
 # Run the init operation.
 sess.run(init_op)
 ...
 # Use the model
 ...

Initialization from another Variable

You sometimes need to initialize a variable from the initial value of another
variable. As the op added by tf.initialize_all_variables() initializes all
variables in parallel you have to be careful when this is needed.

To initialize a new variable from the value of another variable use the other
variable’s initialized_value() property. You can use the initialized value
directly as the initial value for the new variable, or you can use it as any
other tensor to compute a value for the new variable.

Create a variable with a random value.
weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35),
 name="weights")
Create another variable with the same value as 'weights'.
w2 = tf.Variable(weights.initialized_value(), name="w2")
Create another variable with twice the value of 'weights'
w_twice = tf.Variable(weights.initialized_value() * 2.0, name="w_twice")

Custom Initialization

The convenience function tf.initialize_all_variables() adds an op to
initialize all variables in the model. You can also pass it an explicit list
of variables to initialize. See the
Variables Documentation for more options,
including checking if variables are initialized.

Saving and Restoring

The easiest way to save and restore a model is to use a tf.train.Saver object.
The constructor adds save and restore ops to the graph for all, or a
specified list, of the variables in the graph. The saver object provides
methods to run these ops, specifying paths for the checkpoint files to write to
or read from.

Checkpoint Files

Variables are saved in binary files that, roughly, contain a map from variable
names to tensor values.

When you create a Saver object, you can optionally choose names for the
variables in the checkpoint files. By default, it uses the value of the
Variable.name property for
each variable.

To understand what variables are in a checkpoint, you can use the
inspect_checkpoint [https://www.tensorflow.org/code/tensorflow/python/tools/inspect_checkpoint.py]
library, and in particular, the print_tensors_in_checkpoint_file function.

Saving Variables

Create a Saver with tf.train.Saver() to manage all variables in
the model.

Create some variables.
v1 = tf.Variable(..., name="v1")
v2 = tf.Variable(..., name="v2")
...
Add an op to initialize the variables.
init_op = tf.initialize_all_variables()

Add ops to save and restore all the variables.
saver = tf.train.Saver()

Later, launch the model, initialize the variables, do some work, save the
variables to disk.
with tf.Session() as sess:
 sess.run(init_op)
 # Do some work with the model.
 ..
 # Save the variables to disk.
 save_path = saver.save(sess, "/tmp/model.ckpt")
 print("Model saved in file: %s" % save_path)

Restoring Variables

The same Saver object is used to restore variables. Note that when you
restore variables from a file you do not have to initialize them beforehand.

Create some variables.
v1 = tf.Variable(..., name="v1")
v2 = tf.Variable(..., name="v2")
...
Add ops to save and restore all the variables.
saver = tf.train.Saver()

Later, launch the model, use the saver to restore variables from disk, and
do some work with the model.
with tf.Session() as sess:
 # Restore variables from disk.
 saver.restore(sess, "/tmp/model.ckpt")
 print("Model restored.")
 # Do some work with the model
 ...

Choosing which Variables to Save and Restore

If you do not pass any argument to tf.train.Saver() the saver handles all
variables in the graph. Each one of them is saved under the name that was
passed when the variable was created.

It is sometimes useful to explicitly specify names for variables in the
checkpoint files. For example, you may have trained a model with a variable
named "weights" whose value you want to restore in a new variable named
"params".

It is also sometimes useful to only save or restore a subset of the variables
used by a model. For example, you may have trained a neural net with 5 layers,
and you now want to train a new model with 6 layers, restoring the parameters
from the 5 layers of the previously trained model into the first 5 layers of
the new model.

You can easily specify the names and variables to save by passing to the
tf.train.Saver() constructor a Python dictionary: keys are the
names to use, values are the variables to manage.

Notes:

		You can create as many saver objects as you want if you need to save and
restore different subsets of the model variables. The same variable can be
listed in multiple saver objects, its value is only changed when the saver
restore() method is run.

		If you only restore a subset of the model variables at the start
of a session, you have to run an initialize op for the other variables. See
tf.initialize_variables()
for more information.

Create some variables.
v1 = tf.Variable(..., name="v1")
v2 = tf.Variable(..., name="v2")
...
Add ops to save and restore only 'v2' using the name "my_v2"
saver = tf.train.Saver({"my_v2": v2})
Use the saver object normally after that.
...

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/tutorials/image_recognition/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Image Recognition

Our brains make vision seem easy. It doesn’t take any effort for humans to
tell apart a lion and a jaguar, read a sign, or recognize a human’s face.
But these are actually hard problems to solve with a computer: they only
seem easy because our brains are incredibly good at understanding images.

In the last few years the field of machine learning has made tremendous
progress on addressing these difficult problems. In particular, we’ve
found that a kind of model called a deep
convolutional neural network [http://colah.github.io/posts/2014-07-Conv-Nets-Modular/]
can achieve reasonable performance on hard visual recognition tasks –
matching or exceeding human performance in some domains.

Researchers have demonstrated steady progress
in computer vision by validating their work against
ImageNet [http://www.image-net.org] – an academic benchmark for computer vision.
Successive models continue to show improvements, each time achieving
a new state-of-the-art result:
QuocNet [http://static.googleusercontent.com/media/research.google.com/en//archive/unsupervised_icml2012.pdf], AlexNet [http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf], Inception (GoogLeNet) [http://arxiv.org/abs/1409.4842], BN-Inception-v2 [http://arxiv.org/abs/1502.03167].
Researchers both internal and external to Google have published papers describing all
these models but the results are still hard to reproduce.
We’re now taking the next step by releasing code for running image recognition
on our latest model, Inception-v3 [http://arxiv.org/abs/1512.00567].

Inception-v3 is trained for the ImageNet [http://image-net.org/] Large Visual Recognition Challenge
using the data from 2012. This is a standard task in computer vision,
where models try to classify entire
images into 1000 classes [http://image-net.org/challenges/LSVRC/2014/browse-synsets], like “Zebra”, “Dalmatian”, and “Dishwasher”.
For example, here are the results from AlexNet [http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf] classifying some images:

[image:]

To compare models, we examine how often the model fails to predict the
correct answer as one of their top 5 guesses – termed “top-5 error rate”.
AlexNet [http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf] achieved by setting a top-5 error rate of 15.3% on the 2012
validation data set; BN-Inception-v2 [http://arxiv.org/abs/1502.03167] achieved 6.66%;
Inception-v3 [http://arxiv.org/abs/1512.00567] reaches 3.46%.

How well do humans do on ImageNet Challenge? There’s a blog post [http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/] by
Andrej Karpathy who attempted to measure his own performance. He reached
5.1% top-5 error rate.

This tutorial will teach you how to use Inception-v3 [http://arxiv.org/abs/1512.00567]. You’ll learn how to
classify images into 1000 classes [http://image-net.org/challenges/LSVRC/2014/browse-synsets] in Python or C++. We’ll also discuss how to
extract higher level features from this model which may be reused for other
vision tasks.

We’re excited to see what the community will do with this model.

##Usage with Python API

classify_image.py downloads the trained model from tensorflow.org
when the program is run for the first time. You’ll need about 200M of free space
available on your hard disk.

The following instructions assume you installed TensorFlow from a PIP package
and that your terminal resides in the TensorFlow root directory.

cd tensorflow/models/image/imagenet
python classify_image.py

The above command will classify a supplied image of a panda bear.

 [image:]

If the model runs correctly, the script will produce the following output:

giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca (score = 0.88493)
indri, indris, Indri indri, Indri brevicaudatus (score = 0.00878)
lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens (score = 0.00317)
custard apple (score = 0.00149)
earthstar (score = 0.00127)

If you wish to supply other JPEG images, you may do so by editing
the --image_file argument.

If you download the model data to a different directory, you
will need to point --model_dir to the directory used.

Usage with the C++ API

You can run the same Inception-v3 [http://arxiv.org/abs/1512.00567] model in C++ for use in production
environments. You can download the archive containing the GraphDef that defines
the model like this (running from the root directory of the TensorFlow
repository):

wget https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_2015.zip -O tensorflow/examples/label_image/data/inception_dec_2015.zip

unzip tensorflow/examples/label_image/data/inception_dec_2015.zip -d tensorflow/examples/label_image/data/

Next, we need to compile the C++ binary that includes the code to load and run the graph.
If you’ve followed the instructions to download the source installation of
TensorFlow
for your platform, you should be able to build the example by
running this command from your shell terminal:

bazel build tensorflow/examples/label_image/...

That should create a binary executable that you can then run like this:

bazel-bin/tensorflow/examples/label_image/label_image

This uses the default example image that ships with the framework, and should
output something similar to this:

I tensorflow/examples/label_image/main.cc:200] military uniform (866): 0.647296
I tensorflow/examples/label_image/main.cc:200] suit (794): 0.0477196
I tensorflow/examples/label_image/main.cc:200] academic gown (896): 0.0232411
I tensorflow/examples/label_image/main.cc:200] bow tie (817): 0.0157356
I tensorflow/examples/label_image/main.cc:200] bolo tie (940): 0.0145024

In this case, we’re using the default image of
Admiral Grace Hopper [https://en.wikipedia.org/wiki/Grace_Hopper], and you can
see the network correctly identifies she’s wearing a military uniform, with a high
score of 0.6.

 [image:]

Next, try it out on your own images by supplying the –image= argument, e.g.

bazel-bin/tensorflow/examples/label_image/label_image --image=my_image.png

If you look inside the tensorflow/examples/label_image/main.cc [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/label_image/main.cc]
file, you can find out
how it works. We hope this code will help you integrate TensorFlow into
your own applications, so we will walk step by step through the main functions:

The command line flags control where the files are loaded from, and properties of the input images.
The model expects to get square 299x299 RGB images, so those are the input_width
and input_height flags. We also need to scale the pixel values from integers that
are between 0 and 255 to the floating point values that the graph operates on.
We control the scaling with the input_mean and input_std flags: we first subtract
input_mean from each pixel value, then divide it by input_std.

These values probably look somewhat magical, but they are just defined by the
original model author based on what he/she wanted to use as input images for
training. If you have a graph that you’ve trained yourself, you’ll just need
to adjust the values to match whatever you used during your training process.

You can see how they’re applied to an image in the [ReadTensorFromImageFile()]
(https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/label_image/main.cc#L88)
function.

// Given an image file name, read in the data, try to decode it as an image,
// resize it to the requested size, and then scale the values as desired.
Status ReadTensorFromImageFile(string file_name, const int input_height,
 const int input_width, const float input_mean,
 const float input_std,
 std::vector<Tensor>* out_tensors) {
 tensorflow::GraphDefBuilder b;

We start by creating a GraphDefBuilder, which is an object we can use to
specify a model to run or load.

 string input_name = "file_reader";
 string output_name = "normalized";
 tensorflow::Node* file_reader =
 tensorflow::ops::ReadFile(tensorflow::ops::Const(file_name, b.opts()),
 b.opts().WithName(input_name));

We then start creating nodes for the small model we want to run
to load, resize, and scale the pixel values to get the result the main model
expects as its input. The first node we create is just a Const op that holds a
tensor with the file name of the image we want to load. That’s then passed as the
first input to the ReadFile op. You might notice we’re passing b.opts() as the last
argument to all the op creation functions. The argument ensures that the node is added to
the model definition held in the GraphDefBuilder. We also name the ReadFile
operator by making the WithName() call to b.opts(). This gives a name to the node,
which isn’t strictly necessary since an automatic name will be assigned if you don’t
do this, but it does make debugging a bit easier.

 // Now try to figure out what kind of file it is and decode it.
 const int wanted_channels = 3;
 tensorflow::Node* image_reader;
 if (tensorflow::StringPiece(file_name).ends_with(".png")) {
 image_reader = tensorflow::ops::DecodePng(
 file_reader,
 b.opts().WithAttr("channels", wanted_channels).WithName("png_reader"));
 } else {
 // Assume if it's not a PNG then it must be a JPEG.
 image_reader = tensorflow::ops::DecodeJpeg(
 file_reader,
 b.opts().WithAttr("channels", wanted_channels).WithName("jpeg_reader"));
 }
 // Now cast the image data to float so we can do normal math on it.
 tensorflow::Node* float_caster = tensorflow::ops::Cast(
 image_reader, tensorflow::DT_FLOAT, b.opts().WithName("float_caster"));
 // The convention for image ops in TensorFlow is that all images are expected
 // to be in batches, so that they're four-dimensional arrays with indices of
 // [batch, height, width, channel]. Because we only have a single image, we
 // have to add a batch dimension of 1 to the start with ExpandDims().
 tensorflow::Node* dims_expander = tensorflow::ops::ExpandDims(
 float_caster, tensorflow::ops::Const(0, b.opts()), b.opts());
 // Bilinearly resize the image to fit the required dimensions.
 tensorflow::Node* resized = tensorflow::ops::ResizeBilinear(
 dims_expander, tensorflow::ops::Const({input_height, input_width},
 b.opts().WithName("size")),
 b.opts());
 // Subtract the mean and divide by the scale.
 tensorflow::ops::Div(
 tensorflow::ops::Sub(
 resized, tensorflow::ops::Const({input_mean}, b.opts()), b.opts()),
 tensorflow::ops::Const({input_std}, b.opts()),
 b.opts().WithName(output_name));

We then keep adding more nodes, to decode the file data as an image, to cast the
integers into floating point values, to resize it, and then finally to run the
subtraction and division operations on the pixel values.

 // This runs the GraphDef network definition that we've just constructed, and
 // returns the results in the output tensor.
 tensorflow::GraphDef graph;
 TF_RETURN_IF_ERROR(b.ToGraphDef(&graph));

At the end of this we have
a model definition stored in the b variable, which we turn into a full graph
definition with the ToGraphDef() function.

 std::unique_ptr<tensorflow::Session> session(
 tensorflow::NewSession(tensorflow::SessionOptions()));
 TF_RETURN_IF_ERROR(session->Create(graph));
 TF_RETURN_IF_ERROR(session->Run({}, {output_name}, {}, out_tensors));
 return Status::OK();

Then we create a Session [http://www.tensorflow.org/versions/master/api_docs/cc/ClassSession.html#class-tensorflow-session]
object, which is the interface to actually running the graph, and run it,
specifying which node we want to get the output from, and where to put the
output data.

This gives us a vector of Tensor objects, which in this case we know will only be a
single object long. You can think of a Tensor as a multi-dimensional array in this
context, and it holds a 299 pixel high, 299 pixel width, 3 channel image as float
values. If you have your own image-processing framework in your product already, you
should be able to use that instead, as long as you apply the same transformations
before you feed images into the main graph.

This is a simple example of creating a small TensorFlow graph dynamically in C++,
but for the pre-trained Inception model we want to load a much larger definition from
a file. You can see how we do that in the LoadGraph() function.

// Reads a model graph definition from disk, and creates a session object you
// can use to run it.
Status LoadGraph(string graph_file_name,
 std::unique_ptr<tensorflow::Session>* session) {
 tensorflow::GraphDef graph_def;
 Status load_graph_status =
 ReadBinaryProto(tensorflow::Env::Default(), graph_file_name, &graph_def);
 if (!load_graph_status.ok()) {
 return tensorflow::errors::NotFound("Failed to load compute graph at '",
 graph_file_name, "'");
 }

If you’ve looked through the image loading code, a lot of the terms should seem familiar. Rather than
using a GraphDefBuilder to produce a GraphDef object, we load a protobuf file that
directly contains the GraphDef.

 session->reset(tensorflow::NewSession(tensorflow::SessionOptions()));
 Status session_create_status = (*session)->Create(graph_def);
 if (!session_create_status.ok()) {
 return session_create_status;
 }
 return Status::OK();
}

Then we create a Session object from that GraphDef and
pass it back to the caller so that they can run it at a later time.

The GetTopLabels() function is a lot like the image loading, except that in this case
we want to take the results of running the main graph, and turn it into a sorted list
of the highest-scoring labels. Just like the image loader, it creates a
GraphDefBuilder, adds a couple of nodes to it, and then runs the short graph to get a
pair of output tensors. In this case they represent the sorted scores and index
positions of the highest results.

// Analyzes the output of the Inception graph to retrieve the highest scores and
// their positions in the tensor, which correspond to categories.
Status GetTopLabels(const std::vector<Tensor>& outputs, int how_many_labels,
 Tensor* indices, Tensor* scores) {
 tensorflow::GraphDefBuilder b;
 string output_name = "top_k";
 tensorflow::ops::TopK(tensorflow::ops::Const(outputs[0], b.opts()),
 how_many_labels, b.opts().WithName(output_name));
 // This runs the GraphDef network definition that we've just constructed, and
 // returns the results in the output tensors.
 tensorflow::GraphDef graph;
 TF_RETURN_IF_ERROR(b.ToGraphDef(&graph));
 std::unique_ptr<tensorflow::Session> session(
 tensorflow::NewSession(tensorflow::SessionOptions()));
 TF_RETURN_IF_ERROR(session->Create(graph));
 // The TopK node returns two outputs, the scores and their original indices,
 // so we have to append :0 and :1 to specify them both.
 std::vector<Tensor> out_tensors;
 TF_RETURN_IF_ERROR(session->Run({}, {output_name + ":0", output_name + ":1"},
 {}, &out_tensors));
 *scores = out_tensors[0];
 *indices = out_tensors[1];
 return Status::OK();

The PrintTopLabels() function takes those sorted results, and prints them out in a
friendly way. The CheckTopLabel() function is very similar, but just makes sure that
the top label is the one we expect, for debugging purposes.

At the end, main() [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/label_image/main.cc#L252]
ties together all of these calls.

int main(int argc, char* argv[]) {
 // We need to call this to set up global state for TensorFlow.
 tensorflow::port::InitMain(argv[0], &argc, &argv);
 Status s = tensorflow::ParseCommandLineFlags(&argc, argv);
 if (!s.ok()) {
 LOG(ERROR) << "Error parsing command line flags: " << s.ToString();
 return -1;
 }

 // First we load and initialize the model.
 std::unique_ptr<tensorflow::Session> session;
 string graph_path = tensorflow::io::JoinPath(FLAGS_root_dir, FLAGS_graph);
 Status load_graph_status = LoadGraph(graph_path, &session);
 if (!load_graph_status.ok()) {
 LOG(ERROR) << load_graph_status;
 return -1;
 }

We load the main graph.

 // Get the image from disk as a float array of numbers, resized and normalized
 // to the specifications the main graph expects.
 std::vector<Tensor> resized_tensors;
 string image_path = tensorflow::io::JoinPath(FLAGS_root_dir, FLAGS_image);
 Status read_tensor_status = ReadTensorFromImageFile(
 image_path, FLAGS_input_height, FLAGS_input_width, FLAGS_input_mean,
 FLAGS_input_std, &resized_tensors);
 if (!read_tensor_status.ok()) {
 LOG(ERROR) << read_tensor_status;
 return -1;
 }
 const Tensor& resized_tensor = resized_tensors[0];

Load, resize, and process the input image.

 // Actually run the image through the model.
 std::vector<Tensor> outputs;
 Status run_status = session->Run({{FLAGS_input_layer, resized_tensor}},
 {FLAGS_output_layer}, {}, &outputs);
 if (!run_status.ok()) {
 LOG(ERROR) << "Running model failed: " << run_status;
 return -1;
 }

Here we run the loaded graph with the image as an input.

 // This is for automated testing to make sure we get the expected result with
 // the default settings. We know that label 866 (military uniform) should be
 // the top label for the Admiral Hopper image.
 if (FLAGS_self_test) {
 bool expected_matches;
 Status check_status = CheckTopLabel(outputs, 866, &expected_matches);
 if (!check_status.ok()) {
 LOG(ERROR) << "Running check failed: " << check_status;
 return -1;
 }
 if (!expected_matches) {
 LOG(ERROR) << "Self-test failed!";
 return -1;
 }
 }

For testing purposes we can check to make sure we get the output we expect here.

 // Do something interesting with the results we've generated.
 Status print_status = PrintTopLabels(outputs, FLAGS_labels);

Finally we print the labels we found.

 if (!print_status.ok()) {
 LOG(ERROR) << "Running print failed: " << print_status;
 return -1;
 }

The error handling here is using TensorFlow’s Status
object, which is very convenient because it lets you know whether any error has
occurred with the ok() checker, and then can be printed out to give a readable error
message.

In this case we are demonstrating object recognition, but you should be able to
use very similar code on other models you’ve found or trained yourself, across
all
sorts of domains. We hope this small example gives you some ideas on how to use
TensorFlow within your own products.

EXERCISE: Transfer learning is the idea that, if you know how to solve a task well, you
should be able to transfer some of that understanding to solving related
problems. One way to perform transfer learning is to remove the final
classification layer of the network and extract
the next-to-last layer of the CNN [http://arxiv.org/abs/1310.1531], in this case a 2048 dimensional vector.
There’s a guide to doing this in the how-to section.

Resources for Learning More

To learn about neural networks in general, Michael Nielsen’s
free online book [http://neuralnetworksanddeeplearning.com/chap1.html]
is an excellent resource. For convolutional neural networks in particular,
Chris Olah has some
nice blog posts [http://colah.github.io/posts/2014-07-Conv-Nets-Modular/],
and Michael Nielsen’s book has a
great chapter [http://neuralnetworksanddeeplearning.com/chap6.html]
covering them.

To find out more about implementing convolutional neural networks, you can jump to
the TensorFlow deep convolutional networks tutorial [http://www.tensorflow.org/tutorials/deep_cnn/index.html],
or start a bit more gently with our
ML beginner [http://www.tensorflow.org/tutorials/mnist/beginners/index.html]
or ML expert [http://www.tensorflow.org/tutorials/mnist/pros/index.html]
MNIST starter tutorials. Finally, if you want to get up to speed on research
in this area, you can
read the recent work of all the papers referenced in this tutorial.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/tutorials/wide/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow Linear Model Tutorial

In this tutorial, we will use the TF.Learn API in TensorFlow to solve a binary
classification problem: Given census data about a person such as age, gender,
education and occupation (the features), we will try to predict whether or not
the person earns more than 50,000 dollars a year (the target label). We will
train a logistic regression model, and given an individual’s information our
model will output a number between 0 and 1, which can be interpreted as the
probability that the individual has an annual income of over 50,000 dollars.

Setup

To try the code for this tutorial:

		Install TensorFlow if you haven’t
already.

		Download the tutorial code [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/learn/wide_n_deep_tutorial.py].

		Install the pandas data analysis library. tf.learn doesn’t require pandas, but it does support it, and this tutorial uses pandas. To install pandas:

		Get pip:

Ubuntu/Linux 64-bit
$ sudo apt-get install python-pip python-dev

Mac OS X
$ sudo easy_install pip
$ sudo easy_install --upgrade six

2. Use `pip` to install pandas:

 ```shell
 $ sudo pip install pandas






If you have trouble installing pandas, consult the [instructions]
(http://pandas.pydata.org/pandas-docs/stable/install.html) on the pandas site.





		Execute the tutorial code with the following command to train the linear
model described in this tutorial:


$ python wide_n_deep_tutorial.py --model_type=wide












Read on to find out how this code builds its linear model.





Reading The Census Data


The dataset we’ll be using is the [Census Income Dataset]
(https://archive.ics.uci.edu/ml/datasets/Census+Income). You can download the
[training data]
(https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data) and
[test data]
(https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test)
manually or use code like this:


import tempfile
import urllib
train_file = tempfile.NamedTemporaryFile()
test_file = tempfile.NamedTemporaryFile()
urllib.urlretrieve("https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data", train_file.name)
urllib.urlretrieve("https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test", test_file.name)






Once the CSV files are downloaded, let’s read them into [Pandas]
(http://pandas.pydata.org/) dataframes.


import pandas as pd
COLUMNS = ["age", "workclass", "fnlwgt", "education", "education_num",
           "marital_status", "occupation", "relationship", "race", "gender",
           "capital_gain", "capital_loss", "hours_per_week", "native_country",
           "income_bracket"]
df_train = pd.read_csv(train_file, names=COLUMNS, skipinitialspace=True)
df_test = pd.read_csv(test_file, names=COLUMNS, skipinitialspace=True, skiprows=1)






Since the task is a binary classification problem, we’ll construct a label
column named “label” whose value is 1 if the income is over 50K, and 0
otherwise.


LABEL_COLUMN = "label"
df_train[LABEL_COLUMN] = (df_train["income_bracket"].apply(lambda x: ">50K" in x)).astype(int)
df_test[LABEL_COLUMN] = (df_test["income_bracket"].apply(lambda x: ">50K" in x)).astype(int)






Next, let’s take a look at the dataframe and see which columns we can use to
predict the target label. The columns can be grouped into two types—categorical
and continuous columns:



		A column is called categorical if its value can only be one of the
categories in a finite set. For example, the native country of a person
(U.S., India, Japan, etc.) or the education level (high school, college,
etc.) are categorical columns.


		A column is called continuous if its value can be any numerical value in
a continuous range. For example, the capital gain of a person (e.g. $14,084)
is a continuous column.





CATEGORICAL_COLUMNS = ["workclass", "education", "marital_status", "occupation",
                       "relationship", "race", "gender", "native_country"]
CONTINUOUS_COLUMNS = ["age", "education_num", "capital_gain", "capital_loss", "hours_per_week"]






Here’s a list of columns available in the Census Income dataset:


| Column Name    | Type        | Description                       | {.sortable}
| ————– | ———– | ——————————— |
| age            | Continuous  | The age of the individual         |
| workclass      | Categorical | The type of employer the          |
:                :             : individual has (government,       :
:                :             : military, private, etc.).         :
| fnlwgt         | Continuous  | The number of people the census   |
:                :             : takers believe that observation   :
:                :             : represents (sample weight). This  :
:                :             : variable will not be used.        :
| education      | Categorical | The highest level of education    |
:                :             : achieved for that individual.     :
| education_num  | Continuous  | The highest level of education in |
:                :             : numerical form.                   :
| marital_status | Categorical | Marital status of the individual. |
| occupation     | Categorical | The occupation of the individual. |
| relationship   | Categorical | Wife, Own-child, Husband,         |
:                :             : Not-in-family, Other-relative,    :
:                :             : Unmarried.                        :
| race           | Categorical | White, Asian-Pac-Islander,        |
:                :             : Amer-Indian-Eskimo, Other, Black. :
| gender         | Categorical | Female, Male.                     |
| capital_gain   | Continuous  | Capital gains recorded.           |
| capital_loss   | Continuous  | Capital Losses recorded.          |
| hours_per_week | Continuous  | Hours worked per week.            |
| native_country | Categorical | Country of origin of the          |
:                :             : individual.                       :
| income         | Categorical | “>50K” or “<=50K”, meaning        |
:                :             : whether the person makes more     :
:                :             : than $50,000 annually.           :





Converting Data into Tensors


When building a TF.Learn model, the input data is specified by means of an Input
Builder function. This builder function will not be called until it is later
passed to TF.Learn methods such as fit and evaluate. The purpose of this
function is to construct the input data, which is represented in the form of
[Tensors]
(https://www.tensorflow.org/versions/r0.9/api_docs/python/framework.html#Tensor)
or [SparseTensors]
(https://www.tensorflow.org/versions/r0.9/api_docs/python/sparse_ops.html#SparseTensor).
In more detail, the Input Builder function returns the following as a pair:



		feature_cols: A dict from feature column names to Tensors or
SparseTensors.


		label: A Tensor containing the label column.





The keys of the feature_cols will be used to construct columns in the
next section. Because we want to call the fit and evaluate methods with
different data, we define two different input builder functions,
train_input_fn and test_input_fn which are identical except that they pass
different data to input_fn. Note that input_fn will be called while
constructing the TensorFlow graph, not while running the graph. What it is
returning is a representation of the input data as the fundamental unit of
TensorFlow computations, a Tensor (or SparseTensor).


Our model represents the input data as constant tensors, meaning that the
tensor represents a constant value, in this case the values of a particular
column of df_train or df_test. This is the simplest way to pass data into
TensorFlow. Another more advanced way to represent input data would be to
construct an [Input Reader]
(https://www.tensorflow.org/versions/r0.9/api_docs/python/io_ops.html#inputs-and-readers)
that represents a file or other data source, and iterates through the file as
TensorFlow runs the graph. Each continuous column in the train or test dataframe
will be converted into a Tensor, which in general is a good format to
represent dense data. For cateogorical data, we must represent the data as a
SparseTensor. This data format is good for representing sparse data.


import tensorflow as tf

def input_fn(df):
  # Creates a dictionary mapping from each continuous feature column name (k) to
  # the values of that column stored in a constant Tensor.
  continuous_cols = {k: tf.constant(df[k].values)
                     for k in CONTINUOUS_COLUMNS}
  # Creates a dictionary mapping from each categorical feature column name (k)
  # to the values of that column stored in a tf.SparseTensor.
  categorical_cols = {k: tf.SparseTensor(
      indices=[[i, 0] for i in range(df[k].size)],
      values=df[k].values,
      shape=[df[k].size, 1])
                      for k in CATEGORICAL_COLUMNS}
  # Merges the two dictionaries into one.
  feature_cols = dict(continuous_cols.items() + categorical_cols.items())
  # Converts the label column into a constant Tensor.
  label = tf.constant(df[LABEL_COLUMN].values)
  # Returns the feature columns and the label.
  return feature_cols, label

def train_input_fn():
  return input_fn(df_train)

def eval_input_fn():
  return input_fn(df_test)









Selecting and Engineering Features for the Model


Selecting and crafting the right set of feature columns is key to learning an
effective model. A feature column can be either one of the raw columns in
the original dataframe (let’s call them base feature columns), or any new
columns created based on some transformations defined over one or multiple base
columns (let’s call them derived feature columns). Basically, “feature
column” is an abstract concept of any raw or derived variable that can be used
to predict the target label.



Base Categorical Feature Columns


To define a feature column for a categorical feature, we can create a
SparseColumn using the TF.Learn API. If you know the set of all possible
feature values of a column and there are only a few of them, you can use
sparse_column_with_keys. Each key in the list will get assigned an
auto-incremental ID starting from 0. For example, for the gender column we can
assign the feature string “Female” to an integer ID of 0 and “Male” to 1 by
doing:


gender = tf.contrib.layers.sparse_column_with_keys(
  column_name="gender", keys=["Female", "Male"])






What if we don’t know the set of possible values in advance? Not a problem. We
can use sparse_column_with_hash_bucket instead:


education = tf.contrib.layers.sparse_column_with_hash_bucket("education", hash_bucket_size=1000)






What will happen is that each possible value in the feature column education
will be hashed to an integer ID as we encounter them in training. See an example
illustration below:


ID  | Feature
— | ————-
... |
9   | "Bachelors"
... |
103 | "Doctorate"
... |
375 | "Masters"
... |


No matter which way we choose to define a SparseColumn, each feature string
will be mapped into an integer ID by looking up a fixed mapping or by hashing.
Note that hashing collisions are possible, but may not significantly impact the
model quality. Under the hood, the LinearModel class is responsible for
managing the mapping and creating tf.Variable to store the model parameters
(also known as model weights) for each feature ID. The model parameters will be
learned through the model training process we’ll go through later.


We’ll do the similar trick to define the other categorical features:


race = tf.contrib.layers.sparse_column_with_keys(column_name="race", keys=[
  "Amer-Indian-Eskimo", "Asian-Pac-Islander", "Black", "Other", "White"])
marital_status = tf.contrib.layers.sparse_column_with_hash_bucket("marital_status", hash_bucket_size=100)
relationship = tf.contrib.layers.sparse_column_with_hash_bucket("relationship", hash_bucket_size=100)
workclass = tf.contrib.layers.sparse_column_with_hash_bucket("workclass", hash_bucket_size=100)
occupation = tf.contrib.layers.sparse_column_with_hash_bucket("occupation", hash_bucket_size=1000)
native_country = tf.contrib.layers.sparse_column_with_hash_bucket("native_country", hash_bucket_size=1000)









Base Continuous Feature Columns


Similarly, we can define a RealValuedColumn for each continuous feature column
that we want to use in the model:


age = tf.contrib.layers.real_valued_column("age")
education_num = tf.contrib.layers.real_valued_column("education_num")
capital_gain = tf.contrib.layers.real_valued_column("capital_gain")
capital_loss = tf.contrib.layers.real_valued_column("capital_loss")
hours_per_week = tf.contrib.layers.real_valued_column("hours_per_week")









Making Continuous Features Categorical through Bucketization


Sometimes the relationship between a continuous feature and the label is not
linear. As an hypothetical example, a person’s income may grow with age in the
early stage of one’s career, then the growth may slow at some point, and finally
the income decreases after retirement. In this scenario, using the raw age as
a real-valued feature column might not be a good choice because the model can
only learn one of the three cases:



		Income always increases at some rate as age grows (positive correlation),


		Income always decreases at some rate as age grows (negative correlation), or


		Income stays the same no matter at what age (no correlation)





If we want to learn the fine-grained correlation between income and each age
group seperately, we can leverage bucketization. Bucketization is a process
of dividing the entire range of a continuous feature into a set of consecutive
bins/buckets, and then converting the original numerical feature into a bucket
ID (as a categorical feature) depending on which bucket that value falls into.
So, we can define a bucketized_column over age as:


age_buckets = tf.contrib.layers.bucketized_column(age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])






where the boundaries is a list of bucket boundaries. In this case, there are
10 boundaries, resulting in 11 age group buckets (from age 17 and below, 18-24,
25-29, ..., to 65 and over).





Intersecting Multiple Columns with CrossedColumn


Using each base feature column separately may not be enough to explain the data.
For example, the correlation between education and the label (earning > 50,000
dollars) may be different for different occupations. Therefore, if we only learn
a single model weight for education="Bachelors" and education="Masters", we
won’t be able to capture every single education-occupation combination (e.g.
distinguishing between education="Bachelors" AND occupation="Exec-managerial"
and education="Bachelors" AND occupation="Craft-repair"). To learn the
differences between different feature combinations, we can add crossed feature
columns to the model.


education_x_occupation = tf.contrib.layers.crossed_column([education, occupation], hash_bucket_size=int(1e4))






We can also create a CrossedColumn over more than two columns. Each
constituent column can be either a base feature column that is categorical
(SparseColumn), a bucketized real-valued feature column (BucketizedColumn),
or even another CrossColumn. Here’s an example:


age_buckets_x_race_x_occupation = tf.contrib.layers.crossed_column(
  [age_buckets, race, occupation], hash_bucket_size=int(1e6))











Defining The Logistic Regression Model


After processing the input data and defining all the feature columns, we’re now
ready to put them all together and build a Logistic Regression model. In the
previous section we’ve seen several types of base and derived feature columns,
including:



		SparseColumn


		RealValuedColumn


		BucketizedColumn


		CrossedColumn





All of these are subclasses of the abstract FeatureColumn class, and can be
added to the feature_columns field of a model:


model_dir = tempfile.mkdtemp()
m = tf.contrib.learn.LinearClassifier(feature_columns=[
  gender, native_country, education, occupation, workclass, marital_status, race,
  age_buckets, education_x_occupation, age_buckets_x_race_x_occupation],
  model_dir=model_dir)






The model also automatically learns a bias term, which controls the prediction
one would make without observing any features (see the section “How Logistic
Regression Works” for more explanations). The learned model files will be stored
in model_dir.





Training and Evaluating Our Model


After adding all the features to the model, now let’s look at how to actually
train the model. Training a model is just a one-liner using the TF.Learn API:


m.fit(input_fn=train_input_fn, steps=200)






After the model is trained, we can evaluate how good our model is at predicting
the labels of the holdout data:


results = m.evaluate(input_fn=eval_input_fn, steps=1)
for key in sorted(results):
    print "%s: %s" % (key, results[key])






The first line of the output should be something like accuracy: 0.83557522,
which means the accuracy is 83.6%. Feel free to try more features and
transformations and see if you can do even better!


If you’d like to see a working end-to-end example, you can download our [example
code]
(https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/learn/wide_n_deep_tutorial.py)
and set the model_type flag to wide.





Adding Regularization to Prevent Overfitting


Regularization is a technique used to avoid overfitting. Overfitting happens
when your model does well on the data it is trained on, but worse on test data
that the model has not seen before, such as live traffic. Overfitting generally
occurs when a model is excessively complex, such as having too many parameters
relative to the number of observed training data. Regularization allows for you
to control your model’s complexity and makes the model more generalizable to
unseen data.


In the Linear Model library, you can add L1 and L2 regularizations to the model
as:


m = tf.contrib.learn.LinearClassifier(feature_columns=[
  gender, native_country, education, occupation, workclass, marital_status, race,
  age_buckets, education_x_occupation, age_buckets_x_race_x_occupation],
  optimizer=tf.train.FtrlOptimizer(
    learning_rate=0.1,
    l1_regularization_strength=1.0,
    l2_regularization_strength=1.0),
  model_dir=model_dir)






One important difference between L1 and L2 regularization is that L1
regularization tends to make model weights stay at zero, creating sparser
models, whereas L2 regularization also tries to make the model weights closer to
zero but not necessarily zero. Therefore, if you increase the strength of L1
regularization, you will have a smaller model size because many of the model
weights will be zero. This is often desirable when the feature space is very
large but sparse, and when there are resource constraints that prevent you from
serving a model that is too large.


In practice, you should try various combinations of L1, L2 regularization
strengths and find the best parameters that best control overfitting and give
you a desirable model size.





How Logistic Regression Works


Finally, let’s take a minute to talk about what the Logistic Regression model
actually looks like in case you’re not already familiar with it. We’ll denote
the label as \(Y\), and the set of observed features as a feature vector
\(\mathbf{x}=[x_1, x_2, ..., x_d]\). We define \(Y=1\) if an individual earned >
50,000 dollars and \(Y=0\) otherwise. In Logistic Regression, the probability of
the label being positive (\(Y=1\)) given the features \(\mathbf{x}\) is given
as:


$$ P(Y=1|\mathbf{x}) = \frac{1}{1+\exp(-(\mathbf{w}^T\mathbf{x}+b))}$$


where \(\mathbf{w}=[w_1, w_2, ..., w_d]\) are the model weights for the features
\(\mathbf{x}=[x_1, x_2, ..., x_d]\). \(b\) is a constant that is often called
the bias of the model. The equation consists of two parts—A linear model and
a logistic function:



		Linear Model: First, we can see that \(\mathbf{w}^T\mathbf{x}+b = b +
w_1x_1 + ... +w_dx_d\) is a linear model where the output is a linear
function of the input features \(\mathbf{x}\). The bias \(b\) is the
prediction one would make without observing any features. The model weight
\(w_i\) reflects how the feature \(x_i\) is correlated with the positive
label. If \(x_i\) is positively correlated with the positive label, the
weight \(w_i\) increases, and the probability \(P(Y=1|\mathbf{x})\) will be
closer to 1. On the other hand, if \(x_i\) is negatively correlated with the
positive label, then the weight \(w_i\) decreases and the probability
\(P(Y=1|\mathbf{x})\) will be closer to 0.


		Logistic Function: Second, we can see that there’s a logistic function
(also known as the sigmoid function) \(S(t) = 1/(1+\exp(-t))\) being applied
to the linear model. The logistic function is used to convert the output of
the linear model \(\mathbf{w}^T\mathbf{x}+b\) from any real number into the
range of \([0, 1]\), which can be interpreted as a probability.





Model training is an optimization problem: The goal is to find a set of model
weights (i.e. model parameters) to minimize a loss function defined over the
training data, such as logistic loss for Logistic Regression models. The loss
function measures the discrepancy between the ground-truth label and the model’s
prediction. If the prediction is very close to the ground-truth label, the loss
value will be low; if the prediction is very far from the label, then the loss
value would be high.





Learn Deeper


If you’re interested in learning more, check out our Wide & Deep Learning
Tutorial where we’ll show you how to combine
the strengths of linear models and deep neural networks by jointly training them
using the TF.Learn API.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/how_tos/variable_scope/index.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
Sharing Variables


You can create, initialize, save and load single variables
in the way described in the Variables HowTo.
But when building complex models you often need to share large sets of
variables and you might want to initialize all of them in one place.
This tutorial shows how this can be done using tf.variable_scope() and
the tf.get_variable().



The Problem


Imagine you create a simple model for image filters, similar to our
Convolutional Neural Networks Tutorial
model but with only 2 convolutions (for simplicity of this example). If you use
just tf.Variable, as explained in Variables HowTo,
your model might look like this.


def my_image_filter(input_images):
    conv1_weights = tf.Variable(tf.random_normal([5, 5, 32, 32]),
        name="conv1_weights")
    conv1_biases = tf.Variable(tf.zeros([32]), name="conv1_biases")
    conv1 = tf.nn.conv2d(input_images, conv1_weights,
        strides=[1, 1, 1, 1], padding='SAME')
    relu1 = tf.nn.relu(conv1 + conv1_biases)

    conv2_weights = tf.Variable(tf.random_normal([5, 5, 32, 32]),
        name="conv2_weights")
    conv2_biases = tf.Variable(tf.zeros([32]), name="conv2_biases")
    conv2 = tf.nn.conv2d(relu1, conv2_weights,
        strides=[1, 1, 1, 1], padding='SAME')
    return tf.nn.relu(conv2 + conv2_biases)






As you can easily imagine, models quickly get much more complicated than
this one, and even here we already have 4 different variables: conv1_weights,
conv1_biases, conv2_weights, and conv2_biases.


The problem arises when you want to reuse this model. Assume you want to
apply your image filter to 2 different images, image1 and image2.
You want both images processed by the same filter with the same parameters.
You can call my_image_filter() twice, but this will create two sets
of variables, 4 variables in each one, for a total of 8 variables.


# First call creates one set of 4 variables.
result1 = my_image_filter(image1)
# Another set of 4 variables is created in the second call.
result2 = my_image_filter(image2)






A common way to share variables is to create them in a separate piece of code
and pass them to functions that use them.   For example by using a dictionary:


variables_dict = {
    "conv1_weights": tf.Variable(tf.random_normal([5, 5, 32, 32]),
        name="conv1_weights")
    "conv1_biases": tf.Variable(tf.zeros([32]), name="conv1_biases")
    ... etc. ...
}

def my_image_filter(input_images, variables_dict):
    conv1 = tf.nn.conv2d(input_images, variables_dict["conv1_weights"],
        strides=[1, 1, 1, 1], padding='SAME')
    relu1 = tf.nn.relu(conv1 + variables_dict["conv1_biases"])

    conv2 = tf.nn.conv2d(relu1, variables_dict["conv2_weights"],
        strides=[1, 1, 1, 1], padding='SAME')
    return tf.nn.relu(conv2 + variables_dict["conv2_biases"])

# The 2 calls to my_image_filter() now use the same variables
result1 = my_image_filter(image1, variables_dict)
result2 = my_image_filter(image2, variables_dict)






While convenient, creating variables like above,
outside of the code, breaks encapsulation:



		The code that builds the graph must document the names, types,
and shapes of variables to create.


		When the code changes, the callers may have to create more, or less,
or different variables.





One way to address the problem is to use classes to create a model,
where the classes take care of managing the variables they need.
For a lighter solution, not involving classes, TensorFlow provides
a Variable Scope mechanism that allows to easily share named variables
while constructing a graph.





Variable Scope Example


Variable Scope mechanism in TensorFlow consists of 2 main functions:



		tf.get_variable(<name>, <shape>, <initializer>):
Creates or returns a variable with a given name.


		tf.variable_scope(<scope_name>):
Manages namespaces for names passed to tf.get_variable().





The function tf.get_variable() is used to get or create a variable instead
of a direct call to tf.Variable. It uses an initializer instead of passing
the value directly, as in tf.Variable. An initializer is a function that
takes the shape and provides a tensor with that shape. Here are some
initializers available in TensorFlow:



		tf.constant_initializer(value) initializes everything to the provided value,


		tf.random_uniform_initializer(a, b) initializes uniformly from [a, b],


		tf.random_normal_initializer(mean, stddev) initializes from the normal
distribution with the given mean and standard deviation.





To see how tf.get_variable() solves the problem discussed
before, let’s refactor the code that created one convolution into
a separate function, named conv_relu:


def conv_relu(input, kernel_shape, bias_shape):
    # Create variable named "weights".
    weights = tf.get_variable("weights", kernel_shape,
        initializer=tf.random_normal_initializer())
    # Create variable named "biases".
    biases = tf.get_variable("biases", bias_shape,
        initializer=tf.constant_initializer(0.0))
    conv = tf.nn.conv2d(input, weights,
        strides=[1, 1, 1, 1], padding='SAME')
    return tf.nn.relu(conv + biases)






This function uses short names "weights" and "biases".
We’d like to use it for both conv1 and conv2, but
the variables need to have different names.
This is where tf.variable_scope() comes into play:
it pushes a namespace for variables.


def my_image_filter(input_images):
    with tf.variable_scope("conv1"):
        # Variables created here will be named "conv1/weights", "conv1/biases".
        relu1 = conv_relu(input_images, [5, 5, 32, 32], [32])
    with tf.variable_scope("conv2"):
        # Variables created here will be named "conv2/weights", "conv2/biases".
        return conv_relu(relu1, [5, 5, 32, 32], [32])






Now, let’s see what happens when we call my_image_filter() twice.


result1 = my_image_filter(image1)
result2 = my_image_filter(image2)
# Raises ValueError(... conv1/weights already exists ...)






As you can see, tf.get_variable() checks that already existing variables
are not shared by accident. If you want to share them, you need to specify
it by setting reuse_variables() as follows.


with tf.variable_scope("image_filters") as scope:
    result1 = my_image_filter(image1)
    scope.reuse_variables()
    result2 = my_image_filter(image2)






This is a good way to share variables, lightweight and safe.





How Does Variable Scope Work?



Understanding tf.get_variable()


To understand variable scope it is necessary to first
fully understand how tf.get_variable() works.
Here is how tf.get_variable is usually called.


v = tf.get_variable(name, shape, dtype, initializer)






This call does one of two things depending on the scope it is called in.
Here are the two options.



		Case 1: the scope is set for creating new variables, as evidenced by
tf.get_variable_scope().reuse == False.





In this case, v will be a newly created tf.Variable with the provided
shape and data type. The full name of the created variable will be set to
the current variable scope name + the provided name and a check will be
performed to ensure that no variable with this full name exists yet.
If a variable with this full name already exists, the function will
raise a ValueError. If a new variable is created, it will be
initialized to the value initializer(shape). For example:


with tf.variable_scope("foo"):
    v = tf.get_variable("v", [1])
assert v.name == "foo/v:0"







		Case 2: the scope is set for reusing variables, as evidenced by
tf.get_variable_scope().reuse == True.





In this case, the call will search for an already existing variable with
name equal to the current variable scope name + the provided name.
If no such variable exists, a ValueError will be raised. If the variable
is found, it will be returned. For example:


with tf.variable_scope("foo"):
    v = tf.get_variable("v", [1])
with tf.variable_scope("foo", reuse=True):
    v1 = tf.get_variable("v", [1])
assert v1 is v









Basics of tf.variable_scope()


Knowing how tf.get_variable() works makes it easy to understand variable
scope. The primary function of variable scope is to carry a name that will
be used as prefix for variable names and a reuse-flag to distinguish the two
cases described above. Nesting variable scopes appends their names in a way
analogous to how directories work:


with tf.variable_scope("foo"):
    with tf.variable_scope("bar"):
        v = tf.get_variable("v", [1])
assert v.name == "foo/bar/v:0"






The current variable scope can be retrieved using tf.get_variable_scope()
and the reuse flag of the current variable scope can be set to True by
calling tf.get_variable_scope().reuse_variables():


with tf.variable_scope("foo"):
    v = tf.get_variable("v", [1])
    tf.get_variable_scope().reuse_variables()
    v1 = tf.get_variable("v", [1])
assert v1 is v






Note that you cannot set the reuse flag to False. The reason behind
this is to allow to compose functions that create models. Imagine you write
a function my_image_filter(inputs) as before. Someone calling the function
in a variable scope with reuse=True would expect all inner variables to be
reused as well. Allowing to force reuse=False inside the function would break
this contract and make it hard to share parameters in this way.


Even though you cannot set reuse to False explicitly, you can enter
a reusing variable scope and then exit it, going back to a non-reusing one.
This can be done using a reuse=True parameter when opening a variable scope.
Note also that, for the same reason as above, the reuse parameter is
inherited. So when you open a reusing variable scope, all sub-scopes will
be reusing too.


with tf.variable_scope("root"):
    # At start, the scope is not reusing.
    assert tf.get_variable_scope().reuse == False
    with tf.variable_scope("foo"):
        # Opened a sub-scope, still not reusing.
        assert tf.get_variable_scope().reuse == False
    with tf.variable_scope("foo", reuse=True):
        # Explicitly opened a reusing scope.
        assert tf.get_variable_scope().reuse == True
        with tf.variable_scope("bar"):
            # Now sub-scope inherits the reuse flag.
            assert tf.get_variable_scope().reuse == True
    # Exited the reusing scope, back to a non-reusing one.
    assert tf.get_variable_scope().reuse == False









Capturing variable scope


In all examples presented above, we shared parameters only because their
names agreed, that is, because we opened a reusing variable scope with
exactly the same string. In more complex cases, it might be useful to pass
a VariableScope object rather than rely on getting the names right.
To this end, variable scopes can be captured and used instead of names
when opening a new variable scope.


with tf.variable_scope("foo") as foo_scope:
    v = tf.get_variable("v", [1])
with tf.variable_scope(foo_scope)
    w = tf.get_variable("w", [1])
with tf.variable_scope(foo_scope, reuse=True)
    v1 = tf.get_variable("v", [1])
    w1 = tf.get_variable("w", [1])
assert v1 is v
assert w1 is w






When opening a variable scope using a previously existing scope
we jump out of the current variable scope prefix to an entirely
different one. This is fully independent of where we do it.


with tf.variable_scope("foo") as foo_scope:
    assert foo_scope.name == "foo"
with tf.variable_scope("bar")
    with tf.variable_scope("baz") as other_scope:
        assert other_scope.name == "bar/baz"
        with tf.variable_scope(foo_scope) as foo_scope2:
            assert foo_scope2.name == "foo"  # Not changed.









Initializers in variable scope


Using tf.get_variable() allows to write functions that create or reuse
variables and can be transparently called from outside. But what if we wanted
to change the initializer of the created variables? Do we need to pass an extra
argument to every function that creates variables? What about the most common
case, when we want to set the default initializer for all variables in one
place, on top of all functions? To help with these cases, variable scope
can carry a default initializer. It is inherited by sub-scopes and passed
to each tf.get_variable() call. But it will be overridden if another
initializer is specified explicitly.


with tf.variable_scope("foo", initializer=tf.constant_initializer(0.4)):
    v = tf.get_variable("v", [1])
    assert v.eval() == 0.4  # Default initializer as set above.
    w = tf.get_variable("w", [1], initializer=tf.constant_initializer(0.3)):
    assert w.eval() == 0.3  # Specific initializer overrides the default.
    with tf.variable_scope("bar"):
        v = tf.get_variable("v", [1])
        assert v.eval() == 0.4  # Inherited default initializer.
    with tf.variable_scope("baz", initializer=tf.constant_initializer(0.2)):
        v = tf.get_variable("v", [1])
        assert v.eval() == 0.2  # Changed default initializer.









Names of ops in tf.variable_scope()


We discussed how tf.variable_scope governs the names of variables.
But how does it influence the names of other ops in the scope?
It is natural that ops created inside a variable scope should also
share that name. For this reason, when we do with tf.variable_scope("name"),
this implicitly opens a tf.name_scope("name"). For example:


with tf.variable_scope("foo"):
    x = 1.0 + tf.get_variable("v", [1])
assert x.op.name == "foo/add"






Name scopes can be opened in addition to a variable scope, and then
they will only affect the names of the ops, but not of variables.


with tf.variable_scope("foo"):
    with tf.name_scope("bar"):
        v = tf.get_variable("v", [1])
        x = 1.0 + v
assert v.name == "foo/v:0"
assert x.op.name == "foo/bar/add"






When opening a variable scope using a captured object instead of a string,
we do not alter the current name scope for ops.







Examples of Use


Here are pointers to a few files that make use of variable scope.
In particular, it is heavily used for recurrent neural networks
and sequence-to-sequence models.


File | What’s in it?
— | —
models/image/cifar10.py | Model for detecting objects in images.
models/rnn/rnn_cell.py | Cell functions for recurrent neural networks.
models/rnn/seq2seq.py | Functions for building sequence-to-sequence models.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/tutorials/index.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
Tutorials



Basic Neural Networks


The first few Tensorflow tutorials guide you through training and testing a
simple neural network to classify handwritten digits from the MNIST database of
digit images.



MNIST For ML Beginners


If you’re new to machine learning, we recommend starting here.  You’ll learn
about a classic problem, handwritten digit classification (MNIST), and get a
gentle introduction to multiclass classification.


View Tutorial





Deep MNIST for Experts


If you’re already familiar with other deep learning software packages, and are
already familiar with MNIST, this tutorial will give you a very brief primer
on TensorFlow.


View Tutorial





TensorFlow Mechanics 101


This is a technical tutorial, where we walk you through the details of using
TensorFlow infrastructure to train models at scale.  We use MNIST as the
example.


View Tutorial







Easy ML with tf.contrib.learn



tf.contrib.learn Quickstart


A quick introduction to tf.contrib.learn, a high-level API for TensorFlow.
Build, train, and evaluate a neural network with just a few lines of
code.


View Tutorial





Overview of Linear Models with tf.contrib.learn


An overview of tf.contrib.learn’s rich set of tools for working with linear
models in TensorFlow.


View Tutorial





Linear Model Tutorial


This tutorial walks you through the code for building a linear model using
tf.contrib.learn.


View Tutorial





Wide and Deep Learning Tutorial


This tutorial shows you how to use tf.contrib.learn to jointly train a linear
model and a deep neural net to harness the advantages of each type of model.


View Tutorial





Logging and Monitoring Basics with tf.contrib.learn


This tutorial shows you how to use TensorFlow’s logging capabilities and the
Monitor API to audit the in-progress training of a neural network.


View Tutorial





Building Input Functions with tf.contrib.learn


This tutorial introduces you to creating input functions in tf.contrib.learn,
and walks you through implementing an input_fn to train a neural network
for predicting median house values.


View Tutorial







TensorFlow Serving



TensorFlow Serving


An introduction to TensorFlow Serving, a flexible, high-performance system for
serving machine learning models, designed for production environments.


View Tutorial







Image Processing



Convolutional Neural Networks


An introduction to convolutional neural networks using the CIFAR-10 data set.
Convolutional neural nets are particularly tailored to images, since they
exploit translation invariance to yield more compact and effective
representations of visual content.


View Tutorial





Image Recognition


How to run object recognition using a convolutional neural network
trained on ImageNet Challenge data and label set.


View Tutorial





Deep Dream Visual Hallucinations


Building on the Inception recognition model, we will release a TensorFlow
version of the Deep Dream [https://github.com/google/deepdream] neural network
visual hallucination software.


View Tutorial [https://www.tensorflow.org/code/tensorflow/examples/tutorials/deepdream/deepdream.ipynb]







Language and Sequence Processing



Vector Representations of Words


This tutorial motivates why it is useful to learn to represent words as vectors
(called word embeddings). It introduces the word2vec model as an efficient
method for learning embeddings. It also covers the high-level details behind
noise-contrastive training methods (the biggest recent advance in training
embeddings).


View Tutorial





Recurrent Neural Networks


An introduction to RNNs, wherein we train an LSTM network to predict the next
word in an English sentence.  (A task sometimes called language modeling.)


View Tutorial





Sequence-to-Sequence Models


A follow on to the RNN tutorial, where we assemble a sequence-to-sequence model
for machine translation.  You will learn to build your own English-to-French
translator, entirely machine learned, end-to-end.


View Tutorial





SyntaxNet: Neural Models of Syntax


An introduction to SyntaxNet, a Natural Language Processing framework for
TensorFlow.


View Tutorial







Non-ML Applications



Mandelbrot Set


TensorFlow can be used for computation that has nothing to do with machine
learning.  Here’s a naive implementation of Mandelbrot set visualization.


View Tutorial





Partial Differential Equations


As another example of non-machine learning computation, we offer an example of
a naive PDE simulation of raindrops landing on a pond.


View Tutorial










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/tutorials/pdes/index.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
Partial Differential Equations


TensorFlow isn’t just for machine learning.  Here we give a (somewhat
pedestrian) example of using TensorFlow for simulating the behavior of a
partial differential equation [https://en.wikipedia.org/wiki/Partial_differential_equation].
We’ll simulate the surface of square pond as a few raindrops land on it.


Note: This tutorial was originally prepared as an IPython notebook.



Basic Setup


A few imports we’ll need.


#Import libraries for simulation
import tensorflow as tf
import numpy as np

#Imports for visualization
import PIL.Image
from io import BytesIO
from IPython.display import clear_output, Image, display






A function for displaying the state of the pond’s surface as an image.


def DisplayArray(a, fmt='jpeg', rng=[0,1]):
  """Display an array as a picture."""
  a = (a - rng[0])/float(rng[1] - rng[0])*255
  a = np.uint8(np.clip(a, 0, 255))
  f = BytesIO()
  PIL.Image.fromarray(a).save(f, fmt)
  clear_output(wait = True)
  display(Image(data=f.getvalue()))






Here we start an interactive TensorFlow session for convenience in playing
around.  A regular session would work as well if we were doing this in an
executable .py file.


sess = tf.InteractiveSession()









Computational Convenience Functions


def make_kernel(a):
  """Transform a 2D array into a convolution kernel"""
  a = np.asarray(a)
  a = a.reshape(list(a.shape) + [1,1])
  return tf.constant(a, dtype=1)

def simple_conv(x, k):
  """A simplified 2D convolution operation"""
  x = tf.expand_dims(tf.expand_dims(x, 0), -1)
  y = tf.nn.depthwise_conv2d(x, k, [1, 1, 1, 1], padding='SAME')
  return y[0, :, :, 0]

def laplace(x):
  """Compute the 2D laplacian of an array"""
  laplace_k = make_kernel([[0.5, 1.0, 0.5],
                           [1.0, -6., 1.0],
                           [0.5, 1.0, 0.5]])
  return simple_conv(x, laplace_k)









Define the PDE


Our pond is a perfect 500 x 500 square, as is the case for most ponds found in
nature.


N = 500






Here we create our pond and hit it with some rain drops.


# Initial Conditions -- some rain drops hit a pond

# Set everything to zero
u_init = np.zeros([N, N], dtype=np.float32)
ut_init = np.zeros([N, N], dtype=np.float32)

# Some rain drops hit a pond at random points
for n in range(40):
  a,b = np.random.randint(0, N, 2)
  u_init[a,b] = np.random.uniform()

DisplayArray(u_init, rng=[-0.1, 0.1])






[image: jpeg]


Now let’s specify the details of the differential equation.


# Parameters:
# eps -- time resolution
# damping -- wave damping
eps = tf.placeholder(tf.float32, shape=())
damping = tf.placeholder(tf.float32, shape=())

# Create variables for simulation state
U  = tf.Variable(u_init)
Ut = tf.Variable(ut_init)

# Discretized PDE update rules
U_ = U + eps * Ut
Ut_ = Ut + eps * (laplace(U) - damping * Ut)

# Operation to update the state
step = tf.group(
  U.assign(U_),
  Ut.assign(Ut_))









Run The Simulation


This is where it gets fun – running time forward with a simple for loop.


# Initialize state to initial conditions
tf.initialize_all_variables().run()

# Run 1000 steps of PDE
for i in range(1000):
  # Step simulation
  step.run({eps: 0.03, damping: 0.04})
  DisplayArray(U.eval(), rng=[-0.1, 0.1])






[image: jpeg]


Look! Ripples!








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/tutorials/input_fn/index.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
Building Input Functions with tf.contrib.learn


This tutorial introduces you to creating input functions in tf.contrib.learn.
You’ll get an overview of how to construct an input_fn to preprocess and feed
data into your models. Then, you’ll implement an input_fn that feeds training,
evaluation, and prediction data into a neural network regressor for predicting
median house values.



Custom Input Pipelines with input_fn


When training a neural network using tf.contrib.learn, it’s possible to pass
your feature and target data directly into your fit, evaluate, or predict
operations. Here’s an example taken from the tf.contrib.learn quickstart
tutorial:


training_set = tf.contrib.learn.datasets.base.load_csv(filename=IRIS_TRAINING,
                                                       target_dtype=np.int)
test_set = tf.contrib.learn.datasets.base.load_csv(filename=IRIS_TEST,
                                                   target_dtype=np.int)
...

classifier.fit(x=training_set.data,
               y=training_set.target,
               steps=2000)






This approach works well when little to no manipulation of source data is
required. But in cases where more feature engineering is needed,
tf.contrib.learn supports using a custom input function (input_fn) to
encapsulate the logic for preprocessing and piping data into your models.



Anatomy of an input_fn


The following code illustrates the basic skeleton for an input function:


def my_input_fn()

    # Preprocess your data here...

    # ...then return 1) a mapping of feature columns to Tensors with
    # the corresponding feature data, and 2) a Tensor containing labels
    return feature_cols, labels






The body of the input function contains the specific logic for preprocessing your
input data, such as scrubbing out bad examples or feature scaling [https://en.wikipedia.org/wiki/Feature_scaling].


Input functions must return the following two values containing the final
feature and label data to be fed into your model (as shown in the above code
skeleton):



  		feature_cols


  		A dict containing key/value pairs that map feature column
names to Tensors (or SparseTensors) containing the corresponding feature
data.


  		labels


  		A Tensor containing your label (target) values: the values your model aims to predict.







Converting Feature Data to Tensors


If your feature/label data is stored in pandas [http://pandas.pydata.org/]
dataframes or numpy [http://www.numpy.org/] arrays, you’ll need to convert it
to Tensors before returning it from your input_fn.


For continuous data, you can create and populate a Tensor using tf.constant:


feature_column_data = [1, 2.4, 0, 9.9, 3, 120]
feature_tensor = tf.constant(feature_column_data)






For sparse, categorical data [https://en.wikipedia.org/wiki/Sparse_matrix]
(data where the majority of values are 0), you’ll instead want to populate a
SparseTensor, which is instantiated with three arguments:



  		shape


  		The shape of the tensor. Takes a list indicating the number of elements in each dimension. For example, shape=[3,6] specifies a two-dimensional 3x6 tensor, shape=[2,3,4] specifies a three-dimensional 2x3x4 tensor, and shape=[9] specifies a one-dimensional tensor with 9 elements.


  		indices


  		The indices of the elements in your tensor that contain nonzero values. Takes a list of terms, where each term is itself a list containing the index of a nonzero element. (Elements are zero-indexed—i.e., [0,0] is the index value for the element in the first column of the first row in a two-dimensional tensor.) For example, indices=[[1,3], [2,4]] specifies that the elements with indexes of [1,3] and [2,4] have nonzero values.


  		values


  		A one-dimensional tensor of values. Term i in values corresponds to term i in indices and specifies its value. For example, given indices=[[1,3], [2,4]], the parameter values=[18, 3.6] specifies that element [1,3] of the tensor has a value of 18, and element [2,4] of the tensor has a value of 3.6.




The following code defines a two-dimensional SparseTensor with 3 rows and 5
columns. The element with index [0,1] has a value of 6, and the element with
index [2,4] has a value of 0.5 (all other values are 0):


sparse_tensor = tf.SparseTensor(indices=[[0,1], [2,4]],
                                values=[6, 0.5],
                                shape=[3, 5])






This corresponds to the following dense tensor:


[[0, 6, 0, 0, 0]
 [0, 0, 0, 0, 0]
 [0, 0, 0, 0, 0.5]]






For more on SparseTensor, see the [TensorFlow API documentation]
(../../api_docs/python/sparse_ops.md#SparseTensor).





Passing input_fn Data to Your Model


To feed data to your model for training, you simply pass the input function
you’ve created to your fit operation as the value of the input_fn parameter,
e.g.:


classifier.fit(input_fn=my_input_fn, steps=2000)






Note that the input_fn is responsible for supplying both feature and label
data to the model, and replaces both the x and y parameters in fit. If you
supply an input_fn value to fit that is not None in conjunction with
either an x or y parameter that is not None, it will result in a
ValueError.


Also note that the input_fn parameter must receive a function object (i.e.,
input_fn=my_input_fn), not the return value of a function call
(input_fn=my_input_fn()). This means that if you try to pass parameters to the input
function in your fit call, as in the following code, it will result in a
TypeError:


classifier.fit(input_fn=my_input_fn(training_set), steps=2000)






However, if you’d like to be able to parameterize your input function, there are
other methods for doing so. You can employ a wrapper function that takes no
arguments as your input_fn and use it to invoke your input function
with the desired parameters. For example:


def my_input_function_training_set:
  my_input_function(training_set)

classifier.fit(input_fn=my_input_fn_training_set, steps=2000)






Alternatively, you can use Python’s functools.partial [https://docs.python.org/2/library/functools.html#functools.partial]
function to construct a new function object with all parameter values fixed:


classifier.fit(input_fn=functools.partial(my_input_function,
                                          data_set=training_set), steps=2000)






A third option is to wrap your input_fn invocation in a [lambda]
(https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions) and
pass it to the input_fn parameter:


classifier.fit(input_fn=lambda: my_input_fn(training_set), steps=2000)






One big advantage of architecting your input pipeline as shown above—to accept a
parameter for data set—is that you can pass the same input_fn to evaluate
and predict operations by just changing the data set argument, e.g.:


classifier.evaluate(input_fn=lambda: my_input_fn(test_set), steps=2000)






This approach enhances code maintainability: no need to capture x and y
values in separate variables (e.g., x_train, x_test, y_train, y_test)
for each type of operation.





A Neural Network Model for Boston House Values


In the remainder of this tutorial, you’ll write an input function for
preprocessing a subset of Boston housing data pulled from the UCI Housing Data
Set [https://archive.ics.uci.edu/ml/datasets/Housing] and use it to feed data to
a neural network regressor for predicting median house values.


The Boston CSV data sets you’ll use to train your neural network
contain the following [feature data]
(https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.names)
for Boston suburbs:


Feature | Description
——- | —————————————————————
CRIM    | Crime rate per capita
ZN      | Fraction of residential land zoned to permit 25,000+ sq ft lots
INDUS   | Fraction of land that is non-retail business
NOX     | Concentration of nitric oxides in parts per 10 million
RM      | Average Rooms per dwelling
AGE     | Fraction of owner-occupied residences built before 1940
DIS     | Distance to Boston-area employment centers
TAX     | Property tax rate per $10,000
PTRATIO | Student-teacher ratio


And the label your model will predict is MEDV, the median value of
owner-occupied residences in thousands of dollars.







Setup {#setup}


Download the following data sets: [boston_train.csv]
(http://download.tensorflow.org/data/boston_train.csv), [boston_test.csv]
(http://download.tensorflow.org/data/boston_test.csv), and [boston_predict.csv]
(http://download.tensorflow.org/data/boston_predict.csv).


The following sections provide a step-by-step walkthrough of how to create an
input function, feed these data sets into a neural network regressor, train and
evaluate the model, and make house value predictions. The full, final code is available
here [https://www.tensorflow.org/code/tensorflow/examples/tutorials/input_fn/boston.py].



Importing the Housing Data


To start, set up your imports (including pandas and tensorflow) and set
logging verbosity to
INFO for more detailed log output:


from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import pandas as pd
import tensorflow as tf

tf.logging.set_verbosity(tf.logging.INFO)






Define the column names for the data set in COLUMNS. To distinguish features
from the label, also define FEATURES and LABEL. Then read the three CSVs
(train [http://download.tensorflow.org/data/boston_train.csv], [test]
(http://download.tensorflow.org/data/boston_test.csv), and [predict]
(http://download.tensorflow.org/data/boston_predict.csv)) into pandas
DataFrames:


COLUMNS = ["crim", "zn", "indus", "nox", "rm", "age",
           "dis", "tax", "ptratio", "medv"]
FEATURES = ["crim", "zn", "indus", "nox", "rm",
            "age", "dis", "tax", "ptratio"]
LABEL = "medv"

training_set = pd.read_csv("boston_train.csv", skipinitialspace=True,
                           skiprows=1, names=COLUMNS)
test_set = pd.read_csv("boston_test.csv", skipinitialspace=True,
                       skiprows=1, names=COLUMNS)
prediction_set = pd.read_csv("boston_predict.csv", skipinitialspace=True,
                             skiprows=1, names=COLUMNS)









Defining FeatureColumns and Creating the Regressor


Next, create a list of FeatureColumns for the input data, which formally
specify the set of features to use for training. Because all features in the
housing data set contain continuous values, you can create their
FeatureColumns using the tf.contrib.layers.real_valued_column() function:


feature_cols = [tf.contrib.layers.real_valued_column(k)
                  for k in FEATURES]






NOTE: For a more in-depth overview of feature columns, see [this introduction]
(../linear/overview.md#feature-columns-and-transformations), and for an example
that illustrates how to define FeatureColumns for categorical data, see the
Linear Model Tutorial.


Now, instantiate a DNNRegressor for the neural network regression model.
You’ll need to provide two arguments here: hidden_units, a hyperparameter
specifying the number of nodes in each hidden layer (here, two hidden layers
with 10 nodes each), and feature_columns, containing the list of
FeatureColumns you just defined:


regressor = tf.contrib.learn.DNNRegressor(
    feature_columns=feature_cols, hidden_units=[10, 10])









Building the input_fn


To pass input data into the regressor, create an input function, which will
accept a pandas Dataframe and return feature column and label values as
Tensors:


def input_fn(data_set):
  feature_cols = {k: tf.constant(data_set[k].values
                  for k in FEATURES}
  labels = tf.constant(data_set[LABEL].values)
  return feature_cols, labels






Note that the input data is passed into input_fn in the data_set argument,
which means the function can process any of the DataFrames you’ve imported:
training_set, test_set, and prediction_set.





Training the Regressor


To train the neural network regressor, run fit with the training_set passed
to the input_fn as follows:


regressor.fit(input_fn=lambda: input_fn(training_set), steps=5000)






You should see log output similar to the following, which reports training loss
for every 100 steps:


INFO:tensorflow:Step 1: loss = 483.179
INFO:tensorflow:Step 101: loss = 81.2072
INFO:tensorflow:Step 201: loss = 72.4354
...
INFO:tensorflow:Step 1801: loss = 33.4454
INFO:tensorflow:Step 1901: loss = 32.3397
INFO:tensorflow:Step 2001: loss = 32.0053
INFO:tensorflow:Step 4801: loss = 27.2791
INFO:tensorflow:Step 4901: loss = 27.2251
INFO:tensorflow:Saving checkpoints for 5000 into /tmp/boston_model/model.ckpt.
INFO:tensorflow:Loss for final step: 27.1674.









Evaluating the Model


Next, see how the trained model performs against the test data set. Run
evaluate, and this time pass the test_set to the input_fn:


ev = regressor.evaluate(input_fn=lambda: input_fn(test_set), steps=1)






Retrieve the loss from the ev results and print it to output:


loss_score = ev["loss"]
print("Loss: {0:f}".format(loss_score))






You should see results similar to the following:


INFO:tensorflow:Eval steps [0,1) for training step 5000.
INFO:tensorflow:Saving evaluation summary for 5000 step: loss = 11.9221
Loss: 11.922098









Making Predictions


Finally, you can use the model to predict median house values for the
prediction_set, which contains feature data but no labels for six examples:


y = regressor.predict(input_fn=lambda: input_fn(prediction_set))
print ("Predictions: {}".format(str(y)))






Your results should contain six house-value predictions in thousands of dollars,
e.g:


Predictions: [ 33.30348587  17.04452896  22.56370163  34.74345398  14.55953979
  19.58005714]











Additional Resources


This tutorial focused on creating an input_fn for a neural network regressor.
To learn more about using input_fns for other types of models, check out the
following resources:



		Large-scale Linear Models with TensorFlow: This
introduction to linear models in TensorFlow provides a high-level overview
of feature columns and techniques for transforming input data.


		TensorFlow Linear Model Tutorial: This tutorial covers
creating FeatureColumns and an input_fn for a linear classification
model that predicts income range based on census data.


		TensorFlow Wide & Deep Learning Tutorial: Building on
the Linear Model Tutorial, this tutorial covers
FeatureColumn and input_fn creation for a “wide and deep” model that
combines a linear model and a neural network using
DNNLinearCombinedClassifier.











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.clip_by_average_norm.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
tf.clip_by_average_norm(t, clip_norm, name=None) {#clip_by_average_norm}


Clips tensor values to a maximum average L2-norm.


Given a tensor t, and a maximum clip value clip_norm, this operation
normalizes t so that its average L2-norm is less than or equal to
clip_norm. Specifically, if the average L2-norm is already less than or
equal to clip_norm, then t is not modified. If the average L2-norm is
greater than clip_norm, then this operation returns a tensor of the same
type and shape as t with its values set to:


t * clip_norm / l2norm_avg(t)


In this case, the average L2-norm of the output tensor is clip_norm.


This operation is typically used to clip gradients before applying them with
an optimizer.



Args:



		t: A Tensor.


		clip_norm: A 0-D (scalar) Tensor > 0. A maximum clipping value.


		name: A name for the operation (optional).








Returns:


A clipped Tensor.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  MultivariateNormalDiag with diag_stddev = softplus(diag_stddev).





tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.__init__(mu, diag_stdev, validate_args=False, allow_nan_stats=True, name='MultivariateNormalDiagWithSoftplusStdDev') {#MultivariateNormalDiagWithSoftplusStDev.init}







tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.allow_nan_stats {#MultivariateNormalDiagWithSoftplusStDev.allow_nan_stats}


Python boolean describing behavior when a stat is undefined.


Stats return +/- infinity when it makes sense.  E.g., the variance
of a Cauchy distribution is infinity.  However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.



Returns:



		allow_nan_stats: Python boolean.












tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.batch_shape(name='batch_shape') {#MultivariateNormalDiagWithSoftplusStDev.batch_shape}


Shape of a single sample from a single event index as a 1-D Tensor.


The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.



Args:



		name: name to give to the op








Returns:



		batch_shape: Tensor.












tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.cdf(value, name='cdf') {#MultivariateNormalDiagWithSoftplusStDev.cdf}


Cumulative distribution function.


Given random variable X, the cumulative distribution function cdf is:


cdf(x) := P[X <= x]







Args:



		value: float or double Tensor.


		name: The name to give this op.








Returns:



		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.












tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.dtype {#MultivariateNormalDiagWithSoftplusStDev.dtype}


The DType of Tensors handled by this Distribution.







tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.entropy(name='entropy') {#MultivariateNormalDiagWithSoftplusStDev.entropy}


Shanon entropy in nats.







tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.event_shape(name='event_shape') {#MultivariateNormalDiagWithSoftplusStDev.event_shape}


Shape of a single sample from a single batch as a 1-D int32 Tensor.



Args:



		name: name to give to the op








Returns:



		event_shape: Tensor.












tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.get_batch_shape() {#MultivariateNormalDiagWithSoftplusStDev.get_batch_shape}


Shape of a single sample from a single event index as a TensorShape.


Same meaning as batch_shape. May be only partially defined.



Returns:



		batch_shape: TensorShape, possibly unknown.












tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.get_event_shape() {#MultivariateNormalDiagWithSoftplusStDev.get_event_shape}


Shape of a single sample from a single batch as a TensorShape.


Same meaning as event_shape. May be only partially defined.



Returns:



		event_shape: TensorShape, possibly unknown.












tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.is_continuous {#MultivariateNormalDiagWithSoftplusStDev.is_continuous}







tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.is_reparameterized {#MultivariateNormalDiagWithSoftplusStDev.is_reparameterized}







tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_cdf(value, name='log_cdf') {#MultivariateNormalDiagWithSoftplusStDev.log_cdf}


Log cumulative distribution function.


Given random variable X, the cumulative distribution function cdf is:


log_cdf(x) := Log[ P[X <= x] ]






Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.



Args:



		value: float or double Tensor.


		name: The name to give this op.








Returns:



		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.












tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_pdf(value, name='log_pdf') {#MultivariateNormalDiagWithSoftplusStDev.log_pdf}


Log probability density function.



Args:



		value: float or double Tensor.


		name: The name to give this op.








Returns:



		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.








Raises:



		AttributeError: if not is_continuous.












tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_pmf(value, name='log_pmf') {#MultivariateNormalDiagWithSoftplusStDev.log_pmf}


Log probability mass function.



Args:



		value: float or double Tensor.


		name: The name to give this op.








Returns:



		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.








Raises:



		AttributeError: if is_continuous.












tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_prob(value, name='log_prob') {#MultivariateNormalDiagWithSoftplusStDev.log_prob}


Log probability density/mass function (depending on is_continuous).



Args:



		value: float or double Tensor.


		name: The name to give this op.








Returns:



		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.












tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_sigma_det(name='log_sigma_det') {#MultivariateNormalDiagWithSoftplusStDev.log_sigma_det}


Log of determinant of covariance matrix.







tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_survival_function(value, name='log_survival_function') {#MultivariateNormalDiagWithSoftplusStDev.log_survival_function}


Log survival function.


Given random variable X, the survival function is defined:


log_survival_function(x) = Log[ P[X > x] ]
                         = Log[ 1 - P[X <= x] ]
                         = Log[ 1 - cdf(x) ]






Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.



Args:



		value: float or double Tensor.


		name: The name to give this op.








Returns:


Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.









tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.mean(name='mean') {#MultivariateNormalDiagWithSoftplusStDev.mean}


Mean.







tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.mode(name='mode') {#MultivariateNormalDiagWithSoftplusStDev.mode}


Mode.







tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.mu {#MultivariateNormalDiagWithSoftplusStDev.mu}







tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.name {#MultivariateNormalDiagWithSoftplusStDev.name}


Name prepended to all ops created by this Distribution.







tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#MultivariateNormalDiagWithSoftplusStDev.param_shapes}


Shapes of parameters given the desired shape of a call to sample().


Subclasses should override static method _param_shapes.



Args:



		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().


		name: name to prepend ops with.








Returns:


dict of parameter name to Tensor shapes.









tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.param_static_shapes(cls, sample_shape) {#MultivariateNormalDiagWithSoftplusStDev.param_static_shapes}


param_shapes with static (i.e. TensorShape) shapes.



Args:



		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().








Returns:


dict of parameter name to TensorShape.





Raises:



		ValueError: if sample_shape is a TensorShape and is not fully defined.












tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.parameters {#MultivariateNormalDiagWithSoftplusStDev.parameters}


Dictionary of parameters used by this Distribution.







tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.pdf(value, name='pdf') {#MultivariateNormalDiagWithSoftplusStDev.pdf}


Probability density function.



Args:



		value: float or double Tensor.


		name: The name to give this op.








Returns:



		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.








Raises:



		AttributeError: if not is_continuous.












tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.pmf(value, name='pmf') {#MultivariateNormalDiagWithSoftplusStDev.pmf}


Probability mass function.



Args:



		value: float or double Tensor.


		name: The name to give this op.








Returns:



		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.








Raises:



		AttributeError: if is_continuous.












tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.prob(value, name='prob') {#MultivariateNormalDiagWithSoftplusStDev.prob}


Probability density/mass function (depending on is_continuous).



Args:



		value: float or double Tensor.


		name: The name to give this op.








Returns:



		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.












tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.sample(sample_shape=(), seed=None, name='sample') {#MultivariateNormalDiagWithSoftplusStDev.sample}


Generate samples of the specified shape.


Note that a call to sample() without arguments will generate a single
sample.



Args:



		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.


		seed: Python integer seed for RNG


		name: name to give to the op.








Returns:



		samples: a Tensor with prepended dimensions sample_shape.












tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.sample_n(n, seed=None, name='sample_n') {#MultivariateNormalDiagWithSoftplusStDev.sample_n}


Generate n samples.



Args:



		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.


		seed: Python integer seed for RNG


		name: name to give to the op.








Returns:



		samples: a Tensor with a prepended dimension (n,).








Raises:



		TypeError: if n is not an integer type.












tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.sigma {#MultivariateNormalDiagWithSoftplusStDev.sigma}


Dense (batch) covariance matrix, if available.







tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.sigma_det(name='sigma_det') {#MultivariateNormalDiagWithSoftplusStDev.sigma_det}


Determinant of covariance matrix.







tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.std(name='std') {#MultivariateNormalDiagWithSoftplusStDev.std}


Standard deviation.







tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.survival_function(value, name='survival_function') {#MultivariateNormalDiagWithSoftplusStDev.survival_function}


Survival function.


Given random variable X, the survival function is defined:


survival_function(x) = P[X > x]
                     = 1 - P[X <= x]
                     = 1 - cdf(x).







Args:



		value: float or double Tensor.


		name: The name to give this op.








Returns:


Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.









tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.validate_args {#MultivariateNormalDiagWithSoftplusStDev.validate_args}


Python boolean indicated possibly expensive checks are enabled.







tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.variance(name='variance') {#MultivariateNormalDiagWithSoftplusStDev.variance}


Variance.






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.fill.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
tf.fill(dims, value, name=None) {#fill}


Creates a tensor filled with a scalar value.


This operation creates a tensor of shape dims and fills it with value.


For example:


# Output tensor has shape [2, 3].
fill([2, 3], 9) ==> [[9, 9, 9]
                     [9, 9, 9]]







Args:



		dims: A Tensor of type int32.
1-D. Represents the shape of the output tensor.


		value: A Tensor. 0-D (scalar). Value to fill the returned tensor.


		name: A name for the operation (optional).








Returns:


A Tensor. Has the same type as value.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.foldr.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
tf.foldr(fn, elems, initializer=None, parallel_iterations=10, back_prop=True, swap_memory=False, name=None) {#foldr}


foldr on the list of tensors unpacked from elems on dimension 0.


This foldr operator repeatedly applies the callable fn to a sequence
of elements from last to first. The elements are made of the tensors
unpacked from elems. The callable fn takes two tensors as arguments.
The first argument is the accumulated value computed from the preceding
invocation of fn. If initializer is None, elems must contain at least
one element, and its first element is used as the initializer.


Suppose that elems is unpacked into values, a list of tensors. The shape
of the result tensor is fn(initializer, values[0]).shape.



Args:



		fn: The callable to be performed.


		elems: A tensor that is unpacked into a sequence of tensors to apply fn.


		initializer: (optional) The initial value for the accumulator.


		parallel_iterations: (optional) The number of iterations allowed to run
in parallel.


		back_prop: (optional) True enables support for back propagation.


		swap_memory: (optional) True enables GPU-CPU memory swapping.


		name: (optional) Name prefix for the returned tensors.








Returns:


A tensor resulting from applying fn consecutively to the list of tensors
unpacked from elems, from last to first.





Raises:



		TypeError: if fn is not callable.








Example:


elems = [1, 2, 3, 4, 5, 6]
sum = foldr(lambda a, x: a + x, elems)
# sum == 21












          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.bayesflow.variational_inference.register_prior.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
tf.contrib.bayesflow.variational_inference.register_prior(variational, prior) {#register_prior}


Associate a variational DistributionTensor with a Distribution prior.


This is a helper function used in conjunction with elbo that allows users
to specify the mapping between variational distributions and their priors
without having to pass in variational_with_prior explicitly.



Args:



		variational: DistributionTensor q(Z). Approximating distribution.


		prior: Distribution p(Z). Prior distribution.








Returns:


None





Raises:



		ValueError: if variational is not a DistributionTensor or prior is not
a Distribution.











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.tanh.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
tf.tanh(x, name=None) {#tanh}


Computes hyperbolic tangent of x element-wise.



Args:



		x: A Tensor or SparseTensor with type float, double, int32,
complex64, int64, or qint32.


		name: A name for the operation (optional).








Returns:


A Tensor or SparseTensor respectively with the same type as x if
x.dtype != qint32 otherwise the return type is quint8.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.metrics.aggregate_metrics.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
tf.contrib.metrics.aggregate_metrics(*value_update_tuples) {#aggregate_metrics}


Aggregates the metric value tensors and update ops into two lists.



Args:



		*value_update_tuples: a variable number of tuples, each of which contain the
pair of (value_tensor, update_op) from a streaming metric.








Returns:


a list of value tensors and a list of update ops.





Raises:



		ValueError: if value_update_tuples is empty.











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  BernoulliTensor is a StochasticTensor backed by the distribution Bernoulli.





tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#BernoulliTensor.init}







tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.clone(name=None, **dist_args) {#BernoulliTensor.clone}







tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.distribution {#BernoulliTensor.distribution}







tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.dtype {#BernoulliTensor.dtype}







tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.entropy(name='entropy') {#BernoulliTensor.entropy}







tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.graph {#BernoulliTensor.graph}







tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.input_dict {#BernoulliTensor.input_dict}







tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.loss(final_loss, name='Loss') {#BernoulliTensor.loss}







tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.mean(name='mean') {#BernoulliTensor.mean}







tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.name {#BernoulliTensor.name}







tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.value(name='value') {#BernoulliTensor.value}







tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.value_type {#BernoulliTensor.value_type}






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.nn.uniform_candidate_sampler.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
tf.nn.uniform_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, seed=None, name=None) {#uniform_candidate_sampler}


Samples a set of classes using a uniform base distribution.


This operation randomly samples a tensor of sampled classes
(sampled_candidates) from the range of integers [0, range_max).


The elements of sampled_candidates are drawn without replacement
(if unique=True) or with replacement (if unique=False) from
the base distribution.


The base distribution for this operation is the uniform distribution
over the range of integers [0, range_max).


In addition, this operation returns tensors true_expected_count
and sampled_expected_count representing the number of times each
of the target classes (true_classes) and the sampled
classes (sampled_candidates) is expected to occur in an average
tensor of sampled classes.  These values correspond to Q(y|x)
defined in this
document [http://www.tensorflow.org/extras/candidate_sampling.pdf].
If unique=True, then these are post-rejection probabilities and we
compute them approximately.



Args:



		true_classes: A Tensor of type int64 and shape [batch_size, num_true]. The target classes.


		num_true: An int.  The number of target classes per training example.


		num_sampled: An int.  The number of classes to randomly sample per batch.


		unique: A bool. Determines whether all sampled classes in a batch are
unique.


		range_max: An int. The number of possible classes.


		seed: An int. An operation-specific seed. Default is 0.


		name: A name for the operation (optional).








Returns:



		sampled_candidates: A tensor of type int64 and shape [num_sampled].
The sampled classes.


		true_expected_count: A tensor of type float.  Same shape as
true_classes. The expected counts under the sampling distribution
of each of true_classes.


		sampled_expected_count: A tensor of type float. Same shape as
sampled_candidates. The expected counts under the sampling distribution
of each of sampled_candidates.











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.framework.is_tensor.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
tf.contrib.framework.is_tensor(x) {#is_tensor}


Check for tensor types.
Check whether an object is a tensor. Equivalent to
isinstance(x, [tf.Tensor, tf.SparseTensor, tf.Variable]).



Args:



		x: An python object to check.








Returns:


True if x is a tensor, False if not.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/tutorials/recurrent/index.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
Recurrent Neural Networks



Introduction


Take a look at [this great article]
(http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
for an introduction to recurrent neural networks and LSTMs in particular.





Language Modeling


In this tutorial we will show how to train a recurrent neural network on
a challenging task of language modeling. The goal of the problem is to fit a
probabilistic model which assigns probabilities to sentences. It does so by
predicting next words in a text given a history of previous words. For this
purpose we will use the Penn Tree Bank [http://www.cis.upenn.edu/~treebank/]
(PTB) dataset, which is a popular benchmark for measuring quality of these
models, whilst being small and relatively fast to train.


Language modeling is key to many interesting problems such as speech
recognition, machine translation, or image captioning. It is also fun, too –
take a look [here] (http://karpathy.github.io/2015/05/21/rnn-effectiveness/).


For the purpose of this tutorial, we will reproduce the results from
[Zaremba et al., 2014] (http://arxiv.org/abs/1409.2329)
(pdf [http://arxiv.org/pdf/1409.2329.pdf]), which achieves very good results
on the PTB dataset.





Tutorial Files


This tutorial references the following files from models/rnn/ptb:


File | Purpose
— | —
ptb_word_lm.py | The code to train a language model on the PTB dataset.
reader.py | The code to read the dataset.





Download and Prepare the Data


The data required for this tutorial is in the data/ directory of the
PTB dataset from Tomas Mikolov’s webpage:
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz


The dataset is already preprocessed and contains overall 10000 different words,
including the end-of-sentence marker and a special symbol (<unk>) for rare
words. We convert all of them in the reader.py to unique integer identifiers
to make it easy for the neural network to process.





The Model



LSTM


The core of the model consists of an LSTM cell that processes one word at a
time and computes probabilities of the possible continuations of the sentence.
The memory state of the network is initialized with a vector of zeros and gets
updated after reading each word. Also, for computational reasons, we will
process data in mini-batches of size batch_size.


The basic pseudocode looks as follows:


lstm = rnn_cell.BasicLSTMCell(lstm_size)
# Initial state of the LSTM memory.
state = tf.zeros([batch_size, lstm.state_size])
probabilities = []
loss = 0.0
for current_batch_of_words in words_in_dataset:
    # The value of state is updated after processing each batch of words.
    output, state = lstm(current_batch_of_words, state)

    # The LSTM output can be used to make next word predictions
    logits = tf.matmul(output, softmax_w) + softmax_b
    probabilities.append(tf.nn.softmax(logits))
    loss += loss_function(probabilities, target_words)









Truncated Backpropagation


In order to make the learning process tractable, it is a common practice to
truncate the gradients for backpropagation to a fixed number (num_steps)
of unrolled steps.
This is easy to implement by feeding inputs of length num_steps at a time and
doing backward pass after each iteration.


A simplified version of the code for the graph creation for truncated
backpropagation:


# Placeholder for the inputs in a given iteration.
words = tf.placeholder(tf.int32, [batch_size, num_steps])

lstm = rnn_cell.BasicLSTMCell(lstm_size)
# Initial state of the LSTM memory.
initial_state = state = tf.zeros([batch_size, lstm.state_size])

for i in range(num_steps):
    # The value of state is updated after processing each batch of words.
    output, state = lstm(words[:, i], state)

    # The rest of the code.
    # ...

final_state = state






And this is how to implement an iteration over the whole dataset:


# A numpy array holding the state of LSTM after each batch of words.
numpy_state = initial_state.eval()
total_loss = 0.0
for current_batch_of_words in words_in_dataset:
    numpy_state, current_loss = session.run([final_state, loss],
        # Initialize the LSTM state from the previous iteration.
        feed_dict={initial_state: numpy_state, words: current_batch_of_words})
    total_loss += current_loss









Inputs


The word IDs will be embedded into a dense representation (see the
Vector Representations Tutorial) before feeding to
the LSTM. This allows the model to efficiently represent the knowledge about
particular words. It is also easy to write:


# embedding_matrix is a tensor of shape [vocabulary_size, embedding size]
word_embeddings = tf.nn.embedding_lookup(embedding_matrix, word_ids)






The embedding matrix will be initialized randomly and the model will learn to
differentiate the meaning of words just by looking at the data.





Loss Function


We want to minimize the average negative log probability of the target words:


$$ \text{loss} = -\frac{1}{N}\sum_{i=1}^{N} \ln p_{\text{target}_i} $$


It is not very difficult to implement but the function
sequence_loss_by_example is already available, so we can just use it here.


The typical measure reported in the papers is average per-word perplexity (often
just called perplexity), which is equal to


$$e^{-\frac{1}{N}\sum_{i=1}^{N} \ln p_{\text{target}_i}} = e^{\text{loss}} $$


and we will monitor its value throughout the training process.





Stacking multiple LSTMs


To give the model more expressive power, we can add multiple layers of LSTMs
to process the data. The output of the first layer will become the input of
the second and so on.


We have a class called MultiRNNCell that makes the implementation seamless:


lstm = rnn_cell.BasicLSTMCell(lstm_size, state_is_tuple=False)
stacked_lstm = rnn_cell.MultiRNNCell([lstm] * number_of_layers,
    state_is_tuple=False)

initial_state = state = stacked_lstm.zero_state(batch_size, tf.float32)
for i in range(num_steps):
    # The value of state is updated after processing each batch of words.
    output, state = stacked_lstm(words[:, i], state)

    # The rest of the code.
    # ...

final_state = state











Run the Code


We are assuming you have already installed via the pip package, have cloned the
tensorflow git repository, and are in the root of the git tree. (If building
from source [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/get_started/os_setup.md#installing-from-sources], build the tensorflow/models/rnn/ptb:ptb_word_lm target using
bazel [https://github.com/bazelbuild/bazel]).


Next:


cd tensorflow/models/rnn/ptb
python ptb_word_lm.py --data_path=/tmp/simple-examples/data/ --model small






There are 3 supported model configurations in the tutorial code: “small”,
“medium” and “large”. The difference between them is in size of the LSTMs and
the set of hyperparameters used for training.


The larger the model, the better results it should get. The small model should
be able to reach perplexity below 120 on the test set and the large one below
80, though it might take several hours to train.





What Next?


There are several tricks that we haven’t mentioned that make the model better,
including:



		decreasing learning rate schedule,


		dropout between the LSTM layers.





Study the code and modify it to improve the model even further.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tensorflow/g3doc/tutorials/wide_and_deep/index.html


    
      Navigation


      
        		
          index


        		Tensorflow2 stable documentation »

 
      


    


    
      
          
            
  
TensorFlow Wide & Deep Learning Tutorial


In the previous TensorFlow Linear Model Tutorial,
we trained a logistic regression model to predict the probability that the
individual has an annual income of over 50,000 dollars using the Census Income
Dataset [https://archive.ics.uci.edu/ml/datasets/Census+Income]. TensorFlow is
great for training deep neural networks too, and you might be thinking which one
you should choose—Well, why not both? Would it be possible to combine the
strengths of both in one model?


In this tutorial, we’ll introduce how to use the TF.Learn API to jointly train a
wide linear model and a deep feed-forward neural network. This approach combines
the strengths of memorization and generalization. It’s useful for generic
large-scale regression and classification problems with sparse input features
(e.g., categorical features with a large number of possible feature values). If
you’re interested in learning more about how Wide & Deep Learning works, please
check out our research paper [http://arxiv.org/abs/1606.07792].


![Wide & Deep Spectrum of Models]
(../../images/wide_n_deep.svg “Wide & Deep”)


The figure above shows a comparison of a wide model (logistic regression with
sparse features and transformations), a deep model (feed-forward neural network
with an embedding layer and several hidden layers), and a Wide & Deep model
(joint training of both). At a high level, there are only 3 steps to configure a
wide, deep, or Wide & Deep model using the TF.Learn API:



		Select features for the wide part: Choose the sparse base columns and
crossed columns you want to use.


		Select features for the deep part: Choose the continuous columns, the
embedding dimension for each categorical column, and the hidden layer sizes.


		Put them all together in a Wide & Deep model
(DNNLinearCombinedClassifier).





And that’s it! Let’s go through a simple example.



Setup


To try the code for this tutorial:



		Install TensorFlow if you haven’t
already.





		Download the tutorial code [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/learn/wide_n_deep_tutorial.py].





		Install the pandas data analysis library. tf.learn doesn’t require pandas, but it does support it, and this tutorial uses pandas. To install pandas:



		Get pip:


# Ubuntu/Linux 64-bit
$ sudo apt-get install python-pip python-dev

# Mac OS X
$ sudo easy_install pip
$ sudo easy_install --upgrade six













2. Use `pip` to install pandas:

 ```shell
 $ sudo pip install pandas

If you have trouble installing pandas, consult the [instructions]
(http://pandas.pydata.org/pandas-docs/stable/install.html) on the pandas site.

		Execute the tutorial code with the following command to train the linear
model described in this tutorial:

$ python wide_n_deep_tutorial.py --model_type=wide_n_deep

Read on to find out how this code builds its linear model.

Define Base Feature Columns

First, let’s define the base categorical and continuous feature columns that
we’ll use. These base columns will be the building blocks used by both the wide
part and the deep part of the model.

import tensorflow as tf

Categorical base columns.
gender = tf.contrib.layers.sparse_column_with_keys(column_name="gender", keys=["Female", "Male"])
race = tf.contrib.layers.sparse_column_with_keys(column_name="race", keys=[
 "Amer-Indian-Eskimo", "Asian-Pac-Islander", "Black", "Other", "White"])
education = tf.contrib.layers.sparse_column_with_hash_bucket("education", hash_bucket_size=1000)
marital_status = tf.contrib.layers.sparse_column_with_hash_bucket("marital_status", hash_bucket_size=100)
relationship = tf.contrib.layers.sparse_column_with_hash_bucket("relationship", hash_bucket_size=100)
workclass = tf.contrib.layers.sparse_column_with_hash_bucket("workclass", hash_bucket_size=100)
occupation = tf.contrib.layers.sparse_column_with_hash_bucket("occupation", hash_bucket_size=1000)
native_country = tf.contrib.layers.sparse_column_with_hash_bucket("native_country", hash_bucket_size=1000)

Continuous base columns.
age = tf.contrib.layers.real_valued_column("age")
age_buckets = tf.contrib.layers.bucketized_column(age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])
education_num = tf.contrib.layers.real_valued_column("education_num")
capital_gain = tf.contrib.layers.real_valued_column("capital_gain")
capital_loss = tf.contrib.layers.real_valued_column("capital_loss")
hours_per_week = tf.contrib.layers.real_valued_column("hours_per_week")

The Wide Model: Linear Model with Crossed Feature Columns

The wide model is a linear model with a wide set of sparse and crossed feature
columns:

wide_columns = [
 gender, native_country, education, occupation, workclass, marital_status, relationship, age_buckets,
 tf.contrib.layers.crossed_column([education, occupation], hash_bucket_size=int(1e4)),
 tf.contrib.layers.crossed_column([native_country, occupation], hash_bucket_size=int(1e4)),
 tf.contrib.layers.crossed_column([age_buckets, race, occupation], hash_bucket_size=int(1e6))]

Wide models with crossed feature columns can memorize sparse interactions
between features effectively. That being said, one limitation of crossed feature
columns is that they do not generalize to feature combinations that have not
appeared in the training data. Let’s add a deep model with embeddings to fix
that.

The Deep Model: Neural Network with Embeddings

The deep model is a feed-forward neural network, as shown in the previous
figure. Each of the sparse, high-dimensional categorical features are first
converted into a low-dimensional and dense real-valued vector, often referred to
as an embedding vector. These low-dimensional dense embedding vectors are
concatenated with the continuous features, and then fed into the hidden layers
of a neural network in the forward pass. The embedding values are initialized
randomly, and are trained along with all other model parameters to minimize the
training loss. If you’re interested in learning more about embeddings, check out
the TensorFlow tutorial on [Vector Representations of Words]
(https://www.tensorflow.org/versions/r0.9/tutorials/word2vec/index.html), or
Word Embedding [https://en.wikipedia.org/wiki/Word_embedding] on Wikipedia.

We’ll configure the embeddings for the categorical columns using
embedding_column, and concatenate them with the continuous columns:

deep_columns = [
 tf.contrib.layers.embedding_column(workclass, dimension=8),
 tf.contrib.layers.embedding_column(education, dimension=8),
 tf.contrib.layers.embedding_column(marital_status, dimension=8),
 tf.contrib.layers.embedding_column(gender, dimension=8),
 tf.contrib.layers.embedding_column(relationship, dimension=8),
 tf.contrib.layers.embedding_column(race, dimension=8),
 tf.contrib.layers.embedding_column(native_country, dimension=8),
 tf.contrib.layers.embedding_column(occupation, dimension=8),
 age, education_num, capital_gain, capital_loss, hours_per_week]

The higher the dimension of the embedding is, the more degrees of freedom the
model will have to learn the representations of the features. For simplicity, we
set the dimension to 8 for all feature columns here. Empirically, a more
informed decision for the number of dimensions is to start with a value on the
order of \(\log_2(n)\) or \(k\sqrt[4]n\), where \(n\) is the number of unique
features in a feature column and \(k\) is a small constant (usually smaller than
10).

Through dense embeddings, deep models can generalize better and make predictions
on feature pairs that were previously unseen in the training data. However, it
is difficult to learn effective low-dimensional representations for feature
columns when the underlying interaction matrix between two feature columns is
sparse and high-rank. In such cases, the interaction between most feature pairs
should be zero except a few, but dense embeddings will lead to nonzero
predictions for all feature pairs, and thus can over-generalize. On the other
hand, linear models with crossed features can memorize these “exception rules”
effectively with fewer model parameters.

Now, let’s see how to jointly train wide and deep models and allow them to
complement each other’s strengths and weaknesses.

Combining Wide and Deep Models into One

The wide models and deep models are combined by summing up their final output
log odds as the prediction, then feeding the prediction to a logistic loss
function. All the graph definition and variable allocations have already been
handled for you under the hood, so you simply need to create a
DNNLinearCombinedClassifier:

import tempfile
model_dir = tempfile.mkdtemp()
m = tf.contrib.learn.DNNLinearCombinedClassifier(
 model_dir=model_dir,
 linear_feature_columns=wide_columns,
 dnn_feature_columns=deep_columns,
 dnn_hidden_units=[100, 50])

Training and Evaluating The Model

Before we train the model, let’s read in the Census dataset as we did in the
TensorFlow Linear Model tutorial. The code for
input data processing is provided here again for your convenience:

import pandas as pd
import urllib

Define the column names for the data sets.
COLUMNS = ["age", "workclass", "fnlwgt", "education", "education_num",
 "marital_status", "occupation", "relationship", "race", "gender",
 "capital_gain", "capital_loss", "hours_per_week", "native_country", "income_bracket"]
LABEL_COLUMN = 'label'
CATEGORICAL_COLUMNS = ["workclass", "education", "marital_status", "occupation",
 "relationship", "race", "gender", "native_country"]
CONTINUOUS_COLUMNS = ["age", "education_num", "capital_gain", "capital_loss",
 "hours_per_week"]

Download the training and test data to temporary files.
Alternatively, you can download them yourself and change train_file and
test_file to your own paths.
train_file = tempfile.NamedTemporaryFile()
test_file = tempfile.NamedTemporaryFile()
urllib.urlretrieve("https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data", train_file.name)
urllib.urlretrieve("https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test", test_file.name)

Read the training and test data sets into Pandas dataframe.
df_train = pd.read_csv(train_file, names=COLUMNS, skipinitialspace=True)
df_test = pd.read_csv(test_file, names=COLUMNS, skipinitialspace=True, skiprows=1)
df_train[LABEL_COLUMN] = (df_train['income_bracket'].apply(lambda x: '>50K' in x)).astype(int)
df_test[LABEL_COLUMN] = (df_test['income_bracket'].apply(lambda x: '>50K' in x)).astype(int)

def input_fn(df):
 # Creates a dictionary mapping from each continuous feature column name (k) to
 # the values of that column stored in a constant Tensor.
 continuous_cols = {k: tf.constant(df[k].values)
 for k in CONTINUOUS_COLUMNS}
 # Creates a dictionary mapping from each categorical feature column name (k)
 # to the values of that column stored in a tf.SparseTensor.
 categorical_cols = {k: tf.SparseTensor(
 indices=[[i, 0] for i in range(df[k].size)],
 values=df[k].values,
 shape=[df[k].size, 1])
 for k in CATEGORICAL_COLUMNS}
 # Merges the two dictionaries into one.
 feature_cols = dict(continuous_cols.items() + categorical_cols.items())
 # Converts the label column into a constant Tensor.
 label = tf.constant(df[LABEL_COLUMN].values)
 # Returns the feature columns and the label.
 return feature_cols, label

def train_input_fn():
 return input_fn(df_train)

def eval_input_fn():
 return input_fn(df_test)

After reading in the data, you can train and evaluate the model:

m.fit(input_fn=train_input_fn, steps=200)
results = m.evaluate(input_fn=eval_input_fn, steps=1)
for key in sorted(results):
 print "%s: %s" % (key, results[key])

The first line of the output should be something like accuracy: 0.84429705. We
can see that the accuracy was improved from about 83.6% using a wide-only linear
model to about 84.4% using a Wide & Deep model. If you’d like to see a working
end-to-end example, you can download our [example code]
(https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/learn/wide_n_deep_tutorial.py).

Note that this tutorial is just a quick example on a small dataset to get you
familiar with the API. Wide & Deep Learning will be even more powerful if you
try it on a large dataset with many sparse feature columns that have a large
number of possible feature values. Again, feel free to take a look at our
research paper [http://arxiv.org/abs/1606.07792] for more ideas about how to
apply Wide & Deep Learning in real-world large-scale maching learning problems.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/tutorials/seq2seq/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Sequence-to-Sequence Models

Recurrent neural networks can learn to model language, as already discussed
in the RNN Tutorial
(if you did not read it, please go through it before proceeding with this one).
This raises an interesting question: could we condition the generated words on
some input and generate a meaningful response? For example, could we train
a neural network to translate from English to French? It turns out that
the answer is yes.

This tutorial will show you how to build and train such a system end-to-end.
We are assuming you have already installed via the pip package, have cloned the
tensorflow git repository, and are in the root of the git tree.

You can then start by running the translate program:

cd tensorflow/models/rnn/translate
python translate.py --data_dir [your_data_directory]

It will download English-to-French translation data from the
WMT‘15 Website [http://www.statmt.org/wmt15/translation-task.html]
prepare it for training and train. It takes about 20GB of disk space,
and a while to download and prepare (see later for details),
so you can start and leave it running while reading this tutorial.

This tutorial references the following files from models/rnn.

File | What’s in it?
— | —
seq2seq.py | Library for building sequence-to-sequence models.
translate/seq2seq_model.py | Neural translation sequence-to-sequence model.
translate/data_utils.py | Helper functions for preparing translation data.
translate/translate.py | Binary that trains and runs the translation model.

Sequence-to-Sequence Basics

A basic sequence-to-sequence model, as introduced in
Cho et al., 2014 [http://arxiv.org/abs/1406.1078]
(pdf [http://arxiv.org/pdf/1406.1078.pdf]), consists of two recurrent neural
networks (RNNs): an encoder that processes the input and a decoder that
generates the output. This basic architecture is depicted below.

[image:]

Each box in the picture above represents a cell of the RNN, most commonly
a GRU cell or an LSTM cell (see the RNN Tutorial
for an explanation of those). Encoder and decoder can share weights or,
as is more common, use a different set of parameters. Multi-layer cells
have been successfully used in sequence-to-sequence models too, e.g. for
translation Sutskever et al., 2014 [http://arxiv.org/abs/1409.3215]
(pdf [http://arxiv.org/pdf/1409.3215.pdf]).

In the basic model depicted above, every input has to be encoded into
a fixed-size state vector, as that is the only thing passed to the decoder.
To allow the decoder more direct access to the input, an attention mechanism
was introduced in Bahdanau et al., 2014 [http://arxiv.org/abs/1409.0473]
(pdf [http://arxiv.org/pdf/1409.0473.pdf]).
We will not go into the details of the attention mechanism (see the paper),
suffice it to say that it allows the decoder to peek into the input at every
decoding step. A multi-layer sequence-to-sequence network with LSTM cells and
attention mechanism in the decoder looks like this.

[image:]

TensorFlow seq2seq Library

As you can see above, there are many different sequence-to-sequence
models. Each of these models can use different RNN cells, but all
of them accept encoder inputs and decoder inputs. This motivates
the interfaces in the TensorFlow seq2seq library (models/rnn/seq2seq.py).
The basic RNN encoder-decoder sequence-to-sequence model works as follows.

outputs, states = basic_rnn_seq2seq(encoder_inputs, decoder_inputs, cell)

In the above call, encoder_inputs are a list of tensors representing inputs
to the encoder, i.e., corresponding to the letters A, B, C in the first
picture above. Similarly, decoder_inputs are tensors representing inputs
to the decoder, GO, W, X, Y, Z on the first picture.

The cell argument is an instance of the models.rnn.rnn_cell.RNNCell class
that determines which cell will be used inside the model. You can use
an existing cell, such as GRUCell or LSTMCell, or you can write your own.
Moreover, rnn_cell provides wrappers to construct multi-layer cells,
add dropout to cell inputs or outputs, or to do other transformations,
see the RNN Tutorial for examples.

The call to basic_rnn_seq2seq returns two arguments: outputs and states.
Both of them are lists of tensors of the same length as decoder_inputs.
Naturally, outputs correspond to the outputs of the decoder in each time-step,
in the first picture above that would be W, X, Y, Z, EOS. The returned
states represent the internal state of the decoder at every time-step.

In many applications of sequence-to-sequence models, the output of the decoder
at time t is fed back and becomes the input of the decoder at time t+1. At test
time, when decoding a sequence, this is how the sequence is constructed.
During training, on the other hand, it is common to provide the correct input
to the decoder at every time-step, even if the decoder made a mistake before.
Functions in seq2seq.py support both modes using the feed_previous argument.
For example, let’s analyze the following use of an embedding RNN model.

outputs, states = embedding_rnn_seq2seq(
 encoder_inputs, decoder_inputs, cell,
 num_encoder_symbols, num_decoder_symbols,
 output_projection=None, feed_previous=False)

In the embedding_rnn_seq2seq model, all inputs (both encoder_inputs and
decoder_inputs) are integer-tensors that represent discrete values.
They will be embedded into a dense representation (see the
Vectors Representations Tutorial for more details
on embeddings), but to construct these embeddings we need to specify
the maximum number of discrete symbols that will appear: num_encoder_symbols
on the encoder side, and num_decoder_symbols on the decoder side.

In the above invocation, we set feed_previous to False. This means that the
decoder will use decoder_inputs tensors as provided. If we set feed_previous
to True, the decoder would only use the first element of decoder_inputs.
All other tensors from this list would be ignored, and instead the previous
output of the decoder would be used. This is used for decoding translations
in our translation model, but it can also be used during training, to make
the model more robust to its own mistakes, similar
to Bengio et al., 2015 [http://arxiv.org/abs/1506.03099]
(pdf [http://arxiv.org/pdf/1506.03099.pdf]).

One more important argument used above is output_projection. If not specified,
the outputs of the embedding model will be tensors of shape batch-size by
num_decoder_symbols as they represent the logits for each generated symbol.
When training models with large output vocabularies, i.e., when
num_decoder_symbols is large, it is not practical to store these large
tensors. Instead, it is better to return smaller output tensors, which will
later be projected onto a large output tensor using output_projection.
This allows to use our seq2seq models with a sampled softmax loss, as described
in Jean et. al., 2014 [http://arxiv.org/abs/1412.2007]
(pdf [http://arxiv.org/pdf/1412.2007.pdf]).

In addition to basic_rnn_seq2seq and embedding_rnn_seq2seq there are a few
more sequence-to-sequence models in seq2seq.py, take a look there. They all
have similar interfaces, so we will not describe them in detail. We will use
embedding_attention_seq2seq for our translation model below.

Neural Translation Model

While the core of the sequence-to-sequence model is constructed by
the functions in models/rnn/seq2seq.py, there are still a few tricks
that are worth mentioning that are used in our translation model in
models/rnn/translate/seq2seq_model.py.

Sampled softmax and output projection

For one, as already mentioned above, we want to use sampled softmax to
handle large output vocabulary. To decode from it, we need to keep track
of the output projection. Both the sampled softmax loss and the output
projections are constructed by the following code in seq2seq_model.py.

 if num_samples > 0 and num_samples < self.target_vocab_size:
 w = tf.get_variable("proj_w", [size, self.target_vocab_size])
 w_t = tf.transpose(w)
 b = tf.get_variable("proj_b", [self.target_vocab_size])
 output_projection = (w, b)

 def sampled_loss(inputs, labels):
 labels = tf.reshape(labels, [-1, 1])
 return tf.nn.sampled_softmax_loss(w_t, b, inputs, labels, num_samples,
 self.target_vocab_size)

First, note that we only construct a sampled softmax if the number of samples
(512 by default) is smaller than the target vocabulary size. For vocabularies
smaller than 512, it might be a better idea to just use a standard softmax loss.

Then, as you can see, we construct an output projection. It is a pair,
consisting of a weight matrix and a bias vector. If used, the rnn cell
will return vectors of shape batch-size by size, rather than batch-size
by target_vocab_size. To recover logits, we need to multiply by the weight
matrix and add the biases, as is done in lines 124-126 in seq2seq_model.py.

if output_projection is not None:
 self.outputs[b] = [tf.matmul(output, output_projection[0]) +
 output_projection[1] for ...]

Bucketing and padding

In addition to sampled softmax, our translation model also makes use
of bucketing, which is a method to efficiently handle sentences of
different lengths. Let us first clarify the problem. When translating
English to French, we will have English sentences of different lengths L1
on input, and French sentences of different lengths L2 on output. Since
the English sentence is passed as encoder_inputs, and the French sentence
comes as decoder_inputs (prefixed by a GO symbol), we should in principle
create a seq2seq model for every pair (L1, L2+1) of lengths of an English
and French sentence. This would result in an enormous graph consisting of
many very similar subgraphs. On the other hand, we could just pad every
sentence with a special PAD symbol. Then we’d need only one seq2seq model,
for the padded lengths. But on shorter sentence our model would be inefficient,
encoding and decoding many PAD symbols that are useless.

As a compromise between constructing a graph for every pair of lengths and
padding to a single length, we use a number of buckets and pad each sentence
to the length of the bucket above it. In translate.py we use the following
default buckets.

buckets = [(5, 10), (10, 15), (20, 25), (40, 50)]

This means that if the input is an English sentence with 3 tokens,
and the corresponding output is a French sentence with 6 tokens,
then they will be put in the first bucket and padded to length 5 for
encoder inputs, and length 10 for decoder inputs. If we have an English
sentence with 8 tokens and the corresponding French sentence has 18 tokens,
then they will not fit into the (10, 15) bucket, and so the (20, 25) bucket
will be used, i.e. the English sentence will be padded to 20, and the French
one to 25.

Remember that when constructing decoder inputs we prepend the special GO
symbol to the input data. This is done in the get_batch() function in
seq2seq_model.py, which also reverses the input English sentence.
Reversing the inputs was shown to improve results for the neural translation
model in Sutskever et al., 2014 [http://arxiv.org/abs/1409.3215]
(pdf [http://arxiv.org/pdf/1409.3215.pdf]).
To put it all together, imagine we have the sentence “I go.”, tokenized
as ["I", "go", "."] as input and the sentence “Je vais.” as output,
tokenized ["Je", "vais", "."]. It will be put in the (5, 10) bucket,
with encoder inputs representing [PAD PAD "." "go" "I"] and decoder
inputs [GO "Je" "vais" "." EOS PAD PAD PAD PAD PAD].

Let’s Run It

To train the model described above, we need to a large English-French corpus.
We will use the 10^9-French-English corpus from the
WMT‘15 Website [http://www.statmt.org/wmt15/translation-task.html]
for training, and the 2013 news test from the same site as development set.
Both data-sets will be downloaded to data_dir and training will start,
saving checkpoints in train_dir, when this command is run.

python translate.py
 --data_dir [your_data_directory] --train_dir [checkpoints_directory]
 --en_vocab_size=40000 --fr_vocab_size=40000

It takes about 18GB of disk space and several hours to prepare the training
corpus. It is unpacked, vocabulary files are created in data_dir, and then
the corpus is tokenized and converted to integer ids. Note the parameters
that determine vocabulary sizes. In the example above, all words outside
the 40K most common ones will be converted to an UNK token representing
unknown words. So if you change vocabulary size, the binary will re-map
the corpus to token-ids again.

After the data is prepared, training starts. Default parameters in translate
are set to quite large values. Large models trained over a long time give good
results, but it might take too long or use too much memory for your GPU.
You can request to train a smaller model as in the following example.

python translate.py
 --data_dir [your_data_directory] --train_dir [checkpoints_directory]
 --size=256 --num_layers=2 --steps_per_checkpoint=50

The above command will train a model with 2 layers (the default is 3),
each layer with 256 units (default is 1024), and will save a checkpoint
every 50 steps (the default is 200). You can play with these parameters
to find out how large a model can be to fit into the memory of your GPU.

During training, every steps_per_checkpoint steps the binary will print
out statistics from recent steps. With the default parameters (3 layers
of size 1024), first messages look like this.

global step 200 learning rate 0.5000 step-time 1.39 perplexity 1720.62
 eval: bucket 0 perplexity 184.97
 eval: bucket 1 perplexity 248.81
 eval: bucket 2 perplexity 341.64
 eval: bucket 3 perplexity 469.04
global step 400 learning rate 0.5000 step-time 1.38 perplexity 379.89
 eval: bucket 0 perplexity 151.32
 eval: bucket 1 perplexity 190.36
 eval: bucket 2 perplexity 227.46
 eval: bucket 3 perplexity 238.66

You can see that each step takes just under 1.4 seconds, the perplexity
on the training set and the perplexities on the development set
for each bucket. After about 30K steps, we see perplexities on short
sentences (bucket 0 and 1) going into single digits.
Since the training corpus contains ~22M sentences, one epoch (going through
the training data once) takes about 340K steps with batch-size of 64. At this
point the model can be used for translating English sentences to French
using the --decode option.

python translate.py --decode
 --data_dir [your_data_directory] --train_dir [checkpoints_directory]

Reading model parameters from /tmp/translate.ckpt-340000
> Who is the president of the United States?
 Qui est le président des États-Unis ?

What Next?

The example above shows how you can build your own English-to-French
translator, end-to-end. Run it and see how the model performs for yourself.
While it has reasonable quality, the default parameters will not give you
the best translation model. Here are a few things you can improve.

First of all, we use a very primitive tokenizer, the basic_tokenizer function
in data_utils. A better tokenizer can be found on the
WMT‘15 Website [http://www.statmt.org/wmt15/translation-task.html].
Using that tokenizer, and a larger vocabulary, should improve your translations.

Also, the default parameters of the translation model are not tuned.
You can try changing the learning rate, decay, or initializing the weights
of your model in a different way. You can also change the default
GradientDescentOptimizer in seq2seq_model.py to a more advanced one, such
as AdagradOptimizer. Try these things and see how they improve your results!

Finally, the model presented above can be used for any sequence-to-sequence
task, not only for translation. Even if you want to transform a sequence to
a tree, for example to generate a parsing tree, the same model as above can
give state-of-the-art results, as demonstrated in
Vinyals & Kaiser et al., 2014 [http://arxiv.org/abs/1412.7449]
(pdf [http://arxiv.org/pdf/1412.7449.pdf]).
So you can not only build your own translator, you can also build a parser,
a chat-bot, or any program that comes to your mind. Experiment!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/tutorials/tfserve/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow Serving

Introduction

TensorFlow Serving is a flexible, high-performance serving system for machine
learning models, designed for production environments. TensorFlow Serving
makes it easy to deploy new algorithms and experiments, while keeping the same
server architecture and APIs.

Basic Serving Tutorial

See the basic tutorial [https://tensorflow.github.io/serving/serving_basic]
on the TensorFlow Serving site to learn how to export a trained TensorFlow
model and build a server to serve the exported model.

Advanced Serving Tutorial

See the
advanced tutorial [https://tensorflow.github.io/serving/serving_advanced]
on the TensorFlow Serving site to learn how to build a server that
dynamically discovers and serves new versions of a trained TensorFlow
model.

Serving Inception Model Tutorial

See the
serving inception tutorial [https://tensorflow.github.io/serving/serving_inception]
on the TensorFlow Serving site to learn how to serve the inception model with
TensorFlow Serving and Kubernetes.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/tutorials/mandelbrot/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Mandelbrot Set

Visualizing the Mandelbrot set [https://en.wikipedia.org/wiki/Mandelbrot_set]
doesn’t have anything to do with machine learning, but it makes for a fun
example of how one can use TensorFlow for general mathematics. This is
actually a pretty naive implementation of the visualization, but it makes the
point. (We may end up providing a more elaborate implementation down the line
to produce more truly beautiful images.)

Note: This tutorial was originally prepared as an IPython notebook.

Basic Setup

We’ll need a few imports to get started.

Import libraries for simulation
import tensorflow as tf
import numpy as np

Imports for visualization
import PIL.Image
from io import BytesIO
from IPython.display import Image, display

Now we’ll define a function to actually display the image once we have
iteration counts.

def DisplayFractal(a, fmt='jpeg'):
 """Display an array of iteration counts as a
 colorful picture of a fractal."""
 a_cyclic = (6.28*a/20.0).reshape(list(a.shape)+[1])
 img = np.concatenate([10+20*np.cos(a_cyclic),
 30+50*np.sin(a_cyclic),
 155-80*np.cos(a_cyclic)], 2)
 img[a==a.max()] = 0
 a = img
 a = np.uint8(np.clip(a, 0, 255))
 f = BytesIO()
 PIL.Image.fromarray(a).save(f, fmt)
 display(Image(data=f.getvalue()))

Session and Variable Initialization

For playing around like this, we often use an interactive session, but a regular
session would work as well.

 sess = tf.InteractiveSession()

It’s handy that we can freely mix NumPy and TensorFlow.

Use NumPy to create a 2D array of complex numbers on [-2,2]x[-2,2]

Y, X = np.mgrid[-1.3:1.3:0.005, -2:1:0.005]
Z = X+1j*Y

Now we define and initialize TensorFlow tensors.

xs = tf.constant(Z.astype(np.complex64))
zs = tf.Variable(xs)
ns = tf.Variable(tf.zeros_like(xs, tf.float32))

TensorFlow requires that you explicitly initialize variables before using them.

tf.initialize_all_variables().run()

Defining and Running the Computation

Now we specify more of the computation...

Compute the new values of z: z^2 + x
zs_ = zs*zs + xs

Have we diverged with this new value?
not_diverged = tf.complex_abs(zs_) < 4

Operation to update the zs and the iteration count.
#
Note: We keep computing zs after they diverge! This
is very wasteful! There are better, if a little
less simple, ways to do this.
#
step = tf.group(
 zs.assign(zs_),
 ns.assign_add(tf.cast(not_diverged, tf.float32))
)

... and run it for a couple hundred steps

for i in range(200): step.run()

Let’s see what we’ve got.

DisplayFractal(ns.eval())

[image: jpeg]

Not bad!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/tutorials/syntaxnet/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

SyntaxNet

Introduction

SyntaxNet is a neural-network Natural Language Processing framework for
TensorFlow.

Basic SyntaxNet Tutorial

The tutorial [https://github.com/tensorflow/models/tree/master/syntaxnet#installation]
shows you how to:

		Install SyntaxNet.

		Use the included, pretrained Parsey McParseface parser.

		Train your own part-of-speech tagger.

		Train your own parser.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/tutorials/deep_cnn/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Convolutional Neural Networks

NOTE: This tutorial is intended for advanced users of TensorFlow
and assumes expertise and experience in machine learning.

Overview

CIFAR-10 classification is a common benchmark problem in machine learning. The
problem is to classify RGB 32x32 pixel images across 10 categories:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

For more details refer to the CIFAR-10 page [http://www.cs.toronto.edu/~kriz/cifar.html]
and a Tech Report [http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf]
by Alex Krizhevsky.

Goals

The goal of this tutorial is to build a relatively small convolutional neural
network [https://en.wikipedia.org/wiki/Convolutional_neural_network] (CNN) for
recognizing images. In the process, this tutorial:

		Highlights a canonical organization for network architecture,
training and evaluation.

		Provides a template for constructing larger and more sophisticated models.

The reason CIFAR-10 was selected was that it is complex enough to exercise
much of TensorFlow’s ability to scale to large models. At the same time,
the model is small enough to train fast, which is ideal for trying out
new ideas and experimenting with new techniques.

Highlights of the Tutorial

The CIFAR-10 tutorial demonstrates several important constructs for
designing larger and more sophisticated models in TensorFlow:

		Core mathematical components including convolution (wiki [https://en.wikipedia.org/wiki/Convolution]), rectified linear activations (wiki [https://en.wikipedia.org/wiki/Rectifier_(neural_networks)]), max pooling (wiki [https://en.wikipedia.org/wiki/Convolutional_neural_network#Pooling_layer])
and local response normalization
(Chapter 3.3 in AlexNet paper [http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf]).

		Visualization
of network activities during training, including input images,
losses and distributions of activations and gradients.

		Routines for calculating the
moving average
of learned parameters and using these averages
during evaluation to boost predictive performance.

		Implementation of a
learning rate schedule
that systematically decrements over time.

		Prefetching queues
for input
data to isolate the model from disk latency and expensive image pre-processing.

We also provide a multi-GPU version
of the model which demonstrates:

		Configuring a model to train across multiple GPU cards in parallel.

		Sharing and updating variables among multiple GPUs.

We hope that this tutorial provides a launch point for building larger CNNs for
vision tasks on TensorFlow.

Model Architecture

The model in this CIFAR-10 tutorial is a multi-layer architecture consisting of
alternating convolutions and nonlinearities. These layers are followed by fully
connected layers leading into a softmax classifier. The model follows the
architecture described by
Alex Krizhevsky [https://code.google.com/p/cuda-convnet/], with a few
differences in the top few layers.

This model achieves a peak performance of about 86% accuracy within a few hours
of training time on a GPU. Please see below and the code
for details. It consists of 1,068,298 learnable parameters and requires about
19.5M multiply-add operations to compute inference on a single image.

Code Organization

The code for this tutorial resides in
tensorflow/models/image/cifar10/ [https://www.tensorflow.org/code/tensorflow/models/image/cifar10/].

File | Purpose
— | —
cifar10_input.py [https://www.tensorflow.org/code/tensorflow/models/image/cifar10/cifar10_input.py] | Reads the native CIFAR-10 binary file format.
cifar10.py [https://www.tensorflow.org/code/tensorflow/models/image/cifar10/cifar10.py] | Builds the CIFAR-10 model.
cifar10_train.py [https://www.tensorflow.org/code/tensorflow/models/image/cifar10/cifar10_train.py] | Trains a CIFAR-10 model on a CPU or GPU.
cifar10_multi_gpu_train.py [https://www.tensorflow.org/code/tensorflow/models/image/cifar10/cifar10_multi_gpu_train.py] | Trains a CIFAR-10 model on multiple GPUs.
cifar10_eval.py [https://www.tensorflow.org/code/tensorflow/models/image/cifar10/cifar10_eval.py] | Evaluates the predictive performance of a CIFAR-10 model.

CIFAR-10 Model

The CIFAR-10 network is largely contained in
cifar10.py [https://www.tensorflow.org/code/tensorflow/models/image/cifar10/cifar10.py].
The complete training
graph contains roughly 765 operations. We find that we can make the code most
reusable by constructing the graph with the following modules:

		Model inputs: inputs() and distorted_inputs() add
operations that read and preprocess CIFAR images for evaluation and training,
respectively.

		Model prediction: inference()
adds operations that perform inference, i.e. classification, on supplied images.

		Model training: loss() and train()
add operations that compute the loss,
gradients, variable updates and visualization summaries.

Model Inputs

The input part of the model is built by the functions inputs() and
distorted_inputs() which read images from the CIFAR-10 binary data files.
These files contain fixed byte length records, so we use
tf.FixedLengthRecordReader.
See Reading Data to
learn more about how the Reader class works.

The images are processed as follows:

		They are cropped to 24 x 24 pixels, centrally for evaluation or
randomly for training.

		They are approximately whitened
to make the model insensitive to dynamic range.

For training, we additionally apply a series of random distortions to
artificially increase the data set size:

		Randomly flip the image from left to right.

		Randomly distort the image brightness.

		Randomly distort the image contrast.

Please see the Images page for the list of
available distortions. We also attach an
image_summary to the images
so that we may visualize them in TensorBoard.
This is a good practice to verify that inputs are built correctly.

 [image:]

Reading images from disk and distorting them can use a non-trivial amount of
processing time. To prevent these operations from slowing down training, we run
them inside 16 separate threads which continuously fill a TensorFlow
queue.

Model Prediction

The prediction part of the model is constructed by the inference() function
which adds operations to compute the logits of the predictions. That part of
the model is organized as follows:

Layer Name | Description
— | —
conv1 | convolution and rectified linear activation.
pool1 | max pooling.
norm1 | local response normalization.
conv2 | convolution and rectified linear activation.
norm2 | local response normalization.
pool2 | max pooling.
local3 | fully connected layer with rectified linear activation.
local4 | fully connected layer with rectified linear activation.
softmax_linear | linear transformation to produce logits.

Here is a graph generated from TensorBoard describing the inference operation:

 [image:]

EXERCISE: The output of inference are un-normalized logits. Try editing
the network architecture to return normalized predictions using [tf.nn.softmax()]
(../../api_docs/python/nn.md#softmax).

The inputs() and inference() functions provide all the components
necessary to perform evaluation on a model. We now shift our focus towards
building operations for training a model.

EXERCISE: The model architecture in inference() differs slightly from
the CIFAR-10 model specified in
cuda-convnet [https://code.google.com/p/cuda-convnet/]. In particular, the top
layers of Alex’s original model are locally connected and not fully connected.
Try editing the architecture to exactly reproduce the locally connected
architecture in the top layer.

Model Training

The usual method for training a network to perform N-way classification is
multinomial logistic regression [https://en.wikipedia.org/wiki/Multinomial_logistic_regression],
aka. softmax regression. Softmax regression applies a
softmax nonlinearity to the
output of the network and calculates the
cross-entropy
between the normalized predictions and a
1-hot encoding of the label.
For regularization, we also apply the usual
weight decay losses to all learned
variables. The objective function for the model is the sum of the cross entropy
loss and all these weight decay terms, as returned by the loss() function.

We visualize it in TensorBoard with a scalar_summary:

[image: CIFAR-10 Loss]

We train the model using standard
gradient descent [https://en.wikipedia.org/wiki/Gradient_descent]
algorithm (see Training for other methods)
with a learning rate that
exponentially decays
over time.

[image: CIFAR-10 Learning Rate Decay]

The train() function adds the operations needed to minimize the objective by
calculating the gradient and updating the learned variables (see
GradientDescentOptimizer
for details). It returns an operation that executes all the calculations
needed to train and update the model for one batch of images.

Launching and Training the Model

We have built the model, let’s now launch it and run the training operation with
the script cifar10_train.py.

python cifar10_train.py

NOTE: The first time you run any target in the CIFAR-10 tutorial,
the CIFAR-10 dataset is automatically downloaded. The data set is ~160MB
so you may want to grab a quick cup of coffee for your first run.

You should see the output:

Filling queue with 20000 CIFAR images before starting to train. This will take a few minutes.
2015-11-04 11:45:45.927302: step 0, loss = 4.68 (2.0 examples/sec; 64.221 sec/batch)
2015-11-04 11:45:49.133065: step 10, loss = 4.66 (533.8 examples/sec; 0.240 sec/batch)
2015-11-04 11:45:51.397710: step 20, loss = 4.64 (597.4 examples/sec; 0.214 sec/batch)
2015-11-04 11:45:54.446850: step 30, loss = 4.62 (391.0 examples/sec; 0.327 sec/batch)
2015-11-04 11:45:57.152676: step 40, loss = 4.61 (430.2 examples/sec; 0.298 sec/batch)
2015-11-04 11:46:00.437717: step 50, loss = 4.59 (406.4 examples/sec; 0.315 sec/batch)
...

The script reports the total loss every 10 steps as well the speed at which
the last batch of data was processed. A few comments:

		The first batch of data can be inordinately slow (e.g. several minutes) as the
preprocessing threads fill up the shuffling queue with 20,000 processed CIFAR
images.

		The reported loss is the average loss of the most recent batch. Remember that
this loss is the sum of the cross entropy and all weight decay terms.

		Keep an eye on the processing speed of a batch. The numbers shown above were
obtained on a Tesla K40c. If you are running on a CPU, expect slower performance.

EXERCISE: When experimenting, it is sometimes annoying that the first
training step can take so long. Try decreasing the number of images that
initially fill up the queue. Search for min_fraction_of_examples_in_queue
in cifar10_input.py.

cifar10_train.py periodically saves
all model parameters in
checkpoint files
but it does not evaluate the model. The checkpoint file
will be used by cifar10_eval.py to measure the predictive
performance (see Evaluating a Model below).

If you followed the previous steps, then you have now started training
a CIFAR-10 model. Congratulations! [https://www.youtube.com/watch?v=9bZkp7q19f0]

The terminal text returned from cifar10_train.py provides minimal insight into
how the model is training. We want more insight into the model during training:

		Is the loss really decreasing or is that just noise?

		Is the model being provided appropriate images?

		Are the gradients, activations and weights reasonable?

		What is the learning rate currently at?

TensorBoard provides this
functionality, displaying data exported periodically from cifar10_train.py via
a
SummaryWriter.

For instance, we can watch how the distribution of activations and degree of
sparsity in local3 features evolve during training:

 [image:]
 [image:]

Individual loss functions, as well as the total loss, are particularly
interesting to track over time. However, the loss exhibits a considerable amount
of noise due to the small batch size employed by training. In practice we find
it extremely useful to visualize their moving averages in addition to their raw
values. See how the scripts use
ExponentialMovingAverage
for this purpose.

Evaluating a Model

Let us now evaluate how well the trained model performs on a hold-out data set.
The model is evaluated by the script cifar10_eval.py. It constructs the model
with the inference() function and uses all 10,000 images in the evaluation set
of CIFAR-10. It calculates the precision at 1: how often the top prediction
matches the true label of the image.

To monitor how the model improves during training, the evaluation script runs
periodically on the latest checkpoint files created by the cifar10_train.py.

python cifar10_eval.py

Be careful not to run the evaluation and training binary on the same GPU or
else you might run out of memory. Consider running the evaluation on
a separate GPU if available or suspending the training binary while running
the evaluation on the same GPU.

You should see the output:

2015-11-06 08:30:44.391206: precision @ 1 = 0.860
...

The script merely returns the precision @ 1 periodically – in this case
it returned 86% accuracy. cifar10_eval.py also
exports summaries that may be visualized in TensorBoard. These summaries
provide additional insight into the model during evaluation.

The training script calculates the
moving average
version of all learned variables. The evaluation script substitutes
all learned model parameters with the moving average version. This
substitution boosts model performance at evaluation time.

EXERCISE: Employing averaged parameters may boost predictive performance
by about 3% as measured by precision @ 1. Edit cifar10_eval.py to not employ
the averaged parameters for the model and verify that the predictive performance
drops.

Training a Model Using Multiple GPU Cards

Modern workstations may contain multiple GPUs for scientific computation.
TensorFlow can leverage this environment to run the training operation
concurrently across multiple cards.

Training a model in a parallel, distributed fashion requires
coordinating training processes. For what follows we term model replica
to be one copy of a model training on a subset of data.

Naively employing asynchronous updates of model parameters
leads to sub-optimal training performance
because an individual model replica might be trained on a stale
copy of the model parameters. Conversely, employing fully synchronous
updates will be as slow as the slowest model replica.

In a workstation with multiple GPU cards, each GPU will have similar speed
and contain enough memory to run an entire CIFAR-10 model. Thus, we opt to
design our training system in the following manner:

		Place an individual model replica on each GPU.

		Update model parameters synchronously by waiting for all GPUs to finish
processing a batch of data.

Here is a diagram of this model:

 [image:]

Note that each GPU computes inference as well as the gradients for a unique
batch of data. This setup effectively permits dividing up a larger batch
of data across the GPUs.

This setup requires that all GPUs share the model parameters. A well-known
fact is that transferring data to and from GPUs is quite slow. For this
reason, we decide to store and update all model parameters on the CPU (see
green box). A fresh set of model parameters is transferred to the GPU
when a new batch of data is processed by all GPUs.

The GPUs are synchronized in operation. All gradients are accumulated from
the GPUs and averaged (see green box). The model parameters are updated with
the gradients averaged across all model replicas.

Placing Variables and Operations on Devices

Placing operations and variables on devices requires some special
abstractions.

The first abstraction we require is a function for computing inference and
gradients for a single model replica. In the code we term this abstraction
a “tower”. We must set two attributes for each tower:

		A unique name for all operations within a tower.
tf.name_scope() provides
this unique name by prepending a scope. For instance, all operations in
the first tower are prepended with tower_0, e.g. tower_0/conv1/Conv2D.

		A preferred hardware device to run the operation within a tower.
tf.device() specifies this. For
instance, all operations in the first tower reside within device('/gpu:0')
scope indicating that they should be run on the first GPU.

All variables are pinned to the CPU and accessed via
tf.get_variable()
in order to share them in a multi-GPU version.
See how-to on Sharing Variables.

Launching and Training the Model on Multiple GPU cards

If you have several GPU cards installed on your machine you can use them to
train the model faster with the cifar10_multi_gpu_train.py script. This
version of the training script parallelizes the model across multiple GPU cards.

python cifar10_multi_gpu_train.py --num_gpus=2

Note that the number of GPU cards used defaults to 1. Additionally, if only 1
GPU is available on your machine, all computations will be placed on it, even if
you ask for more.

EXERCISE: The default settings for cifar10_train.py is to
run on a batch size of 128. Try running cifar10_multi_gpu_train.py on 2 GPUs
with a batch size of 64 and compare the training speed.

Next Steps

Congratulations! [https://www.youtube.com/watch?v=9bZkp7q19f0] You have
completed the CIFAR-10 tutorial.

If you are now interested in developing and training your own image
classification system, we recommend forking this tutorial and replacing
components to address your image classification problem.

EXERCISE: Download the
Street View House Numbers (SVHN) [http://ufldl.stanford.edu/housenumbers/] data set.
Fork the CIFAR-10 tutorial and swap in the SVHN as the input data. Try adapting
the network architecture to improve predictive performance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/tutorials/word2vec/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Vector Representations of Words

In this tutorial we look at the word2vec model by
Mikolov et al. [http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf]
This model is used for learning vector representations of words, called “word
embeddings”.

Highlights

This tutorial is meant to highlight the interesting, substantive parts of
building a word2vec model in TensorFlow.

		We start by giving the motivation for why we would want to
represent words as vectors.

		We look at the intuition behind the model and how it is trained
(with a splash of math for good measure).

		We also show a simple implementation of the model in TensorFlow.

		Finally, we look at ways to make the naive version scale better.

We walk through the code later during the tutorial, but if you’d prefer to dive
straight in, feel free to look at the minimalistic implementation in
tensorflow/examples/tutorials/word2vec/word2vec_basic.py [https://www.tensorflow.org/code/tensorflow/examples/tutorials/word2vec/word2vec_basic.py]
This basic example contains the code needed to download some data, train on it a
bit and visualize the result. Once you get comfortable with reading and running
the basic version, you can graduate to
tensorflow/models/embedding/word2vec.py [https://www.tensorflow.org/code/tensorflow/models/embedding/word2vec.py]
which is a more serious implementation that showcases some more advanced
TensorFlow principles about how to efficiently use threads to move data into a
text model, how to checkpoint during training, etc.

But first, let’s look at why we would want to learn word embeddings in the first
place. Feel free to skip this section if you’re an Embedding Pro and you’d just
like to get your hands dirty with the details.

Motivation: Why Learn Word Embeddings?

Image and audio processing systems work with rich, high-dimensional datasets
encoded as vectors of the individual raw pixel-intensities for image data, or
e.g. power spectral density coefficients for audio data. For tasks like object
or speech recognition we know that all the information required to successfully
perform the task is encoded in the data (because humans can perform these tasks
from the raw data). However, natural language processing systems traditionally
treat words as discrete atomic symbols, and therefore ‘cat’ may be represented
as Id537 and ‘dog’ as Id143. These encodings are arbitrary, and provide
no useful information to the system regarding the relationships that may exist
between the individual symbols. This means that the model can leverage
very little of what it has learned about ‘cats’ when it is processing data about
‘dogs’ (such that they are both animals, four-legged, pets, etc.). Representing
words as unique, discrete ids furthermore leads to data sparsity, and usually
means that we may need more data in order to successfully train statistical
models. Using vector representations can overcome some of these obstacles.

[image:]

Vector space models [https://en.wikipedia.org/wiki/Vector_space_model] (VSMs)
represent (embed) words in a continuous vector space where semantically
similar words are mapped to nearby points (‘are embedded nearby each other’).
VSMs have a long, rich history in NLP, but all methods depend in some way or
another on the
Distributional Hypothesis [https://en.wikipedia.org/wiki/Distributional_semantics#Distributional_Hypothesis],
which states that words that appear in the same contexts share
semantic meaning. The different approaches that leverage this principle can be
divided into two categories: count-based methods (e.g.
Latent Semantic Analysis [https://en.wikipedia.org/wiki/Latent_semantic_analysis]),
and predictive methods (e.g.
neural probabilistic language models [http://www.scholarpedia.org/article/Neural_net_language_models]).

This distinction is elaborated in much more detail by
Baroni et al. [http://clic.cimec.unitn.it/marco/publications/acl2014/baroni-etal-countpredict-acl2014.pdf],
but in a nutshell: Count-based methods compute the statistics of
how often some word co-occurs with its neighbor words in a large text corpus,
and then map these count-statistics down to a small, dense vector for each word.
Predictive models directly try to predict a word from its neighbors in terms of
learned small, dense embedding vectors (considered parameters of the
model).

Word2vec is a particularly computationally-efficient predictive model for
learning word embeddings from raw text. It comes in two flavors, the Continuous
Bag-of-Words model (CBOW) and the Skip-Gram model (Chapter 3.1 and 3.2 in Mikolov et al. [http://arxiv.org/pdf/1301.3781.pdf]). Algorithmically, these
models are similar, except that CBOW predicts target words (e.g. ‘mat’) from
source context words (‘the cat sits on the’), while the skip-gram does the
inverse and predicts source context-words from the target words. This inversion
might seem like an arbitrary choice, but statistically it has the effect that
CBOW smoothes over a lot of the distributional information (by treating an
entire context as one observation). For the most part, this turns out to be a
useful thing for smaller datasets. However, skip-gram treats each context-target
pair as a new observation, and this tends to do better when we have larger
datasets. We will focus on the skip-gram model in the rest of this tutorial.

Scaling up with Noise-Contrastive Training

Neural probabilistic language models are traditionally trained using the
maximum likelihood [https://en.wikipedia.org/wiki/Maximum_likelihood] (ML)
principle to maximize the probability of the next word \(w_t\) (for “target”)
given the previous words \(h\) (for “history”) in terms of a
softmax function [https://en.wikipedia.org/wiki/Softmax_function],

$$
\begin{align}
P(w_t | h) &= \text{softmax}(\text{score}(w_t, h)) \
&= \frac{\exp { \text{score}(w_t, h) } }
{\sum_\text{Word w’ in Vocab} \exp { \text{score}(w’, h) } }.
\end{align}
$$

where \(\text{score}(w_t, h)\) computes the compatibility of word \(w_t\)
with the context \(h\) (a dot product is commonly used). We train this model
by maximizing its log-likelihood [https://en.wikipedia.org/wiki/Likelihood_function]
on the training set, i.e. by maximizing

$$
\begin{align}
J_\text{ML} &= \log P(w_t | h) \
&= \text{score}(w_t, h) -
\log \left(\sum_\text{Word w’ in Vocab} \exp { \text{score}(w’, h) } \right)
\end{align}
$$

This yields a properly normalized probabilistic model for language modeling.
However this is very expensive, because we need to compute and normalize each
probability using the score for all other \(V\) words \(w’\) in the current
context \(h\), at every training step.

[image:]

On the other hand, for feature learning in word2vec we do not need a full
probabilistic model. The CBOW and skip-gram models are instead trained using a
binary classification objective (logistic regression [https://en.wikipedia.org/wiki/Logistic_regression])
to discriminate the real target words \(w_t\) from \(k\) imaginary (noise) words \(\tilde w\), in the
same context. We illustrate this below for a CBOW model. For skip-gram the
direction is simply inverted.

[image:]

Mathematically, the objective (for each example) is to maximize

$$J_\text{NEG} = \log Q_\theta(D=1 |w_t, h) +
k \mathop{\mathbb{E}}{\tilde w \sim P\text{noise}}
\left[\log Q_\theta(D = 0 |\tilde w, h) \right]$$

where \(Q_\theta(D=1 | w, h)\) is the binary logistic regression probability
under the model of seeing the word \(w\) in the context \(h\) in the dataset
\(D\), calculated in terms of the learned embedding vectors \(\theta\). In
practice we approximate the expectation by drawing \(k\) contrastive words
from the noise distribution (i.e. we compute a
Monte Carlo average [https://en.wikipedia.org/wiki/Monte_Carlo_integration]).

This objective is maximized when the model assigns high probabilities
to the real words, and low probabilities to noise words. Technically, this is
called
Negative Sampling [http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf],
and there is good mathematical motivation for using this loss function:
The updates it proposes approximate the updates of the softmax function in the
limit. But computationally it is especially appealing because computing the
loss function now scales only with the number of noise words that we
select (\(k\)), and not all words in the vocabulary (\(V\)). This makes it
much faster to train. We will actually make use of the very similar
noise-contrastive estimation (NCE) [http://papers.nips.cc/paper/5165-learning-word-embeddings-efficiently-with-noise-contrastive-estimation.pdf]
loss, for which TensorFlow has a handy helper function tf.nn.nce_loss().

Let’s get an intuitive feel for how this would work in practice!

The Skip-gram Model

As an example, let’s consider the dataset

the quick brown fox jumped over the lazy dog

We first form a dataset of words and the contexts in which they appear. We
could define ‘context’ in any way that makes sense, and in fact people have
looked at syntactic contexts (i.e. the syntactic dependents of the current
target word, see e.g.
Levy et al. [https://levyomer.files.wordpress.com/2014/04/dependency-based-word-embeddings-acl-2014.pdf]),
words-to-the-left of the target, words-to-the-right of the target, etc. For now,
let’s stick to the vanilla definition and define ‘context’ as the window
of words to the left and to the right of a target word. Using a window
size of 1, we then have the dataset

([the, brown], quick), ([quick, fox], brown), ([brown, jumped], fox), ...

of (context, target) pairs. Recall that skip-gram inverts contexts and
targets, and tries to predict each context word from its target word, so the
task becomes to predict ‘the’ and ‘brown’ from ‘quick’, ‘quick’ and ‘fox’ from
‘brown’, etc. Therefore our dataset becomes

(quick, the), (quick, brown), (brown, quick), (brown, fox), ...

of (input, output) pairs. The objective function is defined over the entire
dataset, but we typically optimize this with
stochastic gradient descent [https://en.wikipedia.org/wiki/Stochastic_gradient_descent]
(SGD) using one example at a time (or a ‘minibatch’ of batch_size examples,
where typically 16 <= batch_size <= 512). So let’s look at one step of
this process.

Let’s imagine at training step \(t\) we observe the first training case above,
where the goal is to predict the from quick. We select num_noise number
of noisy (contrastive) examples by drawing from some noise distribution,
typically the unigram distribution, \(P(w)\). For simplicity let’s say
num_noise=1 and we select sheep as a noisy example. Next we compute the
loss for this pair of observed and noisy examples, i.e. the objective at time
step \(t\) becomes

$$J^{(t)}\text{NEG} = \log Q\theta(D=1 | \text{the, quick}) +
\log(Q_\theta(D=0 | \text{sheep, quick}))$$

The goal is to make an update to the embedding parameters \(\theta\) to improve
(in this case, maximize) this objective function. We do this by deriving the
gradient of the loss with respect to the embedding parameters \(\theta\), i.e.
\(\frac{\partial}{\partial \theta} J_\text{NEG}\) (luckily TensorFlow provides
easy helper functions for doing this!). We then perform an update to the
embeddings by taking a small step in the direction of the gradient. When this
process is repeated over the entire training set, this has the effect of
‘moving’ the embedding vectors around for each word until the model is
successful at discriminating real words from noise words.

We can visualize the learned vectors by projecting them down to 2 dimensions
using for instance something like the
t-SNE dimensionality reduction technique [http://lvdmaaten.github.io/tsne/].
When we inspect these visualizations it becomes apparent that the vectors
capture some general, and in fact quite useful, semantic information about
words and their relationships to one another. It was very interesting when we
first discovered that certain directions in the induced vector space specialize
towards certain semantic relationships, e.g. male-female, verb tense and
even country-capital relationships between words, as illustrated in the figure
below (see also for example
Mikolov et al., 2013 [http://www.aclweb.org/anthology/N13-1090]).

[image:]

This explains why these vectors are also useful as features for many canonical
NLP prediction tasks, such as part-of-speech tagging or named entity recognition
(see for example the original work by
Collobert et al., 2011 [http://arxiv.org/abs/1103.0398]
(pdf [http://arxiv.org/pdf/1103.0398.pdf]), or follow-up work by
Turian et al., 2010 [http://www.aclweb.org/anthology/P10-1040]).

But for now, let’s just use them to draw pretty pictures!

Building the Graph

This is all about embeddings, so let’s define our embedding matrix.
This is just a big random matrix to start. We’ll initialize the values to be
uniform in the unit cube.

embeddings = tf.Variable(
 tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))

The noise-contrastive estimation loss is defined in terms of a logistic regression
model. For this, we need to define the weights and biases for each word in the
vocabulary (also called the output weights as opposed to the input embeddings). So let’s define that.

nce_weights = tf.Variable(
 tf.truncated_normal([vocabulary_size, embedding_size],
 stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))

Now that we have the parameters in place, we can define our skip-gram model
graph. For simplicity, let’s suppose we’ve already integerized our text corpus
with a vocabulary so that each word is represented as an integer (see
tensorflow/examples/tutorials/word2vec/word2vec_basic.py [https://www.tensorflow.org/code/tensorflow/examples/tutorials/word2vec/word2vec_basic.py]
for the details). The skip-gram model takes two inputs. One is a batch full of
integers representing the source context words, the other is for the target
words. Let’s create placeholder nodes for these inputs, so that we can feed in
data later.

Placeholders for inputs
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])

Now what we need to do is look up the vector for each of the source words in
the batch. TensorFlow has handy helpers that make this easy.

embed = tf.nn.embedding_lookup(embeddings, train_inputs)

Ok, now that we have the embeddings for each word, we’d like to try to predict
the target word using the noise-contrastive training objective.

Compute the NCE loss, using a sample of the negative labels each time.
loss = tf.reduce_mean(
 tf.nn.nce_loss(nce_weights, nce_biases, embed, train_labels,
 num_sampled, vocabulary_size))

Now that we have a loss node, we need to add the nodes required to compute
gradients and update the parameters, etc. For this we will use stochastic
gradient descent, and TensorFlow has handy helpers to make this easy as well.

We use the SGD optimizer.
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0).minimize(loss)

Training the Model

Training the model is then as simple as using a feed_dict to push data into
the placeholders and calling
session.run with this new data
in a loop.

for inputs, labels in generate_batch(...):
 feed_dict = {training_inputs: inputs, training_labels: labels}
 _, cur_loss = session.run([optimizer, loss], feed_dict=feed_dict)

See the full example code in
tensorflow/examples/tutorials/word2vec/word2vec_basic.py [https://www.tensorflow.org/code/tensorflow/examples/tutorials/word2vec/word2vec_basic.py].

Visualizing the Learned Embeddings

After training has finished we can visualize the learned embeddings using
t-SNE.

[image:]

Et voila! As expected, words that are similar end up clustering nearby each
other. For a more heavyweight implementation of word2vec that showcases more of
the advanced features of TensorFlow, see the implementation in
tensorflow/models/embedding/word2vec.py [https://www.tensorflow.org/code/tensorflow/models/embedding/word2vec.py].

Evaluating Embeddings: Analogical Reasoning

Embeddings are useful for a wide variety of prediction tasks in NLP. Short of
training a full-blown part-of-speech model or named-entity model, one simple way
to evaluate embeddings is to directly use them to predict syntactic and semantic
relationships like king is to queen as father is to ?. This is called
analogical reasoning and the task was introduced by
Mikolov and colleagues
 [http://msr-waypoint.com/en-us/um/people/gzweig/Pubs/NAACL2013Regularities.pdf].
Download the dataset for this task from
download.tensorflow.org [http://download.tensorflow.org/data/questions-words.txt].

To see how we do this evaluation, have a look at the build_eval_graph() and
eval() functions in
tensorflow/models/embedding/word2vec.py [https://www.tensorflow.org/code/tensorflow/models/embedding/word2vec.py].

The choice of hyperparameters can strongly influence the accuracy on this task.
To achieve state-of-the-art performance on this task requires training over a
very large dataset, carefully tuning the hyperparameters and making use of
tricks like subsampling the data, which is out of the scope of this tutorial.

Optimizing the Implementation

Our vanilla implementation showcases the flexibility of TensorFlow. For
example, changing the training objective is as simple as swapping out the call
to tf.nn.nce_loss() for an off-the-shelf alternative such as
tf.nn.sampled_softmax_loss(). If you have a new idea for a loss function, you
can manually write an expression for the new objective in TensorFlow and let
the optimizer compute its derivatives. This flexibility is invaluable in the
exploratory phase of machine learning model development, where we are trying
out several different ideas and iterating quickly.

Once you have a model structure you’re satisfied with, it may be worth
optimizing your implementation to run more efficiently (and cover more data in
less time). For example, the naive code we used in this tutorial would suffer
compromised speed because we use Python for reading and feeding data items –
each of which require very little work on the TensorFlow back-end. If you find
your model is seriously bottlenecked on input data, you may want to implement a
custom data reader for your problem, as described in
New Data Formats. For the case of Skip-Gram
modeling, we’ve actually already done this for you as an example in
tensorflow/models/embedding/word2vec.py [https://www.tensorflow.org/code/tensorflow/models/embedding/word2vec.py].

If your model is no longer I/O bound but you want still more performance, you
can take things further by writing your own TensorFlow Ops, as described in
Adding a New Op. Again we’ve provided an
example of this for the Skip-Gram case
tensorflow/models/embedding/word2vec_optimized.py [https://www.tensorflow.org/code/tensorflow/models/embedding/word2vec_optimized.py].
Feel free to benchmark these against each other to measure performance
improvements at each stage.

Conclusion

In this tutorial we covered the word2vec model, a computationally efficient
model for learning word embeddings. We motivated why embeddings are useful,
discussed efficient training techniques and showed how to implement all of this
in TensorFlow. Overall, we hope that this has show-cased how TensorFlow affords
you the flexibility you need for early experimentation, and the control you
later need for bespoke optimized implementation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/tutorials/mnist/beginners/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

MNIST For ML Beginners

This tutorial is intended for readers who are new to both machine learning and
TensorFlow. If you already know what MNIST is, and what softmax (multinomial
logistic) regression is, you might prefer this
faster paced tutorial. Be sure to
install TensorFlow before starting either
tutorial.

When one learns how to program, there’s a tradition that the first thing you do
is print “Hello World.” Just like programming has Hello World, machine learning
has MNIST.

MNIST is a simple computer vision dataset. It consists of images of handwritten
digits like these:

[image:]

It also includes labels for each image, telling us which digit it is. For
example, the labels for the above images are 5, 0, 4, and 1.

In this tutorial, we’re going to train a model to look at images and predict
what digits they are. Our goal isn’t to train a really elaborate model that
achieves state-of-the-art performance – although we’ll give you code to do that
later! – but rather to dip a toe into using TensorFlow. As such, we’re going
to start with a very simple model, called a Softmax Regression.

The actual code for this tutorial is very short, and all the interesting
stuff happens in just three lines. However, it is very
important to understand the ideas behind it: both how TensorFlow works and the
core machine learning concepts. Because of this, we are going to very carefully
work through the code.

About this tutorial

This tutorial is an explanation, line by line, of what is happening in the
mnist_softmax.py [https://www.tensorflow.org/code/tensorflow/examples/tutorials/mnist/mnist_softmax.py] code.

You can use this tutorial in a few different ways, including:

		Copy and paste each code snippet, line by line, into a Python environment as
you read through the explanations of each line.

		Run the entire mnist_softmax.py Python file either before or after reading
through the explanations, and use this tutorial to understand the lines of
code that aren’t clear to you.

What we will accomplish in this tutorial:

		Learn about the MNIST data and softmax regressions

		Create a function that is a model for recognizing digits, based on looking at
every pixel in the image

		Use Tensorflow to train the model to recognize digits by having it “look” at
thousands of examples (and run our first Tensorflow session to do so)

		Check the model’s accuracy with our test data

The MNIST Data

The MNIST data is hosted on
Yann LeCun’s website [http://yann.lecun.com/exdb/mnist/]. If you are copying and
pasting in the code from this tutorial, start here with these two lines of code
which will download and read in the data automatically:

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

The MNIST data is split into three parts: 55,000 data points of training
data (mnist.train), 10,000 points of test data (mnist.test), and 5,000
points of validation data (mnist.validation). This split is very important:
it’s essential in machine learning that we have separate data which we don’t
learn from so that we can make sure that what we’ve learned actually
generalizes!

As mentioned earlier, every MNIST data point has two parts: an image of a
handwritten digit and a corresponding label. We’ll call the images “x”
and the labels “y”. Both the training set and test set contain images and their
corresponding labels; for example the training images are mnist.train.images
and the training labels are mnist.train.labels.

Each image is 28 pixels by 28 pixels. We can interpret this as a big array of
numbers:

[image:]

We can flatten this array into a vector of 28x28 = 784 numbers. It doesn’t
matter how we flatten the array, as long as we’re consistent between images.
From this perspective, the MNIST images are just a bunch of points in a
784-dimensional vector space, with a
very rich structure [http://colah.github.io/posts/2014-10-Visualizing-MNIST/]
(warning: computationally intensive visualizations).

Flattening the data throws away information about the 2D structure of the image.
Isn’t that bad? Well, the best computer vision methods do exploit this
structure, and we will in later tutorials. But the simple method we will be
using here, a softmax regression (defined below), won’t.

The result is that mnist.train.images is a tensor (an n-dimensional array)
with a shape of [55000, 784]. The first dimension is an index into the list
of images and the second dimension is the index for each pixel in each image.
Each entry in the tensor is a pixel intensity between 0 and 1, for a particular
pixel in a particular image.

[image:]

Each image in MNIST has a corresponding label, a number between 0 and 9
representing the digit drawn in the image.

For the purposes of this tutorial, we’re going to want our labels as “one-hot
vectors”. A one-hot vector is a vector which is 0 in most dimensions, and 1 in a
single dimension. In this case, the \(n\)th digit will be represented as a
vector which is 1 in the \(n\)th dimension. For example, 3 would be
\([0,0,0,1,0,0,0,0,0,0]\). Consequently, mnist.train.labels is a
[55000, 10] array of floats.

[image:]

We’re now ready to actually make our model!

Softmax Regressions

We know that every image in MNIST is of a handwritten digit between zero and
nine. So there are only ten possible things that a given image can be. We want
to be able to look at an image and give the probabilities for it being each
digit. For example, our model might look at a picture of a nine and be 80% sure
it’s a nine, but give a 5% chance to it being an eight (because of the top loop)
and a bit of probability to all the others because it isn’t 100% sure.

This is a classic case where a softmax regression is a natural, simple model.
If you want to assign probabilities to an object being one of several different
things, softmax is the thing to do, because softmax gives us a list of values
between 0 and 1 that add up to 1. Even later on, when we train more sophisticated
models, the final step will be a layer of softmax.

A softmax regression has two steps: first we add up the evidence of our input
being in certain classes, and then we convert that evidence into probabilities.

To tally up the evidence that a given image is in a particular class, we do a
weighted sum of the pixel intensities. The weight is negative if that pixel
having a high intensity is evidence against the image being in that class, and
positive if it is evidence in favor.

The following diagram shows the weights one model learned for each of these
classes. Red represents negative weights, while blue represents positive
weights.

[image:]

We also add some extra evidence called a bias. Basically, we want to be able
to say that some things are more likely independent of the input. The result is
that the evidence for a class \(i\) given an input \(x\) is:

$$\text{evidence}i = \sum_j W{i,~ j} x_j + b_i$$

where \(W_i\) is the weights and \(b_i\) is the bias for class \(i\),
and \(j\) is an index for summing over the pixels in our input image \(x\).
We then convert the evidence tallies into our predicted probabilities
\(y\) using the “softmax” function:

$$y = \text{softmax}(\text{evidence})$$

Here softmax is serving as an “activation” or “link” function, shaping
the output of our linear function into the form we want – in this case, a
probability distribution over 10 cases.
You can think of it as converting tallies
of evidence into probabilities of our input being in each class.
It’s defined as:

$$\text{softmax}(x) = \text{normalize}(\exp(x))$$

If you expand that equation out, you get:

$$\text{softmax}(x)_i = \frac{\exp(x_i)}{\sum_j \exp(x_j)}$$

But it’s often more helpful to think of softmax the first way: exponentiating
its inputs and then normalizing them. The exponentiation means that one more
unit of evidence increases the weight given to any hypothesis multiplicatively.
And conversely, having one less unit of evidence means that a hypothesis gets a
fraction of its earlier weight. No hypothesis ever has zero or negative
weight. Softmax then normalizes these weights, so that they add up to one,
forming a valid probability distribution. (To get more intuition about the
softmax function, check out the
section [http://neuralnetworksanddeeplearning.com/chap3.html#softmax] on it in
Michael Nielsen’s book, complete with an interactive visualization.)

You can picture our softmax regression as looking something like the following,
although with a lot more \(x\)s. For each output, we compute a weighted sum of
the \(x\)s, add a bias, and then apply softmax.

[image:]

If we write that out as equations, we get:

[image:]

We can “vectorize” this procedure, turning it into a matrix multiplication
and vector addition. This is helpful for computational efficiency. (It’s also
a useful way to think.)

[image:]

More compactly, we can just write:

$$y = \text{softmax}(Wx + b)$$

Now let’s turn that into something that Tensorflow can use.

Implementing the Regression

To do efficient numerical computing in Python, we typically use libraries like
NumPy [http://www.numpy.org/] that do expensive operations such as matrix
multiplication outside Python, using highly efficient code implemented in
another language. Unfortunately, there can still be a lot of overhead from
switching back to Python every operation. This overhead is especially bad if you
want to run computations on GPUs or in a distributed manner, where there can be
a high cost to transferring data.

TensorFlow also does its heavy lifting outside Python, but it takes things a
step further to avoid this overhead. Instead of running a single expensive
operation independently from Python, TensorFlow lets us describe a graph of
interacting operations that run entirely outside Python. (Approaches like this
can be seen in a few machine learning libraries.)

To use TensorFlow, first we need to import it.

import tensorflow as tf

We describe these interacting operations by manipulating symbolic variables.
Let’s create one:

x = tf.placeholder(tf.float32, [None, 784])

x isn’t a specific value. It’s a placeholder, a value that we’ll input when
we ask TensorFlow to run a computation. We want to be able to input any number
of MNIST images, each flattened into a 784-dimensional vector. We represent
this as a 2-D tensor of floating-point numbers, with a shape [None, 784].
(Here None means that a dimension can be of any length.)

We also need the weights and biases for our model. We could imagine treating
these like additional inputs, but TensorFlow has an even better way to handle
it: Variable. A Variable is a modifiable tensor that lives in TensorFlow’s
graph of interacting operations. It can be used and even modified by the
computation. For machine learning applications, one generally has the model
parameters be Variables.

W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

We create these Variables by giving tf.Variable the initial value of the
Variable: in this case, we initialize both W and b as tensors full of
zeros. Since we are going to learn W and b, it doesn’t matter very much
what they initially are.

Notice that W has a shape of [784, 10] because we want to multiply the
784-dimensional image vectors by it to produce 10-dimensional vectors of
evidence for the difference classes. b has a shape of [10] so we can add it
to the output.

We can now implement our model. It only takes one line to define it!

y = tf.nn.softmax(tf.matmul(x, W) + b)

First, we multiply x by W with the expression tf.matmul(x, W). This is
flipped from when we multiplied them in our equation, where we had \(Wx\), as
a small trick to deal with x being a 2D tensor with multiple inputs. We then
add b, and finally apply tf.nn.softmax.

That’s it. It only took us one line to define our model, after a couple short
lines of setup. That isn’t because TensorFlow is designed to make a softmax
regression particularly easy: it’s just a very flexible way to describe many
kinds of numerical computations, from machine learning models to physics
simulations. And once defined, our model can be run on different devices:
your computer’s CPU, GPUs, and even phones!

Training

In order to train our model, we need to define what it means for the model to be
good. Well, actually, in machine learning we typically define what it means for
a model to be bad. We call this the cost, or the loss, and it represents how far
off our model is from our desired outcome. We try to minimize that error, and
the smaller the error margin, the better our model is.

One very common, very nice function to determine the loss of a model is called
“cross-entropy.” Cross-entropy arises from thinking about information
compressing codes in information theory but it winds up being an important idea
in lots of areas, from gambling to machine learning. It’s defined as:

$$H_{y’}(y) = -\sum_i y’_i \log(y_i)$$

Where \(y\) is our predicted probability distribution, and \(y’\) is the true
distribution (the one-hot vector with the digit labels). In some rough sense, the
cross-entropy is measuring how inefficient our predictions are for describing
the truth. Going into more detail about cross-entropy is beyond the scope of
this tutorial, but it’s well worth
understanding [http://colah.github.io/posts/2015-09-Visual-Information/].

To implement cross-entropy we need to first add a new placeholder to input the
correct answers:

y_ = tf.placeholder(tf.float32, [None, 10])

Then we can implement the cross-entropy function, \(-\sum y’\log(y)\):

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

First, tf.log computes the logarithm of each element of y. Next, we multiply
each element of y_ with the corresponding element of tf.log(y). Then
tf.reduce_sum adds the elements in the second dimension of y, due to the
reduction_indices=[1] parameter. Finally, tf.reduce_mean computes the mean
over all the examples in the batch.

(Note that in the source code, we don’t use this formulation, because it is
numerically unstable. Instead, we apply
tf.nn.softmax_cross_entropy_with_logits on the unnormalized logits (e.g., we
call softmax_cross_entropy_with_logits on tf.matmul(x, W) + b), because this
more numerically stable function internally computes the softmax activation. In
your code, consider using tf.nn.(sparse_)softmax_cross_entropy_with_logits
instead).

Now that we know what we want our model to do, it’s very easy to have TensorFlow
train it to do so. Because TensorFlow knows the entire graph of your
computations, it can automatically use the
backpropagation algorithm [http://colah.github.io/posts/2015-08-Backprop/] to
efficiently determine how your variables affect the loss you ask it to
minimize. Then it can apply your choice of optimization algorithm to modify the
variables and reduce the loss.

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

In this case, we ask TensorFlow to minimize cross_entropy using the
gradient descent algorithm [https://en.wikipedia.org/wiki/Gradient_descent]
with a learning rate of 0.5. Gradient descent is a simple procedure, where
TensorFlow simply shifts each variable a little bit in the direction that
reduces the cost. But TensorFlow also provides
[many other optimization algorithms]
(../../../api_docs/python/train.md#optimizers): using one is as simple as
tweaking one line.

What TensorFlow actually does here, behind the scenes, is to add new operations
to your graph which implement backpropagation and gradient descent. Then it
gives you back a single operation which, when run, does a step of gradient
descent training, slightly tweaking your variables to reduce the loss.

Now we have our model set up to train. One last thing before we launch it, we
have to create an operation to initialize the variables we created. Note that
this defines the operation but does not run it yet:

init = tf.initialize_all_variables()

We can now launch the model in a Session, and now we run the operation that
initializes the variables:

sess = tf.Session()
sess.run(init)

Let’s train – we’ll run the training step 1000 times!

for i in range(1000):
 batch_xs, batch_ys = mnist.train.next_batch(100)
 sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

Each step of the loop, we get a “batch” of one hundred random data points from
our training set. We run train_step feeding in the batches data to replace
the placeholders.

Using small batches of random data is called stochastic training – in this
case, stochastic gradient descent. Ideally, we’d like to use all our data for
every step of training because that would give us a better sense of what we
should be doing, but that’s expensive. So, instead, we use a different subset
every time. Doing this is cheap and has much of the same benefit.

Evaluating Our Model

How well does our model do?

Well, first let’s figure out where we predicted the correct label. tf.argmax
is an extremely useful function which gives you the index of the highest entry
in a tensor along some axis. For example, tf.argmax(y,1) is the label our
model thinks is most likely for each input, while tf.argmax(y_,1) is the
correct label. We can use tf.equal to check if our prediction matches the
truth.

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))

That gives us a list of booleans. To determine what fraction are correct, we
cast to floating point numbers and then take the mean. For example,
[True, False, True, True] would become [1,0,1,1] which would become 0.75.

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

Finally, we ask for our accuracy on our test data.

print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

This should be about 92%.

Is that good? Well, not really. In fact, it’s pretty bad. This is because we’re
using a very simple model. With some small changes, we can get to 97%. The best
models can get to over 99.7% accuracy! (For more information, have a look at
this
list of results [http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html].)

What matters is that we learned from this model. Still, if you’re feeling a bit
down about these results, check out
the next tutorial where we do a lot
better, and learn how to build more sophisticated models using TensorFlow!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/tutorials/monitors/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Logging and Monitoring Basics with tf.contrib.learn

When training a model, it’s often valuable to track and evaluate progress in
real time. In this tutorial, you’ll learn how to use TensorFlow’s logging
capabilities and the Monitor API to audit the in-progress training of a neural
network classifier for categorizing irises. This tutorial builds on the code
developed in tf.contrib.learn Quickstart
so if you haven’t yet completed that tutorial, you may want to explore it first,
especially if you’re looking for an intro/refresher on tf.contrib.learn basics.

Setup {#setup}

For this tutorial, you’ll be building upon the following code from
tf.contrib.learn Quickstart:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
import numpy as np

Data sets
IRIS_TRAINING = "iris_training.csv"
IRIS_TEST = "iris_test.csv"

Load datasets.
training_set = tf.contrib.learn.datasets.base.load_csv(filename=IRIS_TRAINING,
 target_dtype=np.int)
test_set = tf.contrib.learn.datasets.base.load_csv(filename=IRIS_TEST,
 target_dtype=np.int)

Specify that all features have real-value data
feature_columns = [tf.contrib.layers.real_valued_column("", dimension=4)]

Build 3 layer DNN with 10, 20, 10 units respectively.
classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,
 hidden_units=[10, 20, 10],
 n_classes=3,
 model_dir="/tmp/iris_model")

Fit model.
classifier.fit(x=training_set.data,
 y=training_set.target,
 steps=2000)

Evaluate accuracy.
accuracy_score = classifier.evaluate(x=test_set.data,
 y=test_set.target)["accuracy"]
print('Accuracy: {0:f}'.format(accuracy_score))

Classify two new flower samples.
new_samples = np.array(
 [[6.4, 3.2, 4.5, 1.5], [5.8, 3.1, 5.0, 1.7]], dtype=float)
y = classifier.predict(new_samples)
print('Predictions: {}'.format(str(y)))

Copy the above code into a file, and download the corresponding [training]
(http://download.tensorflow.org/data/iris_training.csv) and [test]
(http://download.tensorflow.org/data/iris_test.csv) data sets to the same
directory.

In the following sections, you’ll progressively make updates to the above code
to add logging and monitoring capabilities. Final code incorporating all updates
is available for download here [https://www.tensorflow.org/code/tensorflow/examples/tutorials/monitors/iris_monitors.py].

Overview

The tf.contrib.learn Quickstart tutorial
walked through how to implement a neural net classifier to categorize Iris
examples into one of three species.

But when the code from this tutorial is run, the output contains no
logging tracking how model training is progressing

—

only the results
of the print statements that were included:

Accuracy: 0.933333
Predictions: [1 2]

Without any logging, model training feels like a bit of a black box; you can’t
see what’s happening as TensorFlow steps through gradient descent, get a sense
of whether the model is converging appropriately, or audit to determine whether
early stopping [https://en.wikipedia.org/wiki/Early_stopping] might be
appropriate.

One way to address this problem would be to split model training into multiple
fit calls with smaller numbers of steps in order to evaluate accuracy more
progressively. However, this is not recommended practice, as it greatly slows down model
training. Fortunately, tf.contrib.learn offers another solution: a [Monitor API]
(../../api_docs/python/contrib.learn.monitors.md) designed to help you log metrics
and evaluate your model while training is in progress. In the following sections,
you’ll learn how to enable logging in TensorFlow, set up a ValidationMonitor to do
streaming evaluations, and visualize your metrics using TensorBoard.

Enabling Logging with TensorFlow

TensorFlow uses five different levels for log messages. In order of ascending
severity, they are DEBUG, INFO, WARN, ERROR, and FATAL. When you
configure logging at any of these levels, TensorFlow will output all log
messages corresponding to that level and all levels of higher severity. For
example, if you set a logging level of ERROR, you’ll get log output containing
ERROR and FATAL messages, and if you set a level of DEBUG, you’ll get log
messages from all five levels.

By default, TensorFlow is configured at a logging level of WARN, but when
tracking model training, you’ll want to adjust the level to INFO, which will
provide additional feedback as fit operations are in progress.

Add the following line to the beginning of your code (right after your
imports):

tf.logging.set_verbosity(tf.logging.INFO)

Now when you run the code, you’ll see additional log output like the following:

INFO:tensorflow:Training steps [0,200)
INFO:tensorflow:global_step/sec: 0
INFO:tensorflow:Step 1: loss_1:0 = 1.48073
INFO:tensorflow:training step 100, loss = 0.19847 (0.001 sec/batch).
INFO:tensorflow:Step 101: loss_1:0 = 0.192693
INFO:tensorflow:Step 200: loss_1:0 = 0.0958682
INFO:tensorflow:training step 200, loss = 0.09587 (0.003 sec/batch).

With INFO-level logging, tf.contrib.learn automatically outputs training-loss
metrics [https://en.wikipedia.org/wiki/Loss_function] to stderr after every 100
steps.

Configuring a ValidationMonitor for Streaming Evaluation

Logging training loss is helpful to get a sense whether your model is
converging, but what if you want further insight into what’s happening during
training? tf.contrib.learn provides several high-level Monitors you can attach
to your fit operations to further track metrics and/or debug lower-level
TensorFlow operations during model training, including:

| Monitor | Description |
| ——————- | —————————————————– |
| CaptureVariable | Saves a specified variable’s values into a collection |
: : at every n steps of training :
| PrintTensor | Logs a specified tensor’s values at every n steps |
: : of training :
| SummarySaver | Saves [Summary] |
: : (../../api_docs/python/train.md#summary-operations) :
: : [protocol buffers] :
: : (https://developers.google.com/protocol-buffers/) :
: : for a given tensor using a [SummaryWriter] :
: : (../../api_docs/python/train.md#SummaryWriter) at :
: : every n steps of training :
| ValidationMonitor | Logs a specified set of evaluation metrics at every |
: : n steps of training, and, if desired, implements :
: : early stopping under certain conditions :

Evaluating Every N Steps

For the Iris neural network classifier, while logging training loss, you might
also want to simultaneously evaluate against test data to see how well the model
is generalizing. You can accomplish this by configuring a ValidationMonitor
with the test data (test_set.data and test_set.target), and setting how often to evaluate
with every_n_steps. The default value of every_n_steps is 100; here, set
every_n_steps to 50 to evaluate after every 50 steps of model training:

validation_monitor = tf.contrib.learn.monitors.ValidationMonitor(
 test_set.data,
 test_set.target,
 every_n_steps=50)

Place this code right before the line instantiating the classifier.

ValidationMonitors rely on saved checkpoints to perform evaluation operations,
so you’ll want to modify instantiation of the classifier to add a
[RunConfig]
(../../api_docs/python/contrib.learn.md#RunConfig)
that includes save_checkpoints_secs, which specifies how many seconds should
elapse between checkpoint saves during training. Because the Iris data set is
quite small, and thus trains quickly, it makes sense to set
save_checkpoints_secs to 1 (saving a checkpoint every second) to ensure a
sufficient number of checkpoints:

classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,
 hidden_units=[10, 20, 10],
 n_classes=3,
 model_dir="/tmp/iris_model",
 config=tf.contrib.learn.RunConfig(
 save_checkpoints_secs=1))

NOTE: The model_dir parameter specifies an explicit directory
(/tmp/iris_model) for model data to be stored; this directory path will be
easier to reference later on than an autogenerated one. Each time you run the
code, any existing data in /tmp/iris_model will be loaded, and model training
will continue where it left off in the last run (e.g., running the script twice
in succession will execute 4000 steps during training

—

2000 during each
fit operation). To start over model training from scratch, delete
/tmp/iris_model before running the code.

Finally, to attach your validation_monitor, update the fit call to include a
monitors param, which takes a list of all monitors to run during model
training:

classifier.fit(x=training_set.data,
 y=training_set.target,
 steps=2000,
 monitors=[validation_monitor])

Now, when you rerun the code, you should see validation metrics in your log
output, e.g.:

INFO:tensorflow:Validation (step 50): loss = 1.71139, global_step = 0, accuracy = 0.266667
...
INFO:tensorflow:Validation (step 300): loss = 0.0714158, global_step = 268, accuracy = 0.966667
...
INFO:tensorflow:Validation (step 1750): loss = 0.0574449, global_step = 1729, accuracy = 0.966667

Customizing the Evaluation Metrics

By default, if no evaluation metrics are specified, ValidationMonitor will log
both loss [https://en.wikipedia.org/wiki/Loss_function] and accuracy, but you
can customize the list of metrics that will be run every 50 steps. The
tf.contrib.metrics module provides
a variety of additional metric functions for classification models that you can
use out of the box with ValidationMonitor, including
streaming_precision and streaming_recall. To specify the exact metrics you’d
like to run in each evaluation pass, add a metrics param to the
ValidationMonitor constructor. metrics takes a dict of key/value pairs,
where each key is the name you’d like logged for the metric, and the
corresponding value is the function that calculates it.

Revise the ValidationMonitor constructor as follows to add logging for
precision and recall, in addition to accuracy (loss is always logged, and
doesn’t need to be explicity specified):

validation_metrics = {"accuracy": tf.contrib.metrics.streaming_accuracy,
 "precision": tf.contrib.metrics.streaming_precision,
 "recall": tf.contrib.metrics.streaming_recall}
validation_monitor = tf.contrib.learn.monitors.ValidationMonitor(
 test_set.data,
 test_set.target,
 every_n_steps=50,
 metrics=validation_metrics)

Rerun the code, and you should see precision and recall included in your
log output, e.g.:

INFO:tensorflow:Validation (step 50): recall = 0.0, accuracy = 0.266667, global_step = 0, precision = 0.0, loss = 1.71139
...
INFO:tensorflow:Validation (step 150): recall = 1.0, accuracy = 0.966667, global_step = 132, precision = 1.0, loss = 0.157797
...
INFO:tensorflow:Validation (step 1600): recall = 1.0, accuracy = 0.966667, global_step = 1589, precision = 1.0, loss = 0.055873

Early Stopping with ValidationMonitor

Note that in the above log output, by step 150, the model has already achieved
precision and recall rates of 1.0. This raises the question as to whether model
training could benefit from [early stopping]
(https://en.wikipedia.org/wiki/Early_stopping).

In addition to logging eval metrics, ValidationMonitors make it easy to
implement early stopping when specified conditions are met, via three params:

| Param | Description |
| ——————————– | —————————————– |
| early_stopping_metric | Metric that triggers early stopping |
: : (e.g., loss or accuracy) under conditions :
: : specified in early_stopping_rounds and :
: : early_stopping_metric_minimize. Default :
: : is "loss". :
| early_stopping_metric_minimize | True if desired model behavior is to |
: : minimize the value of :
: : early_stopping_metric; False if :
: : desired model behavior is to maximize the :
: : value of early_stopping_metric. Default :
: : is True. :
| early_stopping_rounds | Sets a number of steps during which if |
: : the early_stopping_metric does not :
: : decrease (if :
: : early_stopping_metric_minimize is :
: : True) or increase (if :
: : early_stopping_metric_minimize is :
: : False), training will be stopped. Default :
: : is None, which means early stopping :
: : will never occur. :

The following revision to the ValidationMonitor constructor specifies that if
loss (early_stopping_metric="loss") does not decrease
(early_stopping_metric_minimize=True) over a period of 200 steps
(early_stopping_rounds=200), model training will stop immediately at that
point, and not complete the full 2000 steps specified in fit:

validation_monitor = tf.contrib.learn.monitors.ValidationMonitor(
 test_set.data,
 test_set.target,
 every_n_steps=50,
 metrics=validation_metrics,
 early_stopping_metric="loss",
 early_stopping_metric_minimize=True,
 early_stopping_rounds=200)

Rerun the code to see if model training stops early:

...
INFO:tensorflow:Validation (step 1450): recall = 1.0, accuracy = 0.966667, global_step = 1431, precision = 1.0, loss = 0.0550445
INFO:tensorflow:Stopping. Best step: 1150 with loss = 0.0506100878119.

Indeed, here training stops at step 1450, indicating that for the past 200
steps, loss did not decrease, and that overall, step 1150 produced the smallest
loss value against the test data set. This suggests that additional calibration
of hyperparameters by decreasing the step count might further improve the model.

Visualizing Log Data with TensorBoard

Reading through the log produced by ValidationMonitor provides plenty of raw
data on model performance during training, but it may also be helpful to see
visualizations of this data to get further insight into trends

—

for
example, how accuracy is changing over step count. You can use TensorBoard (a
separate program packaged with TensorFlow) to plot graphs like this by setting
the logdir command-line argument to the directory where you saved your model
training data (here, /tmp/iris_model). Run the following on your command line:

$ tensorboard --logdir=/tmp/iris_model/
Starting TensorBoard 22 on port 6006
(You can navigate to http://0.0.0.0:6006)

Then load the provided URL (here, http://0.0.0.0:6006) in your browser. If you
click on the accuracy field, you’ll see an image like the following, which shows
accuracy plotted against step count:

![Accuracy over step count in TensorBoard]
(../../images/validation_monitor_tensorboard_accuracy.png “Accuracy over step count in TensorBoard”)

For more on using TensorBoard, see [TensorBoard: Visualizing Learning]
(../../how_tos/summaries_and_tensorboard/index.md)
and TensorBoard: Graph Visualization.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/tutorials/linear/overview.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Large-scale Linear Models with TensorFlow

The tf.learn API provides (among other things) a rich set of tools for working
with linear models in TensorFlow. This document provides an overview of those
tools. It explains:

		what a linear model is.

		why you might want to use a linear model.

		how tf.learn makes it easy to build linear models in TensorFlow.

		how you can use tf.learn to combine linear models with
deep learning to get the advantages of both.

Read this overview to decide whether the tf.learn linear model tools might be
useful to you. Then do the Linear Models tutorial to
give it a try. This overview uses code samples from the tutorial, but the
tutorial walks through the code in greater detail.

To understand this overview it will help to have some familiarity
with basic machine learning concepts, and also with
tf.learn.

[TOC]

What is a linear model?

A linear model uses a single weighted sum of features to make a prediction.
For example, if you have data [https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names]
on age, years of education, and weekly hours of
work for a population, you can learn weights for each of those numbers so that
their weighted sum estimates a person’s salary. You can also use linear models
for classification.

Some linear models transform the weighted sum into a more convenient form. For
example, logistic regression plugs the weighted sum into the logistic
function to turn the output into a value between 0 and 1. But you still just
have one weight for each input feature.

Why would you want to use a linear model?

Why would you want to use so simple a model when recent research has
demonstrated the power of more complex neural networks with many layers?

Linear models:

		train quickly, compared to deep neural nets.

		can work well on very large feature sets.

		can be trained with algorithms that don’t require a lot of fiddling
with learning rates, etc.

		can be interpreted and debugged more easily than neural nets.
You can examine the weights assigned to each feature to figure out what’s
having the biggest impact on a prediction.

		provide an excellent starting point for learning about machine learning.

		are widely used in industry.

How does tf.learn help you build linear models?

You can build a linear model from scratch in TensorFlow without the help of a
special API. But tf.learn provides some tools that make it easier to build
effective large-scale linear models.

Feature columns and transformations

Much of the work of designing a linear model consists of transforming raw data
into suitable input features. tf.learn uses the FeatureColumn abstraction to
enable these transformations.

A FeatureColumn represents a single feature in your data. A FeatureColumn
may represent a quantity like ‘height’, or it may represent a category like
‘eye_color’ where the value is drawn from a set of discrete possibilities like {‘blue’, ‘brown’, ‘green’}.

In the case of both continuous features like ‘height’ and categorical
features like ‘eye_color’, a single value in the data might get transformed
into a sequence of numbers before it is input into the model. The
FeatureColumn abstraction lets you manipulate the feature as a single
semantic unit in spite of this fact. You can specify transformations and
select features to include without dealing with specific indices in the
tensors you feed into the model.

Sparse columns

Categorical features in linear models are typically translated into a sparse
vector in which each possible value has a corresponding index or id. For
example, if there are only three possible eye colors you can represent
‘eye_color’ as a length 3 vector: ‘brown’ would become [1, 0, 0], ‘blue’ would
become [0, 1, 0] and ‘green’ would become [0, 0, 1]. These vectors are called
“sparse” because they may be very long, with many zeros, when the set of
possible values is very large (such as all English words).

While you don’t need to use sparse columns to use tf.learn linear models, one
of the strengths of linear models is their ability to deal with large sparse
vectors. Sparse features are a primary use case for the tf.learn linear model
tools.

Encoding sparse columns

FeatureColumn handles the conversion of categorical values into vectors
automatically, with code like this:

eye_color = tf.contrib.layers.sparse_column_with_keys(
 column_name="eye_color", keys=["blue", "brown", "green"])

where eye_color is the name of a column in your source data.

You can also generate FeatureColumns for categorical features for which you
don’t know all possible values. For this case you would use
sparse_column_with_hash_bucket(), which uses a hash function to assign
indices to feature values.

education = tf.contrib.layers.sparse_column_with_hash_bucket(\
 "education", hash_bucket_size=1000)

Feature Crosses

Because linear models assign independent weights to separate features, they
can’t learn the relative importance of specific combinations of feature
values. If you have a feature ‘favorite_sport’ and a feature ‘home_city’ and
you’re trying to predict whether a person likes to wear red, your linear model
won’t be able to learn that baseball fans from St. Louis especially like to
wear red.

You can get around this limitation by creating a new feature
‘favorite_sport_x_home_city’. The value of this feature for a given person is
just the concatenation of the values of the two source features:
‘baseball_x_stlouis’, for example. This sort of combination feature is called
a feature cross.

The crossed_column() method makes it easy to set up feature crosses:

sport = tf.contrib.layers.sparse_column_with_hash_bucket(\
 "sport", hash_bucket_size=1000)
city = tf.contrib.layers.sparse_column_with_hash_bucket(\
 "city", hash_bucket_size=1000)
sport_x_city = tf.contrib.layers.crossed_column(
 [sport, city], hash_bucket_size=int(1e4))

Continuous columns

You can specify a continuous feature like so:

age = tf.contrib.layers.real_valued_column("age")

Although, as a single real number, a continuous feature can often be input
directly into the model, tf.learn offers useful transformations for this sort
of column as well.

Bucketization

Bucketization turns a continuous column into a categorical column. This
transformation lets you use continuous features in feature crosses, or learn
cases where specific value ranges have particular importance.

Bucketization divides the range of possible values into subranges called
buckets:

age_buckets = tf.contrib.layers.bucketized_column(
 age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])

The bucket into which a value falls becomes the categorical label for
that value.

Input function

FeatureColumns provide a specification for the input data for your model,
indicating how to represent and transform the data. But they do not provide
the data itself. You provide the data through an input function.

The input function must return a dictionary of tensors. Each key corresponds to
the name of a FeatureColumn. Each key’s value is a tensor containing the
values of that feature for all data instances. See
Building Input Functions with tf.contrib.learn for a
more comprehensive look at input functions, and input_fn in the [linear
models tutorial code]
(https://www.tensorflow.org/code/tensorflow/examples/learn/wide_n_deep_tutorial.py)
for an example implementation of an input function.

The input function is passed to the fit() and evaluate() calls that
initiate training and testing, as described in the next section.

Linear estimators

tf.learn’s estimator classes provide a unified training and evaluation harness
for regression and classification models. They take care of the details of the
training and evaluation loops and allow the user to focus on model inputs and
architecture.

To build a linear estimator, you can use either the
tf.contrib.learn.LinearClassifier estimator or the
tf.contrib.learn.LinearRegressor estimator, for classification and
regression respectively.

As with all tf.learn estimators, to run the estimator you just:

		Instantiate the estimator class. For the two linear estimator classes,
you pass a list of FeatureColumns to the constructor.

		Call the estimator’s fit() method to train it.

		Call the estimator’s evaluate() method to see how it does.

For example:

e = tf.contrib.learn.LinearClassifier(feature_columns=[
 native_country, education, occupation, workclass, marital_status,
 race, age_buckets, education_x_occupation, age_buckets_x_race_x_occupation],
 model_dir=YOUR_MODEL_DIRECTORY)
e.fit(input_fn=input_fn_train, steps=200)
Evaluate for one step (one pass through the test data).
results = e.evaluate(input_fn=input_fn_test, steps=1)

Print the stats for the evaluation.
for key in sorted(results):
 print "%s: %s" % (key, results[key])

Wide and deep learning

The tf.learn API also provides an estimator class that lets you jointly train
a linear model and a deep neural network. This novel approach combines the
ability of linear models to “memorize” key features with the generalization
ability of neural nets. Use tf.contrib.learn.DNNLinearCombinedClassifier to
create this sort of “wide and deep” model:

e = tf.contrib.learn.DNNLinearCombinedClassifier(
 model_dir=YOUR_MODEL_DIR,
 linear_feature_columns=wide_columns,
 dnn_feature_columns=deep_columns,
 dnn_hidden_units=[100, 50])

For more information, see the Wide and Deep Learning tutorial.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

API Documentation

TensorFlow has APIs available in several languages both for constructing and
executing a TensorFlow graph. The Python API is at present the most complete
and the easiest to use, but the C++ API may offer some performance advantages
in graph execution, and supports deployment to small devices such as Android.

Additionally, the TensorFlow maintainers intend to include APIs for
Java [https://github.com/tensorflow/tensorflow/issues/5] and
Go [https://github.com/tensorflow/tensorflow/issues/10] as well. We hope that
the TensorFlow community will develop front ends for other languages like
JavaScript, Lua, R and perhaps others, building on the approach recommended by
the TensorFlow maintainers.

Note: Many practical aspects of usage are covered in the TUTORIALS and HOW TO
tab, and some additional documentation not specific to any particular language
API is available in the RESOURCES tab.

		Python API

		C++ API

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/tutorials/tflearn/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.learn Quickstart

TensorFlow’s high-level machine learning API (tf.contrib.learn) makes it easy to
configure, train, and evaluate a variety of machine learning models. In this
tutorial, you’ll use tf.contrib.learn to construct a [neural network]
(https://en.wikipedia.org/wiki/Artificial_neural_network) classifier and train
it on the Iris data set [https://en.wikipedia.org/wiki/Iris_flower_data_set] to
predict flower species based on sepal/petal geometry. You’ll write code to
perform the following five steps:

		Load CSVs containing Iris training/test data into a TensorFlow Dataset

		Construct a [neural network classifier]
(../../api_docs/python/contrib.learn.md#DNNClassifier)

		Fit the model using the training data

		Evaluate the accuracy of the model

		Classify new samples

NOTE: Remember to [install TensorFlow on your machine]
(../../get_started/os_setup.md#download-and-setup) before getting started with
this tutorial.

Complete Neural Network Source Code

Here is the full code for the neural network classifier:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
import numpy as np

Data sets
IRIS_TRAINING = "iris_training.csv"
IRIS_TEST = "iris_test.csv"

Load datasets.
training_set = tf.contrib.learn.datasets.base.load_csv(filename=IRIS_TRAINING,
 target_dtype=np.int)
test_set = tf.contrib.learn.datasets.base.load_csv(filename=IRIS_TEST,
 target_dtype=np.int)

Specify that all features have real-value data
feature_columns = [tf.contrib.layers.real_valued_column("", dimension=4)]

Build 3 layer DNN with 10, 20, 10 units respectively.
classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,
 hidden_units=[10, 20, 10],
 n_classes=3,
 model_dir="/tmp/iris_model")

Fit model.
classifier.fit(x=training_set.data,
 y=training_set.target,
 steps=2000)

Evaluate accuracy.
accuracy_score = classifier.evaluate(x=test_set.data,
 y=test_set.target)["accuracy"]
print('Accuracy: {0:f}'.format(accuracy_score))

Classify two new flower samples.
new_samples = np.array(
 [[6.4, 3.2, 4.5, 1.5], [5.8, 3.1, 5.0, 1.7]], dtype=float)
y = classifier.predict(new_samples)
print('Predictions: {}'.format(str(y)))

The following sections walk through the code in detail.

Load the Iris CSV data to TensorFlow

The Iris data set [https://en.wikipedia.org/wiki/Iris_flower_data_set] contains
150 rows of data, comprising 50 samples from each of three related Iris species:
Iris setosa, Iris virginica, and Iris versicolor.

[image: Petal geometry compared for three iris species: Iris setosa, Iris virginica,and Iris versicolor] From left to right,
Iris setosa [https://commons.wikimedia.org/w/index.php?curid=170298] (by
Radomil [https://commons.wikimedia.org/wiki/User:Radomil], CC BY-SA 3.0),
Iris versicolor [https://commons.wikimedia.org/w/index.php?curid=248095] (by
Dlanglois [https://commons.wikimedia.org/wiki/User:Dlanglois], CC BY-SA 3.0),
and Iris virginica [https://www.flickr.com/photos/33397993@N05/3352169862]
(by Frank Mayfield [https://www.flickr.com/photos/33397993@N05], CC BY-SA
2.0).

Each row contains the following data for each flower sample: [sepal]
(https://en.wikipedia.org/wiki/Sepal) length, sepal width, [petal]
(https://en.wikipedia.org/wiki/Petal) length, petal width, and flower species.
Flower species are represented as integers, with 0 denoting Iris setosa, 1
denoting Iris versicolor, and 2 denoting Iris virginica.

Sepal Length | Sepal Width | Petal Length | Petal Width | Species
:———– | :———- | :———– | :———- | :——-
5.1 | 3.5 | 1.4 | 0.2 | 0
4.9 | 3.0 | 1.4 | 0.2 | 0
4.7 | 3.2 | 1.3 | 0.2 | 0

…

 | …

 | …

 | …

 | …

7.0 | 3.2 | 4.7 | 1.4 | 1
6.4 | 3.2 | 4.5 | 1.5 | 1
6.9 | 3.1 | 4.9 | 1.5 | 1
…

 | …

 | …

 | …

 | …

6.5 | 3.0 | 5.2 | 2.0 | 2
6.2 | 3.4 | 5.4 | 2.3 | 2
5.9 | 3.0 | 5.1 | 1.8 | 2

For this tutorial, the Iris data has been randomized and split into two separate
CSVs:

		A training set of 120 samples ([iris_training.csv]
(http://download.tensorflow.org/data/iris_training.csv))

		A test set of 30 samples ([iris_test.csv]
(http://download.tensorflow.org/data/iris_test.csv)).

Place these files in the same directory as your Python code.

To get started, first import TensorFlow and numpy:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
import numpy as np

Next, load the training and test sets into Datasets using the [load_csv()]
(https://www.tensorflow.org/code/tensorflow/contrib/learn/python/learn/datasets/base.py)
method in learn.datasets.base. The load_csv() method takes two required
arguments:

		filename, which takes the filepath to the CSV file

		target_dtype, which takes the [numpy datatype]
(http://docs.scipy.org/doc/numpy/user/basics.types.html) of the dataset’s
target value.

Here, the target (the value you’re training the model to predict) is flower
species, which is an integer from 0

–

2, so the appropriate numpy datatype
is np.int:

Data sets
IRIS_TRAINING = "iris_training.csv"
IRIS_TEST = "iris_test.csv"

Load datasets.
training_set = tf.contrib.learn.datasets.base.load_csv(filename=IRIS_TRAINING,
 target_dtype=np.int)
test_set = tf.contrib.learn.datasets.base.load_csv(filename=IRIS_TEST,
 target_dtype=np.int)

Datasets in tf.contrib.learn are [named tuples]
(https://docs.python.org/2/library/collections.html#collections.namedtuple); you
can access feature data and target values via the data and target fields.
Here, training_set.data and training_set.target contain the feature data and
target values for the training set, respectively, and test_set.data and
test_set.target contain feature data and target values for the test set.

Later on, in [“Fit the DNNClassifier to the Iris Training Data,”]
(#fit-dnnclassifier) you’ll use training_set.data and training_set.target to
train your model, and in “Evaluate Model Accuracy,” you’ll
use test_set.data and test_set.target. But first, you’ll construct your
model in the next section.

Construct a Deep Neural Network Classifier

tf.contrib.learn offers a variety of predefined models, called [Estimators]
(../../api_docs/python/contrib.learn.md#estimators), which you can use “out of
the box” to run training and evaluation operations on your data. Here, you’ll
configure a Deep Neural Network Classifier model to fit the Iris data. Using
tf.contrib.learn, you can instantiate your [DNNClassifier]
(../../api_docs/python/contrib.learn.md#DNNClassifier) with just a couple lines
of code:

Specify that all features have real-value data
feature_columns = [tf.contrib.layers.real_valued_column("", dimension=4)]

Build 3 layer DNN with 10, 20, 10 units respectively.
classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,
 hidden_units=[10, 20, 10],
 n_classes=3,
 model_dir="/tmp/iris_model")

The code above first defines the model’s feature columns, which specify the data
type for the features in the data set. All the feature data is continuous, so
tf.contrib.layers.real_valued_column is the appropriate function to use to
construct the feature columns. There are four features in the data set (sepal
width, sepal height, petal width, and petal height), so dimensions must be set
accordingly to 4 to hold all the data.

Then, the code creates a DNNClassifier model using the following arguments:

		feature_columns=feature_columns. The set of feature columns defined above.

		hidden_units=[10, 20, 10]. Three [hidden layers]
(http://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-netw),
containing 10, 20, and 10 neurons, respectively.

		n_classes=3. Three target classes, representing the three Iris species.

		model_dir=/tmp/iris_model. The directory in which TensorFlow will save
checkpoint data during model training. For more on logging and monitoring
with TensorFlow, see [Logging and Monitoring Basics with tf.contrib.learn]
(../monitors/index.md).

Fit the DNNClassifier to the Iris Training Data {#fit-dnnclassifier}

Now that you’ve configured your DNN classifier model, you can fit it to the
Iris training data using the [fit]
(../../api_docs/python/contrib.learn.md#BaseEstimator.fit) method. Pass as
arguments your feature data (training_set.data), target values
(training_set.target), and the number of steps to train (here, 2000):

Fit model
classifier.fit(x=training_set.data, y=training_set.target, steps=2000)

The state of the model is preserved in the classifier, which means you can
train iteratively if you like. For example, the above is equivalent to the
following:

classifier.fit(x=training_set.data, y=training_set.target, steps=1000)
classifier.fit(x=training_set.data, y=training_set.target, steps=1000)

However, if you’re looking to track the model while it trains, you’ll likely
want to instead use a TensorFlow [monitor]
(https://www.tensorflow.org/code/tensorflow/contrib/learn/python/learn/monitors.py)
to perform logging operations. See the tutorial

“

Logging and Monitoring
Basics with tf.contrib.learn”

 for more on this
topic.

Evaluate Model Accuracy {#evaluate-accuracy}

You’ve fit your DNNClassifier model on the Iris training data; now, you can
check its accuracy on the Iris test data using the [evaluate]
(../../api_docs/python/contrib.learn.md#BaseEstimator.evaluate) method. Like
fit, evaluate takes feature data and target values as arguments, and returns
a dict with the evaluation results. The following code passes the Iris test
data

—

test_set.data and test_set.target—

to evaluate and prints
the accuracy from the results:

accuracy_score = classifier.evaluate(x=test_set.data, y=test_set.target)["accuracy"]
print('Accuracy: {0:f}'.format(accuracy_score))

Run the full script, and check the accuracy results:

Accuracy: 0.966667

Your accuracy result may vary a bit, but should be higher than 90%. Not bad for
a relatively small data set!

Classify New Samples

Use the estimator’s predict() method to classify new samples. For example, say
you have these two new flower samples:

Sepal Length | Sepal Width | Petal Length | Petal Width
:———– | :———- | :———– | :———-
6.4 | 3.2 | 4.5 | 1.5
5.8 | 3.1 | 5.0 | 1.7

You can predict their species with the following code:

Classify two new flower samples.
new_samples = np.array(
 [[6.4, 3.2, 4.5, 1.5], [5.8, 3.1, 5.0, 1.7]], dtype=float)
y = classifier.predict(new_samples)
print('Predictions: {}'.format(str(y)))

The predict() method returns an array of predictions, one for each sample:

Prediction: [1 2]

The model thus predicts that the first sample is Iris versicolor, and the
second sample is Iris virginica.

Additional Resources

		For further reference materials on tf.contrib.learn, see the official API
docs.

		To learn more about using tf.contrib.learn to create linear models, see
Large-scale Linear Models with TensorFlow.

		To build your own Estimator using tf.contrib.learn APIs, check out [Building
Machine Learning Estimator in TensorFlow]
(http://terrytangyuan.github.io/2016/07/08/understand-and-build-tensorflow-estimator/).

		To experiment with neural network modeling and visualization in the browser,
check out Deep Playground [http://playground.tensorflow.org/].

		For more advanced tutorials on neural networks, see Convolutional Neural
Networks and Recurrent Neural Networks.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/tutorials/estimators/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Creating Estimators in tf.contrib.learn

The tf.contrib.learn framework makes it easy to construct and train machine
learning models via its high-level
Estimator API. Estimator
offers classes you can instantiate to quickly configure common model types such
as regressors and classifiers:

		LinearClassifier.
Constructs a linear classification model.

		LinearRegressor.
Constructs a linear regression model.

		DNNClassifier.
Construct a neural network classification model.

		DNNRegressor.
Construct a neural network regressions model.

But what if none of tf.contrib.learn‘s predefined model types meets your
needs? Perhaps you need more granular control over model configuration, such as
the ability to customize the loss function used for optimization, or specify
different activation functions for each neural network layer. Or maybe you’re
implementing a ranking or recommendation system, and neither a classifier nor a
regressor is appropriate for generating predictions.

This tutorial covers how to create your own Estimator using the building blocks
provided in tf.contrib.learn, which will predict the ages of
abalones [https://en.wikipedia.org/wiki/Abalone] based on their physical
measurements. You’ll learn how to do the following:

		Instantiate an Estimator

		Construct a custom model function

		Configure a neural network using tf.contrib.layers

		Choose an appropriate loss function from tf.contrib.losses

		Define a training op for your model

		Generate and return predictions

Prerequisites

This tutorial assumes you already know tf.contrib.learn API basics, such as
feature columns and fit() operations. If you’ve never used tf.contrib.learn
before, or need a refresher, you should first review the following tutorials:

		tf.contrib.learn Quickstart: Quick introduction to
training a neural network using tf.contrib.learn.

		TensorFlow Linear Model Tutorial: Introduction to
feature columns, and an overview on building a linear classifier in
tf.contrib.learn.

An Abalone Age Predictor {#abalone-predictor}

It’s possible to estimate the age of an
abalone [https://en.wikipedia.org/wiki/Abalone] (sea snail) by the number of
rings on its shell. However, because this task requires cutting, staining, and
viewing the shell under a microscope, it’s desirable to find other measurements
that can predict age.

The Abalone Data Set [https://archive.ics.uci.edu/ml/datasets/Abalone] contains
the following feature
data [https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.names]
for abalone:

| Feature | Description |
| ————– | ——————————————————— |
| Length | Length of abalone (in longest direction; in mm) |
| Diameter | Diameter of abalone (measurement perpendicular to length; |
: : in mm) :
| Height | Height of abalone (with its meat inside shell; in mm) |
| Whole Weight | Weight of entire abalone (in grams) |
| Shucked Weight | Weight of abalone meat only (in grams) |
| Viscera Weight | Gut weight of abalone (in grams), after bleeding |
| Shell Weight | Weight of dried abalone shell (in grams) |

The label to predict is number of rings, as a proxy for abalone age.

[image: Abalone shell] “Abalone
shell” [https://www.flickr.com/photos/thenickster/16641048623/] (by Nicki Dugan
Pogue [https://www.flickr.com/photos/thenickster/], CC BY-SA 2.0)

Setup

This tutorial uses three data sets.
abalone_train.csv [http://download.tensorflow.org/data/abalone_train.csv]
contains labeled training data comprising 3,320 examples.
abalone_test.csv [http://download.tensorflow.org/data/abalone_test.csv]
contains labeled test data for 850 examples.
abalone_predict [http://download.tensorflow.org/data/abalone_predict.csv]
contains 7 examples on which to make predictions.

The following sections walk through writing the Estimator code step by step;
the full, final code is available
here [https://www.tensorflow.org/code/tensorflow/examples/tutorials/estimators/abalone.py]

Loading Abalone CSV Data into TensorFlow Datasets

To feed the abalone dataset into the model, you’ll need to download and load the
CSVs into TensorFlow Datasets. First, add some standard Python and TensorFlow
imports:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tempfile
import urllib

import numpy as np
import tensorflow as tf

tf.logging.set_verbosity(tf.logging.INFO)

Then define flags to allow users to optionally specify CSV files for training,
test, and prediction datasets via the command line (by default, files will be
downloaded from tensorflow.org [https://www.tensorflow.org/]), and enable
logging:

flags = tf.app.flags
FLAGS = flags.FLAGS

flags.DEFINE_string(
 "train_data",
 "",
 "Path to the training data.")
flags.DEFINE_string(
 "test_data",
 "",
 "Path to the test data.")
flags.DEFINE_string(
 "predict_data",
 "",
 "Path to the prediction data.")

tf.logging.set_verbosity(tf.logging.INFO)

Then define a function to load the CSVs (either from files specified in
command-line options, or downloaded from
tensorflow.org [https://www.tensorflow.org/]):

def maybe_download():
 """Maybe downloads training data and returns train and test file names."""
 if FLAGS.train_data:
 train_file_name = FLAGS.train_data
 else:
 train_file = tempfile.NamedTemporaryFile(delete=False)
 urllib.urlretrieve("http://download.tensorflow.org/data/abalone_train.csv", train_file.name)
 train_file_name = train_file.name
 train_file.close()
 print("Training data is downloaded to %s" % train_file_name)

 if FLAGS.test_data:
 test_file = tempfile.NamedTemporaryFile(delete=False)
 urllib.urlretrieve("http://download.tensorflow.org/data/abalone_test.csv", test_file.name)
 test_file_name = test_file.name
 test_file.close()
 print("Test data is downloaded to %s" % test_file_name)

 if FLAGS.predict_data:
 predict_file_name = FLAGS.predict_data
 else:
 predict_file = tempfile.NamedTemporaryFile(delete=False)
 urllib.urlretrieve("http://download.tensorflow.org/data/abalone_predict.csv", predict_file.name)
 predict_file_name = predict_file.name
 predict_file.close()
 print("Prediction data is downloaded to %s" % predict_file_name)

 return train_file_name, test_file_name, predict_file_name

Finally, create main() and load the abalone CSVs into Datasets:

def main(unused_argv):
 # Load datasets
 abalone_train, abalone_test, abalone_predict = maybe_download()

 # Training examples
 training_set = tf.contrib.learn.datasets.base.load_csv_without_header(
 filename=abalone_train,
 target_dtype=np.int,
 features_dtype=np.float64)

 # Test examples
 test_set = tf.contrib.learn.datasets.base.load_csv_without_header(
 filename=abalone_test,
 target_dtype=np.int,
 features_dtype=np.float64)

 # Set of 7 examples for which to predict abalone ages
 prediction_set = tf.contrib.learn.datasets.base.load_csv_without_header(
 filename=abalone_predict,
 target_dtype=np.int,
 features_dtype=np.float64)

if __name__ == "__main__":
 tf.app.run()

Instantiating an Estimator

When defining a model using one of tf.contrib.learn’s provided classes, such as
DNNClassifier, you supply all the configuration parameters right in the
constructor, e.g.:

my_nn = tf.contrib.learn.DNNClassifier(feature_columns=[age, height, weight],
 hidden_units=[10, 10, 10],
 activation_fn=tf.nn.relu,
 dropout=0.2,
 n_classes=3,
 optimizer="Adam")

You don’t need to write any further code to instruct TensorFlow how to train the
model, calculate loss, or return predictions; that logic is already baked into
the DNNClassifier.

By contrast, when you’re creating your own estimator from scratch, the
constructor accepts just two high-level parameters for model configuration,
model_fn and params:

nn = tf.contrib.learn.Estimator(
 model_fn=model_fn, params=model_params)

		model_fn. A function object that contains all the aforementioned logic to
support training, evaluation, and prediction. You are responsible for
implementing that functionality. The next section, Constructing the
model_fn covers creating a model function in
detail.

		params. An optional dict of hyperparameters (e.g., learning rate, dropout)
that will be passed into the model_fn.

NOTE: Just like tf.contrib.learn‘s predefined regressors and classifiers, the
Estimator initializer also accepts the following general configuration
arguments, all of which are optional: model_dir, config, and
weight_column_name.

For the abalone age predictor, the model will accept one hyperparameter:
learning rate. Define LEARNING_RATE as a constant at the beginning of your
code (highlighted in bold below), right after the logging configuration:

tf.logging.set_verbosity(tf.logging.INFO)# Learning rate for the model
LEARNING_RATE = 0.001

NOTE: Here, LEARNING_RATE is set to 0.001, but you can tune this value as
needed to achieve the best results during model training.

Then, add the following code to main(), which creates the dict model_params
containing the learning rate and instantiates the Estimator:

Set model params
model_params = {"learning_rate": LEARNING_RATE}

Build 2 layer fully connected DNN with 10, 10 units respectively.
nn = tf.contrib.learn.Estimator(
 model_fn=model_fn, params=model_params)

Constructing the model_fn {#constructing-modelfn}

The basic skeleton for an Estimator API model function looks like this:

def model_fn(features, targets, mode, params):
 # Logic to do the following:
 # 1. Configure the model via TensorFlow operations
 # 2. Define the loss function for training/evaluation
 # 3. Define the training operation/optimizer
 # 4. Generate predictions
 return predictions, loss, train_op

The model_fn must accept three arguments:

		features. A dict containing the features passed to the model via fit(),
evaluate(), or predict().

		targets. A Tensor containing the labels passed to the model via fit(),
evaluate(), or predict(). Will be empty for predict() calls, as these
are the values the model will infer.

		mode. One of the following
ModeKeys string values
indicating the context in which the model_fn was invoked:
		tf.contrib.learn.ModeKeys.TRAIN The model_fn was invoked in training
mode—e.g., via a fit() call.

		tf.contrib.learn.ModeKeys.EVAL. The model_fn was invoked in
evaluation mode—e.g., via an evaluate() call.

		tf.contrib.learn.ModeKeys.INFER. The model_fn was invoked in
inference mode—e.g., via a predict() call.

model_fn may also accept a params argument containing a dict of
hyperparameters used for training (as shown in the skeleton above).

The body of the function perfoms the following tasks (described in detail in the
sections that follow):

		Configuring the model—here, for the abalone predictor, this will be a neural
network.

		Defining the loss function used to calculate how closely the model’s
predictions match the target values.

		Defining the training operation that specifies the optimizer algorithm to
minimize the loss values calculated by the loss function.

Finally, depending on the mode in which model_fn is run, it must return one
or more of the following three values:

		predictions (required in INFER and EVAL modes). A dict that maps key
names of your choice to Tensors containing the predictions from the model,
e.g.:

predictions = {"results": tensor_of_predictions}

In INFER mode, the dict that you return from model_fn will then be
returned by predict(), so you can construct it in the format in which
you’d like to consume it.

In EVAL mode, the dict is used by metric
functions to compute
metrics. Any
MetricSpec [https://www.tensorflow.org/code/tensorflow/contrib/learn/python/learn/metric_spec.py]
objects passed to the metrics argument of evaluate() must have a
prediction_key that matches the key name of the corresponding predictions
in predictions.

		loss (required in EVAL and TRAIN mode). A Tensor containing a scalar
loss value: the output of the model’s loss function (discussed in more depth
later in Defining loss for the model) calculated over all
the input examples. This is used in TRAIN mode for error handling and
logging, and is automatically included as a metric in EVAL mode.

		train_op (required only in TRAIN mode). An Op that runs one step of
training.

Configuring a neural network with tf.contrib.layers

Constructing a neural
network [https://en.wikipedia.org/wiki/Artificial_neural_network] entails
creating and connecting the input layer, the hidden layers, and the output
layer.

The input layer is a series of nodes (one for each feature in the model) that
will accept the feature data that is passed to the model_fn in the features
argument. If features contains an n-dimenional Tensor with all your feature
data (which is the case if x and y Datasets are passed to fit(),
evaluate(), and predict() directly), then it can serve as the input layer.
If features contains a dict of feature
columns passed to
the model via an input function, you can convert it to an input-layer Tensor
with the input_from_feature_columns() function in
tf.contrib.layers.

input layer = tf.contrib.layers.input_from_feature_columns(columns_to_tensors=features, feature_columns=[age, height, weight])

As shown above, input_from_feature_columns() takes two required arguments:

		columns_to_tensors. A mapping of the model’s FeatureColumns to the
Tensors containing the corresponding feature data. This is exactly what is
passed to the model_fn in the features argument.

		feature_columns. A list of all the FeatureColumns in the model—age,
height, and weight in the above example.

The input layer of the neural network then must be connected to one or more
hidden layers via an activation
function [https://en.wikipedia.org/wiki/Activation_function] that performs a
nonlinear transformation on the data from the previous layer. The last hidden
layer is then connected to the output layer, the final layer in the model.
tf.contrib.layers provides the following convenience functions for constructing
fully connected layers:

		relu(inputs, num_outputs). Create a layer of num_outputs nodes fully
connected to the previous layer inputs with a ReLu activation
function [https://en.wikipedia.org/wiki/Rectifier_(neural_networks)]
(tf.nn.relu):

hidden_layer = tf.contrib.layers.relu(inputs=input_layer, num_outputs=10)

		relu6(inputs, num_outputs). Create a layer of num_outputs nodes fully
connected to the previous layer hidden_layer with a ReLu 6 activation
function (tf.nn.relu6)

second_hidden_layer = tf.contrib.layers.relu6(inputs=hidden_layer, num_outputs=20)

		linear(inputs, num_outputs). Create a layer of num_outputs nodes fully
connected to the previous layer second_hidden_layer with no activation
function, just a linear transformation:

output_layer = tf.contrib.layers.linear(inputs=second_hidden_layer, num_outputs=3)

All these functions are
partials [https://docs.python.org/2/library/functools.html#functools.partial]
of the more general
fully_connected()
function, which can be used to add fully connected layers with other activation
functions, e.g.:

output_layer = tf.contrib.layers.fully_connected(inputs=second_hidden_layer,
 num_outputs=10,
 activation_fn=tf.sigmoid)

The above code creates the neural network layer output_layer, which is fully
connected to second_hidden_layer with a sigmoid activation function
(tf.sigmoid). For a list of predefined
activation functions available in TensorFlow, see the API
docs.

Putting it all together, the following code constructs a full neural network for
the abalone predictor, and captures its predictions:

def model_fn(features, targets, mode, params):
 """Model function for Estimator."""

 # Connect the first hidden layer to input layer
 # (features) with relu activation
 first_hidden_layer = tf.contrib.layers.relu(features, 10)

 # Connect the second hidden layer to first hidden layer with relu
 second_hidden_layer = tf.contrib.layers.relu(first_hidden_layer, 10)

 # Connect the output layer to second hidden layer (no activation fn)
 output_layer = tf.contrib.layers.linear(second_hidden_layer, 1)

 # Reshape output layer to 1-dim Tensor to return predictions
 predictions = tf.reshape(output_layer, [-1])
 predictions_dict = {"ages": predictions}
 ...

Here, because you’ll be passing the abalone Datasets directly to fit(),
evaluate(), and predict() via x and y arguments, the input layer is the
features Tensor passed to the model_fn. The network contains two hidden
layers, each with 10 nodes and a ReLu activation function. The output layer
contains no activation function, and is
reshaped to a one-dimensional
tensor to capture the model’s predictions, which are stored in
predictions_dict.

Defining loss for the model {#defining-loss}

The model_fn must return a Tensor that contains the loss value, which
quantifies how well the model’s predictions reflect the target values during
training and evaluation runs. The
tf.contrib.losses
module provides convenience functions for calculating loss using a variety of
metrics, including:

		absolute_difference(predictions, targets). Calculates loss using the
absolute-difference
formula [https://en.wikipedia.org/wiki/Deviation_(statistics)#Unsigned_or_absolute_deviation]
(also known as L1 loss).

		log_loss(predictions, targets). Calculates loss using the logistic loss
forumula [https://en.wikipedia.org/wiki/Loss_functions_for_classification#Logistic_loss]
(typically used in logistic regression).

		mean_squared_error(predictions, targets). Calculates loss using the mean
squared error [https://en.wikipedia.org/wiki/Mean_squared_error] (MSE; also
known as L2 loss).

The following example adds a definition for loss to the abalone model_fn
using mean_squared_error() (in bold):

def model_fn(features, targets, mode, params):
 """Model function for Estimator."""

Connect the first hidden layer to input layer

(features) with relu activation

first_hidden_layer = tf.contrib.layers.relu(features, 10)

Connect the second hidden layer to first hidden layer with relu

second_hidden_layer = tf.contrib.layers.relu(first_hidden_layer, 10)

Connect the output layer to second hidden layer (no activation fn)

output_layer = tf.contrib.layers.linear(second_hidden_layer, 1)

Reshape output layer to 1-dim Tensor to return predictions

predictions = tf.reshape(output_layer, [-1])
predictions_dict = {“ages”: predictions}

Calculate loss using mean squared error
loss = tf.contrib.losses.mean_squared_error(predictions, targets)
...

See the API docs for
tf.contrib.loss for a full list of loss functions and more details on supported
arguments and usage.

Defining the training op for the model

The training op defines the optimization algorithm TensorFlow will use when
fitting the model to the training data. Typically when training, the goal is to
minimize loss. The tf.contrib.layers API provides the function optimize_loss,
which returns a training op that will do just that. optimize_loss has four
required arguments:

		loss. The loss value calculated by the model_fn (see Defining Loss for
the Model).

		global_step. An integer
Variable representing the
step counter to increment for each model training run. Can easily be
created/incremented in TensorFlow via the
get_global_step()
function.

		learning_rate. The learning
rate [https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Background]
(also known as step size) hyperparameter that the optimization algorithm
uses when training.

		optimizer. The optimization algorithm to use during training. optimizer
can accept any of the following string values, representing an optimization
algorithm predefined in tf.contrib.layers.optimizers:
		SGD. Implementation of gradient
descent [https://en.wikipedia.org/wiki/Gradient_descent]
(tf.train.GradientDescentOptimizer)

		Adagrad. Implementation of the AdaGrad optimization
algorithm [http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf]
(tf.train.AdagradOptimizer)

		Adam. Implementation of the Adam optimization
algorithm [http://arxiv.org/pdf/1412.6980.pdf]
(tf.train.AdamOptimizer)

		Ftrl. Implementation of the
FTRL-Proximal [https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf]
(“Follow The (Proximally) Regularized Leader”) algorithm
(tf.train.FtrlOptimizer)

		Momentum. Implementation of stochastic gradient descent with
momentum [https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Momentum]
(tf.train.MomentumOptimizer)

		RMSProp. Implementation of the
RMSprop [http://sebastianruder.com/optimizing-gradient-descent/index.html#rmsprop]
algorithm
(tf.train.RMSPropOptimizer)

NOTE: The optimize_loss function supports additional optional arguments to
further configure the optimizer, such as for implementing decay. See the API
docs for more info.

The following code defines a training op for the abalone model_fn, using the
loss value calculated in Defining Loss for the Model, the
learning rate passed to the function in params, and the SGD optimizer. For
global_step, the convenience function
get_global_step()
in tf.contrib.framework takes care of generating an integer variable:

train_op = tf.contrib.layers.optimize_loss(
 loss=loss,
 global_step=tf.contrib.framework.get_global_step(),
 learning_rate=params["learning_rate"],
 optimizer="SGD")

The complete abalone model_fn

Here’s the final, complete model_fn for the abalone age predictor. The
following code configures the neural network; defines loss and the training op;
and returns predictions_dict, loss, and train_op:

def model_fn(features, targets, mode, params):
 """Model function for Estimator."""

 # Connect the first hidden layer to input layer
 # (features) with relu activation
 first_hidden_layer = tf.contrib.layers.relu(features, 10)

 # Connect the second hidden layer to first hidden layer with relu
 second_hidden_layer = tf.contrib.layers.relu(first_hidden_layer, 10)

 # Connect the output layer to second hidden layer (no activation fn)
 output_layer = tf.contrib.layers.linear(second_hidden_layer, 1)

 # Reshape output layer to 1-dim Tensor to return predictions
 predictions = tf.reshape(output_layer, [-1])
 predictions_dict = {"ages": predictions}

 # Calculate loss using mean squared error
 loss = tf.contrib.losses.mean_squared_error(predictions, targets)

 train_op = tf.contrib.layers.optimize_loss(
 loss=loss,
 global_step=tf.contrib.framework.get_global_step(),
 learning_rate=params["learning_rate"],
 optimizer="SGD")

 return predictions_dict, loss, train_op

Running the Abalone Model

You’ve instantiated an Estimator for the abalone predictor and defined its
behavior in model_fn; all that’s left to do is train, evaluate, and make
predictions.

Add the following code to the end of main() to fit the neural network to the
training data and evaluate accuracy:

Fit
nn.fit(x=training_set.data, y=training_set.target, steps=5000)

Score accuracy
ev = nn.evaluate(x=test_set.data, y=test_set.target, steps=1)
loss_score = ev["loss"]
print("Loss: %s" % loss_score)

Then run the code. You should see output like the following:

...
INFO:tensorflow:loss = 4.86658, step = 4701
INFO:tensorflow:loss = 4.86191, step = 4801
INFO:tensorflow:loss = 4.85788, step = 4901
...
INFO:tensorflow:Saving evaluation summary for 5000 step: loss = 5.581
Loss: 5.581

The loss score reported is the mean squared error returned from the model_fn
when run on the ABALONE_TEST data set.

To predict ages for the ABALONE_PREDICT data set, add the following to
main():

Print out predictions
predictions = nn.predict(x=prediction_set.data,
 as_iterable=True)
for i, p in enumerate(predictions):
 print("Prediction %s: %s" % (i + 1, p["ages"]))

Here, the predict() function returns results in predictions as an iterable.
The for loop enumerates and prints out the results. Rerun the code, and you
should see output similar to the following:

...
Prediction 1: 4.92229
Prediction 2: 10.3225
Prediction 3: 7.384
Prediction 4: 10.6264
Prediction 5: 11.0862
Prediction 6: 9.39239
Prediction 7: 11.1289

Additional Resources

Congrats! You’ve successfully built a tf.contrib.learn Estimator from scratch.
For additional reference materials on building Estimators, see the following
sections of the API docs:

		Estimators

		Layers

		Losses

		Optimization

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/image.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Images

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Encoding and Decoding

TensorFlow provides Ops to decode and encode JPEG and PNG formats. Encoded
images are represented by scalar string Tensors, decoded images by 3-D uint8
tensors of shape [height, width, channels]. (PNG also supports uint16.)

The encode and decode Ops apply to one image at a time. Their input and output
are all of variable size. If you need fixed size images, pass the output of
the decode Ops to one of the cropping and resizing Ops.

Note: The PNG encode and decode Ops support RGBA, but the conversions Ops
presently only support RGB, HSV, and GrayScale. Presently, the alpha channel has
to be stripped from the image and re-attached using slicing ops.

tf.image.decode_jpeg(contents, channels=None, ratio=None, fancy_upscaling=None, try_recover_truncated=None, acceptable_fraction=None, name=None) {#decode_jpeg}

Decode a JPEG-encoded image to a uint8 tensor.

The attr channels indicates the desired number of color channels for the
decoded image.

Accepted values are:

		0: Use the number of channels in the JPEG-encoded image.

		1: output a grayscale image.

		3: output an RGB image.

If needed, the JPEG-encoded image is transformed to match the requested number
of color channels.

The attr ratio allows downscaling the image by an integer factor during
decoding. Allowed values are: 1, 2, 4, and 8. This is much faster than
downscaling the image later.

Args:

		contents: A Tensor of type string. 0-D. The JPEG-encoded image.

		channels: An optional int. Defaults to 0.
Number of color channels for the decoded image.

		ratio: An optional int. Defaults to 1. Downscaling ratio.

		fancy_upscaling: An optional bool. Defaults to True.
If true use a slower but nicer upscaling of the
chroma planes (yuv420/422 only).

		try_recover_truncated: An optional bool. Defaults to False.
If true try to recover an image from truncated input.

		acceptable_fraction: An optional float. Defaults to 1.
The minimum required fraction of lines before a truncated
input is accepted.

		name: A name for the operation (optional).

Returns:

A Tensor of type uint8. 3-D with shape [height, width, channels]..

tf.image.encode_jpeg(image, format=None, quality=None, progressive=None, optimize_size=None, chroma_downsampling=None, density_unit=None, x_density=None, y_density=None, xmp_metadata=None, name=None) {#encode_jpeg}

JPEG-encode an image.

image is a 3-D uint8 Tensor of shape [height, width, channels].

The attr format can be used to override the color format of the encoded
output. Values can be:

		'': Use a default format based on the number of channels in the image.

		grayscale: Output a grayscale JPEG image. The channels dimension
of image must be 1.

		rgb: Output an RGB JPEG image. The channels dimension
of image must be 3.

If format is not specified or is the empty string, a default format is picked
in function of the number of channels in image:

		1: Output a grayscale image.

		3: Output an RGB image.

Args:

		image: A Tensor of type uint8.
3-D with shape [height, width, channels].

		format: An optional string from: "", "grayscale", "rgb". Defaults to "".
Per pixel image format.

		quality: An optional int. Defaults to 95.
Quality of the compression from 0 to 100 (higher is better and slower).

		progressive: An optional bool. Defaults to False.
If True, create a JPEG that loads progressively (coarse to fine).

		optimize_size: An optional bool. Defaults to False.
If True, spend CPU/RAM to reduce size with no quality change.

		chroma_downsampling: An optional bool. Defaults to True.
See http://en.wikipedia.org/wiki/Chroma_subsampling.

		density_unit: An optional string from: "in", "cm". Defaults to "in".
Unit used to specify x_density and y_density:
pixels per inch ('in') or centimeter ('cm').

		x_density: An optional int. Defaults to 300.
Horizontal pixels per density unit.

		y_density: An optional int. Defaults to 300.
Vertical pixels per density unit.

		xmp_metadata: An optional string. Defaults to "".
If not empty, embed this XMP metadata in the image header.

		name: A name for the operation (optional).

Returns:

A Tensor of type string. 0-D. JPEG-encoded image.

tf.image.decode_png(contents, channels=None, dtype=None, name=None) {#decode_png}

Decode a PNG-encoded image to a uint8 or uint16 tensor.

The attr channels indicates the desired number of color channels for the
decoded image.

Accepted values are:

		0: Use the number of channels in the PNG-encoded image.

		1: output a grayscale image.

		3: output an RGB image.

		4: output an RGBA image.

If needed, the PNG-encoded image is transformed to match the requested number
of color channels.

Args:

		contents: A Tensor of type string. 0-D. The PNG-encoded image.

		channels: An optional int. Defaults to 0.
Number of color channels for the decoded image.

		dtype: An optional tf.DType from: tf.uint8, tf.uint16. Defaults to tf.uint8.

		name: A name for the operation (optional).

Returns:

A Tensor of type dtype. 3-D with shape [height, width, channels].

tf.image.encode_png(image, compression=None, name=None) {#encode_png}

PNG-encode an image.

image is a 3-D uint8 or uint16 Tensor of shape [height, width, channels]
where channels is:

		1: for grayscale.

		2: for grayscale + alpha.

		3: for RGB.

		4: for RGBA.

The ZLIB compression level, compression, can be -1 for the PNG-encoder
default or a value from 0 to 9. 9 is the highest compression level, generating
the smallest output, but is slower.

Args:

		image: A Tensor. Must be one of the following types: uint8, uint16.
3-D with shape [height, width, channels].

		compression: An optional int. Defaults to -1. Compression level.

		name: A name for the operation (optional).

Returns:

A Tensor of type string. 0-D. PNG-encoded image.

Resizing

The resizing Ops accept input images as tensors of several types. They always
output resized images as float32 tensors.

The convenience function resize_images() supports both 4-D
and 3-D tensors as input and output. 4-D tensors are for batches of images,
3-D tensors for individual images.

Other resizing Ops only support 4-D batches of images as input:
resize_area, resize_bicubic,
resize_bilinear,
resize_nearest_neighbor.

Example:

Decode a JPG image and resize it to 299 by 299 using default method.
image = tf.image.decode_jpeg(...)
resized_image = tf.image.resize_images(image, [299, 299])

tf.image.resize_images(images, size, method=0, align_corners=False) {#resize_images}

Resize images to size using the specified method.

Resized images will be distorted if their original aspect ratio is not
the same as size. To avoid distortions see
resize_image_with_crop_or_pad.

method can be one of:

		ResizeMethod.BILINEAR: [Bilinear interpolation.]
(https://en.wikipedia.org/wiki/Bilinear_interpolation)

		ResizeMethod.NEAREST_NEIGHBOR: [Nearest neighbor interpolation.]
(https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation)

		ResizeMethod.BICUBIC: [Bicubic interpolation.]
(https://en.wikipedia.org/wiki/Bicubic_interpolation)

		ResizeMethod.AREA: Area interpolation.

Args:

		images: 4-D Tensor of shape [batch, height, width, channels] or
3-D Tensor of shape [height, width, channels].

		size: A 1-D int32 Tensor of 2 elements: new_height, new_width. The
new size for the images.

		method: ResizeMethod. Defaults to ResizeMethod.BILINEAR.

		align_corners: bool. If true, exactly align all 4 corners of the input and
output. Defaults to false.

Raises:

		ValueError: if the shape of images is incompatible with the
shape arguments to this function

		ValueError: if size has invalid shape or type.

		ValueError: if an unsupported resize method is specified.

Returns:

If images was 4-D, a 4-D float Tensor of shape
[batch, new_height, new_width, channels].
If images was 3-D, a 3-D float Tensor of shape
[new_height, new_width, channels].

tf.image.resize_area(images, size, align_corners=None, name=None) {#resize_area}

Resize images to size using area interpolation.

Input images can be of different types but output images are always float.

Args:

		images: A Tensor. Must be one of the following types: uint8, int8, int16, int32, int64, half, float32, float64.
4-D with shape [batch, height, width, channels].

		size: A 1-D int32 Tensor of 2 elements: new_height, new_width. The
new size for the images.

		align_corners: An optional bool. Defaults to False.
If true, rescale input by (new_height - 1) / (height - 1), which
exactly aligns the 4 corners of images and resized images. If false, rescale
by new_height / height. Treat similarly the width dimension.

		name: A name for the operation (optional).

Returns:

A Tensor of type float32. 4-D with shape
[batch, new_height, new_width, channels].

tf.image.resize_bicubic(images, size, align_corners=None, name=None) {#resize_bicubic}

Resize images to size using bicubic interpolation.

Input images can be of different types but output images are always float.

Args:

		images: A Tensor. Must be one of the following types: uint8, int8, int16, int32, int64, half, float32, float64.
4-D with shape [batch, height, width, channels].

		size: A 1-D int32 Tensor of 2 elements: new_height, new_width. The
new size for the images.

		align_corners: An optional bool. Defaults to False.
If true, rescale input by (new_height - 1) / (height - 1), which
exactly aligns the 4 corners of images and resized images. If false, rescale
by new_height / height. Treat similarly the width dimension.

		name: A name for the operation (optional).

Returns:

A Tensor of type float32. 4-D with shape
[batch, new_height, new_width, channels].

tf.image.resize_bilinear(images, size, align_corners=None, name=None) {#resize_bilinear}

Resize images to size using bilinear interpolation.

Input images can be of different types but output images are always float.

Args:

		images: A Tensor. Must be one of the following types: uint8, int8, int16, int32, int64, half, float32, float64.
4-D with shape [batch, height, width, channels].

		size: A 1-D int32 Tensor of 2 elements: new_height, new_width. The
new size for the images.

		align_corners: An optional bool. Defaults to False.
If true, rescale input by (new_height - 1) / (height - 1), which
exactly aligns the 4 corners of images and resized images. If false, rescale
by new_height / height. Treat similarly the width dimension.

		name: A name for the operation (optional).

Returns:

A Tensor of type float32. 4-D with shape
[batch, new_height, new_width, channels].

tf.image.resize_nearest_neighbor(images, size, align_corners=None, name=None) {#resize_nearest_neighbor}

Resize images to size using nearest neighbor interpolation.

Args:

		images: A Tensor. Must be one of the following types: uint8, int8, int16, int32, int64, half, float32, float64.
4-D with shape [batch, height, width, channels].

		size: A 1-D int32 Tensor of 2 elements: new_height, new_width. The
new size for the images.

		align_corners: An optional bool. Defaults to False.
If true, rescale input by (new_height - 1) / (height - 1), which
exactly aligns the 4 corners of images and resized images. If false, rescale
by new_height / height. Treat similarly the width dimension.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as images. 4-D with shape
[batch, new_height, new_width, channels].

Cropping

tf.image.resize_image_with_crop_or_pad(image, target_height, target_width) {#resize_image_with_crop_or_pad}

Crops and/or pads an image to a target width and height.

Resizes an image to a target width and height by either centrally
cropping the image or padding it evenly with zeros.

If width or height is greater than the specified target_width or
target_height respectively, this op centrally crops along that dimension.
If width or height is smaller than the specified target_width or
target_height respectively, this op centrally pads with 0 along that
dimension.

Args:

		image: 3-D tensor of shape [height, width, channels]

		target_height: Target height.

		target_width: Target width.

Raises:

		ValueError: if target_height or target_width are zero or negative.

Returns:

Cropped and/or padded image of shape
[target_height, target_width, channels]

tf.image.central_crop(image, central_fraction) {#central_crop}

Crop the central region of the image.

Remove the outer parts of an image but retain the central region of the image
along each dimension. If we specify central_fraction = 0.5, this function
returns the region marked with “X” in the below diagram.

| |
| XXXX |
| XXXX |
| | where "X" is the central 50% of the image.

Args:

		image: 3-D float Tensor of shape [height, width, depth]

		central_fraction: float (0, 1], fraction of size to crop

Raises:

		ValueError: if central_crop_fraction is not within (0, 1].

Returns:

3-D float Tensor

tf.image.pad_to_bounding_box(image, offset_height, offset_width, target_height, target_width) {#pad_to_bounding_box}

Pad image with zeros to the specified height and width.

Adds offset_height rows of zeros on top, offset_width columns of
zeros on the left, and then pads the image on the bottom and right
with zeros until it has dimensions target_height, target_width.

This op does nothing if offset_* is zero and the image already has size
target_height by target_width.

Args:

		image: 3-D tensor with shape [height, width, channels]

		offset_height: Number of rows of zeros to add on top.

		offset_width: Number of columns of zeros to add on the left.

		target_height: Height of output image.

		target_width: Width of output image.

Returns:

3-D tensor of shape [target_height, target_width, channels]

Raises:

		ValueError: If the shape of image is incompatible with the offset_* or
target_* arguments, or either offset_height or offset_width is
negative.

tf.image.crop_to_bounding_box(image, offset_height, offset_width, target_height, target_width) {#crop_to_bounding_box}

Crops an image to a specified bounding box.

This op cuts a rectangular part out of image. The top-left corner of the
returned image is at offset_height, offset_width in image, and its
lower-right corner is at
offset_height + target_height, offset_width + target_width.

Args:

		image: 3-D tensor with shape [height, width, channels]

		offset_height: Vertical coordinate of the top-left corner of the result in
the input.

		offset_width: Horizontal coordinate of the top-left corner of the result in
the input.

		target_height: Height of the result.

		target_width: Width of the result.

Returns:

3-D tensor of image with shape [target_height, target_width, channels]

Raises:

		ValueError: If the shape of image is incompatible with the offset_* or
target_* arguments, or either offset_height or offset_width is
negative, or either target_height or target_width is not positive.

tf.image.extract_glimpse(input, size, offsets, centered=None, normalized=None, uniform_noise=None, name=None) {#extract_glimpse}

Extracts a glimpse from the input tensor.

Returns a set of windows called glimpses extracted at location
offsets from the input tensor. If the windows only partially
overlaps the inputs, the non overlapping areas will be filled with
random noise.

The result is a 4-D tensor of shape [batch_size, glimpse_height, glimpse_width, channels]. The channels and batch dimensions are the
same as that of the input tensor. The height and width of the output
windows are specified in the size parameter.

The argument normalized and centered controls how the windows are built:

		If the coordinates are normalized but not centered, 0.0 and 1.0
correspond to the minimum and maximum of each height and width
dimension.

		If the coordinates are both normalized and centered, they range from
-1.0 to 1.0. The coordinates (-1.0, -1.0) correspond to the upper
left corner, the lower right corner is located at (1.0, 1.0) and the
center is at (0, 0).

		If the coordinates are not normalized they are interpreted as
numbers of pixels.

Args:

		input: A Tensor of type float32.
A 4-D float tensor of shape [batch_size, height, width, channels].

		size: A Tensor of type int32.
A 1-D tensor of 2 elements containing the size of the glimpses
to extract. The glimpse height must be specified first, following
by the glimpse width.

		offsets: A Tensor of type float32.
A 2-D integer tensor of shape [batch_size, 2] containing
the x, y locations of the center of each window.

		centered: An optional bool. Defaults to True.
indicates if the offset coordinates are centered relative to
the image, in which case the (0, 0) offset is relative to the center
of the input images. If false, the (0,0) offset corresponds to the
upper left corner of the input images.

		normalized: An optional bool. Defaults to True.
indicates if the offset coordinates are normalized.

		uniform_noise: An optional bool. Defaults to True.
indicates if the noise should be generated using a
uniform distribution or a gaussian distribution.

		name: A name for the operation (optional).

Returns:

A Tensor of type float32.
A tensor representing the glimpses [batch_size, glimpse_height, glimpse_width, channels].

tf.image.crop_and_resize(image, boxes, box_ind, crop_size, method=None, extrapolation_value=None, name=None) {#crop_and_resize}

Extracts crops from the input image tensor and bilinearly resizes them (possibly

with aspect ratio change) to a common output size specified by crop_size. This
is more general than the crop_to_bounding_box op which extracts a fixed size
slice from the input image and does not allow resizing or aspect ratio change.

Returns a tensor with crops from the input image at positions defined at the
bounding box locations in boxes. The cropped boxes are all resized (with
bilinear interpolation) to a fixed size = [crop_height, crop_width]. The
result is a 4-D tensor [num_boxes, crop_height, crop_width, depth].

Args:

		image: A Tensor. Must be one of the following types: uint8, int8, int16, int32, int64, half, float32, float64.
A 4-D tensor of shape [batch, image_height, image_width, depth].
Both image_height and image_width need to be positive.

		boxes: A Tensor of type float32.
A 2-D tensor of shape [num_boxes, 4]. The i-th row of the tensor
specifies the coordinates of a box in the box_ind[i] image and is specified
in normalized coordinates [y1, x1, y2, x2]. A normalized coordinate value of
y is mapped to the image coordinate at y * (image_height - 1), so as the
[0, 1] interval of normalized image height is mapped to
[0, image_height - 1] in image height coordinates. We do allow y1 > y2, in which case the sampled crop is an up-down flipped version of the original image. The width dimension is treated similarly. Normalized coordinates outside the[0, 1]range are allowed, in which case we useextrapolation_value` to extrapolate the input image values.

		box_ind: A Tensor of type int32.
A 1-D tensor of shape [num_boxes] with int32 values in [0, batch).
The value of box_ind[i] specifies the image that the i-th box refers to.

		crop_size: A Tensor of type int32.
A 1-D tensor of 2 elements, size = [crop_height, crop_width]. All
cropped image patches are resized to this size. The aspect ratio of the image
content is not preserved. Both crop_height and crop_width need to be
positive.

		method: An optional string from: "bilinear". Defaults to "bilinear".
A string specifying the interpolation method. Only ‘bilinear’ is
supported for now.

		extrapolation_value: An optional float. Defaults to 0.
Value used for extrapolation, when applicable.

		name: A name for the operation (optional).

Returns:

A Tensor of type float32.
A 4-D tensor of shape [num_boxes, crop_height, crop_width, depth].

Flipping, Rotating and Transposing

tf.image.flip_up_down(image) {#flip_up_down}

Flip an image horizontally (upside down).

Outputs the contents of image flipped along the first dimension, which is
height.

See also reverse().

Args:

		image: A 3-D tensor of shape [height, width, channels].

Returns:

A 3-D tensor of the same type and shape as image.

Raises:

		ValueError: if the shape of image not supported.

tf.image.random_flip_up_down(image, seed=None) {#random_flip_up_down}

Randomly flips an image vertically (upside down).

With a 1 in 2 chance, outputs the contents of image flipped along the first
dimension, which is height. Otherwise output the image as-is.

Args:

		image: A 3-D tensor of shape [height, width, channels].

		seed: A Python integer. Used to create a random seed. See
set_random_seed
for behavior.

Returns:

A 3-D tensor of the same type and shape as image.

Raises:

		ValueError: if the shape of image not supported.

tf.image.flip_left_right(image) {#flip_left_right}

Flip an image horizontally (left to right).

Outputs the contents of image flipped along the second dimension, which is
width.

See also reverse().

Args:

		image: A 3-D tensor of shape [height, width, channels].

Returns:

A 3-D tensor of the same type and shape as image.

Raises:

		ValueError: if the shape of image not supported.

tf.image.random_flip_left_right(image, seed=None) {#random_flip_left_right}

Randomly flip an image horizontally (left to right).

With a 1 in 2 chance, outputs the contents of image flipped along the
second dimension, which is width. Otherwise output the image as-is.

Args:

		image: A 3-D tensor of shape [height, width, channels].

		seed: A Python integer. Used to create a random seed. See
set_random_seed
for behavior.

Returns:

A 3-D tensor of the same type and shape as image.

Raises:

		ValueError: if the shape of image not supported.

tf.image.transpose_image(image) {#transpose_image}

Transpose an image by swapping the first and second dimension.

See also transpose().

Args:

		image: 3-D tensor of shape [height, width, channels]

Returns:

A 3-D tensor of shape [width, height, channels]

Raises:

		ValueError: if the shape of image not supported.

tf.image.rot90(image, k=1, name=None) {#rot90}

Rotate an image counter-clockwise by 90 degrees.

Args:

		image: A 3-D tensor of shape [height, width, channels].

		k: A scalar integer. The number of times the image is rotated by 90 degrees.

		name: A name for this operation (optional).

Returns:

A rotated 3-D tensor of the same type and shape as image.

Converting Between Colorspaces.

Image ops work either on individual images or on batches of images, depending on
the shape of their input Tensor.

If 3-D, the shape is [height, width, channels], and the Tensor represents one
image. If 4-D, the shape is [batch_size, height, width, channels], and the
Tensor represents batch_size images.

Currently, channels can usefully be 1, 2, 3, or 4. Single-channel images are
grayscale, images with 3 channels are encoded as either RGB or HSV. Images
with 2 or 4 channels include an alpha channel, which has to be stripped from the
image before passing the image to most image processing functions (and can be
re-attached later).

Internally, images are either stored in as one float32 per channel per pixel
(implicitly, values are assumed to lie in [0,1)) or one uint8 per channel
per pixel (values are assumed to lie in [0,255]).

TensorFlow can convert between images in RGB or HSV. The conversion functions
work only on float images, so you need to convert images in other formats using
convert_image_dtype.

Example:

Decode an image and convert it to HSV.
rgb_image = tf.image.decode_png(..., channels=3)
rgb_image_float = tf.image.convert_image_dtype(rgb_image, tf.float32)
hsv_image = tf.image.rgb_to_hsv(rgb_image)

tf.image.rgb_to_grayscale(images, name=None) {#rgb_to_grayscale}

Converts one or more images from RGB to Grayscale.

Outputs a tensor of the same DType and rank as images. The size of the
last dimension of the output is 1, containing the Grayscale value of the
pixels.

Args:

		images: The RGB tensor to convert. Last dimension must have size 3 and
should contain RGB values.

		name: A name for the operation (optional).

Returns:

The converted grayscale image(s).

tf.image.grayscale_to_rgb(images, name=None) {#grayscale_to_rgb}

Converts one or more images from Grayscale to RGB.

Outputs a tensor of the same DType and rank as images. The size of the
last dimension of the output is 3, containing the RGB value of the pixels.

Args:

		images: The Grayscale tensor to convert. Last dimension must be size 1.

		name: A name for the operation (optional).

Returns:

The converted grayscale image(s).

tf.image.hsv_to_rgb(images, name=None) {#hsv_to_rgb}

Convert one or more images from HSV to RGB.

Outputs a tensor of the same shape as the images tensor, containing the RGB
value of the pixels. The output is only well defined if the value in images
are in [0,1].

See rgb_to_hsv for a description of the HSV encoding.

Args:

		images: A Tensor. Must be one of the following types: float32, float64.
1-D or higher rank. HSV data to convert. Last dimension must be size 3.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as images. images converted to RGB.

tf.image.rgb_to_hsv(images, name=None) {#rgb_to_hsv}

Converts one or more images from RGB to HSV.

Outputs a tensor of the same shape as the images tensor, containing the HSV
value of the pixels. The output is only well defined if the value in images
are in [0,1].

output[..., 0] contains hue, output[..., 1] contains saturation, and
output[..., 2] contains value. All HSV values are in [0,1]. A hue of 0
corresponds to pure red, hue 1/3 is pure green, and 2/3 is pure blue.

Args:

		images: A Tensor. Must be one of the following types: float32, float64.
1-D or higher rank. RGB data to convert. Last dimension must be size 3.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as images. images converted to HSV.

tf.image.convert_image_dtype(image, dtype, saturate=False, name=None) {#convert_image_dtype}

Convert image to dtype, scaling its values if needed.

Images that are represented using floating point values are expected to have
values in the range [0,1). Image data stored in integer data types are
expected to have values in the range [0,MAX], where MAX is the largest
positive representable number for the data type.

This op converts between data types, scaling the values appropriately before
casting.

Note that converting from floating point inputs to integer types may lead to
over/underflow problems. Set saturate to True to avoid such problem in
problematic conversions. If enabled, saturation will clip the output into the
allowed range before performing a potentially dangerous cast (and only before
performing such a cast, i.e., when casting from a floating point to an integer
type, and when casting from a signed to an unsigned type; saturate has no
effect on casts between floats, or on casts that increase the type’s range).

Args:

		image: An image.

		dtype: A DType to convert image to.

		saturate: If True, clip the input before casting (if necessary).

		name: A name for this operation (optional).

Returns:

image, converted to dtype.

Image Adjustments

TensorFlow provides functions to adjust images in various ways: brightness,
contrast, hue, and saturation. Each adjustment can be done with predefined
parameters or with random parameters picked from predefined intervals. Random
adjustments are often useful to expand a training set and reduce overfitting.

If several adjustments are chained it is advisable to minimize the number of
redundant conversions by first converting the images to the most natural data
type and representation (RGB or HSV).

tf.image.adjust_brightness(image, delta) {#adjust_brightness}

Adjust the brightness of RGB or Grayscale images.

This is a convenience method that converts an RGB image to float
representation, adjusts its brightness, and then converts it back to the
original data type. If several adjustments are chained it is advisable to
minimize the number of redundant conversions.

The value delta is added to all components of the tensor image. Both
image and delta are converted to float before adding (and image is
scaled appropriately if it is in fixed-point representation). For regular
images, delta should be in the range [0,1), as it is added to the image in
floating point representation, where pixel values are in the [0,1) range.

Args:

		image: A tensor.

		delta: A scalar. Amount to add to the pixel values.

Returns:

A brightness-adjusted tensor of the same shape and type as image.

tf.image.random_brightness(image, max_delta, seed=None) {#random_brightness}

Adjust the brightness of images by a random factor.

Equivalent to adjust_brightness() using a delta randomly picked in the
interval [-max_delta, max_delta).

Args:

		image: An image.

		max_delta: float, must be non-negative.

		seed: A Python integer. Used to create a random seed. See
set_random_seed
for behavior.

Returns:

The brightness-adjusted image.

Raises:

		ValueError: if max_delta is negative.

tf.image.adjust_contrast(images, contrast_factor) {#adjust_contrast}

Adjust contrast of RGB or grayscale images.

This is a convenience method that converts an RGB image to float
representation, adjusts its contrast, and then converts it back to the
original data type. If several adjustments are chained it is advisable to
minimize the number of redundant conversions.

images is a tensor of at least 3 dimensions. The last 3 dimensions are
interpreted as [height, width, channels]. The other dimensions only
represent a collection of images, such as [batch, height, width, channels].

Contrast is adjusted independently for each channel of each image.

For each channel, this Op computes the mean of the image pixels in the
channel and then adjusts each component x of each pixel to
(x - mean) * contrast_factor + mean.

Args:

		images: Images to adjust. At least 3-D.

		contrast_factor: A float multiplier for adjusting contrast.

Returns:

The contrast-adjusted image or images.

tf.image.random_contrast(image, lower, upper, seed=None) {#random_contrast}

Adjust the contrast of an image by a random factor.

Equivalent to adjust_contrast() but uses a contrast_factor randomly
picked in the interval [lower, upper].

Args:

		image: An image tensor with 3 or more dimensions.

		lower: float. Lower bound for the random contrast factor.

		upper: float. Upper bound for the random contrast factor.

		seed: A Python integer. Used to create a random seed. See
set_random_seed
for behavior.

Returns:

The contrast-adjusted tensor.

Raises:

		ValueError: if upper <= lower or if lower < 0.

tf.image.adjust_hue(image, delta, name=None) {#adjust_hue}

Adjust hue of an RGB image.

This is a convenience method that converts an RGB image to float
representation, converts it to HSV, add an offset to the hue channel, converts
back to RGB and then back to the original data type. If several adjustments
are chained it is advisable to minimize the number of redundant conversions.

image is an RGB image. The image hue is adjusted by converting the
image to HSV and rotating the hue channel (H) by
delta. The image is then converted back to RGB.

delta must be in the interval [-1, 1].

Args:

		image: RGB image or images. Size of the last dimension must be 3.

		delta: float. How much to add to the hue channel.

		name: A name for this operation (optional).

Returns:

Adjusted image(s), same shape and DType as image.

tf.image.random_hue(image, max_delta, seed=None) {#random_hue}

Adjust the hue of an RGB image by a random factor.

Equivalent to adjust_hue() but uses a delta randomly
picked in the interval [-max_delta, max_delta].

max_delta must be in the interval [0, 0.5].

Args:

		image: RGB image or images. Size of the last dimension must be 3.

		max_delta: float. Maximum value for the random delta.

		seed: An operation-specific seed. It will be used in conjunction
with the graph-level seed to determine the real seeds that will be
used in this operation. Please see the documentation of
set_random_seed for its interaction with the graph-level random seed.

Returns:

3-D float tensor of shape [height, width, channels].

Raises:

		ValueError: if max_delta is invalid.

tf.image.adjust_saturation(image, saturation_factor, name=None) {#adjust_saturation}

Adjust saturation of an RGB image.

This is a convenience method that converts an RGB image to float
representation, converts it to HSV, add an offset to the saturation channel,
converts back to RGB and then back to the original data type. If several
adjustments are chained it is advisable to minimize the number of redundant
conversions.

image is an RGB image. The image saturation is adjusted by converting the
image to HSV and multiplying the saturation (S) channel by
saturation_factor and clipping. The image is then converted back to RGB.

Args:

		image: RGB image or images. Size of the last dimension must be 3.

		saturation_factor: float. Factor to multiply the saturation by.

		name: A name for this operation (optional).

Returns:

Adjusted image(s), same shape and DType as image.

tf.image.random_saturation(image, lower, upper, seed=None) {#random_saturation}

Adjust the saturation of an RGB image by a random factor.

Equivalent to adjust_saturation() but uses a saturation_factor randomly
picked in the interval [lower, upper].

Args:

		image: RGB image or images. Size of the last dimension must be 3.

		lower: float. Lower bound for the random saturation factor.

		upper: float. Upper bound for the random saturation factor.

		seed: An operation-specific seed. It will be used in conjunction
with the graph-level seed to determine the real seeds that will be
used in this operation. Please see the documentation of
set_random_seed for its interaction with the graph-level random seed.

Returns:

Adjusted image(s), same shape and DType as image.

Raises:

		ValueError: if upper <= lower or if lower < 0.

tf.image.per_image_whitening(image) {#per_image_whitening}

Linearly scales image to have zero mean and unit norm.

This op computes (x - mean) / adjusted_stddev, where mean is the average
of all values in image, and
adjusted_stddev = max(stddev, 1.0/sqrt(image.NumElements())).

stddev is the standard deviation of all values in image. It is capped
away from zero to protect against division by 0 when handling uniform images.

Note that this implementation is limited:

		It only whitens based on the statistics of an individual image.

		It does not take into account the covariance structure.

Args:

		image: 3-D tensor of shape [height, width, channels].

Returns:

The whitened image with same shape as image.

Raises:

		ValueError: if the shape of ‘image’ is incompatible with this function.

Working with Bounding Boxes

tf.image.draw_bounding_boxes(images, boxes, name=None) {#draw_bounding_boxes}

Draw bounding boxes on a batch of images.

Outputs a copy of images but draws on top of the pixels zero or more bounding
boxes specified by the locations in boxes. The coordinates of the each
bounding box in boxes are encoded as [y_min, x_min, y_max, x_max]. The
bounding box coordinates are floats in [0.0, 1.0] relative to the width and
height of the underlying image.

For example, if an image is 100 x 200 pixels and the bounding box is
[0.1, 0.2, 0.5, 0.9], the bottom-left and upper-right coordinates of the
bounding box will be (10, 40) to (50, 180).

Parts of the bounding box may fall outside the image.

Args:

		images: A Tensor. Must be one of the following types: float32, half.
4-D with shape [batch, height, width, depth]. A batch of images.

		boxes: A Tensor of type float32.
3-D with shape [batch, num_bounding_boxes, 4] containing bounding
boxes.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as images.
4-D with the same shape as images. The batch of input images with
bounding boxes drawn on the images.

tf.image.non_max_suppression(boxes, scores, max_output_size, iou_threshold=None, name=None) {#non_max_suppression}

Greedily selects a subset of bounding boxes in descending order of score,

pruning away boxes that have high intersection-over-union (IOU) overlap
with previously selected boxes. Bounding boxes are supplied as
[y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any
diagonal pair of box corners and the coordinates can be provided as normalized
(i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm
is agnostic to where the origin is in the coordinate system. Note that this
algorithm is invariant to orthogonal transformations and translations
of the coordinate system; thus translating or reflections of the coordinate
system result in the same boxes being selected by the algorithm.

The output of this operation is a set of integers indexing into the input
collection of bounding boxes representing the selected boxes. The bounding
box coordinates corresponding to the selected indices can then be obtained
using the tf.gather operation. For example:

selected_indices = tf.image.non_max_suppression(
boxes, scores, max_output_size, iou_threshold)
selected_boxes = tf.gather(boxes, selected_indices)

Args:

		boxes: A Tensor of type float32.
A 2-D float tensor of shape [num_boxes, 4].

		scores: A Tensor of type float32.
A 1-D float tensor of shape [num_boxes] representing a single
score corresponding to each box (each row of boxes).

		max_output_size: A Tensor of type int32.
A scalar integer tensor representing the maximum number of
boxes to be selected by non max suppression.

		iou_threshold: An optional float. Defaults to 0.5.
A float representing the threshold for deciding whether boxes
overlap too much with respect to IOU.

		name: A name for the operation (optional).

Returns:

A Tensor of type int32.
A 1-D integer tensor of shape [M] representing the selected
indices from the boxes tensor, where M <= max_output_size.

tf.image.sample_distorted_bounding_box(image_size, bounding_boxes, seed=None, seed2=None, min_object_covered=None, aspect_ratio_range=None, area_range=None, max_attempts=None, use_image_if_no_bounding_boxes=None, name=None) {#sample_distorted_bounding_box}

Generate a single randomly distorted bounding box for an image.

Bounding box annotations are often supplied in addition to ground-truth labels
in image recognition or object localization tasks. A common technique for
training such a system is to randomly distort an image while preserving
its content, i.e. data augmentation. This Op outputs a randomly distorted
localization of an object, i.e. bounding box, given an image_size,
bounding_boxes and a series of constraints.

The output of this Op is a single bounding box that may be used to crop the
original image. The output is returned as 3 tensors: begin, size and
bboxes. The first 2 tensors can be fed directly into tf.slice to crop the
image. The latter may be supplied to tf.image.draw_bounding_box to visualize
what the bounding box looks like.

Bounding boxes are supplied and returned as [y_min, x_min, y_max, x_max]. The
bounding box coordinates are floats in [0.0, 1.0] relative to the width and
height of the underlying image.

For example,

Generate a single distorted bounding box.
begin, size, bbox_for_draw = tf.image.sample_distorted_bounding_box(
 tf.shape(image),
 bounding_boxes=bounding_boxes)

Draw the bounding box in an image summary.
image_with_box = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0),
 bbox_for_draw)
tf.image_summary('images_with_box', image_with_box)

Employ the bounding box to distort the image.
distorted_image = tf.slice(image, begin, size)

Note that if no bounding box information is available, setting
use_image_if_no_bounding_boxes = true will assume there is a single implicit
bounding box covering the whole image. If use_image_if_no_bounding_boxes is
false and no bounding boxes are supplied, an error is raised.

Args:

		image_size: A Tensor. Must be one of the following types: uint8, int8, int16, int32, int64.
1-D, containing [height, width, channels].

		bounding_boxes: A Tensor of type float32.
3-D with shape [batch, N, 4] describing the N bounding boxes
associated with the image.

		seed: An optional int. Defaults to 0.
If either seed or seed2 are set to non-zero, the random number
generator is seeded by the given seed. Otherwise, it is seeded by a random
seed.

		seed2: An optional int. Defaults to 0.
A second seed to avoid seed collision.

		min_object_covered: An optional float. Defaults to 0.1.
The cropped area of the image must contain at least this
fraction of any bounding box supplied.

		aspect_ratio_range: An optional list of floats. Defaults to [0.75, 1.33].
The cropped area of the image must have an aspect ratio =
width / height within this range.

		area_range: An optional list of floats. Defaults to [0.05, 1].
The cropped area of the image must contain a fraction of the
supplied image within in this range.

		max_attempts: An optional int. Defaults to 100.
Number of attempts at generating a cropped region of the image
of the specified constraints. After max_attempts failures, return the entire
image.

		use_image_if_no_bounding_boxes: An optional bool. Defaults to False.
Controls behavior if no bounding boxes supplied.
If true, assume an implicit bounding box covering the whole input. If false,
raise an error.

		name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (begin, size, bboxes).

		begin: A Tensor. Has the same type as image_size. 1-D, containing [offset_height, offset_width, 0]. Provide as input to
tf.slice.

		size: A Tensor. Has the same type as image_size. 1-D, containing [target_height, target_width, -1]. Provide as input to
tf.slice.

		bboxes: A Tensor of type float32. 3-D with shape [1, 1, 4] containing the distorted bounding box.
Provide as input to tf.image.draw_bounding_boxes.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/summary.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Summary Operations

[TOC]

This module contains ops for generating summaries.

Summary Ops

tf.summary.tensor_summary(display_name, tensor, description='', labels=None, collections=None, name=None) {#tensor_summary}

Outputs a Summary protocol buffer with a serialized tensor.proto.

The generated
Summary [https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto]
has one summary value containing the input tensor.

Args:

		display_name: A name to associate with the data series. Will be used to
organize output data and as a name in visualizers.

		tensor: A tensor of any type and shape to serialize.

		description: An optional long description of the data being output.

		labels: a list of strings used to specify how the data can be interpreted,
for example:
		'encoding:image/jpg' for a string tensor containing jpg images

		'encoding:proto/X/Y/foo.proto' for a string tensor containing Foos

		'group:$groupName/$roleInGroup' for a tensor that is related to
other tensors that are all in a group. (e.g. bounding boxes and images)

		collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to [GraphKeys.SUMMARIES].

		name: An optional name for the generated node (optional).

Returns:

A scalar Tensor of type string. The serialized Summary protocol
buffer.

tf.summary.scalar(display_name, tensor, description='', labels=None, collections=None, name=None) {#scalar}

Outputs a Summary protocol buffer containing a single scalar value.

The generated Summary has a Tensor.proto containing the input Tensor.

Args:

		display_name: A name to associate with the data series. Will be used to
organize output data and as a name in visualizers.

		tensor: A tensor containing a single floating point or integer value.

		description: An optional long description of the data being output.

		labels: a list of strings used to attach metadata.

		collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to [GraphKeys.SUMMARIES].

		name: An optional name for the generated node (optional).

Returns:

A scalar Tensor of type string. Which contains a Summary protobuf.

Raises:

		ValueError: If tensor has the wrong shape or type.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/contrib.graph_editor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Graph Editor (contrib)

[TOC]

TensorFlow Graph Editor.

The TensorFlow Graph Editor library allows for modification of an existing
tf.Graph instance in-place.

The author’s github username is purpledog [https://github.com/purpledog].

Library overview

Appending new nodes is the only graph editing operation allowed by the
TensorFlow core library. The Graph Editor library is an attempt to allow for
other kinds of editing operations, namely, rerouting and transforming.

		rerouting is a local operation consisting in re-plugging existing tensors
(the edges of the graph). Operations (the nodes) are not modified by this
operation. For example, rerouting can be used to insert an operation adding
noise in place of an existing tensor.

		transforming is a global operation consisting in transforming a graph into
another. By default, a transformation is a simple copy but it can be
customized to achieved other goals. For instance, a graph can be transformed
into another one in which noise is added after all the operations of a
specific type.

Important: modifying a graph in-place with the Graph Editor must be done
offline, that is, without any active sessions.

Of course new operations can be appended online but Graph Editor specific
operations like rerouting and transforming can currently only be done offline.

Here is an example of what you cannot do:

		Build a graph.

		Create a session and run the graph.

		Modify the graph with the Graph Editor.

		Re-run the graph with the same previously created session.

To edit an already running graph, follow these steps:

		Build a graph.

		Create a session and run the graph.

		Save the graph state and terminate the session

		Modify the graph with the Graph Editor.

		create a new session and restore the graph state

		Re-run the graph with the newly created session.

Note that this procedure is very costly because a new session must be created
after any modifications. Among other things, it takes time because the entire
graph state must be saved and restored again.

Sub-graph

Most of the functions in the Graph Editor library operate on sub-graph.
More precisely, they take as input arguments instances of the SubGraphView class
(or anything which can be converted to it). Doing so allows the same function
to transparently operate on single operations as well as sub-graph of any size.

A subgraph can be created in several ways:

		using a list of ops:

my_sgv = ge.sgv(ops)

		from a name scope:

my_sgv = ge.sgv_scope("foo/bar", graph=tf.get_default_graph())

		using regular expression:

my_sgv = ge.sgv("foo/.*/.*read$", graph=tf.get_default_graph())

Note that the Graph Editor is meant to manipulate several graphs at the same
time, typically during transform or copy operation. For that reason,
to avoid any confusion, the default graph is never used and the graph on
which to operate must always be explicitely given. This is the reason why
graph=tf.get_default_graph() is used in the code snippets above.

Modules overview

		util: utility functions.

		select: various selection methods of TensorFlow tensors and operations.

		match: TensorFlow graph matching. Think of this as regular expressions for
graphs (but not quite yet).

		reroute: various ways of rerouting tensors to different consuming ops like
swap or reroute_a2b.

		subgraph: the SubGraphView class, which enables subgraph manipulations in a
TensorFlow tf.Graph.

		edit: various editing functions operating on subgraphs like detach,
connect or bypass.

		transform: the Transformer class, which enables transforming
(or simply copying) a subgraph into another one.

Module: util

tf.contrib.graph_editor.make_list_of_op(ops, check_graph=True, allow_graph=True, ignore_ts=False) {#make_list_of_op}

Convert ops to a list of tf.Operation.

Args:

		ops: can be an iterable of tf.Operation, a tf.Graph or a single operation.

		check_graph: if True check if all the operations belong to the same graph.

		allow_graph: if False a tf.Graph cannot be converted.

		ignore_ts: if True, silently ignore tf.Tensor.

Returns:

A newly created list of tf.Operation.

Raises:

		TypeError: if ops cannot be converted to a list of tf.Operation or,
if check_graph is True, if all the ops do not belong to the same graph.

tf.contrib.graph_editor.get_tensors(graph) {#get_tensors}

get all the tensors which are input or output of an op in the graph.

Args:

		graph: a tf.Graph.

Returns:

A list of tf.Tensor.

Raises:

		TypeError: if graph is not a tf.Graph.

tf.contrib.graph_editor.make_list_of_t(ts, check_graph=True, allow_graph=True, ignore_ops=False) {#make_list_of_t}

Convert ts to a list of tf.Tensor.

Args:

		ts: can be an iterable of tf.Tensor, a tf.Graph or a single tensor.

		check_graph: if True check if all the tensors belong to the same graph.

		allow_graph: if False a tf.Graph cannot be converted.

		ignore_ops: if True, silently ignore tf.Operation.

Returns:

A newly created list of tf.Tensor.

Raises:

		TypeError: if ts cannot be converted to a list of tf.Tensor or,
if check_graph is True, if all the ops do not belong to the same graph.

tf.contrib.graph_editor.get_generating_ops(ts) {#get_generating_ops}

Return all the generating ops of the tensors in ts.

Args:

		ts: a list of tf.Tensor

Returns:

A list of all the generating tf.Operation of the tensors in ts.

Raises:

		TypeError: if ts cannot be converted to a list of tf.Tensor.

tf.contrib.graph_editor.get_consuming_ops(ts) {#get_consuming_ops}

Return all the consuming ops of the tensors in ts.

Args:

		ts: a list of tf.Tensor

Returns:

A list of all the consuming tf.Operation of the tensors in ts.

Raises:

		TypeError: if ts cannot be converted to a list of tf.Tensor.

class tf.contrib.graph_editor.ControlOutputs {#ControlOutputs}

The control outputs topology.

tf.contrib.graph_editor.ControlOutputs.__init__(graph) {#ControlOutputs.init}

Create a dictionary of control-output dependencies.

Args:

		graph: a tf.Graph.

Returns:

A dictionary where a key is a tf.Operation instance and the corresponding
value is a list of all the ops which have the key as one of their
control-input dependencies.

Raises:

		TypeError: graph is not a tf.Graph.

tf.contrib.graph_editor.ControlOutputs.get(op) {#ControlOutputs.get}

return the control outputs of op.

tf.contrib.graph_editor.ControlOutputs.get_all() {#ControlOutputs.get_all}

tf.contrib.graph_editor.ControlOutputs.graph {#ControlOutputs.graph}

tf.contrib.graph_editor.ControlOutputs.update() {#ControlOutputs.update}

Update the control outputs if the graph has changed.

tf.contrib.graph_editor.placeholder_name(t=None, scope=None) {#placeholder_name}

Create placeholder name for tjhe graph editor.

Args:

		t: optional tensor on which the placeholder operation’s name will be based
on

		scope: absolute scope with which to predix the placeholder’s name. None
means that the scope of t is preserved. “” means the root scope.

Returns:

A new placeholder name prefixed by “geph”. Note that “geph” stands for
Graph Editor PlaceHolder. This convention allows to quickly identify the
placeholder generated by the Graph Editor.

Raises:

		TypeError: if t is not None or a tf.Tensor.

tf.contrib.graph_editor.make_placeholder_from_tensor(t, scope=None) {#make_placeholder_from_tensor}

Create a tf.placeholder for the Graph Editor.

Note that the correct graph scope must be set by the calling function.

Args:

		t: a tf.Tensor whose name will be used to create the placeholder
(see function placeholder_name).

		scope: absolute scope within which to create the placeholder. None
means that the scope of t is preserved. “” means the root scope.

Returns:

A newly created tf.placeholder.

Raises:

		TypeError: if t is not None or a tf.Tensor.

tf.contrib.graph_editor.make_placeholder_from_dtype_and_shape(dtype, shape=None, scope=None) {#make_placeholder_from_dtype_and_shape}

Create a tf.placeholder for the Graph Editor.

Note that the correct graph scope must be set by the calling function.
The placeholder is named using the function placeholder_name (with no
tensor argument).

Args:

		dtype: the tensor type.

		shape: the tensor shape (optional).

		scope: absolute scope within which to create the placeholder. None
means that the scope of t is preserved. “” means the root scope.

Returns:

A newly created tf.placeholder.

Module: select

tf.contrib.graph_editor.filter_ts(ops, positive_filter) {#filter_ts}

Get all the tensors which are input or output of an op in ops.

Args:

		ops: an object convertible to a list of tf.Operation.

		positive_filter: a function deciding whether to keep a tensor or not.
If True, all the tensors are returned.

Returns:

A list of tf.Tensor.

Raises:

		TypeError: if ops cannot be converted to a list of tf.Operation.

tf.contrib.graph_editor.filter_ts_from_regex(ops, regex) {#filter_ts_from_regex}

Get all the tensors linked to ops that match the given regex.

Args:

		ops: an object convertible to a list of tf.Operation.

		regex: a regular expression matching the tensors’ name.
For example, “^foo(/.*)?:\d+$” will match all the tensors in the “foo”
scope.

Returns:

A list of tf.Tensor.

Raises:

		TypeError: if ops cannot be converted to a list of tf.Operation.

tf.contrib.graph_editor.filter_ops(ops, positive_filter) {#filter_ops}

Get the ops passing the given filter.

Args:

		ops: an object convertible to a list of tf.Operation.

		positive_filter: a function deciding where to keep an operation or not.
If True, all the operations are returned.

Returns:

A list of selected tf.Operation.

Raises:

		TypeError: if ops cannot be converted to a list of tf.Operation.

tf.contrib.graph_editor.filter_ops_from_regex(ops, regex) {#filter_ops_from_regex}

Get all the operations that match the given regex.

Args:

		ops: an object convertible to a list of tf.Operation.

		regex: a regular expression matching the operation’s name.
For example, “^foo(/.*)?$” will match all the operations in the “foo”
scope.

Returns:

A list of tf.Operation.

Raises:

		TypeError: if ops cannot be converted to a list of tf.Operation.

tf.contrib.graph_editor.get_name_scope_ops(ops, scope) {#get_name_scope_ops}

Get all the operations under the given scope path.

Args:

		ops: an object convertible to a list of tf.Operation.

		scope: a scope path.

Returns:

A list of tf.Operation.

Raises:

		TypeError: if ops cannot be converted to a list of tf.Operation.

tf.contrib.graph_editor.check_cios(control_inputs=False, control_outputs=None, control_ios=None) {#check_cios}

Do various check on control_inputs and control_outputs.

Args:

		control_inputs: A boolean indicating whether control inputs are enabled.

		control_outputs: An instance of util.ControlOutputs or None. If not None,
control outputs are enabled.

		control_ios: An instance of util.ControlOutputs or None. If not None, both
control inputs and control outputs are enabled. This is equivalent to set
control_inputs to True and control_outputs to the util.ControlOutputs
instance.

Returns:

A tuple (control_inputs, control_outputs) where:
control_inputs is a boolean indicating whether to use control inputs.
control_outputs is an instance of util.ControlOutputs or None

Raises:

		ValueError: if control_inputs is an instance of util.ControlOutputs but
control_outputs is not None

		TypeError: if control_outputs is not None and is not a util.ControlOutputs.

tf.contrib.graph_editor.get_ops_ios(ops, control_inputs=False, control_outputs=None, control_ios=None) {#get_ops_ios}

Return all the tf.Operation which are connected to an op in ops.

Args:

		ops: an object convertible to a list of tf.Operation.

		control_inputs: A boolean indicating whether control inputs are enabled.

		control_outputs: An instance of util.ControlOutputs or None. If not None,
control outputs are enabled.

		control_ios: An instance of util.ControlOutputs or None. If not None, both
control inputs and control outputs are enabled. This is equivalent to set
control_inputs to True and control_outputs to the util.ControlOutputs
instance.

Returns:

All the tf.Operation surrounding the given ops.

Raises:

		TypeError: if ops cannot be converted to a list of tf.Operation.

tf.contrib.graph_editor.compute_boundary_ts(ops, ambiguous_ts_are_outputs=True) {#compute_boundary_ts}

Compute the tensors at the boundary of a set of ops.

This function looks at all the tensors connected to the given ops (in/out)
and classify them into three categories:

		input tensors: tensors whose generating operation is not in ops.

		output tensors: tensors whose consumer operations are not in ops

		inside tensors: tensors which are neither input nor output tensors.

Args:

		ops: an object convertible to a list of tf.Operation.

		ambiguous_ts_are_outputs: a tensor can have consumers both inside and
outside ops. Such tensors are treated as outside tensor if
ambiguous_ts_are_outputs is True, otherwise they are treated as
inside tensor.

Returns:

A tuple (outside_input_ts, outside_output_ts, inside_ts) where:
outside_input_ts is a Python list of input tensors;
outside_output_ts is a python list of output tensors;
inside_ts is a python list of inside tensors.

Raises:

		TypeError: if ops cannot be converted to a list of tf.Operation.

tf.contrib.graph_editor.get_within_boundary_ops(ops, seed_ops, boundary_ops=(), inclusive=True, control_inputs=False, control_outputs=None, control_ios=None) {#get_within_boundary_ops}

Return all the tf.Operation within the given boundary.

Args:

		ops: an object convertible to a list of tf.Operation. those ops define the
set in which to perform the operation (if a tf.Graph is given, it
will be converted to the list of all its operations).

		seed_ops: the operations from which to start expanding.

		boundary_ops: the ops forming the boundary.

		inclusive: if True, the result will also include the boundary ops.

		control_inputs: A boolean indicating whether control inputs are enabled.

		control_outputs: An instance of util.ControlOutputs or None. If not None,
control outputs are enabled.

		control_ios: An instance of util.ControlOutputs or None. If not None, both
control inputs and control outputs are enabled. This is equivalent to set
control_inputs to True and control_outputs to the util.ControlOutputs
instance.

Returns:

All the tf.Operation surrounding the given ops.

Raises:

		TypeError: if ops or seed_ops cannot be converted to a list of tf.Operation.

		ValueError: if the boundary is intersecting with the seeds.

tf.contrib.graph_editor.get_forward_walk_ops(seed_ops, inclusive=True, within_ops=None, stop_at_ts=(), control_outputs=None) {#get_forward_walk_ops}

Do a forward graph walk and return all the visited ops.

Args:

		seed_ops: an iterable of operations from which the forward graph
walk starts. If a list of tensors is given instead, the seed_ops are set
to be the consumers of those tensors.

		inclusive: if True the given seed_ops are also part of the resulting set.

		within_ops: an iterable of tf.Operation whithin which the search is
restricted. If within_ops is None, the search is performed within
the whole graph.

		stop_at_ts: an iterable of tensors at which the graph walk stops.

		control_outputs: a util.ControlOutputs instance or None.
If not None, it will be used while walking the graph forward.

Returns:

A Python set of all the tf.Operation ahead of seed_ops.

Raises:

		TypeError: if seed_ops or within_ops cannot be converted to a list of
tf.Operation.

tf.contrib.graph_editor.get_backward_walk_ops(seed_ops, inclusive=True, within_ops=None, stop_at_ts=(), control_inputs=False) {#get_backward_walk_ops}

Do a backward graph walk and return all the visited ops.

Args:

		seed_ops: an iterable of operations from which the backward graph
walk starts. If a list of tensors is given instead, the seed_ops are set
to be the generators of those tensors.

		inclusive: if True the given seed_ops are also part of the resulting set.

		within_ops: an iterable of tf.Operation whithin which the search is
restricted. If within_ops is None, the search is performed within
the whole graph.

		stop_at_ts: an iterable of tensors at which the graph walk stops.

		control_inputs: if True, control inputs will be used while moving backward.

Returns:

A Python set of all the tf.Operation behind seed_ops.

Raises:

		TypeError: if seed_ops or within_ops cannot be converted to a list of
tf.Operation.

tf.contrib.graph_editor.get_walks_intersection_ops(forward_seed_ops, backward_seed_ops, forward_inclusive=True, backward_inclusive=True, within_ops=None, control_inputs=False, control_outputs=None, control_ios=None) {#get_walks_intersection_ops}

Return the intersection of a foward and a backward walk.

Args:

		forward_seed_ops: an iterable of operations from which the forward graph
walk starts. If a list of tensors is given instead, the seed_ops are set
to be the consumers of those tensors.

		backward_seed_ops: an iterable of operations from which the backward graph
walk starts. If a list of tensors is given instead, the seed_ops are set
to be the generators of those tensors.

		forward_inclusive: if True the given forward_seed_ops are also part of the
resulting set.

		backward_inclusive: if True the given backward_seed_ops are also part of the
resulting set.

		within_ops: an iterable of tf.Operation whithin which the search is
restricted. If within_ops is None, the search is performed within
the whole graph.

		control_inputs: A boolean indicating whether control inputs are enabled.

		control_outputs: An instance of util.ControlOutputs or None. If not None,
control outputs are enabled.

		control_ios: An instance of util.ControlOutputs or None. If not None, both
control inputs and control outputs are enabled. This is equivalent to set
control_inputs to True and control_outputs to the util.ControlOutputs
instance.

Returns:

A Python set of all the tf.Operation in the intersection of a foward and a
backward walk.

Raises:

		TypeError: if forward_seed_ops or backward_seed_ops or within_ops cannot be
converted to a list of tf.Operation.

tf.contrib.graph_editor.get_walks_union_ops(forward_seed_ops, backward_seed_ops, forward_inclusive=True, backward_inclusive=True, within_ops=None, control_inputs=False, control_outputs=None, control_ios=None) {#get_walks_union_ops}

Return the union of a foward and a backward walk.

Args:

		forward_seed_ops: an iterable of operations from which the forward graph
walk starts. If a list of tensors is given instead, the seed_ops are set
to be the consumers of those tensors.

		backward_seed_ops: an iterable of operations from which the backward graph
walk starts. If a list of tensors is given instead, the seed_ops are set
to be the generators of those tensors.

		forward_inclusive: if True the given forward_seed_ops are also part of the
resulting set.

		backward_inclusive: if True the given backward_seed_ops are also part of the
resulting set.

		within_ops: restrict the search within those operations. If within_ops is
None, the search is done within the whole graph.

		control_inputs: A boolean indicating whether control inputs are enabled.

		control_outputs: An instance of util.ControlOutputs or None. If not None,
control outputs are enabled.

		control_ios: An instance of util.ControlOutputs or None. If not None, both
control inputs and control outputs are enabled. This is equivalent to set
control_inputs to True and control_outputs to the util.ControlOutputs
instance.

Returns:

A Python set of all the tf.Operation in the union of a foward and a
backward walk.

Raises:

		TypeError: if forward_seed_ops or backward_seed_ops or within_ops cannot be
converted to a list of tf.Operation.

tf.contrib.graph_editor.select_ops(*args, **kwargs) {#select_ops}

Helper to select operations.

Args:

		*args: list of 1) regular expressions (compiled or not) or 2) (array of)
tf.Operation. tf.Tensor instances are silently ignored.

		**kwargs: ‘graph’: tf.Graph in which to perform the regex query.This is
required when using regex.
‘positive_filter’: an elem if selected only if positive_filter(elem) is
True. This is optional.
‘restrict_ops_regex’: a regular expression is ignored if it doesn’t start
with the substring “(?#ops)”.

Returns:

A list of tf.Operation.

Raises:

		TypeError: if the optional keyword argument graph is not a tf.Graph
or if an argument in args is not an (array of) tf.Operation
or an (array of) tf.Tensor (silently ignored) or a string
or a regular expression.

		ValueError: if one of the keyword arguments is unexpected or if a regular
expression is used without passing a graph as a keyword argument.

tf.contrib.graph_editor.select_ts(*args, **kwargs) {#select_ts}

Helper to select tensors.

Args:

		*args: list of 1) regular expressions (compiled or not) or 2) (array of)
tf.Tensor. tf.Operation instances are silently ignored.

		**kwargs: ‘graph’: tf.Graph in which to perform the regex query.This is
required when using regex.
‘positive_filter’: an elem if selected only if positive_filter(elem) is
True. This is optional.
‘restrict_ts_regex’: a regular expression is ignored if it doesn’t start
with the substring “(?#ts)”.

Returns:

A list of tf.Tensor.

Raises:

		TypeError: if the optional keyword argument graph is not a tf.Graph
or if an argument in args is not an (array of) tf.Tensor
or an (array of) tf.Operation (silently ignored) or a string
or a regular expression.

		ValueError: if one of the keyword arguments is unexpected or if a regular
expression is used without passing a graph as a keyword argument.

tf.contrib.graph_editor.select_ops_and_ts(*args, **kwargs) {#select_ops_and_ts}

Helper to select operations and tensors.

Args:

		*args: list of 1) regular expressions (compiled or not) or 2) (array of)
tf.Operation 3) (array of) tf.Tensor. Regular expressions matching tensors
must start with the comment “(?#ts)”, for instance: “(?#ts)^foo/.*”.

		**kwargs: ‘graph’: tf.Graph in which to perform the regex query.This is
required when using regex.
‘positive_filter’: an elem if selected only if positive_filter(elem) is
True. This is optional.

Returns:

A tuple (ops, ts) where:
ops is a list of tf.Operation
ts is a list of tf.Tensor

Raises:

		TypeError: if the optional keyword argument graph is not a tf.Graph
or if an argument in args is not an (array of) tf.Tensor
or an (array of) tf.Operation or a string or a regular expression.

		ValueError: if one of the keyword arguments is unexpected or if a regular
expression is used without passing a graph as a keyword argument.

Module: subgraph

class tf.contrib.graph_editor.SubGraphView {#SubGraphView}

A subgraph view on an existing tf.Graph.

An instance of this class is a subgraph view on an existing tf.Graph.
“subgraph” means that it can represent part of the whole tf.Graph.
“view” means that it only provides a passive observation and do not to act
on the tf.Graph. Note that in this documentation, the term “subgraph” is often
used as substitute to “subgraph view”.

A subgraph contains:

		a list of input tensors, accessible via the “inputs” property.

		a list of output tensors, accessible via the “outputs” property.

		and the operations in between, accessible via the “ops” property.

An subgraph can be seen as a function F(i0, i1, ...) -> o0, o1, ... It is a
function which takes as input some input tensors and returns as output some
output tensors. The computation that the function performs is encoded in the
operations of the subgraph.

The tensors (input or output) can be of two kinds:

		connected: a connected tensor connects to at least one operation contained
in the subgraph. One example is a subgraph representing a single operation
and its inputs and outputs: all the input and output tensors of the op
are “connected”.

		passthrough: a passthrough tensor does not connect to any operation
contained in the subgraph. One example is a subgraph representing a
single tensor: this tensor is passthrough. By default a passthrough tensor is
present both in the input and output tensors of the subgraph. It can however
be remapped to only appear as an input (or output) only.

The input and output tensors can be remapped. For instance, some input tensor
can be ommited. For instance, a subgraph representing an operation with two
inputs can be remapped to only take one input. Note that this does not change
at all the underlying tf.Graph (remember, it is a view). It means that
the other input is being ignored, or is being treated as “given”.
The analogy with functions can be extended like this: F(x,y) is the original
function. Remapping the inputs from [x, y] to just [x] means that the subgraph
now represent the function F_y(x) (y is “given”).

The output tensors can also be remapped. For instance, some output tensor can
be ommited. Other output tensor can be duplicated as well. As mentioned
before, this does not change at all the underlying tf.Graph.
The analogy with functions can be extended like this: F(...)->x,y is the
original function. Remapping the outputs from [x, y] to just [y,y] means that
the subgraph now represent the function M(F(...)) where M is the function
M(a,b)->b,b.

It is useful to describe three other kind of tensors:

		internal: an internal tensor is a tensor connecting operations contained
in the subgraph. One example in the subgraph representing the two
operations A and B connected sequentially: -> A -> B ->. The middle arrow
is an internal tensor.

		actual input: an input tensor of the subgraph, regardless of whether it is
listed in “inputs” or not (masked-out).

		actual output: an output tensor of the subgraph, regardless of whether it is
listed in “outputs” or not (masked-out).

		hidden input: an actual input which has been masked-out using an
input remapping. In other word, a hidden input is a non-internal tensor
not listed as a input tensor and one of whose consumers belongs to
the subgraph.

		hidden output: a actual output which has been masked-out using an output
remapping. In other word, a hidden output is a non-internal tensor
not listed as an output and one of whose generating operations belongs to
the subgraph.

Here are some usefull guarantees about an instance of a SubGraphView:

		the input (or output) tensors are not internal.

		the input (or output) tensors are either “connected” or “passthrough”.

		the passthrough tensors are not connected to any of the operation of
the subgraph.

Note that there is no guarantee that an operation in a subgraph contributes
at all to its inputs or outputs. For instance, remapping both the inputs and
outputs to empty lists will produce a subgraph which still contains all the
original operations. However, the remove_unused_ops function can be used to
make a new subgraph view whose operations are connected to at least one of
the input or output tensors.

An instance of this class is meant to be a lightweight object which is not
modified in-place by the user. Rather, the user can create new modified
instances of a given subgraph. In that sense, the class SubGraphView is meant
to be used like an immutable python object.

A common problem when using views is that they can get out-of-sync with the
data they observe (in this case, a tf.Graph). This is up to the user to insure
that this doesn’t happen. To keep on the safe sife, it is recommended that
the life time of subgraph views are kept very short. One way to achieve this
is to use subgraphs within a “with make_sgv(...) as sgv:” Python context.

To alleviate the out-of-sync problem, some functions are granted the right to
modified subgraph in place. This is typically the case of graph manipulation
functions which, given some subgraphs as arguments, can modify the underlying
tf.Graph. Since this modification is likely to render the subgraph view
invalid, those functions can modify the argument in place to reflect the
change. For instance, calling the function swap_inputs(svg0, svg1) will modify
svg0 and svg1 in place to reflect the fact that their inputs have now being
swapped.

tf.contrib.graph_editor.SubGraphView.__bool__() {#SubGraphView.bool}

Allows for implicit boolean conversion.

tf.contrib.graph_editor.SubGraphView.__copy__() {#SubGraphView.copy}

Create a copy of this subgraph.

Note that this class is a “view”, copying it only create another view and
does not copy the underlying part of the tf.Graph.

Returns:

A new identical instance of the original subgraph view.

tf.contrib.graph_editor.SubGraphView.__enter__() {#SubGraphView.enter}

Allow Python context to minize the life time of a subgraph view.

A subgraph view is meant to be a lightweight and transient object. A short
lifetime will alleviate the “out-of-sync” issue mentioned earlier. For that
reason, a SubGraphView instance can be used within a Python context. For
example:

from tensorflow.contrib import graph_editor as ge
with ge.make_sgv(...) as sgv:
print(sgv)

Returns:

Itself.

tf.contrib.graph_editor.SubGraphView.__exit__(exc_type, exc_value, traceback) {#SubGraphView.exit}

tf.contrib.graph_editor.SubGraphView.__init__(inside_ops=(), passthrough_ts=()) {#SubGraphView.init}

Create a subgraph containing the given ops and the “passthrough” tensors.

Args:

		inside_ops: an object convertible to a list of tf.Operation. This list
defines all the operations in the subgraph.

		passthrough_ts: an object convertible to a list of tf.Tensor. This list
define all the “passthrough” tensors. A passthrough tensor is a tensor
which goes directly from the input of the subgraph to it output, without
any intermediate operations. All the non passthrough tensors are
silently ignored.

Raises:

		TypeError: if inside_ops cannot be converted to a list of tf.Operation or
if passthrough_ts cannot be converted to a list of tf.Tensor.

tf.contrib.graph_editor.SubGraphView.__nonzero__() {#SubGraphView.nonzero}

Allows for implicit boolean conversion.

tf.contrib.graph_editor.SubGraphView.__str__() {#SubGraphView.str}

tf.contrib.graph_editor.SubGraphView.connected_inputs {#SubGraphView.connected_inputs}

The connected input tensors of this subgraph view.

tf.contrib.graph_editor.SubGraphView.connected_outputs {#SubGraphView.connected_outputs}

The connected output tensors of this subgraph view.

tf.contrib.graph_editor.SubGraphView.consumers() {#SubGraphView.consumers}

Return a Python set of all the consumers of this subgraph view.

tf.contrib.graph_editor.SubGraphView.copy() {#SubGraphView.copy}

Return a copy of itself.

Note that this class is a “view”, copying it only create another view and
does not copy the underlying part of the tf.Graph.

Returns:

A new instance identical to the original one.

tf.contrib.graph_editor.SubGraphView.find_op_by_name(op_name) {#SubGraphView.find_op_by_name}

Return the op named op_name.

Args:

		op_name: the name to search for

Returns:

The op named op_name.

Raises:

		ValueError: if the op_name could not be found.

		AssertionError: if the name was found multiple time.

tf.contrib.graph_editor.SubGraphView.graph {#SubGraphView.graph}

The underlying tf.Graph.

tf.contrib.graph_editor.SubGraphView.input_index(t) {#SubGraphView.input_index}

Find the input index corresponding to the given input tensor t.

Args:

		t: the input tensor of this subgraph view.

Returns:

The index in the self.inputs list.

Raises:

		Error: if t in not an input tensor.

tf.contrib.graph_editor.SubGraphView.inputs {#SubGraphView.inputs}

The input tensors of this subgraph view.

tf.contrib.graph_editor.SubGraphView.is_passthrough(t) {#SubGraphView.is_passthrough}

Check whether a tensor is passthrough.

tf.contrib.graph_editor.SubGraphView.op(op_id) {#SubGraphView.op}

Get an op by its index.

tf.contrib.graph_editor.SubGraphView.ops {#SubGraphView.ops}

The operations in this subgraph view.

tf.contrib.graph_editor.SubGraphView.output_index(t) {#SubGraphView.output_index}

Find the output index corresponding to given output tensor t.

Args:

		t: the output tensor of this subgraph view.

Returns:

The index in the self.outputs list.

Raises:

		Error: if t in not an output tensor.

tf.contrib.graph_editor.SubGraphView.outputs {#SubGraphView.outputs}

The output tensors of this subgraph view.

tf.contrib.graph_editor.SubGraphView.passthroughs {#SubGraphView.passthroughs}

The passthrough tensors, going straight from input to output.

tf.contrib.graph_editor.SubGraphView.remap(new_input_indices=None, new_output_indices=None) {#SubGraphView.remap}

Remap the inputs and outputs of the subgraph.

Note that this is only modifying the view: the underlying tf.Graph is not
affected.

Args:

		new_input_indices: an iterable of integers representing a mapping between
the old inputs and the new ones. This mapping can be under-complete and
must be without repetitions.

		new_output_indices: an iterable of integers representing a mapping between
the old outputs and the new ones. This mapping can be under-complete and
can have repetitions.

Returns:

A new modified instance of the original subgraph view with remapped
inputs and outputs.

tf.contrib.graph_editor.SubGraphView.remap_default(remove_input_map=True, remove_output_map=True) {#SubGraphView.remap_default}

Remap the inputs and/or outputs to the default mapping.

Args:

		remove_input_map: if True the input map is reset to the default one.

		remove_output_map: if True the output map is reset to the default one.

Returns:

A new modified instance of the original subgraph view with its
input and/or output mapping reset to the default one.

tf.contrib.graph_editor.SubGraphView.remap_inputs(new_input_indices) {#SubGraphView.remap_inputs}

Remap the inputs of the subgraph.

If the inputs of the original subgraph are [t0, t1, t2], remapping to [2,0]
will create a new instance whose inputs is [t2, t0].

Note that this is only modifying the view: the underlying tf.Graph is not
affected.

Args:

		new_input_indices: an iterable of integers representing a mapping between
the old inputs and the new ones. This mapping can be under-complete and
must be without repetitions.

Returns:

A new modified instance of the original subgraph view with remapped
inputs.

tf.contrib.graph_editor.SubGraphView.remap_outputs(new_output_indices) {#SubGraphView.remap_outputs}

Remap the output of the subgraph.

If the output of the original subgraph are [t0, t1, t2], remapping to
[1,1,0] will create a new instance whose outputs is [t1, t1, t0].

Note that this is only modifying the view: the underlying tf.Graph is not
affected.

Args:

		new_output_indices: an iterable of integers representing a mapping between
the old outputs and the new ones. This mapping can be under-complete and
can have repetitions.

Returns:

A new modified instance of the original subgraph view with remapped
outputs.

tf.contrib.graph_editor.SubGraphView.remap_outputs_make_unique() {#SubGraphView.remap_outputs_make_unique}

Remap the outputs so that all the tensors appears only once.

tf.contrib.graph_editor.SubGraphView.remap_outputs_to_consumers() {#SubGraphView.remap_outputs_to_consumers}

Remap the outputs to match the number of consumers.

tf.contrib.graph_editor.SubGraphView.remove_unused_ops(control_inputs=True) {#SubGraphView.remove_unused_ops}

Remove unused ops.

Args:

		control_inputs: if True, control inputs are used to detect used ops.

Returns:

A new subgraph view which only contains used operations.

tf.contrib.graph_editor.make_view(*args, **kwargs) {#make_view}

Create a SubGraphView from selected operations and passthrough tensors.

Args:

		*args: list of 1) regular expressions (compiled or not) or 2) (array of)
tf.Operation 3) (array of) tf.Tensor. Those objects will be converted
into a list of operations and a list of candidate for passthrough tensors.

		**kwargs: keyword graph is used 1) to check that the ops and ts are from
the correct graph 2) for regular expression query

Returns:

A subgraph view.

Raises:

		TypeError: if the optional keyword argument graph is not a tf.Graph
or if an argument in args is not an (array of) tf.Tensor
or an (array of) tf.Operation or a string or a regular expression.

		ValueError: if one of the keyword arguments is unexpected.

tf.contrib.graph_editor.make_view_from_scope(scope, graph) {#make_view_from_scope}

Make a subgraph from a name scope.

Args:

		scope: the name of the scope.

		graph: the tf.Graph.

Returns:

A subgraph view representing the given scope.

Module: reroute

tf.contrib.graph_editor.swap_ts(ts0, ts1, can_modify=None, cannot_modify=None) {#swap_ts}

For each tensor’s pair, swap the end of (t0,t1).

B0 B1 B0 B1
| | => X
A0 A1 A0 A1

Args:

		ts0: an object convertible to a list of tf.Tensor.

		ts1: an object convertible to a list of tf.Tensor.

		can_modify: iterable of operations which can be modified. Any operation
outside within_ops will be left untouched by this function.

		cannot_modify: iterable of operations which cannot be modified.
Any operation within cannot_modify will be left untouched by this
function.

Returns:

The number of individual modifications made by the function.

Raises:

		TypeError: if ts0 or ts1 cannot be converted to a list of tf.Tensor.

		TypeError: if can_modify or cannot_modify is not None and cannot be
converted to a list of tf.Operation.

tf.contrib.graph_editor.reroute_a2b_ts(ts0, ts1, can_modify=None, cannot_modify=None) {#reroute_a2b_ts}

For each tensor’s pair, replace the end of t1 by the end of t0.

B0 B1 B0 B1
| | => |/
A0 A1 A0 A1

The end of the tensors in ts1 are left dangling.

Args:

		ts0: an object convertible to a list of tf.Tensor.

		ts1: an object convertible to a list of tf.Tensor.

		can_modify: iterable of operations which can be modified. Any operation
outside within_ops will be left untouched by this function.

		cannot_modify: iterable of operations which cannot be modified. Any
operation within cannot_modify will be left untouched by this function.

Returns:

The number of individual modifications made by the function.

Raises:

		TypeError: if ts0 or ts1 cannot be converted to a list of tf.Tensor.

		TypeError: if can_modify or cannot_modify is not None and cannot be
converted to a list of tf.Operation.

tf.contrib.graph_editor.reroute_b2a_ts(ts0, ts1, can_modify=None, cannot_modify=None) {#reroute_b2a_ts}

For each tensor’s pair, replace the end of t0 by the end of t1.

B0 B1 B0 B1
| | => |
A0 A1 A0 A1

The end of the tensors in ts0 are left dangling.

Args:

		ts0: an object convertible to a list of tf.Tensor.

		ts1: an object convertible to a list of tf.Tensor.

		can_modify: iterable of operations which can be modified. Any operation
outside within_ops will be left untouched by this function.

		cannot_modify: iterable of operations which cannot be modified.
Any operation within cannot_modify will be left untouched by this
function.

Returns:

The number of individual modifications made by the function.

Raises:

		TypeError: if ts0 or ts1 cannot be converted to a list of tf.Tensor.

		TypeError: if can_modify or cannot_modify is not None and cannot be
converted to a list of tf.Operation.

tf.contrib.graph_editor.swap_inputs(sgv0, sgv1) {#swap_inputs}

Swap all the inputs of sgv0 and sgv1 (see reroute_inputs).

tf.contrib.graph_editor.reroute_a2b_inputs(sgv0, sgv1) {#reroute_a2b_inputs}

Re-route all the inputs of sgv0 to sgv1 (see reroute_inputs).

tf.contrib.graph_editor.reroute_b2a_inputs(sgv0, sgv1) {#reroute_b2a_inputs}

Re-route all the inputs of sgv1 to sgv0 (see reroute_inputs).

tf.contrib.graph_editor.swap_outputs(sgv0, sgv1) {#swap_outputs}

Swap all the outputs of sgv0 and sgv1 (see _reroute_outputs).

tf.contrib.graph_editor.reroute_a2b_outputs(sgv0, sgv1) {#reroute_a2b_outputs}

Re-route all the outputs of sgv0 to sgv1 (see _reroute_outputs).

tf.contrib.graph_editor.reroute_b2a_outputs(sgv0, sgv1) {#reroute_b2a_outputs}

Re-route all the outputs of sgv1 to sgv0 (see _reroute_outputs).

tf.contrib.graph_editor.swap(sgv0, sgv1) {#swap}

Swap the inputs and outputs of sgv1 to sgv0 (see _reroute).

tf.contrib.graph_editor.reroute_a2b(sgv0, sgv1) {#reroute_a2b}

Re-route the inputs and outputs of sgv0 to sgv1 (see _reroute).

tf.contrib.graph_editor.reroute_b2a(sgv0, sgv1) {#reroute_b2a}

Re-route the inputs and outputs of sgv1 to sgv0 (see _reroute).

tf.contrib.graph_editor.remove_control_inputs(op, cops) {#remove_control_inputs}

Remove the control inputs cops from co.

Warning: this function is directly manipulating the internals of the tf.Graph.

Args:

		op: a tf.Operation from which to remove the control inputs.

		cops: an object convertible to a list of tf.Operation.

Raises:

		TypeError: if op is not a tf.Operation

		ValueError: if any cop in cops is not a control input of op.

tf.contrib.graph_editor.add_control_inputs(op, cops) {#add_control_inputs}

Add the control inputs cops to co.

Warning: this function is directly manipulating the internals of the tf.Graph.

Args:

		op: a tf.Operation to which the control inputs are added.

		cops: an object convertible to a list of tf.Operation.

Raises:

		TypeError: if op is not a tf.Operation

		ValueError: if any cop in cops is already a control input of op.

Module: edit

tf.contrib.graph_editor.detach_control_inputs(sgv) {#detach_control_inputs}

Detach all the external control inputs of the subgraph sgv.

Args:

		sgv: the subgraph view to be detached. This argument is converted to a
subgraph using the same rules as the function subgraph.make_view.

tf.contrib.graph_editor.detach_control_outputs(sgv, control_outputs) {#detach_control_outputs}

Detach all the external control outputs of the subgraph sgv.

Args:

		sgv: the subgraph view to be detached. This argument is converted to a
subgraph using the same rules as the function subgraph.make_view.

		control_outputs: a util.ControlOutputs instance.

tf.contrib.graph_editor.detach_inputs(sgv, control_inputs=False) {#detach_inputs}

Detach the inputs of a subgraph view.

Args:

		sgv: the subgraph view to be detached. This argument is converted to a
subgraph using the same rules as the function subgraph.make_view.
Note that sgv is modified in place.

		control_inputs: if True control_inputs are also detached.

Returns:

A tuple (sgv, input_placeholders) where
sgv is a new subgraph view of the detached subgraph;
input_placeholders is a list of the created input placeholders.

Raises:

		StandardError: if sgv cannot be converted to a SubGraphView using
the same rules than the function subgraph.make_view.

tf.contrib.graph_editor.detach_outputs(sgv, control_outputs=None) {#detach_outputs}

Detach the outputa of a subgraph view.

Args:

		sgv: the subgraph view to be detached. This argument is converted to a
subgraph using the same rules as the function subgraph.make_view.
Note that sgv is modified in place.

		control_outputs: a util.ControlOutputs instance or None. If not None the
control outputs are also detached.

Returns:

A tuple (sgv, output_placeholders) where
sgv is a new subgraph view of the detached subgraph;
output_placeholders is a list of the created output placeholders.

Raises:

		StandardError: if sgv cannot be converted to a SubGraphView using
the same rules than the function subgraph.make_view.

tf.contrib.graph_editor.detach(sgv, control_inputs=False, control_outputs=None, control_ios=None) {#detach}

Detach both the inputs and the outputs of a subgraph view.

Args:

		sgv: the subgraph view to be detached. This argument is converted to a
subgraph using the same rules as the function subgraph.make_view.
Note that sgv is modified in place.

		control_inputs: A boolean indicating whether control inputs are enabled.

		control_outputs: An instance of util.ControlOutputs or None. If not None,
control outputs are enabled.

		control_ios: An instance of util.ControlOutputs or None. If not None, both
control inputs and control outputs are enabled. This is equivalent to set
control_inputs to True and control_outputs to the util.ControlOutputs
instance.

Returns:

A tuple (sgv, detached_inputs, detached_outputs) where:
sgv is a new subgraph view of the detached subgraph;
detach_inputs is a list of the created input placeholders;
detach_outputs is a list of the created output placeholders.

Raises:

		StandardError: if sgv cannot be converted to a SubGraphView using
the same rules than the function subgraph.make_view.

tf.contrib.graph_editor.connect(sgv0, sgv1, disconnect_first=False) {#connect}

Connect the outputs of sgv0 to the inputs of sgv1.

Args:

		sgv0: the first subgraph to have its outputs swapped. This argument is
converted to a subgraph using the same rules as the function
subgraph.make_view.
Note that sgv0 is modified in place.

		sgv1: the second subgraph to have its outputs swapped. This argument is
converted to a subgraph using the same rules as the function
subgraph.make_view.
Note that sgv1 is modified in place.

		disconnect_first: if True the current outputs of sgv0 are disconnected.

Returns:

A tuple (sgv0, sgv1) of the now connected subgraphs.

Raises:

		StandardError: if sgv0 or sgv1 cannot be converted to a SubGraphView using
the same rules than the function subgraph.make_view.

tf.contrib.graph_editor.bypass(sgv) {#bypass}

Bypass the given subgraph by connecting its inputs to its outputs.

Args:

		sgv: the subgraph view to be bypassed. This argument is converted to a
subgraph using the same rules than the function subgraph.make_view.
Note that sgv is modified in place.

Returns:

A tuple (sgv, detached_inputs) where:
sgv is a new subgraph view of the bypassed subgraph;
detached_inputs is a list of the created input placeholders.

Raises:

		StandardError: if sgv cannot be converted to a SubGraphView using
the same rules than the function subgraph.make_view.

Module: transform

tf.contrib.graph_editor.replace_t_with_placeholder_handler(info, t) {#replace_t_with_placeholder_handler}

Transform a tensor into a placeholder tensor.

This handler is typically used to transform a subgraph input tensor into a
placeholder.

Args:

		info: Transform._Info instance.

		t: tensor whose input must be transformed into a place holder.

Returns:

The tensor generated by the newly created place holder.

tf.contrib.graph_editor.keep_t_if_possible_handler(info, t) {#keep_t_if_possible_handler}

Transform a tensor into itself (identity) if possible.

This handler transform a tensor into itself if the source and destination
graph are the same. Otherwise it will create a placeholder.
This handler is typically used to transform a hidden input tensors.

Args:

		info: Transform._Info instance.

		t: tensor whose input must be transformed into a place holder.

Returns:

The tensor generated by the newly created place holder.

tf.contrib.graph_editor.assign_renamed_collections_handler(info, elem, elem_) {#assign_renamed_collections_handler}

Add the transformed elem to the (renamed) collections of elem.

Args:

		info: Transform._Info instance.

		elem: the original element (tf.Tensor or tf.Operation)

		elem_: the transformed element

tf.contrib.graph_editor.transform_op_if_inside_handler(info, op, keep_if_possible=True) {#transform_op_if_inside_handler}

Transform an optional op only if it is inside the subgraph.

This handler is typically use to handle original op: it is fine to keep them
if they are inside the subgraph, otherwise they are just ignored.

Args:

		info: Transform._Info instance.

		op: the optional op to transform (or ignore).

		keep_if_possible: re-attach to the original op if possible, that is,
if the source graph and the destination graph are the same.

Returns:

The transformed op or None.

tf.contrib.graph_editor.copy_op_handler(info, op, copy_shape=True) {#copy_op_handler}

Copy a tf.Operation.

Args:

		info: Transform._Info instance.

		op: the tf.Operation to be copied.

		copy_shape: also copy the shape of the tensor

Returns:

A copy of op.

tf.contrib.graph_editor.transform_op_in_place(info, op, detach_outputs=False) {#transform_op_in_place}

Transform a op in-place - experimental!

Transform an operation in place. It reconnects the inputs if they have been
modified. if detach_outputs is True, the outputs of op are also detached.

Args:

		info: Transform._Info instance.

		op: the op to transform in place.

		detach_outputs: if True, the outputs of op are detached, ready for the user
to add more operation.

Returns:

The transformed op.

class tf.contrib.graph_editor.Transformer {#Transformer}

Transform a subgraph into another one.

By default, the constructor create a transform which copy a subgraph and
replaces inputs with placeholders. This behavior can be modified by changing
the handlers.

tf.contrib.graph_editor.Transformer.__call__(sgv, dst_graph, dst_scope, src_scope='', reuse_dst_scope=False) {#Transformer.call}

Execute the transformation.

Args:

		sgv: the source subgraph-view.

		dst_graph: the destination graph.

		dst_scope: the destination scope.

		src_scope: the source scope, which specify the path from which the
relative path of the transformed nodes are computed. For instance, if
src_scope is a/ and dst_scoped is b/, then the node a/x/y will have a
relative path of x/y and will be transformed into b/x/y.

		reuse_dst_scope: if True the dst_scope is re-used if it already exists.
Otherwise, the scope is given a unique name based on the one given
by appending an underscore followed by a digit (default).

Returns:

A tuple (sgv, info) where:
sgv is the transformed subgraph view;
info is an instance of Transformer.ResultInfo containing
information about the transform, including mapping between
original and transformed tensors and operations.

Raises:

		ValueError: if the argumens are invalid.

tf.contrib.graph_editor.Transformer.__init__() {#Transformer.init}

Transformer constructor.

The following members can be modified:
transform_op_handler: handle the transformation of a tf.Operation.
This handler defaults to a simple copy.
assign_collections_handler: handle the assignment of collections.
This handler defaults to assigning new collections created under the
given name-scope.
transform_external_input_handler: handle the transform of the inputs to
the given subgraph. This handler defaults to creating placeholders
instead of the ops just before the input tensors of the subgraph.
transform_external_hidden_input_handler: handle the transform of the
hidden inputs of the subgraph, that is, the inputs which are not listed
in sgv.inputs. This handler defaults to a transform which keep the same
input if the source and destination graphs are the same, otherwise
use placeholders.
transform_original_op_hanlder: handle the transform of original_op. This
handler defaults to transforming original_op only if they are in the
subgraph, otherwise they are ignored.

tf.contrib.graph_editor.Transformer.new_name(name) {#Transformer.new_name}

Compute a destination name from a source name.

Args:

		name: the name to be “transformed”.

Returns:

The transformed name.

Raises:

		ValueError: if the source scope is used (that is, not an empty string)
and the source name does not belong to the source scope.

tf.contrib.graph_editor.copy(sgv, dst_graph=None, dst_scope='', src_scope='', reuse_dst_scope=False) {#copy}

Copy a subgraph.

Args:

		sgv: the source subgraph-view. This argument is converted to a subgraph
using the same rules than the function subgraph.make_view.

		dst_graph: the destination graph.

		dst_scope: the destination scope.

		src_scope: the source scope.

		reuse_dst_scope: if True the dst_scope is re-used if it already exists.
Otherwise, the scope is given a unique name based on the one given
by appending an underscore followed by a digit (default).

Returns:

A tuple (sgv, info) where:
sgv is the transformed subgraph view;
info is an instance of Transformer.ResultInfo containing
information about the transform, including mapping between
original and transformed tensors and operations.

Raises:

		TypeError: if dst_graph is not a tf.Graph.

		StandardError: if sgv cannot be converted to a SubGraphView using
the same rules than the function subgraph.make_view.

tf.contrib.graph_editor.copy_with_input_replacements(sgv, replacement_ts, dst_graph=None, dst_scope='', src_scope='', reuse_dst_scope=False) {#copy_with_input_replacements}

Copy a subgraph, replacing some of its inputs.

Note a replacement only happens if the tensor to be replaced
is an input of the given subgraph. The inputs of a subgraph can
be queried using sgv.inputs.

Args:

		sgv: the source subgraph-view. This argument is converted to a subgraph
using the same rules as the function subgraph.make_view.

		replacement_ts: dictionary mapping from original tensors to the
replaced one.

		dst_graph: the destination graph.

		dst_scope: the destination scope.

		src_scope: the source scope.

		reuse_dst_scope: if True the dst_scope is re-used if it already exists.
Otherwise, the scope is given a unique name based on the one given
by appending an underscore followed by a digit (default).

Returns:

A tuple (sgv, info) where:
sgv is the transformed subgraph view;
info is an instance of Transformer.ResultInfo containing
information about the transform, including mapping between
original and transformed tensors and operations.

Raises:

		TypeError: if dst_graph is not a tf.Graph.

		StandardError: if sgv cannot be converted to a SubGraphView using
the same rules as the function subgraph.make_view.

tf.contrib.graph_editor.graph_replace(target_ts, replacement_ts, dst_scope='', src_scope='', reuse_dst_scope=False) {#graph_replace}

Create a new graph which compute the targets from the replaced Tensors.

Args:

		target_ts: a single tf.Tensor or an iterabble of tf.Tensor.

		replacement_ts: dictionary mapping from original tensors to replaced tensors

		dst_scope: the destination scope.

		src_scope: the source scope.

		reuse_dst_scope: if True the dst_scope is re-used if it already exists.
Otherwise, the scope is given a unique name based on the one given
by appending an underscore followed by a digit (default).

Returns:

A single tf.Tensor or a list of target tf.Tensor, depending on
the type of the input argument target_ts.
The returned tensors are recomputed using the tensors from replacement_ts.

Raises:

		ValueError: if the targets are not connected to replacement_ts.

Module: match

tf.contrib.graph_editor.op_type(op_types, op=None) {#op_type}

Check if an op is of the given type.

Args:

		op_types: tuple of strings containing the types to check against.
For instance: (“Add”, “Const”)

		op: the operation to check (or None).

Returns:

if op is not None, return True if the op is of the correct type.
if op is None, return a lambda function which does the type checking.

class tf.contrib.graph_editor.OpMatcher {#OpMatcher}

Graph match class.

tf.contrib.graph_editor.OpMatcher.__call__(op) {#OpMatcher.call}

Evaluate if the op matches or not.

tf.contrib.graph_editor.OpMatcher.__init__(positive_filter) {#OpMatcher.init}

Graph match constructor.

tf.contrib.graph_editor.OpMatcher.control_input_ops(*args) {#OpMatcher.control_input_ops}

Add input matches.

tf.contrib.graph_editor.OpMatcher.input_ops(*args) {#OpMatcher.input_ops}

Add input matches.

tf.contrib.graph_editor.OpMatcher.output_ops(*args) {#OpMatcher.output_ops}

Add output matches.

Useful aliases

tf.contrib.graph_editor.ph(dtype, shape=None, scope=None) {#ph}

Create a tf.placeholder for the Graph Editor.

Note that the correct graph scope must be set by the calling function.
The placeholder is named using the function placeholder_name (with no
tensor argument).

Args:

		dtype: the tensor type.

		shape: the tensor shape (optional).

		scope: absolute scope within which to create the placeholder. None
means that the scope of t is preserved. “” means the root scope.

Returns:

A newly created tf.placeholder.

tf.contrib.graph_editor.sgv(*args, **kwargs) {#sgv}

Create a SubGraphView from selected operations and passthrough tensors.

Args:

		*args: list of 1) regular expressions (compiled or not) or 2) (array of)
tf.Operation 3) (array of) tf.Tensor. Those objects will be converted
into a list of operations and a list of candidate for passthrough tensors.

		**kwargs: keyword graph is used 1) to check that the ops and ts are from
the correct graph 2) for regular expression query

Returns:

A subgraph view.

Raises:

		TypeError: if the optional keyword argument graph is not a tf.Graph
or if an argument in args is not an (array of) tf.Tensor
or an (array of) tf.Operation or a string or a regular expression.

		ValueError: if one of the keyword arguments is unexpected.

tf.contrib.graph_editor.sgv_scope(scope, graph) {#sgv_scope}

Make a subgraph from a name scope.

Args:

		scope: the name of the scope.

		graph: the tf.Graph.

Returns:

A subgraph view representing the given scope.

tf.contrib.graph_editor.ts(*args, **kwargs) {#ts}

Helper to select tensors.

Args:

		*args: list of 1) regular expressions (compiled or not) or 2) (array of)
tf.Tensor. tf.Operation instances are silently ignored.

		**kwargs: ‘graph’: tf.Graph in which to perform the regex query.This is
required when using regex.
‘positive_filter’: an elem if selected only if positive_filter(elem) is
True. This is optional.
‘restrict_ts_regex’: a regular expression is ignored if it doesn’t start
with the substring “(?#ts)”.

Returns:

A list of tf.Tensor.

Raises:

		TypeError: if the optional keyword argument graph is not a tf.Graph
or if an argument in args is not an (array of) tf.Tensor
or an (array of) tf.Operation (silently ignored) or a string
or a regular expression.

		ValueError: if one of the keyword arguments is unexpected or if a regular
expression is used without passing a graph as a keyword argument.

tf.contrib.graph_editor.ops(*args, **kwargs) {#ops}

Helper to select operations.

Args:

		*args: list of 1) regular expressions (compiled or not) or 2) (array of)
tf.Operation. tf.Tensor instances are silently ignored.

		**kwargs: ‘graph’: tf.Graph in which to perform the regex query.This is
required when using regex.
‘positive_filter’: an elem if selected only if positive_filter(elem) is
True. This is optional.
‘restrict_ops_regex’: a regular expression is ignored if it doesn’t start
with the substring “(?#ops)”.

Returns:

A list of tf.Operation.

Raises:

		TypeError: if the optional keyword argument graph is not a tf.Graph
or if an argument in args is not an (array of) tf.Operation
or an (array of) tf.Tensor (silently ignored) or a string
or a regular expression.

		ValueError: if one of the keyword arguments is unexpected or if a regular
expression is used without passing a graph as a keyword argument.

class tf.contrib.graph_editor.matcher {#matcher}

Graph match class.

tf.contrib.graph_editor.matcher.__call__(op) {#matcher.call}

Evaluate if the op matches or not.

tf.contrib.graph_editor.matcher.__init__(positive_filter) {#matcher.init}

Graph match constructor.

tf.contrib.graph_editor.matcher.control_input_ops(*args) {#matcher.control_input_ops}

Add input matches.

tf.contrib.graph_editor.matcher.input_ops(*args) {#matcher.input_ops}

Add input matches.

tf.contrib.graph_editor.matcher.output_ops(*args) {#matcher.output_ops}

Add output matches.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/contrib.bayesflow.stochastic_graph.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

BayesFlow Stochastic Graph (contrib)

[TOC]

Classes and helper functions for Stochastic Computation Graphs.

Stochastic Computation Graph Helper Functions

tf.contrib.bayesflow.stochastic_graph.surrogate_loss(sample_losses, stochastic_tensors=None, name='SurrogateLoss') {#surrogate_loss}

Surrogate loss for stochastic graphs.

This function will call loss_fn on each StochasticTensor
upstream of sample_losses, passing the losses that it influenced.

Note that currently surrogate_loss does not work with StochasticTensors
instantiated in while_loops or other control structures.

Args:

		sample_losses: a list or tuple of final losses. Each loss should be per
example in the batch (and possibly per sample); that is, it should have
dimensionality of 1 or greater. All losses should have the same shape.

		stochastic_tensors: a list of StochasticTensors to add loss terms for.
If None, defaults to all StochasticTensors in the graph upstream of
the Tensors in sample_losses.

		name: the name with which to prepend created ops.

Returns:

Tensor loss, which is the sum of sample_losses and the
loss_fns returned by the StochasticTensors.

Raises:

		TypeError: if sample_losses is not a list or tuple, or if its elements
are not Tensors.

		ValueError: if any loss in sample_losses does not have dimensionality 1
or greater.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.min_max_variable_partitioner.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.min_max_variable_partitioner(max_partitions=1, axis=0, min_slice_size=262144, bytes_per_string_element=16) {#min_max_variable_partitioner}

Partitioner to allocate minimum size per slice.

Returns a partitioner that partitions the variable of given shape and dtype
such that each partition has a minimum of min_slice_size slice of the
variable. The maximum number of such partitions (upper bound) is given by
max_partitions.

Args:

		max_partitions: Upper bound on the number of partitions. Defaults to 1.

		axis: Axis along which to partition the variable. Defaults to 0.

		min_slice_size: Minimum size of the variable slice per partition. Defaults
to 256K.

		bytes_per_string_element: If the Variable is of type string, this provides
an estimate of how large each scalar in the Variable is.

Returns:

A partition function usable as the partitioner argument to
variable_scope, get_variable, and get_partitioned_variable_list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.bayesflow.entropy.renyi_alpha.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.bayesflow.entropy.renyi_alpha(step, decay_time, alpha_min, alpha_max=0.99999, name='renyi_alpha') {#renyi_alpha}

Exponentially decaying Tensor appropriate for Renyi ratios.

When minimizing the Renyi divergence for 0 <= alpha < 1 (or maximizing the
Renyi equivalent of elbo) in high dimensions, it is not uncommon to experience
NaN and inf values when alpha is far from 1.

For that reason, it is often desirable to start the optimization with alpha
very close to 1, and reduce it to a final alpha_min according to some
schedule. The user may even want to optimize using elbo_ratio for
some fixed time before switching to Renyi based methods.

This Op returns an alpha decaying exponentially with step:

s(step) = (exp{step / decay_time} - 1) / (e - 1)
t(s) = max(0, min(s, 1)), (smooth growth from 0 to 1)
alpha(t) = (1 - t) alpha_min + t alpha_max

Args:

		step: Non-negative scalar Tensor. Typically the global step or an
offset version thereof.

		decay_time: Postive scalar Tensor.

		alpha_min: float or double Tensor.
The minimal, final value of alpha, achieved when step >= decay_time

		alpha_max: Tensor of same dtype as alpha_min.
The maximal, beginning value of alpha, achieved when step == 0

		name: A name to give this Op.

Returns:

		alpha: A Tensor of same dtype as alpha_min.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.bayesflow.stochastic_tensor.value_type.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.bayesflow.stochastic_tensor.value_type(dist_value_type) {#value_type}

Creates a value type context for any StochasticTensor created within.

Typical usage:

with sg.value_type(sg.MeanValue(stop_gradients=True)):
 dt = sg.DistributionTensor(distributions.Normal, mu=mu, sigma=sigma)

In the example above, dt.value() (or equivalently, tf.identity(dt)) will
be the mean value of the Normal distribution, i.e., mu (possibly
broadcasted to the shape of sigma). Furthermore, because the MeanValue
was marked with stop_gradients=True, this value will have been wrapped
in a stop_gradients call to disable any possible backpropagation.

Args:

		dist_value_type: An instance of MeanValue, SampleAndReshapeValue, or
any other stochastic value type.

Yields:

A context for StochasticTensor objects that controls the
value created when they are initialized.

Raises:

		TypeError: if dist_value_type is not an instance of a stochastic value
type.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.metrics.set_intersection.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.set_intersection(a, b, validate_indices=True) {#set_intersection}

Compute set intersection of elements in last dimension of a and b.

All but the last dimension of a and b must match.

Args:

		a: Tensor or SparseTensor of the same type as b. If sparse, indices
must be sorted in row-major order.

		b: Tensor or SparseTensor of the same type as a. Must be
SparseTensor if a is SparseTensor. If sparse, indices must be
sorted in row-major order.

		validate_indices: Whether to validate the order and range of sparse indices
in a and b.

Returns:

A SparseTensor with the same rank as a and b, and all but the last
dimension the same. Elements along the last dimension contain the
intersections.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.metrics.streaming_root_mean_squared_error.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.streaming_root_mean_squared_error(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None) {#streaming_root_mean_squared_error}

Computes the root mean squared error between the labels and predictions.

The streaming_root_mean_squared_error function creates two local variables,
total and count that are used to compute the root mean squared error.
This average is weighted by weights, and it is ultimately returned as
root_mean_squared_error: an idempotent operation that takes the square root
of the division of total by count.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
root_mean_squared_error. Internally, a squared_error operation computes
the element-wise square of the difference between predictions and labels.
Then update_op increments total with the reduced sum of the product of
weights and squared_error, and it increments count with the reduced sum
of weights.

If weights is None, weights default to 1. Use weights of 0 to mask values.

Args:

		predictions: A Tensor of arbitrary shape.

		labels: A Tensor of the same shape as predictions.

		weights: An optional Tensor whose shape is broadcastable to predictions.

		metrics_collections: An optional list of collections that
root_mean_squared_error should be added to.

		updates_collections: An optional list of collections that update_op should
be added to.

		name: An optional variable_scope name.

Returns:

		root_mean_squared_error: A tensor representing the current mean, the value
of total divided by count.

		update_op: An operation that increments the total and count variables
appropriately and whose value matches root_mean_squared_error.

Raises:

		ValueError: If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn’t match predictions, or if
either metrics_collections or updates_collections are not a list or
tuple.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.distributions.Beta.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Beta distribution.

This distribution is parameterized by a and b which are shape
parameters.

Mathematical details

The Beta is a distribution over the interval (0, 1).
The distribution has hyperparameters a and b and
probability mass function (pdf):

pdf(x) = 1 / Beta(a, b) * x^(a - 1) * (1 - x)^(b - 1)

where Beta(a, b) = Gamma(a) * Gamma(b) / Gamma(a + b)
is the beta function.

This class provides methods to create indexed batches of Beta
distributions. One entry of the broacasted
shape represents of a and b represents one single Beta distribution.
When calling distribution functions (e.g. dist.pdf(x)), a, b
and x are broadcast to the same shape (if possible).
Every entry in a/b/x corresponds to a single Beta distribution.

Examples

Creates 3 distributions.
The distribution functions can be evaluated on x.

a = [1, 2, 3]
b = [1, 2, 3]
dist = Beta(a, b)

x same shape as a.
x = [.2, .3, .7]
dist.pdf(x) # Shape [3]

a/b will be broadcast to [[1, 2, 3], [1, 2, 3]] to match x.
x = [[.1, .4, .5], [.2, .3, .5]]
dist.pdf(x) # Shape [2, 3]

a/b will be broadcast to shape [5, 7, 3] to match x.
x = [[...]] # Shape [5, 7, 3]
dist.pdf(x) # Shape [5, 7, 3]

Creates a 2-batch of 3-class distributions.

a = [[1, 2, 3], [4, 5, 6]] # Shape [2, 3]
b = 5 # Shape []
dist = Beta(a, b)

x will be broadcast to [[.2, .3, .9], [.2, .3, .9]] to match a/b.
x = [.2, .3, .9]
dist.pdf(x) # Shape [2]

tf.contrib.distributions.Beta.__init__(a, b, validate_args=False, allow_nan_stats=True, name='Beta') {#Beta.init}

Initialize a batch of Beta distributions.

Args:

		a: Positive floating point tensor with shape broadcastable to
[N1,..., Nm] m >= 0. Defines this as a batch of N1 x ... x Nm
different Beta distributions. This also defines the
dtype of the distribution.

		b: Positive floating point tensor with shape broadcastable to
[N1,..., Nm] m >= 0. Defines this as a batch of N1 x ... x Nm
different Beta distributions.

		validate_args: Boolean, default False. Whether to assert valid
values for parameters a, b, and x in prob and log_prob.
If False and inputs are invalid, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to prefix Ops created by this distribution class.

		Examples:

Define 1-batch.
dist = Beta(1.1, 2.0)

Define a 2-batch.
dist = Beta([1.0, 2.0], [4.0, 5.0])

tf.contrib.distributions.Beta.a {#Beta.a}

Shape parameter.

tf.contrib.distributions.Beta.a_b_sum {#Beta.a_b_sum}

Sum of parameters.

tf.contrib.distributions.Beta.allow_nan_stats {#Beta.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Beta.b {#Beta.b}

Shape parameter.

tf.contrib.distributions.Beta.batch_shape(name='batch_shape') {#Beta.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Beta.cdf(value, name='cdf') {#Beta.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Beta.dtype {#Beta.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Beta.entropy(name='entropy') {#Beta.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Beta.event_shape(name='event_shape') {#Beta.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Beta.get_batch_shape() {#Beta.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Beta.get_event_shape() {#Beta.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Beta.is_continuous {#Beta.is_continuous}

tf.contrib.distributions.Beta.is_reparameterized {#Beta.is_reparameterized}

tf.contrib.distributions.Beta.log_cdf(value, name='log_cdf') {#Beta.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Beta.log_pdf(value, name='log_pdf') {#Beta.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Beta.log_pmf(value, name='log_pmf') {#Beta.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Beta.log_prob(value, name='log_prob') {#Beta.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Beta.log_survival_function(value, name='log_survival_function') {#Beta.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Beta.mean(name='mean') {#Beta.mean}

Mean.

tf.contrib.distributions.Beta.mode(name='mode') {#Beta.mode}

Mode.

tf.contrib.distributions.Beta.name {#Beta.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Beta.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Beta.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Beta.param_static_shapes(cls, sample_shape) {#Beta.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Beta.parameters {#Beta.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Beta.pdf(value, name='pdf') {#Beta.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Beta.pmf(value, name='pmf') {#Beta.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Beta.prob(value, name='prob') {#Beta.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Beta.sample(sample_shape=(), seed=None, name='sample') {#Beta.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Beta.sample_n(n, seed=None, name='sample_n') {#Beta.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Beta.std(name='std') {#Beta.std}

Standard deviation.

tf.contrib.distributions.Beta.survival_function(value, name='survival_function') {#Beta.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Beta.validate_args {#Beta.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Beta.variance(name='variance') {#Beta.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.learn.monitors.PrintTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Prints given tensors every N steps.

This is an EveryN monitor and has consistent semantic for every_n
and first_n.

The tensors will be printed to the log, with INFO severity.

tf.contrib.learn.monitors.PrintTensor.__init__(tensor_names, every_n=100, first_n=1) {#PrintTensor.init}

Initializes a PrintTensor monitor.

Args:

		tensor_names: dict of tag to tensor names or
iterable of tensor names (strings).

		every_n: int, print every N steps. See PrintN.

		first_n: int, also print the first N steps. See PrintN.

tf.contrib.learn.monitors.PrintTensor.begin(max_steps=None) {#PrintTensor.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.PrintTensor.end(session=None) {#PrintTensor.end}

tf.contrib.learn.monitors.PrintTensor.epoch_begin(epoch) {#PrintTensor.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.PrintTensor.epoch_end(epoch) {#PrintTensor.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.PrintTensor.every_n_post_step(step, session) {#PrintTensor.every_n_post_step}

Callback after a step is finished or end() is called.

Args:

		step: int, the current value of the global step.

		session: Session object.

tf.contrib.learn.monitors.PrintTensor.every_n_step_begin(step) {#PrintTensor.every_n_step_begin}

tf.contrib.learn.monitors.PrintTensor.every_n_step_end(step, outputs) {#PrintTensor.every_n_step_end}

tf.contrib.learn.monitors.PrintTensor.post_step(step, session) {#PrintTensor.post_step}

tf.contrib.learn.monitors.PrintTensor.run_on_all_workers {#PrintTensor.run_on_all_workers}

tf.contrib.learn.monitors.PrintTensor.set_estimator(estimator) {#PrintTensor.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.PrintTensor.step_begin(step) {#PrintTensor.step_begin}

Overrides BaseMonitor.step_begin.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

Returns:

A list, the result of every_n_step_begin, if that was called this step,
or an empty list otherwise.

Raises:

		ValueError: if called more than once during a step.

tf.contrib.learn.monitors.PrintTensor.step_end(step, output) {#PrintTensor.step_end}

Overrides BaseMonitor.step_end.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool, the result of every_n_step_end, if that was called this step,
or False otherwise.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.PaddingFIFOQueue.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A FIFOQueue that supports batching variable-sized tensors by padding.

A PaddingFIFOQueue may contain components with dynamic shape, while also
supporting dequeue_many. See the constructor for more details.

See tf.QueueBase for a description of the methods on
this class.

tf.PaddingFIFOQueue.__init__(capacity, dtypes, shapes, names=None, shared_name=None, name='padding_fifo_queue') {#PaddingFIFOQueue.init}

Creates a queue that dequeues elements in a first-in first-out order.

A PaddingFIFOQueue has bounded capacity; supports multiple concurrent
producers and consumers; and provides exactly-once delivery.

A PaddingFIFOQueue holds a list of up to capacity elements. Each
element is a fixed-length tuple of tensors whose dtypes are
described by dtypes, and whose shapes are described by the shapes
argument.

The shapes argument must be specified; each component of a queue
element must have the respective shape. Shapes of fixed
rank but variable size are allowed by setting any shape dimension to None.
In this case, the inputs’ shape may vary along the given dimension, and
dequeue_many will pad the given dimension with zeros up to the maximum
shape of all elements in the given batch.

Args:

		capacity: An integer. The upper bound on the number of elements
that may be stored in this queue.

		dtypes: A list of DType objects. The length of dtypes must equal
the number of tensors in each queue element.

		shapes: A list of TensorShape objects, with the same length as
dtypes. Any dimension in the TensorShape containing value
None is dynamic and allows values to be enqueued with
variable size in that dimension.

		names: (Optional.) A list of string naming the components in the queue
with the same length as dtypes, or None. If specified the dequeue
methods return a dictionary with the names as keys.

		shared_name: (Optional.) If non-empty, this queue will be shared under
the given name across multiple sessions.

		name: Optional name for the queue operation.

Raises:

		ValueError: If shapes is not a list of shapes, or the lengths of dtypes
and shapes do not match, or if names is specified and the lengths of
dtypes and names do not match.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.cumsum.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.cumsum(x, axis=0, exclusive=False, reverse=False, name=None) {#cumsum}

Compute the cumulative sum of the tensor x along axis.

By default, this op performs an inclusive cumsum, which means that the first
element of the input is identical to the first element of the output:

tf.cumsum([a, b, c]) ==> [a, a + b, a + b + c]

By setting the exclusive kwarg to True, an exclusive cumsum is performed
instead:

tf.cumsum([a, b, c], exclusive=True) ==> [0, a, a + b]

By setting the reverse kwarg to True, the cumsum is performed in the
opposite direction:

tf.cumsum([a, b, c], reverse=True) ==> [a + b + c, b + c, c]

This is more efficient than using separate tf.reverse ops.

The reverse and exclusive kwargs can also be combined:

tf.cumsum([a, b, c], exclusive=True, reverse=True) ==> [b + c, c, 0]

Args:

		x: A Tensor. Must be one of the following types: float32, float64,
int64, int32, uint8, uint16, int16, int8, complex64,
complex128, qint8, quint8, qint32, half.

		axis: A Tensor of type int32 (default: 0).

		reverse: A bool (default: False).

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.bayesflow.stochastic_tensor.NormalTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 NormalTensor is a StochasticTensor backed by the distribution Normal.

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#NormalTensor.init}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.clone(name=None, **dist_args) {#NormalTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.distribution {#NormalTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.dtype {#NormalTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.entropy(name='entropy') {#NormalTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.graph {#NormalTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.input_dict {#NormalTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.loss(final_loss, name='Loss') {#NormalTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.mean(name='mean') {#NormalTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.name {#NormalTensor.name}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.value(name='value') {#NormalTensor.value}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.value_type {#NormalTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/tutorials/mnist/pros/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Deep MNIST for Experts

TensorFlow is a powerful library for doing large-scale numerical computation.
One of the tasks at which it excels is implementing and training deep neural
networks. In this tutorial we will learn the basic building blocks of a
TensorFlow model while constructing a deep convolutional MNIST classifier.

This introduction assumes familiarity with neural networks and the MNIST
dataset. If you don’t have
a background with them, check out the
introduction for beginners. Be sure to
install TensorFlow before starting.

About this tutorial

The first part of this tutorial explains what is happening in the
mnist_softmax.py [https://www.tensorflow.org/code/tensorflow/examples/tutorials/mnist/mnist_softmax.py]
code, which is a basic implementation of a Tensorflow model. The second part
shows some ways to improve the accuracy.

You can copy and paste each code snippet from this tutorial into a Python
environment, or you can choose to just read through the code.

What we will accomplish in this tutorial:

		Create a softmax regression function that is a model for recognizing MNIST
digits, based on looking at every pixel in the image

		Use Tensorflow to train the model to recognize digits by having it “look” at
thousands of examples (and run our first Tensorflow session to do so)

		Check the model’s accuracy with our test data

		Build, train, and test a multilayer convolutional neural network to improve
the results

Setup

Before we create our model, we will first load the MNIST dataset, and start a
TensorFlow session.

Load MNIST Data

If you are copying and pasting in the code from this tutorial, start here with
these two lines of code which will download and read in the data automatically:

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

Here mnist is a lightweight class which stores the training, validation, and
testing sets as NumPy arrays. It also provides a function for iterating through
data minibatches, which we will use below.

Start TensorFlow InteractiveSession

TensorFlow relies on a highly efficient C++ backend to do its computation. The
connection to this backend is called a session. The common usage for TensorFlow
programs is to first create a graph and then launch it in a session.

Here we instead use the convenient InteractiveSession class, which makes
TensorFlow more flexible about how you structure your code. It allows you to
interleave operations which build a
computation graph
with ones that run the graph. This is particularly convenient when working in
interactive contexts like IPython. If you are not using an
InteractiveSession, then you should build the entire computation graph before
starting a session and
launching the graph.

import tensorflow as tf
sess = tf.InteractiveSession()

Computation Graph

To do efficient numerical computing in Python, we typically use libraries like
NumPy [http://www.numpy.org/] that do expensive operations such as matrix
multiplication outside Python, using highly efficient code implemented in
another language. Unfortunately, there can still be a lot of overhead from
switching back to Python every operation. This overhead is especially bad if you
want to run computations on GPUs or in a distributed manner, where there can be
a high cost to transferring data.

TensorFlow also does its heavy lifting outside Python, but it takes things a
step further to avoid this overhead. Instead of running a single expensive
operation independently from Python, TensorFlow lets us describe a graph of
interacting operations that run entirely outside Python. This approach is
similar to that used in Theano or Torch.

The role of the Python code is therefore to build this external computation
graph, and to dictate which parts of the computation graph should be run. See
the
Computation Graph
section of
Basic Usage
for more detail.

Build a Softmax Regression Model

In this section we will build a softmax regression model with a single linear
layer. In the next section, we will extend this to the case of softmax
regression with a multilayer convolutional network.

Placeholders

We start building the computation graph by creating nodes for the
input images and target output classes.

x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])

Here x and y_ aren’t specific values. Rather, they are each a placeholder
– a value that we’ll input when we ask TensorFlow to run a computation.

The input images x will consist of a 2d tensor of floating point numbers.
Here we assign it a shape of [None, 784], where 784 is the dimensionality
of a single flattened 28 by 28 pixel MNIST image, and None indicates that the
first dimension, corresponding to the batch size, can be of any size. The
target output classes y_ will also consist of a 2d tensor, where each row is a
one-hot 10-dimensional vector indicating which digit class (zero through nine)
the corresponding MNIST image belongs to.

The shape argument to placeholder is optional, but it allows TensorFlow
to automatically catch bugs stemming from inconsistent tensor shapes.

Variables

We now define the weights W and biases b for our model. We could imagine
treating these like additional inputs, but TensorFlow has an even better way to
handle them: Variable. A Variable is a value that lives in TensorFlow’s
computation graph. It can be used and even modified by the computation. In
machine learning applications, one generally has the model parameters be
Variables.

W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))

We pass the initial value for each parameter in the call to tf.Variable. In
this case, we initialize both W and b as tensors full of zeros. W is a
784x10 matrix (because we have 784 input features and 10 outputs) and b is a
10-dimensional vector (because we have 10 classes).

Before Variables can be used within a session, they must be initialized using
that session. This step takes the initial values (in this case tensors full of
zeros) that have already been specified, and assigns them to each
Variable. This can be done for all Variables at once:

sess.run(tf.initialize_all_variables())

Predicted Class and Loss Function

We can now implement our regression model. It only takes one line! We multiply
the vectorized input images x by the weight matrix W, add the bias b.

y = tf.matmul(x,W) + b

We can specify a loss function just as easily. Loss indicates how bad the
model’s prediction was on a single example; we try to minimize that while
training across all the examples. Here, our loss function is the cross-entropy
between the target and the softmax activation function applied to the model’s
prediction. As in the beginners tutorial, we use the stable formulation:

cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y, y_))

Note that tf.nn.softmax_cross_entropy_with_logits internally applies the
softmax on the model’s unnormalized model prediction and sums across all
classes, and tf.reduce_mean takes the average over these sums.

Train the Model

Now that we have defined our model and training loss function, it is
straightforward to train using TensorFlow. Because TensorFlow knows the entire
computation graph, it can use automatic differentiation to find the gradients of
the loss with respect to each of the variables. TensorFlow has a variety of
[built-in optimization algorithms]
(../../../api_docs/python/train.md#optimizers). For this example, we will use
steepest gradient descent, with a step length of 0.5, to descend the cross
entropy.

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

What TensorFlow actually did in that single line was to add new operations to
the computation graph. These operations included ones to compute gradients,
compute parameter update steps, and apply update steps to the parameters.

The returned operation train_step, when run, will apply the gradient descent
updates to the parameters. Training the model can therefore be accomplished by
repeatedly running train_step.

for i in range(1000):
 batch = mnist.train.next_batch(100)
 train_step.run(feed_dict={x: batch[0], y_: batch[1]})

We load 100 training examples in each training iteration. We then run the
train_step operation, using feed_dict to replace the placeholder tensors
x and y_ with the training examples. Note that you can replace any tensor
in your computation graph using feed_dict – it’s not restricted to just
placeholders.

Evaluate the Model

How well did our model do?

First we’ll figure out where we predicted the correct label. tf.argmax is an
extremely useful function which gives you the index of the highest entry in a
tensor along some axis. For example, tf.argmax(y,1) is the label our model
thinks is most likely for each input, while tf.argmax(y_,1) is the true
label. We can use tf.equal to check if our prediction matches the truth.

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))

That gives us a list of booleans. To determine what fraction are correct, we
cast to floating point numbers and then take the mean. For example,
[True, False, True, True] would become [1,0,1,1] which would become 0.75.

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

Finally, we can evaluate our accuracy on the test data. This should be about
92% correct.

print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

Build a Multilayer Convolutional Network

Getting 92% accuracy on MNIST is bad. It’s almost embarrassingly bad. In this
section, we’ll fix that, jumping from a very simple model to something
moderately sophisticated: a small convolutional neural network. This will get us
to around 99.2% accuracy – not state of the art, but respectable.

Weight Initialization

To create this model, we’re going to need to create a lot of weights and biases.
One should generally initialize weights with a small amount of noise for
symmetry breaking, and to prevent 0 gradients. Since we’re using
ReLU [https://en.wikipedia.org/wiki/Rectifier_(neural_networks)] neurons, it is
also good practice to initialize them with a slightly positive initial bias to
avoid “dead neurons”. Instead of doing this repeatedly while we build the model,
let’s create two handy functions to do it for us.

def weight_variable(shape):
 initial = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(initial)

def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial)

Convolution and Pooling

TensorFlow also gives us a lot of flexibility in convolution and pooling
operations. How do we handle the boundaries? What is our stride size?
In this example, we’re always going to choose the vanilla version.
Our convolutions uses a stride of one and are zero padded so that the
output is the same size as the input. Our pooling is plain old max pooling
over 2x2 blocks. To keep our code cleaner, let’s also abstract those operations
into functions.

def conv2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
 strides=[1, 2, 2, 1], padding='SAME')

First Convolutional Layer

We can now implement our first layer. It will consist of convolution, followed
by max pooling. The convolutional will compute 32 features for each 5x5 patch.
Its weight tensor will have a shape of [5, 5, 1, 32]. The first two
dimensions are the patch size, the next is the number of input channels, and
the last is the number of output channels. We will also have a bias vector with
a component for each output channel.

W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])

To apply the layer, we first reshape x to a 4d tensor, with the second and
third dimensions corresponding to image width and height, and the final
dimension corresponding to the number of color channels.

x_image = tf.reshape(x, [-1,28,28,1])

We then convolve x_image with the weight tensor, add the
bias, apply the ReLU function, and finally max pool.

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

Second Convolutional Layer

In order to build a deep network, we stack several layers of this type. The
second layer will have 64 features for each 5x5 patch.

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

Densely Connected Layer

Now that the image size has been reduced to 7x7, we add a fully-connected layer
with 1024 neurons to allow processing on the entire image. We reshape the tensor
from the pooling layer into a batch of vectors,
multiply by a weight matrix, add a bias, and apply a ReLU.

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

Dropout

To reduce overfitting, we will apply dropout [https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf] before the readout layer.
We create a placeholder for the probability that a neuron’s output is kept
during dropout. This allows us to turn dropout on during training, and turn it
off during testing.
TensorFlow’s tf.nn.dropout op automatically handles scaling neuron outputs in
addition to masking them, so dropout just works without any additional scaling.1

keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

Readout Layer

Finally, we add a layer, just like for the one layer softmax regression
above.

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

Train and Evaluate the Model

How well does this model do? To train and evaluate it we will use code that is
nearly identical to that for the simple one layer SoftMax network above.

The differences are that:

		We will replace the steepest gradient descent optimizer with the more
sophisticated ADAM optimizer.

		We will include the additional parameter keep_prob in feed_dict to control
the dropout rate.

		We will add logging to every 100th iteration in the training process.

Feel free to go ahead and run this code, but it does 20,000 training iterations
and may take a while (possibly up to half an hour), depending on your processor.

cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv, y_))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.initialize_all_variables())
for i in range(20000):
 batch = mnist.train.next_batch(50)
 if i%100 == 0:
 train_accuracy = accuracy.eval(feed_dict={
 x:batch[0], y_: batch[1], keep_prob: 1.0})
 print("step %d, training accuracy %g"%(i, train_accuracy))
 train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g"%accuracy.eval(feed_dict={
 x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

The final test set accuracy after running this code should be approximately 99.2%.

We have learned how to quickly and easily build, train, and evaluate a
fairly sophisticated deep learning model using TensorFlow.

1: For this small convolutional network, performance is actually nearly identical with and without dropout. Dropout is often very effective at reducing overfitting, but it is most useful when training very large neural networks. ↩

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/tutorials/mnist/tf/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow Mechanics 101

Code: tensorflow/examples/tutorials/mnist/ [https://www.tensorflow.org/code/tensorflow/examples/tutorials/mnist/]

The goal of this tutorial is to show how to use TensorFlow to train and
evaluate a simple feed-forward neural network for handwritten digit
classification using the (classic) MNIST data set. The intended audience for
this tutorial is experienced machine learning users interested in using
TensorFlow.

These tutorials are not intended for teaching Machine Learning in general.

Please ensure you have followed the instructions to install TensorFlow.

Tutorial Files

This tutorial references the following files:

File | Purpose
— | —
mnist.py [https://www.tensorflow.org/code/tensorflow/examples/tutorials/mnist/mnist.py] | The code to build a fully-connected MNIST model.
fully_connected_feed.py [https://www.tensorflow.org/code/tensorflow/examples/tutorials/mnist/fully_connected_feed.py] | The main code to train the built MNIST model against the downloaded dataset using a feed dictionary.

Simply run the fully_connected_feed.py file directly to start training:

python fully_connected_feed.py

Prepare the Data

MNIST is a classic problem in machine learning. The problem is to look at
greyscale 28x28 pixel images of handwritten digits and determine which digit
the image represents, for all the digits from zero to nine.

[image: MNIST Digits]

For more information, refer to Yann LeCun’s MNIST page [http://yann.lecun.com/exdb/mnist/]
or Chris Olah’s visualizations of MNIST [http://colah.github.io/posts/2014-10-Visualizing-MNIST/].

Download

At the top of the run_training() method, the input_data.read_data_sets()
function will ensure that the correct data has been downloaded to your local
training folder and then unpack that data to return a dictionary of DataSet
instances.

data_sets = input_data.read_data_sets(FLAGS.train_dir, FLAGS.fake_data)

NOTE: The fake_data flag is used for unit-testing purposes and may be
safely ignored by the reader.

Dataset | Purpose
— | —
data_sets.train | 55000 images and labels, for primary training.
data_sets.validation | 5000 images and labels, for iterative validation of training accuracy.
data_sets.test | 10000 images and labels, for final testing of trained accuracy.

Inputs and Placeholders

The placeholder_inputs() function creates two tf.placeholder
ops that define the shape of the inputs, including the batch_size, to the
rest of the graph and into which the actual training examples will be fed.

images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,
 mnist.IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))

Further down, in the training loop, the full image and label datasets are
sliced to fit the batch_size for each step, matched with these placeholder
ops, and then passed into the sess.run() function using the feed_dict
parameter.

Build the Graph

After creating placeholders for the data, the graph is built from the
mnist.py file according to a 3-stage pattern: inference(), loss(), and
training().

		inference() - Builds the graph as far as is required for running
the network forward to make predictions.

		loss() - Adds to the inference graph the ops required to generate
loss.

		training() - Adds to the loss graph the ops required to compute
and apply gradients.

 [image:]

Inference

The inference() function builds the graph as far as needed to
return the tensor that would contain the output predictions.

It takes the images placeholder as input and builds on top
of it a pair of fully connected layers with ReLu [https://en.wikipedia.org/wiki/Rectifier_(neural_networks)] activation followed by a ten
node linear layer specifying the output logits.

Each layer is created beneath a unique tf.name_scope
that acts as a prefix to the items created within that scope.

with tf.name_scope('hidden1'):

Within the defined scope, the weights and biases to be used by each of these
layers are generated into tf.Variable
instances, with their desired shapes:

weights = tf.Variable(
 tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
 stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))),
 name='weights')
biases = tf.Variable(tf.zeros([hidden1_units]),
 name='biases')

When, for instance, these are created under the hidden1 scope, the unique
name given to the weights variable would be “hidden1/weights”.

Each variable is given initializer ops as part of their construction.

In this most common case, the weights are initialized with the
tf.truncated_normal
and given their shape of a 2-D tensor with
the first dim representing the number of units in the layer from which the
weights connect and the second dim representing the number of
units in the layer to which the weights connect. For the first layer, named
hidden1, the dimensions are [IMAGE_PIXELS, hidden1_units] because the
weights are connecting the image inputs to the hidden1 layer. The
tf.truncated_normal initializer generates a random distribution with a given
mean and standard deviation.

Then the biases are initialized with tf.zeros
to ensure they start with all zero values, and their shape is simply the number
of units in the layer to which they connect.

The graph’s three primary ops – two tf.nn.relu
ops wrapping tf.matmul
for the hidden layers and one extra tf.matmul for the logits – are then
created, each in turn, with separate tf.Variable instances connected to each
of the input placeholders or the output tensors of the previous layer.

hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)

hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)

logits = tf.matmul(hidden2, weights) + biases

Finally, the logits tensor that will contain the output is returned.

Loss

The loss() function further builds the graph by adding the required loss
ops.

First, the values from the labels_placeholder are converted to 64-bit integers. Then, a tf.nn.sparse_softmax_cross_entropy_with_logits op is added to automatically produce 1-hot labels from the labels_placeholder and compare the output logits from the inference() function with those 1-hot labels.

labels = tf.to_int64(labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
 logits, labels, name='xentropy')

It then uses tf.reduce_mean
to average the cross entropy values across the batch dimension (the first
dimension) as the total loss.

loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')

And the tensor that will then contain the loss value is returned.

Note: Cross-entropy is an idea from information theory that allows us
to describe how bad it is to believe the predictions of the neural network,
given what is actually true. For more information, read the blog post Visual
Information Theory (http://colah.github.io/posts/2015-09-Visual-Information/)

Training

The training() function adds the operations needed to minimize the loss via
Gradient Descent [https://en.wikipedia.org/wiki/Gradient_descent].

Firstly, it takes the loss tensor from the loss() function and hands it to a
tf.scalar_summary,
an op for generating summary values into the events file when used with a
SummaryWriter (see below). In this case, it will emit the snapshot value of
the loss every time the summaries are written out.

tf.scalar_summary(loss.op.name, loss)

Next, we instantiate a tf.train.GradientDescentOptimizer
responsible for applying gradients with the requested learning rate.

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

We then generate a single variable to contain a counter for the global
training step and the minimize()
op is used to both update the trainable weights in the system and increment the
global step. This op is, by convention, known as the train_op and is what must
be run by a TensorFlow session in order to induce one full step of training
(see below).

global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)

Train the Model

Once the graph is built, it can be iteratively trained and evaluated in a loop
controlled by the user code in fully_connected_feed.py.

The Graph

At the top of the run_training() function is a python with command that
indicates all of the built ops are to be associated with the default
global tf.Graph
instance.

with tf.Graph().as_default():

A tf.Graph is a collection of ops that may be executed together as a group.
Most TensorFlow uses will only need to rely on the single default graph.

More complicated uses with multiple graphs are possible, but beyond the scope of
this simple tutorial.

The Session

Once all of the build preparation has been completed and all of the necessary
ops generated, a tf.Session
is created for running the graph.

sess = tf.Session()

Alternately, a Session may be generated into a with block for scoping:

with tf.Session() as sess:

The empty parameter to session indicates that this code will attach to
(or create if not yet created) the default local session.

Immediately after creating the session, all of the tf.Variable
instances are initialized by calling sess.run()
on their initialization op.

init = tf.initialize_all_variables()
sess.run(init)

The sess.run()
method will run the complete subset of the graph that
corresponds to the op(s) passed as parameters. In this first call, the init
op is a tf.group
that contains only the initializers for the variables. None of the rest of the
graph is run here; that happens in the training loop below.

Train Loop

After initializing the variables with the session, training may begin.

The user code controls the training per step, and the simplest loop that
can do useful training is:

for step in xrange(FLAGS.max_steps):
 sess.run(train_op)

However, this tutorial is slightly more complicated in that it must also slice
up the input data for each step to match the previously generated placeholders.

Feed the Graph

For each step, the code will generate a feed dictionary that will contain the
set of examples on which to train for the step, keyed by the placeholder
ops they represent.

In the fill_feed_dict() function, the given DataSet is queried for its next
batch_size set of images and labels, and tensors matching the placeholders are
filled containing the next images and labels.

images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size,
 FLAGS.fake_data)

A python dictionary object is then generated with the placeholders as keys and
the representative feed tensors as values.

feed_dict = {
 images_placeholder: images_feed,
 labels_placeholder: labels_feed,
}

This is passed into the sess.run() function’s feed_dict parameter to provide
the input examples for this step of training.

Check the Status

The code specifies two values to fetch in its run call: [train_op, loss].

for step in xrange(FLAGS.max_steps):
 feed_dict = fill_feed_dict(data_sets.train,
 images_placeholder,
 labels_placeholder)
 _, loss_value = sess.run([train_op, loss],
 feed_dict=feed_dict)

Because there are two values to fetch, sess.run() returns a tuple with two
items. Each Tensor in the list of values to fetch corresponds to a numpy
array in the returned tuple, filled with the value of that tensor during this
step of training. Since train_op is an Operation with no output value, the
corresponding element in the returned tuple is None and, thus,
discarded. However, the value of the loss tensor may become NaN if the model
diverges during training, so we capture this value for logging.

Assuming that the training runs fine without NaNs, the training loop also
prints a simple status text every 100 steps to let the user know the state of
training.

if step % 100 == 0:
 print 'Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration)

Visualize the Status

In order to emit the events files used by TensorBoard,
all of the summaries (in this case, only one) are collected into a single Tensor
during the graph building phase.

summary = tf.merge_all_summaries()

And then after the session is created, a tf.train.SummaryWriter
may be instantiated to write the events files, which
contain both the graph itself and the values of the summaries.

summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph)

Lastly, the events file will be updated with new summary values every time the
summary is evaluated and the output passed to the writer’s add_summary()
function.

summary_str = sess.run(summary, feed_dict=feed_dict)
summary_writer.add_summary(summary_str, step)

When the events files are written, TensorBoard may be run against the training
folder to display the values from the summaries.

[image: MNIST TensorBoard]

NOTE: For more info about how to build and run Tensorboard, please see the accompanying tutorial Tensorboard: Visualizing Your Training.

Save a Checkpoint

In order to emit a checkpoint file that may be used to later restore a model
for further training or evaluation, we instantiate a
tf.train.Saver.

saver = tf.train.Saver()

In the training loop, the saver.save()
method will periodically be called to write a checkpoint file to the training
directory with the current values of all the trainable variables.

saver.save(sess, FLAGS.train_dir, global_step=step)

At some later point in the future, training might be resumed by using the
saver.restore()
method to reload the model parameters.

saver.restore(sess, FLAGS.train_dir)

Evaluate the Model

Every thousand steps, the code will attempt to evaluate the model against both
the training and test datasets. The do_eval() function is called thrice, for
the training, validation, and test datasets.

print 'Training Data Eval:'
do_eval(sess,
 eval_correct,
 images_placeholder,
 labels_placeholder,
 data_sets.train)
print 'Validation Data Eval:'
do_eval(sess,
 eval_correct,
 images_placeholder,
 labels_placeholder,
 data_sets.validation)
print 'Test Data Eval:'
do_eval(sess,
 eval_correct,
 images_placeholder,
 labels_placeholder,
 data_sets.test)

Note that more complicated usage would usually sequester the data_sets.test
to only be checked after significant amounts of hyperparameter tuning. For
the sake of a simple little MNIST problem, however, we evaluate against all of
the data.

Build the Eval Graph

Before entering the training loop, the Eval op should have been built
by calling the evaluation() function from mnist.py with the same
logits/labels parameters as the loss() function.

eval_correct = mnist.evaluation(logits, labels_placeholder)

The evaluation() function simply generates a tf.nn.in_top_k
op that can automatically score each model output as correct if the true label
can be found in the K most-likely predictions. In this case, we set the value
of K to 1 to only consider a prediction correct if it is for the true label.

eval_correct = tf.nn.in_top_k(logits, labels, 1)

Eval Output

One can then create a loop for filling a feed_dict and calling sess.run()
against the eval_correct op to evaluate the model on the given dataset.

for step in xrange(steps_per_epoch):
 feed_dict = fill_feed_dict(data_set,
 images_placeholder,
 labels_placeholder)
 true_count += sess.run(eval_correct, feed_dict=feed_dict)

The true_count variable simply accumulates all of the predictions that the
in_top_k op has determined to be correct. From there, the precision may be
calculated from simply dividing by the total number of examples.

precision = true_count / num_examples
print(' Num examples: %d Num correct: %d Precision @ 1: %0.04f' %
 (num_examples, true_count, precision))

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/histogram_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Histograms

[TOC]

Histograms

tf.histogram_fixed_width(values, value_range, nbins=100, dtype=tf.int32, name=None) {#histogram_fixed_width}

Return histogram of values.

Given the tensor values, this operation returns a rank 1 histogram counting
the number of entries in values that fell into every bin. The bins are
equal width and determined by the arguments value_range and nbins.

Args:

		values: Numeric Tensor.

		value_range: Shape [2] Tensor. new_values <= value_range[0] will be
mapped to hist[0], values >= value_range[1] will be mapped to hist[-1].
Must be same dtype as new_values.

		nbins: Scalar int32 Tensor. Number of histogram bins.

		dtype: dtype for returned histogram.

		name: A name for this operation (defaults to ‘histogram_fixed_width’).

Returns:

A 1-D Tensor holding histogram of values.

		Examples:

Bins will be: (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf)
nbins = 5
value_range = [0.0, 5.0]
new_values = [-1.0, 0.0, 1.5, 2.0, 5.0, 15]

with tf.default_session() as sess:
 hist = tf.histogram_fixed_width(new_values, value_range, nbins=5)
 variables.initialize_all_variables().run()
 sess.run(hist) => [2, 1, 1, 0, 2]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/contrib.metrics.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Metrics (contrib)

[TOC]

##Ops for evaluation metrics and summary statistics.

API

This module provides functions for computing streaming metrics: metrics computed
on dynamically valued Tensors. Each metric declaration returns a
“value_tensor”, an idempotent operation that returns the current value of the
metric, and an “update_op”, an operation that accumulates the information
from the current value of the Tensors being measured as well as returns the
value of the “value_tensor”.

To use any of these metrics, one need only declare the metric, call update_op
repeatedly to accumulate data over the desired number of Tensor values (often
each one is a single batch) and finally evaluate the value_tensor. For example,
to use the streaming_mean:

value = ...
mean_value, update_op = tf.contrib.metrics.streaming_mean(values)
sess.run(tf.initialize_local_variables())

for i in range(number_of_batches):
 print('Mean after batch %d: %f' % (i, update_op.eval())
print('Final Mean: %f' % mean_value.eval())

Each metric function adds nodes to the graph that hold the state necessary to
compute the value of the metric as well as a set of operations that actually
perform the computation. Every metric evaluation is composed of three steps

		Initialization: initializing the metric state.

		Aggregation: updating the values of the metric state.

		Finalization: computing the final metric value.

In the above example, calling streaming_mean creates a pair of state variables
that will contain (1) the running sum and (2) the count of the number of samples
in the sum. Because the streaming metrics use local variables,
the Initialization stage is performed by running the op returned
by tf.initialize_local_variables(). It sets the sum and count variables to
zero.

Next, Aggregation is performed by examining the current state of values
and incrementing the state variables appropriately. This step is executed by
running the update_op returned by the metric.

Finally, finalization is performed by evaluating the “value_tensor”

In practice, we commonly want to evaluate across many batches and multiple
metrics. To do so, we need only run the metric computation operations multiple
times:

labels = ...
predictions = ...
accuracy, update_op_acc = tf.contrib.metrics.streaming_accuracy(
 labels, predictions)
error, update_op_error = tf.contrib.metrics.streaming_mean_absolute_error(
 labels, predictions)

sess.run(tf.initialize_local_variables())
for batch in range(num_batches):
 sess.run([update_op_acc, update_op_error])

accuracy, mean_absolute_error = sess.run([accuracy, mean_absolute_error])

Note that when evaluating the same metric multiple times on different inputs,
one must specify the scope of each metric to avoid accumulating the results
together:

labels = ...
predictions0 = ...
predictions1 = ...

accuracy0 = tf.contrib.metrics.accuracy(labels, predictions0, name='preds0')
accuracy1 = tf.contrib.metrics.accuracy(labels, predictions1, name='preds1')

Certain metrics, such as streaming_mean or streaming_accuracy, can be weighted
via a weights argument. The weights tensor must be the same size as the
labels and predictions tensors and results in a weighted average of the metric.

Other metrics, such as streaming_recall, streaming_precision, and streaming_auc,
are not well defined with regard to weighted samples. However, a binary
ignore_mask argument can be used to ignore certain values at graph executation
time.

Metric Ops

tf.contrib.metrics.streaming_accuracy(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None) {#streaming_accuracy}

Calculates how often predictions matches labels.

The streaming_accuracy function creates two local variables, total and
count that are used to compute the frequency with which predictions
matches labels. This frequency is ultimately returned as accuracy: an
idempotent operation that simply divides total by count.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the accuracy.
Internally, an is_correct operation computes a Tensor with elements 1.0
where the corresponding elements of predictions and labels match and 0.0
otherwise. Then update_op increments total with the reduced sum of the
product of weights and is_correct, and it increments count with the
reduced sum of weights.

If weights is None, weights default to 1. Use weights of 0 to mask values.

Args:

		predictions: The predicted values, a Tensor of any shape.

		labels: The ground truth values, a Tensor whose shape matches
predictions.

		weights: An optional Tensor whose shape is broadcastable to predictions.

		metrics_collections: An optional list of collections that accuracy should
be added to.

		updates_collections: An optional list of collections that update_op should
be added to.

		name: An optional variable_scope name.

Returns:

		accuracy: A tensor representing the accuracy, the value of total divided
by count.

		update_op: An operation that increments the total and count variables
appropriately and whose value matches accuracy.

Raises:

		ValueError: If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn’t match predictions, or if
either metrics_collections or updates_collections are not a list or
tuple.

tf.contrib.metrics.streaming_mean(values, weights=None, metrics_collections=None, updates_collections=None, name=None) {#streaming_mean}

Computes the (weighted) mean of the given values.

The streaming_mean function creates two local variables, total and count
that are used to compute the average of values. This average is ultimately
returned as mean which is an idempotent operation that simply divides
total by count.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the mean.
update_op increments total with the reduced sum of the product of values
and weights, and it increments count with the reduced sum of weights.

If weights is None, weights default to 1. Use weights of 0 to mask values.

Args:

		values: A Tensor of arbitrary dimensions.

		weights: An optional Tensor whose shape is broadcastable to values.

		metrics_collections: An optional list of collections that mean
should be added to.

		updates_collections: An optional list of collections that update_op
should be added to.

		name: An optional variable_scope name.

Returns:

		mean: A tensor representing the current mean, the value of total divided
by count.

		update_op: An operation that increments the total and count variables
appropriately and whose value matches mean_value.

Raises:

		ValueError: If weights is not None and its shape doesn’t match values,
or if either metrics_collections or updates_collections are not a list
or tuple.

tf.contrib.metrics.streaming_recall(*args, **kwargs) {#streaming_recall}

Computes the recall of the predictions with respect to the labels. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-10-19.
Instructions for updating:
ignore_mask is being deprecated. Instead use weights with values 0.0 and 1.0 to mask values. For example, weights=tf.logical_not(mask).

The streaming_recall function creates two local variables, true_positives
and false_negatives, that are used to compute the recall. This value is
ultimately returned as recall, an idempotent operation that simply divides
true_positives by the sum of true_positives and false_negatives.

For estimation of the metric over a stream of data, the function creates an
update_op that updates these variables and returns the recall. update_op
weights each prediction by the corresponding value in weights.

If weights is None, weights default to 1. Use weights of 0 to mask values.
Alternatively, if ignore_mask is not None, then mask values where
ignore_mask is True.

Args:
predictions: The predicted values, a bool Tensor of arbitrary shape.
labels: The ground truth values, a bool Tensor whose dimensions must
match predictions.
ignore_mask: An optional, bool Tensor whose shape matches predictions.
weights: An optional Tensor whose shape is broadcastable to predictions.
metrics_collections: An optional list of collections that recall should
be added to.
updates_collections: An optional list of collections that update_op should
be added to.
name: An optional variable_scope name.

Returns:
recall: Scalar float Tensor with the value of true_positives divided
by the sum of true_positives and false_negatives.
update_op: Operation that increments true_positives and
false_negatives variables appropriately and whose value matches
recall.

Raises:
ValueError: If predictions and labels have mismatched shapes, or if
ignore_mask is not None and its shape doesn’t match predictions, or
if weights is not None and its shape doesn’t match predictions, or
if either metrics_collections or updates_collections are not a list or
tuple.

tf.contrib.metrics.streaming_precision(*args, **kwargs) {#streaming_precision}

Computes the precision of the predictions with respect to the labels. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-10-19.
Instructions for updating:
ignore_mask is being deprecated. Instead use weights with values 0.0 and 1.0 to mask values. For example, weights=tf.logical_not(mask).

The streaming_precision function creates two local variables,
true_positives and false_positives, that are used to compute the
precision. This value is ultimately returned as precision, an idempotent
operation that simply divides true_positives by the sum of true_positives
and false_positives.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
precision. update_op weights each prediction by the corresponding value in
weights.

If weights is None, weights default to 1. Use weights of 0 to mask values.
Alternatively, if ignore_mask is not None, then mask values where
ignore_mask is True.

Args:
predictions: The predicted values, a bool Tensor of arbitrary shape.
labels: The ground truth values, a bool Tensor whose dimensions must
match predictions.
ignore_mask: An optional, bool Tensor whose shape matches predictions.
weights: An optional Tensor whose shape is broadcastable to predictions.
metrics_collections: An optional list of collections that precision should
be added to.
updates_collections: An optional list of collections that update_op should
be added to.
name: An optional variable_scope name.

Returns:
precision: Scalar float Tensor with the value of true_positives
divided by the sum of true_positives and false_positives.
update_op: Operation that increments true_positives and
false_positives variables appropriately and whose value matches
precision.

Raises:
ValueError: If predictions and labels have mismatched shapes, or if
ignore_mask is not None and its shape doesn’t match predictions, or
if weights is not None and its shape doesn’t match predictions, or
if either metrics_collections or updates_collections are not a list or
tuple.

tf.contrib.metrics.streaming_auc(predictions, labels, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, curve='ROC', name=None) {#streaming_auc}

Computes the approximate AUC via a Riemann sum.

The streaming_auc function creates four local variables, true_positives,
true_negatives, false_positives and false_negatives that are used to
compute the AUC. To discretize the AUC curve, a linearly spaced set of
thresholds is used to compute pairs of recall and precision values. The area
under the ROC-curve is therefore computed using the height of the recall
values by the false positive rate, while the area under the PR-curve is the
computed using the height of the precision values by the recall.

This value is ultimately returned as auc, an idempotent operation that
computes the area under a discretized curve of precision versus recall values
(computed using the afformentioned variables). The num_thresholds variable
controls the degree of discretization with larger numbers of thresholds more
closely approximating the true AUC.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the auc.

If weights is None, weights default to 1. Use weights of 0 to mask values.

Args:

		predictions: A floating point Tensor of arbitrary shape and whose values
are in the range [0, 1].

		labels: A bool Tensor whose shape matches predictions.

		weights: An optional Tensor whose shape is broadcastable to predictions.

		num_thresholds: The number of thresholds to use when discretizing the roc
curve.

		metrics_collections: An optional list of collections that auc should be
added to.

		updates_collections: An optional list of collections that update_op should
be added to.

		curve: Specifies the name of the curve to be computed, ‘ROC’ [default] or
‘PR’ for the Precision-Recall-curve.

		name: An optional variable_scope name.

Returns:

		auc: A scalar tensor representing the current area-under-curve.

		update_op: An operation that increments the true_positives,
true_negatives, false_positives and false_negatives variables
appropriately and whose value matches auc.

Raises:

		ValueError: If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn’t match predictions, or if
either metrics_collections or updates_collections are not a list or
tuple.

tf.contrib.metrics.streaming_recall_at_k(*args, **kwargs) {#streaming_recall_at_k}

Computes the recall@k of the predictions with respect to dense labels. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-10-19.
Instructions for updating:
ignore_mask is being deprecated. Instead use weights with values 0.0 and 1.0 to mask values. For example, weights=tf.logical_not(mask).

The streaming_recall_at_k function creates two local variables, total and
count, that are used to compute the recall@k frequency. This frequency is
ultimately returned as recall_at_<k>: an idempotent operation that simply
divides total by count.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
recall_at_<k>. Internally, an in_top_k operation computes a Tensor with
shape [batch_size] whose elements indicate whether or not the corresponding
label is in the top k predictions. Then update_op increments total
with the reduced sum of weights where in_top_k is True, and it
increments count with the reduced sum of weights.

If weights is None, weights default to 1. Use weights of 0 to mask values.
Alternatively, if ignore_mask is not None, then mask values where
ignore_mask is True.

Args:
predictions: A floating point tensor of dimension [batch_size, num_classes]
labels: A tensor of dimension [batch_size] whose type is in int32,
int64.
k: The number of top elements to look at for computing recall.
ignore_mask: An optional, bool Tensor whose shape matches predictions.
weights: An optional Tensor whose shape is broadcastable to predictions.
metrics_collections: An optional list of collections that recall_at_k
should be added to.
updates_collections: An optional list of collections update_op should be
added to.
name: An optional variable_scope name.

Returns:
recall_at_k: A tensor representing the recall@k, the fraction of labels
which fall into the top k predictions.
update_op: An operation that increments the total and count variables
appropriately and whose value matches recall_at_k.

Raises:
ValueError: If predictions and labels have mismatched shapes, or if
ignore_mask is not None and its shape doesn’t match predictions, or
if weights is not None and its shape doesn’t match predictions, or
if either metrics_collections or updates_collections are not a list or
tuple.

tf.contrib.metrics.streaming_mean_absolute_error(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None) {#streaming_mean_absolute_error}

Computes the mean absolute error between the labels and predictions.

The streaming_mean_absolute_error function creates two local variables,
total and count that are used to compute the mean absolute error. This
average is weighted by weights, and it is ultimately returned as
mean_absolute_error: an idempotent operation that simply divides total by
count.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
mean_absolute_error. Internally, an absolute_errors operation computes the
absolute value of the differences between predictions and labels. Then
update_op increments total with the reduced sum of the product of
weights and absolute_errors, and it increments count with the reduced
sum of weights

If weights is None, weights default to 1. Use weights of 0 to mask values.

Args:

		predictions: A Tensor of arbitrary shape.

		labels: A Tensor of the same shape as predictions.

		weights: An optional Tensor whose shape is broadcastable to predictions.

		metrics_collections: An optional list of collections that
mean_absolute_error should be added to.

		updates_collections: An optional list of collections that update_op should
be added to.

		name: An optional variable_scope name.

Returns:

		mean_absolute_error: A tensor representing the current mean, the value of
total divided by count.

		update_op: An operation that increments the total and count variables
appropriately and whose value matches mean_absolute_error.

Raises:

		ValueError: If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn’t match predictions, or if
either metrics_collections or updates_collections are not a list or
tuple.

tf.contrib.metrics.streaming_mean_iou(*args, **kwargs) {#streaming_mean_iou}

Calculate per-step mean Intersection-Over-Union (mIOU). (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-10-19.
Instructions for updating:
ignore_mask is being deprecated. Instead use weights with values 0.0 and 1.0 to mask values. For example, weights=tf.logical_not(mask).

Mean Intersection-Over-Union is a common evaluation metric for
semantic image segmentation, which first computes the IOU for each
semantic class and then computes the average over classes.
IOU is defined as follows:
IOU = true_positive / (true_positive + false_positive + false_negative).
The predictions are accumulated in a confusion matrix, weighted by weights,
and mIOU is then calculated from it.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the mean_iou.

If weights is None, weights default to 1. Use weights of 0 to mask values.
Alternatively, if ignore_mask is not None, then mask values where
ignore_mask is True.

Args:
predictions: A tensor of prediction results for semantic labels, whose
shape is [batch size] and type int32 or int64. The tensor will be
flattened, if its rank > 1.
labels: A tensor of ground truth labels with shape [batch size] and of
type int32 or int64. The tensor will be flattened, if its rank > 1.
num_classes: The possible number of labels the prediction task can
have. This value must be provided, since a confusion matrix of
dimension = [num_classes, num_classes] will be allocated.
ignore_mask: An optional, bool Tensor whose shape matches predictions.
weights: An optional Tensor whose shape is broadcastable to predictions.
metrics_collections: An optional list of collections that mean_iou
should be added to.
updates_collections: An optional list of collections update_op should be
added to.
name: An optional variable_scope name.

Returns:
mean_iou: A tensor representing the mean intersection-over-union.
update_op: An operation that increments the confusion matrix.

Raises:
ValueError: If predictions and labels have mismatched shapes, or if
ignore_mask is not None and its shape doesn’t match predictions, or
if weights is not None and its shape doesn’t match predictions, or
if either metrics_collections or updates_collections are not a list or
tuple.

tf.contrib.metrics.streaming_mean_relative_error(predictions, labels, normalizer, weights=None, metrics_collections=None, updates_collections=None, name=None) {#streaming_mean_relative_error}

Computes the mean relative error by normalizing with the given values.

The streaming_mean_relative_error function creates two local variables,
total and count that are used to compute the mean relative absolute error.
This average is weighted by weights, and it is ultimately returned as
mean_relative_error: an idempotent operation that simply divides total by
count.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
mean_reative_error. Internally, a relative_errors operation divides the
absolute value of the differences between predictions and labels by the
normalizer. Then update_op increments total with the reduced sum of the
product of weights and relative_errors, and it increments count with the
reduced sum of weights.

If weights is None, weights default to 1. Use weights of 0 to mask values.

Args:

		predictions: A Tensor of arbitrary shape.

		labels: A Tensor of the same shape as predictions.

		normalizer: A Tensor of the same shape as predictions.

		weights: An optional Tensor whose shape is broadcastable to predictions.

		metrics_collections: An optional list of collections that
mean_relative_error should be added to.

		updates_collections: An optional list of collections that update_op should
be added to.

		name: An optional variable_scope name.

Returns:

		mean_relative_error: A tensor representing the current mean, the value of
total divided by count.

		update_op: An operation that increments the total and count variables
appropriately and whose value matches mean_relative_error.

Raises:

		ValueError: If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn’t match predictions, or if
either metrics_collections or updates_collections are not a list or
tuple.

tf.contrib.metrics.streaming_mean_squared_error(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None) {#streaming_mean_squared_error}

Computes the mean squared error between the labels and predictions.

The streaming_mean_squared_error function creates two local variables,
total and count that are used to compute the mean squared error.
This average is weighted by weights, and it is ultimately returned as
mean_squared_error: an idempotent operation that simply divides total by
count.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
mean_squared_error. Internally, a squared_error operation computes the
element-wise square of the difference between predictions and labels. Then
update_op increments total with the reduced sum of the product of
weights and squared_error, and it increments count with the reduced sum
of weights.

If weights is None, weights default to 1. Use weights of 0 to mask values.

Args:

		predictions: A Tensor of arbitrary shape.

		labels: A Tensor of the same shape as predictions.

		weights: An optional Tensor whose shape is broadcastable to predictions.

		metrics_collections: An optional list of collections that
mean_squared_error should be added to.

		updates_collections: An optional list of collections that update_op should
be added to.

		name: An optional variable_scope name.

Returns:

		mean_squared_error: A tensor representing the current mean, the value of
total divided by count.

		update_op: An operation that increments the total and count variables
appropriately and whose value matches mean_squared_error.

Raises:

		ValueError: If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn’t match predictions, or if
either metrics_collections or updates_collections are not a list or
tuple.

tf.contrib.metrics.streaming_root_mean_squared_error(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None) {#streaming_root_mean_squared_error}

Computes the root mean squared error between the labels and predictions.

The streaming_root_mean_squared_error function creates two local variables,
total and count that are used to compute the root mean squared error.
This average is weighted by weights, and it is ultimately returned as
root_mean_squared_error: an idempotent operation that takes the square root
of the division of total by count.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
root_mean_squared_error. Internally, a squared_error operation computes
the element-wise square of the difference between predictions and labels.
Then update_op increments total with the reduced sum of the product of
weights and squared_error, and it increments count with the reduced sum
of weights.

If weights is None, weights default to 1. Use weights of 0 to mask values.

Args:

		predictions: A Tensor of arbitrary shape.

		labels: A Tensor of the same shape as predictions.

		weights: An optional Tensor whose shape is broadcastable to predictions.

		metrics_collections: An optional list of collections that
root_mean_squared_error should be added to.

		updates_collections: An optional list of collections that update_op should
be added to.

		name: An optional variable_scope name.

Returns:

		root_mean_squared_error: A tensor representing the current mean, the value
of total divided by count.

		update_op: An operation that increments the total and count variables
appropriately and whose value matches root_mean_squared_error.

Raises:

		ValueError: If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn’t match predictions, or if
either metrics_collections or updates_collections are not a list or
tuple.

tf.contrib.metrics.streaming_covariance(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None) {#streaming_covariance}

Computes the unbiased sample covariance between predictions and labels.

The streaming_covariance function creates four local variables,
comoment, mean_prediction, mean_label, and count, which are used to
compute the sample covariance between predictions and labels across multiple
batches of data. The covariance is ultimately returned as an idempotent
operation that simply divides comoment by count - 1. We use count - 1
in order to get an unbiased estimate.

The algorithm used for this online computation is described in
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
Specifically, the formula used to combine two sample comoments is
C_AB = C_A + C_B + (E[x_A] - E[x_B]) * (E[y_A] - E[y_B]) * n_A * n_B / n_AB
The comoment for a single batch of data is simply
sum((x - E[x]) * (y - E[y])), optionally weighted.

If weights is not None, then it is used to compute weighted comoments,
means, and count. NOTE: these weights are treated as “frequency weights”, as
opposed to “reliability weights”. See discussion of the difference on
https://wikipedia.org/wiki/Weighted_arithmetic_mean#Weighted_sample_variance

To facilitate the computation of covariance across multiple batches of data,
the function creates an update_op operation, which updates underlying
variables and returns the updated covariance.

Args:

		predictions: A Tensor of arbitrary size.

		labels: A Tensor of the same size as predictions.

		weights: An optional set of weights which indicates the frequency with which
an example is sampled. Must be broadcastable with labels.

		metrics_collections: An optional list of collections that the metric
value variable should be added to.

		updates_collections: An optional list of collections that the metric update
ops should be added to.

		name: An optional variable_scope name.

Returns:

		covariance: A Tensor representing the current unbiased sample covariance,
comoment / (count - 1).

		update_op: An operation that updates the local variables appropriately.

Raises:

		ValueError: If labels and predictions are of different sizes or if either
metrics_collections or updates_collections are not a list or tuple.

tf.contrib.metrics.streaming_pearson_correlation(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None) {#streaming_pearson_correlation}

Computes pearson correlation coefficient between predictions, labels.

The streaming_pearson_correlation function delegates to
streaming_covariance the tracking of three [co]variances:

		streaming_covariance(predictions, labels), i.e. covariance

		streaming_covariance(predictions, predictions), i.e. variance

		streaming_covariance(labels, labels), i.e. variance

The product-moment correlation ultimately returned is an idempotent operation
cov(predictions, labels) / sqrt(var(predictions) * var(labels)). To
facilitate correlation computation across multiple batches, the function
groups the update_ops of the underlying streaming_covariance and returns an
update_op.

If weights is not None, then it is used to compute a weighted correlation.
NOTE: these weights are treated as “frequency weights”, as opposed to
“reliability weights”. See discussion of the difference on
https://wikipedia.org/wiki/Weighted_arithmetic_mean#Weighted_sample_variance

Args:

		predictions: A Tensor of arbitrary size.

		labels: A Tensor of the same size as predictions.

		weights: An optional set of weights which indicates the frequency with which
an example is sampled. Must be broadcastable with labels.

		metrics_collections: An optional list of collections that the metric
value variable should be added to.

		updates_collections: An optional list of collections that the metric update
ops should be added to.

		name: An optional variable_scope name.

Returns:

		pearson_r: A tensor representing the current pearson product-moment
correlation coefficient, the value of
cov(predictions, labels) / sqrt(var(predictions) * var(labels)).

		update_op: An operation that updates the underlying variables appropriately.

Raises:

		ValueError: If labels and predictions are of different sizes, or if
weights is the wrong size, or if either metrics_collections or
updates_collections are not a list or tuple.

tf.contrib.metrics.streaming_mean_cosine_distance(predictions, labels, dim, weights=None, metrics_collections=None, updates_collections=None, name=None) {#streaming_mean_cosine_distance}

Computes the cosine distance between the labels and predictions.

The streaming_mean_cosine_distance function creates two local variables,
total and count that are used to compute the average cosine distance
between predictions and labels. This average is weighted by weights,
and it is ultimately returned as mean_distance, which is an idempotent
operation that simply divides total by count.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
mean_distance.

If weights is None, weights default to 1. Use weights of 0 to mask values.

Args:

		predictions: A Tensor of the same shape as labels.

		labels: A Tensor of arbitrary shape.

		dim: The dimension along which the cosine distance is computed.

		weights: An optional Tensor whose shape is broadcastable to predictions,
and whose dimension dim is 1.

		metrics_collections: An optional list of collections that the metric
value variable should be added to.

		updates_collections: An optional list of collections that the metric update
ops should be added to.

		name: An optional variable_scope name.

Returns:

		mean_distance: A tensor representing the current mean, the value of total
divided by count.

		update_op: An operation that increments the total and count variables
appropriately.

Raises:

		ValueError: If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn’t match predictions, or if
either metrics_collections or updates_collections are not a list or
tuple.

tf.contrib.metrics.streaming_percentage_less(*args, **kwargs) {#streaming_percentage_less}

Computes the percentage of values less than the given threshold. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-10-19.
Instructions for updating:
ignore_mask is being deprecated. Instead use weights with values 0.0 and 1.0 to mask values. For example, weights=tf.logical_not(mask).

The streaming_percentage_less function creates two local variables,
total and count that are used to compute the percentage of values that
fall below threshold. This rate is weighted by weights, and it is
ultimately returned as percentage which is an idempotent operation that
simply divides total by count.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
percentage.

If weights is None, weights default to 1. Use weights of 0 to mask values.
Alternatively, if ignore_mask is not None, then mask values where
ignore_mask is True.

Args:
values: A numeric Tensor of arbitrary size.
threshold: A scalar threshold.
ignore_mask: An optional, bool Tensor whose shape matches values.
weights: An optional Tensor whose shape is broadcastable to values.
metrics_collections: An optional list of collections that the metric
value variable should be added to.
updates_collections: An optional list of collections that the metric update
ops should be added to.
name: An optional variable_scope name.

Returns:
percentage: A tensor representing the current mean, the value of total
divided by count.
update_op: An operation that increments the total and count variables
appropriately.

Raises:
ValueError: If ignore_mask is not None and its shape doesn’t match
values, or if weights is not None and its shape doesn’t match
values, or if either metrics_collections or updates_collections are
not a list or tuple.

tf.contrib.metrics.streaming_sensitivity_at_specificity(predictions, labels, specificity, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, name=None) {#streaming_sensitivity_at_specificity}

Computes the the specificity at a given sensitivity.

The streaming_sensitivity_at_specificity function creates four local
variables, true_positives, true_negatives, false_positives and
false_negatives that are used to compute the sensitivity at the given
specificity value. The threshold for the given specificity value is computed
and used to evaluate the corresponding sensitivity.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
sensitivity. update_op increments the true_positives, true_negatives,
false_positives and false_negatives counts with the weight of each case
found in the predictions and labels.

If weights is None, weights default to 1. Use weights of 0 to mask values.

For additional information about specificity and sensitivity, see the
following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity

Args:

		predictions: A floating point Tensor of arbitrary shape and whose values
are in the range [0, 1].

		labels: A bool Tensor whose shape matches predictions.

		specificity: A scalar value in range [0, 1].

		weights: An optional Tensor whose shape is broadcastable to predictions.

		num_thresholds: The number of thresholds to use for matching the given
specificity.

		metrics_collections: An optional list of collections that sensitivity
should be added to.

		updates_collections: An optional list of collections that update_op should
be added to.

		name: An optional variable_scope name.

Returns:

		sensitivity: A scalar tensor representing the sensitivity at the given
specificity value.

		update_op: An operation that increments the true_positives,
true_negatives, false_positives and false_negatives variables
appropriately and whose value matches sensitivity.

Raises:

		ValueError: If predictions and labels have mismatched shapes, if
weights is not None and its shape doesn’t match predictions, or if
specificity is not between 0 and 1, or if either metrics_collections
or updates_collections are not a list or tuple.

tf.contrib.metrics.streaming_sparse_average_precision_at_k(predictions, labels, k, weights=None, metrics_collections=None, updates_collections=None, name=None) {#streaming_sparse_average_precision_at_k}

Computes average precision@k of predictions with respect to sparse labels.

See sparse_average_precision_at_k for details on formula. weights are
applied to the result of sparse_average_precision_at_k

streaming_sparse_average_precision_at_k creates two local variables,
average_precision_at_<k>/count and average_precision_at_<k>/total, that
are used to compute the frequency. This frequency is ultimately returned as
precision_at_<k>: an idempotent operation that simply divides
true_positive_at_<k> by total (true_positive_at_<k> +
false_positive_at_<k>).

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
precision_at_<k>. Internally, a top_k operation computes a Tensor
indicating the top k predictions. Set operations applied to top_k and
labels calculate the true positives and false positives weighted by
weights. Then update_op increments true_positive_at_<k> and
false_positive_at_<k> using these values.

If weights is None, weights default to 1. Use weights of 0 to mask values.

Args:

		predictions: Float Tensor with shape [D1, ... DN, num_classes] where
N >= 1. Commonly, N=1 and predictions has shape
[batch size, num_classes]. The final dimension contains the logit values
for each class. [D1, ... DN] must match labels.

		labels: int64 Tensor or SparseTensor with shape
[D1, ... DN, num_labels], where N >= 1 and num_labels is the number of
target classes for the associated prediction. Commonly, N=1 and labels
has shape [batch_size, num_labels]. [D1, ... DN] must match
predictions_idx. Values should be in range [0, num_classes], where
num_classes is the last dimension of predictions.

		k: Integer, k for @k metric. This will calculate an average precision for
range [1,k], as documented above.

		weights: An optional Tensor whose shape is broadcastable to the the first
[D1, ... DN] dimensions of predictions and labels.

		metrics_collections: An optional list of collections that values should
be added to.

		updates_collections: An optional list of collections that updates should
be added to.

		name: Name of new update operation, and namespace for other dependant ops.

Returns:

		mean_average_precision: Scalar float64 Tensor with the mean average
precision values.

		update: Operation that increments variables appropriately, and whose
value matches metric.

tf.contrib.metrics.streaming_sparse_precision_at_k(*args, **kwargs) {#streaming_sparse_precision_at_k}

Computes precision@k of the predictions with respect to sparse labels. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-10-19.
Instructions for updating:
ignore_mask is being deprecated. Instead use weights with values 0.0 and 1.0 to mask values. For example, weights=tf.logical_not(mask).

If class_id is specified, we calculate precision by considering only the
entries in the batch for which class_id is in the top-k highest
predictions, and computing the fraction of them for which class_id is
indeed a correct label.
If class_id is not specified, we’ll calculate precision as how often on
average a class among the top-k classes with the highest predicted values
of a batch entry is correct and can be found in the label for that entry.

streaming_sparse_precision_at_k creates two local variables,
true_positive_at_<k> and false_positive_at_<k>, that are used to compute
the precision@k frequency. This frequency is ultimately returned as
precision_at_<k>: an idempotent operation that simply divides
true_positive_at_<k> by total (true_positive_at_<k> +
false_positive_at_<k>).

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
precision_at_<k>. Internally, a top_k operation computes a Tensor
indicating the top k predictions. Set operations applied to top_k and
labels calculate the true positives and false positives weighted by
weights. Then update_op increments true_positive_at_<k> and
false_positive_at_<k> using these values.

If weights is None, weights default to 1. Use weights of 0 to mask values.
Alternatively, if ignore_mask is not None, then mask values where
ignore_mask is True.

Args:
predictions: Float Tensor with shape [D1, ... DN, num_classes] where
N >= 1. Commonly, N=1 and predictions has shape [batch size, num_classes].
The final dimension contains the logit values for each class. [D1, ... DN]
must match labels.
labels: int64 Tensor or SparseTensor with shape
[D1, ... DN, num_labels], where N >= 1 and num_labels is the number of
target classes for the associated prediction. Commonly, N=1 and labels
has shape [batch_size, num_labels]. [D1, ... DN] must match
predictions_idx. Values should be in range [0, num_classes], where
num_classes is the last dimension of predictions.
k: Integer, k for @k metric.
class_id: Integer class ID for which we want binary metrics. This should be
in range [0, num_classes], where num_classes is the last dimension of
predictions.
ignore_mask: An optional, bool Tensor whose shape is broadcastable to
the the first [D1, ... DN] dimensions of predictions and labels.
weights: An optional Tensor whose shape is broadcastable to the the first
[D1, ... DN] dimensions of predictions and labels.
metrics_collections: An optional list of collections that values should
be added to.
updates_collections: An optional list of collections that updates should
be added to.
name: Name of new update operation, and namespace for other dependant ops.

Returns:
precision: Scalar float64 Tensor with the value of true_positives
divided by the sum of true_positives and false_positives.
update_op: Operation that increments true_positives and
false_positives variables appropriately, and whose value matches
precision.

Raises:
ValueError: If ignore_mask is not None and its shape doesn’t match
predictions, or if weights is not None and its shape doesn’t match
predictions, or if either metrics_collections or updates_collections
are not a list or tuple.

tf.contrib.metrics.streaming_sparse_recall_at_k(*args, **kwargs) {#streaming_sparse_recall_at_k}

Computes recall@k of the predictions with respect to sparse labels. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-10-19.
Instructions for updating:
ignore_mask is being deprecated. Instead use weights with values 0.0 and 1.0 to mask values. For example, weights=tf.logical_not(mask).

If class_id is specified, we calculate recall by considering only the
entries in the batch for which class_id is in the label, and computing
the fraction of them for which class_id is in the top-k predictions.
If class_id is not specified, we’ll calculate recall as how often on
average a class among the labels of a batch entry is in the top-k
predictions.

streaming_sparse_recall_at_k creates two local variables,
true_positive_at_<k> and false_negative_at_<k>, that are used to compute
the recall_at_k frequency. This frequency is ultimately returned as
recall_at_<k>: an idempotent operation that simply divides
true_positive_at_<k> by total (true_positive_at_<k> + recall_at_<k>).

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
recall_at_<k>. Internally, a top_k operation computes a Tensor
indicating the top k predictions. Set operations applied to top_k and
labels calculate the true positives and false negatives weighted by
weights. Then update_op increments true_positive_at_<k> and
false_negative_at_<k> using these values.

If weights is None, weights default to 1. Use weights of 0 to mask values.
Alternatively, if ignore_mask is not None, then mask values where
ignore_mask is True.

Args:
predictions: Float Tensor with shape [D1, ... DN, num_classes] where
N >= 1. Commonly, N=1 and predictions has shape [batch size, num_classes].
The final dimension contains the logit values for each class. [D1, ... DN]
must match labels.
labels: int64 Tensor or SparseTensor with shape
[D1, ... DN, num_labels], where N >= 1 and num_labels is the number of
target classes for the associated prediction. Commonly, N=1 and labels
has shape [batch_size, num_labels]. [D1, ... DN] must match labels.
Values should be in range [0, num_classes], where num_classes is the last
dimension of predictions.
k: Integer, k for @k metric.
class_id: Integer class ID for which we want binary metrics. This should be
in range [0, num_classes], where num_classes is the last dimension of
predictions.
ignore_mask: An optional, bool Tensor whose shape is broadcastable to
the the first [D1, ... DN] dimensions of predictions and labels.
weights: An optional Tensor whose shape is broadcastable to the the first
[D1, ... DN] dimensions of predictions and labels.
metrics_collections: An optional list of collections that values should
be added to.
updates_collections: An optional list of collections that updates should
be added to.
name: Name of new update operation, and namespace for other dependant ops.

Returns:
recall: Scalar float64 Tensor with the value of true_positives divided
by the sum of true_positives and false_negatives.
update_op: Operation that increments true_positives and
false_negatives variables appropriately, and whose value matches
recall.

Raises:
ValueError: If ignore_mask is not None and its shape doesn’t match
predictions, or if weights is not None and its shape doesn’t match
predictions, or if either metrics_collections or updates_collections
are not a list or tuple.

tf.contrib.metrics.streaming_specificity_at_sensitivity(predictions, labels, sensitivity, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, name=None) {#streaming_specificity_at_sensitivity}

Computes the the specificity at a given sensitivity.

The streaming_specificity_at_sensitivity function creates four local
variables, true_positives, true_negatives, false_positives and
false_negatives that are used to compute the specificity at the given
sensitivity value. The threshold for the given sensitivity value is computed
and used to evaluate the corresponding specificity.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
specificity. update_op increments the true_positives, true_negatives,
false_positives and false_negatives counts with the weight of each case
found in the predictions and labels.

If weights is None, weights default to 1. Use weights of 0 to mask values.

For additional information about specificity and sensitivity, see the
following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity

Args:

		predictions: A floating point Tensor of arbitrary shape and whose values
are in the range [0, 1].

		labels: A bool Tensor whose shape matches predictions.

		sensitivity: A scalar value in range [0, 1].

		weights: An optional Tensor whose shape is broadcastable to predictions.

		num_thresholds: The number of thresholds to use for matching the given
sensitivity.

		metrics_collections: An optional list of collections that specificity
should be added to.

		updates_collections: An optional list of collections that update_op should
be added to.

		name: An optional variable_scope name.

Returns:

		specificity: A scalar tensor representing the specificity at the given
specificity value.

		update_op: An operation that increments the true_positives,
true_negatives, false_positives and false_negatives variables
appropriately and whose value matches specificity.

Raises:

		ValueError: If predictions and labels have mismatched shapes, if
weights is not None and its shape doesn’t match predictions, or if
sensitivity is not between 0 and 1, or if either metrics_collections
or updates_collections are not a list or tuple.

tf.contrib.metrics.auc_using_histogram(boolean_labels, scores, score_range, nbins=100, collections=None, check_shape=True, name=None) {#auc_using_histogram}

AUC computed by maintaining histograms.

Rather than computing AUC directly, this Op maintains Variables containing
histograms of the scores associated with True and False labels. By
comparing these the AUC is generated, with some discretization error.
See: “Efficient AUC Learning Curve Calculation” by Bouckaert.

This AUC Op updates in O(batch_size + nbins) time and works well even with
large class imbalance. The accuracy is limited by discretization error due
to finite number of bins. If scores are concentrated in a fewer bins,
accuracy is lower. If this is a concern, we recommend trying different
numbers of bins and comparing results.

Args:

		boolean_labels: 1-D boolean Tensor. Entry is True if the corresponding
record is in class.

		scores: 1-D numeric Tensor, same shape as boolean_labels.

		score_range: Tensor of shape [2], same dtype as scores. The min/max
values of score that we expect. Scores outside range will be clipped.

		nbins: Integer number of bins to use. Accuracy strictly increases as the
number of bins increases.

		collections: List of graph collections keys. Internal histogram Variables
are added to these collections. Defaults to [GraphKeys.LOCAL_VARIABLES].

		check_shape: Boolean. If True, do a runtime shape check on the scores
and labels.

		name: A name for this Op. Defaults to “auc_using_histogram”.

Returns:

		auc: float32 scalar Tensor. Fetching this converts internal histograms
to auc value.

		update_op: Op, when run, updates internal histograms.

tf.contrib.metrics.accuracy(predictions, labels, weights=None) {#accuracy}

Computes the percentage of times that predictions matches labels.

Args:

		predictions: the predicted values, a Tensor whose dtype and shape
matches ‘labels’.

		labels: the ground truth values, a Tensor of any shape and
bool, integer, or string dtype.

		weights: None or Tensor of float values to reweight the accuracy.

Returns:

Accuracy Tensor.

Raises:

		ValueError: if dtypes don’t match or
if dtype is not bool, integer, or string.

tf.contrib.metrics.confusion_matrix(predictions, labels, num_classes=None, dtype=tf.int32, name=None, weights=None) {#confusion_matrix}

Computes the confusion matrix from predictions and labels.

Calculate the Confusion Matrix for a pair of prediction and
label 1-D int arrays.

Considering a prediction array such as: [1, 2, 3]
And a label array such as: [2, 2, 3]

The confusion matrix returned would be the following one:

[[0, 0, 0]
 [0, 1, 0]
 [0, 1, 0]
 [0, 0, 1]]

If weights is not None, then the confusion matrix elements are the
corresponding weights elements.

Where the matrix rows represent the prediction labels and the columns
represents the real labels. The confusion matrix is always a 2-D array
of shape [n, n], where n is the number of valid labels for a given
classification task. Both prediction and labels must be 1-D arrays of
the same shape in order for this function to work.

Args:

		predictions: A 1-D array represeting the predictions for a given
classification.

		labels: A 1-D represeting the real labels for the classification task.

		num_classes: The possible number of labels the classification task can
have. If this value is not provided, it will be calculated
using both predictions and labels array.

		dtype: Data type of the confusion matrix.

		name: Scope name.

		weights: An optional Tensor whose shape matches predictions.

Returns:

A k X k matrix represeting the confusion matrix, where k is the number of
possible labels in the classification task.

Raises:

		ValueError: If both predictions and labels are not 1-D vectors and have
mismatched shapes, or if weights is not None and its shape doesn’t
match predictions.

tf.contrib.metrics.aggregate_metrics(*value_update_tuples) {#aggregate_metrics}

Aggregates the metric value tensors and update ops into two lists.

Args:

		*value_update_tuples: a variable number of tuples, each of which contain the
pair of (value_tensor, update_op) from a streaming metric.

Returns:

a list of value tensors and a list of update ops.

Raises:

		ValueError: if value_update_tuples is empty.

tf.contrib.metrics.aggregate_metric_map(names_to_tuples) {#aggregate_metric_map}

Aggregates the metric names to tuple dictionary.

This function is useful for pairing metric names with their associated value
and update ops when the list of metrics is long. For example:

metrics_to_values, metrics_to_updates = slim.metrics.aggregate_metric_map({
‘Mean Absolute Error’: new_slim.metrics.streaming_mean_absolute_error(
predictions, labels, weights),
‘Mean Relative Error’: new_slim.metrics.streaming_mean_relative_error(
predictions, labels, labels, weights),
‘RMSE Linear’: new_slim.metrics.streaming_root_mean_squared_error(
predictions, labels, weights),
‘RMSE Log’: new_slim.metrics.streaming_root_mean_squared_error(
predictions, labels, weights),
})

Args:

		names_to_tuples: a map of metric names to tuples, each of which contain the
pair of (value_tensor, update_op) from a streaming metric.

Returns:

A dictionary from metric names to value ops and a dictionary from metric
names to update ops.

Set Ops

tf.contrib.metrics.set_difference(a, b, aminusb=True, validate_indices=True) {#set_difference}

Compute set difference of elements in last dimension of a and b.

All but the last dimension of a and b must match.

Args:

		a: Tensor or SparseTensor of the same type as b. If sparse, indices
must be sorted in row-major order.

		b: Tensor or SparseTensor of the same type as a. Must be
SparseTensor if a is SparseTensor. If sparse, indices must be
sorted in row-major order.

		aminusb: Whether to subtract b from a, vs vice versa.

		validate_indices: Whether to validate the order and range of sparse indices
in a and b.

Returns:

A SparseTensor with the same rank as a and b, and all but the last
dimension the same. Elements along the last dimension contain the
differences.

tf.contrib.metrics.set_intersection(a, b, validate_indices=True) {#set_intersection}

Compute set intersection of elements in last dimension of a and b.

All but the last dimension of a and b must match.

Args:

		a: Tensor or SparseTensor of the same type as b. If sparse, indices
must be sorted in row-major order.

		b: Tensor or SparseTensor of the same type as a. Must be
SparseTensor if a is SparseTensor. If sparse, indices must be
sorted in row-major order.

		validate_indices: Whether to validate the order and range of sparse indices
in a and b.

Returns:

A SparseTensor with the same rank as a and b, and all but the last
dimension the same. Elements along the last dimension contain the
intersections.

tf.contrib.metrics.set_size(a, validate_indices=True) {#set_size}

Compute number of unique elements along last dimension of a.

Args:

		a: SparseTensor, with indices sorted in row-major order.

		validate_indices: Whether to validate the order and range of sparse indices
in a.

Returns:

int32 Tensor of set sizes. For a ranked n, this is a Tensor with
rank n-1, and the same 1st n-1 dimensions as a. Each value is the
number of unique elements in the corresponding [0...n-1] dimension of a.

Raises:

		TypeError: If a is an invalid types.

tf.contrib.metrics.set_union(a, b, validate_indices=True) {#set_union}

Compute set union of elements in last dimension of a and b.

All but the last dimension of a and b must match.

Args:

		a: Tensor or SparseTensor of the same type as b. If sparse, indices
must be sorted in row-major order.

		b: Tensor or SparseTensor of the same type as a. Must be
SparseTensor if a is SparseTensor. If sparse, indices must be
sorted in row-major order.

		validate_indices: Whether to validate the order and range of sparse indices
in a and b.

Returns:

A SparseTensor with the same rank as a and b, and all but the last
dimension the same. Elements along the last dimension contain the
unions.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/contrib.losses.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Losses (contrib)

[TOC]

Ops for building neural network losses.

Other Functions and Classes

tf.contrib.losses.absolute_difference(predictions, targets, weight=1.0, scope=None) {#absolute_difference}

Adds an Absolute Difference loss to the training procedure.

weight acts as a coefficient for the loss. If a scalar is provided, then the
loss is simply scaled by the given value. If weight is a tensor of size
[batch_size], then the total loss for each sample of the batch is rescaled
by the corresponding element in the weight vector. If the shape of
weight matches the shape of predictions, then the loss of each
measurable element of predictions is scaled by the corresponding value of
weight.

Args:

		predictions: The predicted outputs.

		targets: The ground truth output tensor, same dimensions as ‘predictions’.

		weight: Coefficients for the loss a scalar, a tensor of shape
[batch_size] or a tensor whose shape matches predictions.

		scope: The scope for the operations performed in computing the loss.

Returns:

A scalar Tensor representing the loss value.

Raises:

		ValueError: If the shape of predictions doesn’t match that of targets or
if the shape of weight is invalid.

tf.contrib.losses.add_loss(*args, **kwargs) {#add_loss}

Adds a externally defined loss to the collection of losses.

Args:

		loss: A loss Tensor.

		loss_collection: Optional collection to add the loss to.

tf.contrib.losses.compute_weighted_loss(losses, weight=1.0) {#compute_weighted_loss}

Computes the weighted loss.

Args:

		losses: A tensor of size [batch_size, d1, ... dN].

		weight: A tensor of size [1] or [batch_size, d1, ... dK] where K < N.

Returns:

A scalar Tensor that returns the weighted loss.

Raises:

		ValueError: If the weight is None or the shape is not compatible with the
losses shape or if the number of dimensions (rank) of either losses or
weight is missing.

tf.contrib.losses.cosine_distance(predictions, targets, dim, weight=1.0, scope=None) {#cosine_distance}

Adds a cosine-distance loss to the training procedure.

Note that the function assumes that the predictions and targets are already
unit-normalized.

Args:

		predictions: An arbitrary matrix.

		targets: A Tensor whose shape matches ‘predictions’

		dim: The dimension along which the cosine distance is computed.

		weight: Coefficients for the loss a scalar, a tensor of shape
[batch_size] or a tensor whose shape matches predictions.

		scope: The scope for the operations performed in computing the loss.

Returns:

A scalar Tensor representing the loss value.

Raises:

		ValueError: If predictions.shape doesn’t match targets.shape, if the ignore
mask is provided and its shape doesn’t match targets.shape or if
the ignore mask is not boolean valued.

tf.contrib.losses.get_losses(scope=None, loss_collection='losses') {#get_losses}

Gets the list of losses from the loss_collection.

Args:

		scope: an optional scope for filtering the losses to return.

		loss_collection: Optional losses collection.

Returns:

a list of loss tensors.

tf.contrib.losses.get_regularization_losses(scope=None) {#get_regularization_losses}

Gets the regularization losses.

Args:

		scope: an optional scope for filtering the losses to return.

Returns:

A list of loss variables.

tf.contrib.losses.get_total_loss(add_regularization_losses=True, name='total_loss') {#get_total_loss}

Returns a tensor whose value represents the total loss.

Notice that the function adds the given losses to the regularization losses.

Args:

		add_regularization_losses: A boolean indicating whether or not to use the
regularization losses in the sum.

		name: The name of the returned tensor.

Returns:

A Tensor whose value represents the total loss.

Raises:

		ValueError: if losses is not iterable.

tf.contrib.losses.hinge_loss(logits, target, scope=None) {#hinge_loss}

Method that returns the loss tensor for hinge loss.

Args:

		logits: The logits, a float tensor.

		target: The ground truth output tensor. Its shape should match the shape of
logits. The values of the tensor are expected to be 0.0 or 1.0.

		scope: The scope for the operations performed in computing the loss.

Returns:

A Tensor of same shape as logits and target representing the loss values
across the batch.

Raises:

		ValueError: If the shapes of logits and target don’t match.

tf.contrib.losses.log_loss(predictions, targets, weight=1.0, epsilon=1e-07, scope=None) {#log_loss}

Adds a Log Loss term to the training procedure.

weight acts as a coefficient for the loss. If a scalar is provided, then the
loss is simply scaled by the given value. If weight is a tensor of size
[batch_size], then the total loss for each sample of the batch is rescaled
by the corresponding element in the weight vector. If the shape of
weight matches the shape of predictions, then the loss of each
measurable element of predictions is scaled by the corresponding value of
weight.

Args:

		predictions: The predicted outputs.

		targets: The ground truth output tensor, same dimensions as ‘predictions’.

		weight: Coefficients for the loss a scalar, a tensor of shape
[batch_size] or a tensor whose shape matches predictions.

		epsilon: A small increment to add to avoid taking a log of zero.

		scope: The scope for the operations performed in computing the loss.

Returns:

A scalar Tensor representing the loss value.

Raises:

		ValueError: If the shape of predictions doesn’t match that of targets or
if the shape of weight is invalid.

tf.contrib.losses.mean_pairwise_squared_error(*args, **kwargs) {#mean_pairwise_squared_error}

Adds a pairwise-errors-squared loss to the training procedure. (deprecated)

THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-01.
Instructions for updating:
Use mean_pairwise_squared_error.

Unlike the sum_of_squares loss, which is a measure of the differences between
corresponding elements of predictions and targets, sum_of_pairwise_squares
is a measure of the differences between pairs of corresponding elements of
predictions and targets.

For example, if targets=[a, b, c] and predictions=[x, y, z], there are
three pairs of differences are summed to compute the loss:
loss = [((a-b) - (x-y)).^2 + ((a-c) - (x-z)).^2 + ((b-c) - (y-z)).^2] / 3

Note that since the inputs are of size [batch_size, d0, ... dN], the
corresponding pairs are computed within each batch sample but not across
samples within a batch. For example, if predictions represents a batch of
16 grayscale images of dimenion [batch_size, 100, 200], then the set of pairs
is drawn from each image, but not across images.

weight acts as a coefficient for the loss. If a scalar is provided, then the
loss is simply scaled by the given value. If weight is a tensor of size
[batch_size], then the total loss for each sample of the batch is rescaled
by the corresponding element in the weight vector.

Args:
predictions: The predicted outputs, a tensor of size [batch_size, d0, .. dN]
where N+1 is the total number of dimensions in predictions.
targets: The ground truth output tensor, whose shape must match the shape of
the predictions tensor.
weight: Coefficients for the loss a scalar, a tensor of shape [batch_size]
or a tensor whose shape matches predictions.
scope: The scope for the operations performed in computing the loss.

Returns:
A scalar Tensor representing the loss value.

Raises:
ValueError: If the shape of predictions doesn’t match that of targets or
if the shape of weight is invalid.

tf.contrib.losses.mean_squared_error(*args, **kwargs) {#mean_squared_error}

Adds a Sum-of-Squares loss to the training procedure. (deprecated)

THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-01.
Instructions for updating:
Use mean_squared_error.

weight acts as a coefficient for the loss. If a scalar is provided, then the
loss is simply scaled by the given value. If weight is a tensor of size
[batch_size], then the total loss for each sample of the batch is rescaled
by the corresponding element in the weight vector. If the shape of
weight matches the shape of predictions, then the loss of each
measurable element of predictions is scaled by the corresponding value of
weight.

Args:
predictions: The predicted outputs.
targets: The ground truth output tensor, same dimensions as ‘predictions’.
weight: Coefficients for the loss a scalar, a tensor of shape
[batch_size] or a tensor whose shape matches predictions.
scope: The scope for the operations performed in computing the loss.

Returns:
A scalar Tensor representing the loss value.

Raises:
ValueError: If the shape of predictions doesn’t match that of targets or
if the shape of weight is invalid.

tf.contrib.losses.sigmoid_cross_entropy(logits, multi_class_labels, weight=1.0, label_smoothing=0, scope=None) {#sigmoid_cross_entropy}

Creates a cross-entropy loss using tf.nn.sigmoid_cross_entropy_with_logits.

weight acts as a coefficient for the loss. If a scalar is provided,
then the loss is simply scaled by the given value. If weight is a
tensor of size [batch_size], then the loss weights apply to each
corresponding sample.

If label_smoothing is nonzero, smooth the labels towards 1/2:
new_multiclass_labels = multiclass_labels * (1 - label_smoothing)
+ 0.5 * label_smoothing

Args:

		logits: [batch_size, num_classes] logits outputs of the network .

		multi_class_labels: [batch_size, num_classes] target labels in (0, 1).

		weight: Coefficients for the loss. The tensor must be a scalar, a tensor of
shape [batch_size] or shape [batch_size, num_classes].

		label_smoothing: If greater than 0 then smooth the labels.

		scope: The scope for the operations performed in computing the loss.

Returns:

A scalar Tensor representing the loss value.

Raises:

		ValueError: If the shape of predictions doesn’t match that of targets or
if the shape of weight is invalid or if weight is None.

tf.contrib.losses.softmax_cross_entropy(logits, onehot_labels, weight=1.0, label_smoothing=0, scope=None) {#softmax_cross_entropy}

Creates a cross-entropy loss using tf.nn.softmax_cross_entropy_with_logits.

weight acts as a coefficient for the loss. If a scalar is provided,
then the loss is simply scaled by the given value. If weight is a
tensor of size [batch_size], then the loss weights apply to each
corresponding sample.

If label_smoothing is nonzero, smooth the labels towards 1/num_classes:
new_onehot_labels = onehot_labels * (1 - label_smoothing)
+ label_smoothing / num_classes

Args:

		logits: [batch_size, num_classes] logits outputs of the network .

		onehot_labels: [batch_size, num_classes] target one_hot_encoded labels.

		weight: Coefficients for the loss. The tensor must be a scalar or a tensor
of shape [batch_size].

		label_smoothing: If greater than 0 then smooth the labels.

		scope: the scope for the operations performed in computing the loss.

Returns:

A scalar Tensor representing the loss value.

Raises:

		ValueError: If the shape of logits doesn’t match that of onehot_labels
or if the shape of weight is invalid or if weight is None.

tf.contrib.losses.sparse_softmax_cross_entropy(logits, labels, weight=1.0, scope=None) {#sparse_softmax_cross_entropy}

Cross-entropy loss using tf.nn.sparse_softmax_cross_entropy_with_logits.

weight acts as a coefficient for the loss. If a scalar is provided,
then the loss is simply scaled by the given value. If weight is a
tensor of size [batch_size], then the loss weights apply to each
corresponding sample.

Args:

		logits: [batch_size, num_classes] logits outputs of the network .

		labels: [batch_size, 1] or [batch_size] target labels of dtype int32 or
int64 in the range [0, num_classes).

		weight: Coefficients for the loss. The tensor must be a scalar or a tensor
of shape [batch_size] or [batch_size, 1].

		scope: the scope for the operations performed in computing the loss.

Returns:

A scalar Tensor representing the loss value.

Raises:

		ValueError: If the shapes of logits, labels, and weight are incompatible, or
if weight is None.

tf.contrib.losses.sum_of_pairwise_squares(*args, **kwargs) {#sum_of_pairwise_squares}

Adds a pairwise-errors-squared loss to the training procedure. (deprecated)

THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-01.
Instructions for updating:
Use mean_pairwise_squared_error.

Unlike the sum_of_squares loss, which is a measure of the differences between
corresponding elements of predictions and targets, sum_of_pairwise_squares
is a measure of the differences between pairs of corresponding elements of
predictions and targets.

For example, if targets=[a, b, c] and predictions=[x, y, z], there are
three pairs of differences are summed to compute the loss:
loss = [((a-b) - (x-y)).^2 + ((a-c) - (x-z)).^2 + ((b-c) - (y-z)).^2] / 3

Note that since the inputs are of size [batch_size, d0, ... dN], the
corresponding pairs are computed within each batch sample but not across
samples within a batch. For example, if predictions represents a batch of
16 grayscale images of dimenion [batch_size, 100, 200], then the set of pairs
is drawn from each image, but not across images.

weight acts as a coefficient for the loss. If a scalar is provided, then the
loss is simply scaled by the given value. If weight is a tensor of size
[batch_size], then the total loss for each sample of the batch is rescaled
by the corresponding element in the weight vector.

Args:
predictions: The predicted outputs, a tensor of size [batch_size, d0, .. dN]
where N+1 is the total number of dimensions in predictions.
targets: The ground truth output tensor, whose shape must match the shape of
the predictions tensor.
weight: Coefficients for the loss a scalar, a tensor of shape [batch_size]
or a tensor whose shape matches predictions.
scope: The scope for the operations performed in computing the loss.

Returns:
A scalar Tensor representing the loss value.

Raises:
ValueError: If the shape of predictions doesn’t match that of targets or
if the shape of weight is invalid.

tf.contrib.losses.sum_of_squares(*args, **kwargs) {#sum_of_squares}

Adds a Sum-of-Squares loss to the training procedure. (deprecated)

THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-01.
Instructions for updating:
Use mean_squared_error.

weight acts as a coefficient for the loss. If a scalar is provided, then the
loss is simply scaled by the given value. If weight is a tensor of size
[batch_size], then the total loss for each sample of the batch is rescaled
by the corresponding element in the weight vector. If the shape of
weight matches the shape of predictions, then the loss of each
measurable element of predictions is scaled by the corresponding value of
weight.

Args:
predictions: The predicted outputs.
targets: The ground truth output tensor, same dimensions as ‘predictions’.
weight: Coefficients for the loss a scalar, a tensor of shape
[batch_size] or a tensor whose shape matches predictions.
scope: The scope for the operations performed in computing the loss.

Returns:
A scalar Tensor representing the loss value.

Raises:
ValueError: If the shape of predictions doesn’t match that of targets or
if the shape of weight is invalid.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/contrib.bayesflow.entropy.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

BayesFlow Entropy (contrib)

[TOC]

Entropy Ops.

Background

Common Shannon entropy, the Evidence Lower BOund (ELBO), KL divergence, and more
all have information theoretic use and interpretations. They are also often
used in variational inference. This library brings together Ops for
estimating them, e.g. using Monte Carlo expectations.

Examples

Example of fitting a variational posterior with the ELBO.

We start by assuming knowledge of the log of a joint density p(z, x) over
latent variable z and fixed measurement x. Since x is fixed, the Python
function does not take x as an argument.
def log_joint(z):
 theta = tf.Variable(0.) # Trainable variable that helps define log_joint.
 ...

Next, define a Normal distribution with trainable parameters.
q = distributions.Normal(mu=tf.Variable(0.), sigma=tf.Variable(1.))

Now, define a loss function (negative ELBO) that, when minimized, will adjust
mu, sigma, and theta, increasing the ELBO, which we hope will both reduce the
KL divergence between q(z) and p(z | x), and increase p(x). Note that we
cannot guarantee both, but in general we expect both to happen.
elbo = entropy.elbo_ratio(log_p, q, n=10)
loss = -elbo

Minimize the loss
train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
tf.initialize_all_variables().run()
for step in range(100):
 train_op.run()

Ops

tf.contrib.bayesflow.entropy.elbo_ratio(log_p, q, z=None, n=None, seed=None, form=None, name='elbo_ratio') {#elbo_ratio}

Estimate of the ratio appearing in the ELBO and KL divergence.

With p(z) := exp{log_p(z)}, this Op returns an approximation of

E_q[Log[p(Z) / q(Z)]]

The term E_q[Log[p(Z)]] is always computed as a sample mean.
The term E_q[Log[q(z)]] can be computed with samples, or an exact formula
if q.entropy() is defined. This is controlled with the kwarg form.

This log-ratio appears in different contexts:

KL[q || p]

If log_p(z) = Log[p(z)] for distribution p, this Op approximates
the negative Kullback-Leibler divergence.

elbo_ratio(log_p, q, n=100) = -1 * KL[q || p],
KL[q || p] = E[Log[q(Z)] - Log[p(Z)]]

Note that if p is a Distribution, then distributions.kl(q, p) may be
defined and available as an exact result.

ELBO

If log_p(z) = Log[p(z, x)] is the log joint of a distribution p, this is
the Evidence Lower BOund (ELBO):

ELBO ~= E[Log[p(Z, x)] - Log[q(Z)]]
 = Log[p(x)] - KL[q || p]
 <= Log[p(x)]

User supplies either Tensor of samples z, or number of samples to draw n

Args:

		log_p: Callable mapping samples from q to Tensors with
shape broadcastable to q.batch_shape.
For example, log_p works “just like” q.log_prob.

		q: tf.contrib.distributions.BaseDistribution.

		z: Tensor of samples from q, produced by q.sample_n.

		n: Integer Tensor. Number of samples to generate if z is not provided.

		seed: Python integer to seed the random number generator.

		form: Either ELBOForms.analytic_entropy (use formula for entropy of q)
or ELBOForms.sample (sample estimate of entropy), or ELBOForms.default
(attempt analytic entropy, fallback on sample).
Default value is ELBOForms.default.

		name: A name to give this Op.

Returns:

Scalar Tensor holding sample mean KL divergence. shape is the batch
shape of q, and dtype is the same as q.

Raises:

		ValueError: If form is not handled by this function.

tf.contrib.bayesflow.entropy.entropy_shannon(p, z=None, n=None, seed=None, form=None, name='entropy_shannon') {#entropy_shannon}

Monte Carlo or deterministic computation of Shannon’s entropy.

Depending on the kwarg form, this Op returns either the analytic entropy
of the distribution p, or the sampled entropy:

-n^{-1} sum_{i=1}^n p.log_prob(z_i), where z_i ~ p,
 \approx - E_p[Log[p(Z)]]
 = Entropy[p]

User supplies either Tensor of samples z, or number of samples to draw n

Args:

		p: tf.contrib.distributions.BaseDistribution

		z: Tensor of samples from p, produced by p.sample_n(n) for some n.

		n: Integer Tensor. Number of samples to generate if z is not provided.

		seed: Python integer to seed the random number generator.

		form: Either ELBOForms.analytic_entropy (use formula for entropy of q)
or ELBOForms.sample (sample estimate of entropy), or ELBOForms.default
(attempt analytic entropy, fallback on sample).
Default value is ELBOForms.default.

		name: A name to give this Op.

Returns:

A Tensor with same dtype as p, and shape equal to p.batch_shape.

Raises:

		ValueError: If form not handled by this function.

		ValueError: If form is ELBOForms.analytic_entropy and n was provided.

tf.contrib.bayesflow.entropy.renyi_ratio(log_p, q, alpha, z=None, n=None, seed=None, name='renyi_ratio') {#renyi_ratio}

Monte Carlo estimate of the ratio appearing in Renyi divergence.

This can be used to compute the Renyi (alpha) divergence, or a log evidence
approximation based on Renyi divergence.

Definition

With z_i iid samples from q, and exp{log_p(z)} = p(z), this Op returns
the (biased for finite n) estimate:

(1 - alpha)^{-1} Log[n^{-1} sum_{i=1}^n (p(z_i) / q(z_i))^{1 - alpha},
\approx (1 - alpha)^{-1} Log[E_q[(p(Z) / q(Z))^{1 - alpha}]]

This ratio appears in different contexts:

Renyi divergence

If log_p(z) = Log[p(z)] is the log prob of a distribution, and
alpha > 0, alpha != 1, this Op approximates -1 times Renyi divergence:

Choose reasonably high n to limit bias, see below.
renyi_ratio(log_p, q, alpha, n=100)
 \approx -1 * D_alpha[q || p], where
D_alpha[q || p] := (1 - alpha)^{-1} Log E_q[(p(Z) / q(Z))^{1 - alpha}]

The Renyi (or “alpha”) divergence is non-negative and equal to zero iff
q = p. Various limits of alpha lead to different special case results:

alpha D_alpha[q || p]
----- ---------------
--> 0 Log[int_{q > 0} p(z) dz]
= 0.5, -2 Log[1 - Hel^2[q || p]], (\propto squared Hellinger distance)
--> 1 KL[q || p]
= 2 Log[1 + chi^2[q || p]], (\propto squared Chi-2 divergence)
--> infty Log[max_z{q(z) / p(z)}], (min description length principle).

See “Renyi Divergence Variational Inference”, by Li and Turner.

Log evidence approximation

If log_p(z) = Log[p(z, x)] is the log of the joint distribution p, this is
an alternative to the ELBO common in variational inference.

L_alpha(q, p) = Log[p(x)] - D_alpha[q || p]

If q and p have the same support, and 0 < a <= b < 1, one can show
ELBO <= D_b <= D_a <= Log[p(x)]. Thus, this Op allows a smooth
interpolation between the ELBO and the true evidence.

Stability notes

Note that when 1 - alpha is not small, the ratio (p(z) / q(z))^{1 - alpha}
is subject to underflow/overflow issues. For that reason, it is evaluated in
log-space after centering. Nonetheless, infinite/NaN results may occur. For
that reason, one may wish to shrink alpha gradually. See the Op
renyi_alpha. Using float64 will also help.

Bias for finite sample size

Due to nonlinearity of the logarithm, for random variables {X_1,...,X_n},
E[Log[sum_{i=1}^n X_i]] != Log[E[sum_{i=1}^n X_i]]. As a result, this
estimate is biased for finite n. For alpha < 1, it is non-decreasing
with n (in expectation). For example, if n = 1, this estimator yields the
same result as elbo_ratio, and as n increases the expected value
of the estimator increases.

Call signature

User supplies either Tensor of samples z, or number of samples to draw n

Args:

		log_p: Callable mapping samples from q to Tensors with
shape broadcastable to q.batch_shape.
For example, log_p works “just like” q.log_prob.

		q: tf.contrib.distributions.BaseDistribution.
float64 dtype recommended.
log_p and q should be supported on the same set.

		alpha: Tensor with shape q.batch_shape and values not equal to 1.

		z: Tensor of samples from q, produced by q.sample_n.

		n: Integer Tensor. The number of samples to use if z is not provided.
Note that this can be highly biased for small n, see docstring.

		seed: Python integer to seed the random number generator.

		name: A name to give this Op.

Returns:

		renyi_result: The scaled log of sample mean. Tensor with shape equal
to batch shape of q, and dtype = q.dtype.

tf.contrib.bayesflow.entropy.renyi_alpha(step, decay_time, alpha_min, alpha_max=0.99999, name='renyi_alpha') {#renyi_alpha}

Exponentially decaying Tensor appropriate for Renyi ratios.

When minimizing the Renyi divergence for 0 <= alpha < 1 (or maximizing the
Renyi equivalent of elbo) in high dimensions, it is not uncommon to experience
NaN and inf values when alpha is far from 1.

For that reason, it is often desirable to start the optimization with alpha
very close to 1, and reduce it to a final alpha_min according to some
schedule. The user may even want to optimize using elbo_ratio for
some fixed time before switching to Renyi based methods.

This Op returns an alpha decaying exponentially with step:

s(step) = (exp{step / decay_time} - 1) / (e - 1)
t(s) = max(0, min(s, 1)), (smooth growth from 0 to 1)
alpha(t) = (1 - t) alpha_min + t alpha_max

Args:

		step: Non-negative scalar Tensor. Typically the global step or an
offset version thereof.

		decay_time: Postive scalar Tensor.

		alpha_min: float or double Tensor.
The minimal, final value of alpha, achieved when step >= decay_time

		alpha_max: Tensor of same dtype as alpha_min.
The maximal, beginning value of alpha, achieved when step == 0

		name: A name to give this Op.

Returns:

		alpha: A Tensor of same dtype as alpha_min.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/array_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Tensor Transformations

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Casting

TensorFlow provides several operations that you can use to cast tensor data
types in your graph.

tf.string_to_number(string_tensor, out_type=None, name=None) {#string_to_number}

Converts each string in the input Tensor to the specified numeric type.

(Note that int32 overflow results in an error while float overflow
results in a rounded value.)

Args:

		string_tensor: A Tensor of type string.

		out_type: An optional tf.DType from: tf.float32, tf.int32. Defaults to tf.float32.
The numeric type to interpret each string in string_tensor as.

		name: A name for the operation (optional).

Returns:

A Tensor of type out_type.
A Tensor of the same shape as the input string_tensor.

tf.to_double(x, name='ToDouble') {#to_double}

Casts a tensor to type float64.

Args:

		x: A Tensor or SparseTensor.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x with type float64.

Raises:

		TypeError: If x cannot be cast to the float64.

tf.to_float(x, name='ToFloat') {#to_float}

Casts a tensor to type float32.

Args:

		x: A Tensor or SparseTensor.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x with type float32.

Raises:

		TypeError: If x cannot be cast to the float32.

tf.to_bfloat16(x, name='ToBFloat16') {#to_bfloat16}

Casts a tensor to type bfloat16.

Args:

		x: A Tensor or SparseTensor.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x with type bfloat16.

Raises:

		TypeError: If x cannot be cast to the bfloat16.

tf.to_int32(x, name='ToInt32') {#to_int32}

Casts a tensor to type int32.

Args:

		x: A Tensor or SparseTensor.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x with type int32.

Raises:

		TypeError: If x cannot be cast to the int32.

tf.to_int64(x, name='ToInt64') {#to_int64}

Casts a tensor to type int64.

Args:

		x: A Tensor or SparseTensor.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x with type int64.

Raises:

		TypeError: If x cannot be cast to the int64.

tf.cast(x, dtype, name=None) {#cast}

Casts a tensor to a new type.

The operation casts x (in case of Tensor) or x.values
(in case of SparseTensor) to dtype.

For example:

tensor `a` is [1.8, 2.2], dtype=tf.float
tf.cast(a, tf.int32) ==> [1, 2] # dtype=tf.int32

Args:

		x: A Tensor or SparseTensor.

		dtype: The destination type.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x.

Raises:

		TypeError: If x cannot be cast to the dtype.

tf.bitcast(input, type, name=None) {#bitcast}

Bitcasts a tensor from one type to another without copying data.

Given a tensor input, this operation returns a tensor that has the same buffer
data as input with datatype type.

If the input datatype T is larger than the output datatype type then the
shape changes from [...] to [..., sizeof(T)/sizeof(type)].

If T is smaller than type, the operator requires that the rightmost
dimension be equal to sizeof(type)/sizeof(T). The shape then goes from
[..., sizeof(type)/sizeof(T)] to [...].

NOTE: Bitcast is implemented as a low-level cast, so machines with different
endian orderings will give different results.

Args:

		input: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.

		type: A tf.DType from: tf.float32, tf.float64, tf.int64, tf.int32, tf.uint8, tf.uint16, tf.int16, tf.int8, tf.complex64, tf.complex128, tf.qint8, tf.quint8, tf.qint32, tf.half.

		name: A name for the operation (optional).

Returns:

A Tensor of type type.

tf.saturate_cast(value, dtype, name=None) {#saturate_cast}

Performs a safe saturating cast of value to dtype.

This function casts the input to dtype without applying any scaling. If
there is a danger that values would over or underflow in the cast, this op
applies the appropriate clamping before the cast.

Args:

		value: A Tensor.

		dtype: The desired output DType.

		name: A name for the operation (optional).

Returns:

value safely cast to dtype.

Shapes and Shaping

TensorFlow provides several operations that you can use to determine the shape
of a tensor and change the shape of a tensor.

tf.shape(input, name=None, out_type=tf.int32) {#shape}

Returns the shape of a tensor.

This operation returns a 1-D integer tensor representing the shape of input.

For example:

't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]
shape(t) ==> [2, 2, 3]

Args:

		input: A Tensor or SparseTensor.

		name: A name for the operation (optional).

		out_type: (Optional) The specified output type of the operation
(int32 or int64). Defaults to tf.int32.

Returns:

A Tensor of type out_type.

tf.shape_n(input, out_type=None, name=None) {#shape_n}

Returns shape of tensors.

This operation returns N 1-D integer tensors representing shape of input[i]s.

Args:

		input: A list of at least 1 Tensor objects of the same type.

		out_type: An optional tf.DType from: tf.int32, tf.int64. Defaults to tf.int32.

		name: A name for the operation (optional).

Returns:

A list with the same number of Tensor objects as input of Tensor objects of type out_type.

tf.size(input, name=None, out_type=tf.int32) {#size}

Returns the size of a tensor.

This operation returns an integer representing the number of elements in
input.

For example:

't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]]
size(t) ==> 12

Args:

		input: A Tensor or SparseTensor.

		name: A name for the operation (optional).

		out_type: (Optional) The specified output type of the operation
(int32 or int64). Defaults to tf.int32.

Returns:

A Tensor of type out_type. Defaults to tf.int32.

tf.rank(input, name=None) {#rank}

Returns the rank of a tensor.

This operation returns an integer representing the rank of input.

For example:

't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]
shape of tensor 't' is [2, 2, 3]
rank(t) ==> 3

Note: The rank of a tensor is not the same as the rank of a matrix. The
rank of a tensor is the number of indices required to uniquely select each
element of the tensor. Rank is also known as “order”, “degree”, or “ndims.”

Args:

		input: A Tensor or SparseTensor.

		name: A name for the operation (optional).

Returns:

A Tensor of type int32.

tf.reshape(tensor, shape, name=None) {#reshape}

Reshapes a tensor.

Given tensor, this operation returns a tensor that has the same values
as tensor with shape shape.

If one component of shape is the special value -1, the size of that dimension
is computed so that the total size remains constant. In particular, a shape
of [-1] flattens into 1-D. At most one component of shape can be -1.

If shape is 1-D or higher, then the operation returns a tensor with shape
shape filled with the values of tensor. In this case, the number of elements
implied by shape must be the same as the number of elements in tensor.

For example:

tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9]
tensor 't' has shape [9]
reshape(t, [3, 3]) ==> [[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]]

tensor 't' is [[[1, 1], [2, 2]],
[[3, 3], [4, 4]]]
tensor 't' has shape [2, 2, 2]
reshape(t, [2, 4]) ==> [[1, 1, 2, 2],
 [3, 3, 4, 4]]

tensor 't' is [[[1, 1, 1],
[2, 2, 2]],
[[3, 3, 3],
[4, 4, 4]],
[[5, 5, 5],
[6, 6, 6]]]
tensor 't' has shape [3, 2, 3]
pass '[-1]' to flatten 't'
reshape(t, [-1]) ==> [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6]

-1 can also be used to infer the shape

-1 is inferred to be 9:
reshape(t, [2, -1]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],
 [4, 4, 4, 5, 5, 5, 6, 6, 6]]
-1 is inferred to be 2:
reshape(t, [-1, 9]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],
 [4, 4, 4, 5, 5, 5, 6, 6, 6]]
-1 is inferred to be 3:
reshape(t, [2, -1, 3]) ==> [[[1, 1, 1],
 [2, 2, 2],
 [3, 3, 3]],
 [[4, 4, 4],
 [5, 5, 5],
 [6, 6, 6]]]

tensor 't' is [7]
shape `[]` reshapes to a scalar
reshape(t, []) ==> 7

Args:

		tensor: A Tensor.

		shape: A Tensor. Must be one of the following types: int32, int64.
Defines the shape of the output tensor.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as tensor.

tf.squeeze(input, squeeze_dims=None, name=None) {#squeeze}

Removes dimensions of size 1 from the shape of a tensor.

Given a tensor input, this operation returns a tensor of the same type with
all dimensions of size 1 removed. If you don’t want to remove all size 1
dimensions, you can remove specific size 1 dimensions by specifying
squeeze_dims.

For example:

't' is a tensor of shape [1, 2, 1, 3, 1, 1]
shape(squeeze(t)) ==> [2, 3]

Or, to remove specific size 1 dimensions:

't' is a tensor of shape [1, 2, 1, 3, 1, 1]
shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]

Args:

		input: A Tensor. The input to squeeze.

		squeeze_dims: An optional list of ints. Defaults to [].
If specified, only squeezes the dimensions listed. The dimension
index starts at 0. It is an error to squeeze a dimension that is not 1.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
Contains the same data as input, but has one or more dimensions of
size 1 removed.

tf.expand_dims(input, dim, name=None) {#expand_dims}

Inserts a dimension of 1 into a tensor’s shape.

Given a tensor input, this operation inserts a dimension of 1 at the
dimension index dim of input‘s shape. The dimension index dim starts at
zero; if you specify a negative number for dim it is counted backward from
the end.

This operation is useful if you want to add a batch dimension to a single
element. For example, if you have a single image of shape [height, width, channels], you can make it a batch of 1 image with expand_dims(image, 0),
which will make the shape [1, height, width, channels].

Other examples:

't' is a tensor of shape [2]
shape(expand_dims(t, 0)) ==> [1, 2]
shape(expand_dims(t, 1)) ==> [2, 1]
shape(expand_dims(t, -1)) ==> [2, 1]

't2' is a tensor of shape [2, 3, 5]
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]

This operation requires that:

-1-input.dims() <= dim <= input.dims()

This operation is related to squeeze(), which removes dimensions of
size 1.

Args:

		input: A Tensor.

		dim: A Tensor. Must be one of the following types: int32, int64.
0-D (scalar). Specifies the dimension index at which to
expand the shape of input.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
Contains the same data as input, but its shape has an additional
dimension of size 1 added.

tf.meshgrid(*args, **kwargs) {#meshgrid}

Broadcasts parameters for evaluation on an N-D grid.

Given N one-dimensional coordinate arrays *args, returns a list outputs
of N-D coordinate arrays for evaluating expressions on an N-D grid.

Notes:

meshgrid supports cartesian (‘xy’) and matrix (‘ij’) indexing conventions.
When the indexing argument is set to ‘xy’ (the default), the broadcasting
instructions for the first two dimensions are swapped.

Examples:

Calling X, Y = meshgrid(x, y) with the tensors

 x = [1, 2, 3]
 y = [4, 5, 6]

results in

 X = [[1, 1, 1],
 [2, 2, 2],
 [3, 3, 3]]
 Y = [[4, 5, 6],
 [4, 5, 6],
 [4, 5, 6]]

Args:

		*args: Tensors with rank 1

		indexing: Either ‘xy’ or ‘ij’ (optional, default: ‘xy’)

		name: A name for the operation (optional).

Returns:

		outputs: A list of N Tensors with rank N

Slicing and Joining

TensorFlow provides several operations to slice or extract parts of a tensor,
or join multiple tensors together.

tf.slice(input_, begin, size, name=None) {#slice}

Extracts a slice from a tensor.

This operation extracts a slice of size size from a tensor input starting
at the location specified by begin. The slice size is represented as a
tensor shape, where size[i] is the number of elements of the ‘i’th dimension
of input that you want to slice. The starting location (begin) for the
slice is represented as an offset in each dimension of input. In other
words, begin[i] is the offset into the ‘i’th dimension of input that you
want to slice from.

begin is zero-based; size is one-based. If size[i] is -1,
all remaining elements in dimension i are included in the
slice. In other words, this is equivalent to setting:

size[i] = input.dim_size(i) - begin[i]

This operation requires that:

0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n]

For example:

'input' is [[[1, 1, 1], [2, 2, 2]],
[[3, 3, 3], [4, 4, 4]],
[[5, 5, 5], [6, 6, 6]]]
tf.slice(input, [1, 0, 0], [1, 1, 3]) ==> [[[3, 3, 3]]]
tf.slice(input, [1, 0, 0], [1, 2, 3]) ==> [[[3, 3, 3],
 [4, 4, 4]]]
tf.slice(input, [1, 0, 0], [2, 1, 3]) ==> [[[3, 3, 3]],
 [[5, 5, 5]]]

Args:

		input_: A Tensor.

		begin: An int32 or int64 Tensor.

		size: An int32 or int64 Tensor.

		name: A name for the operation (optional).

Returns:

A Tensor the same type as input.

tf.strided_slice(input_, begin, end, strides, begin_mask=0, end_mask=0, ellipsis_mask=0, new_axis_mask=0, shrink_axis_mask=0, var=None, name=None) {#strided_slice}

Extracts a strided slice from a tensor.

To a first order, this operation extracts a slice of size end - begin
from a tensor input
starting at the location specified by begin. The slice continues by adding
stride to the begin index until all dimensions are not less than end.
Note that components of stride can be negative, which causes a reverse
slice.

This operation can be thought of an encoding of a numpy style sliced
range. Given a python slice input[, , ...,]
this function will be called as follows.

begin, end, and strides will be all length n. n is in general
not the same dimensionality as input.

For the ith spec,
begin_mask, end_mask, ellipsis_mask, new_axis_mask,
and shrink_axis_mask will have the ith bit corresponding to
the ith spec.

If the ith bit of begin_mask is non-zero, begin[i] is ignored and
the fullest possible range in that dimension is used instead.
end_mask works analogously, except with the end range.

foo[5:,:,:3] on a 7x8x9 tensor is equivalent to foo[5:7,0:8,0:3].
foo[::-1] reverses a tensor with shape 8.

If the ith bit of ellipsis_mask, as many unspecified dimensions
as needed will be inserted between other dimensions. Only one
non-zero bit is allowed in ellipsis_mask.

For example foo[3:5,...,4:5] on a shape 10x3x3x10 tensor is
equivalent to foo[3:5,:,:,4:5] and
foo[3:5,...] is equivalent to foo[3:5,:,:,:].

If the ith bit of new_axis_mask is one, then a begin,
end, and stride are ignored and a new length 1 dimension is
added at this point in the output tensor.

For example foo[3:5,4] on a 10x8 tensor produces a shape 2 tensor
whereas foo[3:5,4:5] produces a shape 2x1 tensor with shrink_mask
being 1<<1 == 2.

If the ith bit of shrink_axis_mask is one, then begin,
end[i], and stride[i] are used to do a slice in the appropriate
dimension, but the output tensor will be reduced in dimensionality
by one. This is only valid if the ith entry of slice[i]==1.

NOTE: begin and end are zero-indexed.strides` entries must be non-zero.

'input' is [[[1, 1, 1], [2, 2, 2]],
[[3, 3, 3], [4, 4, 4]],
[[5, 5, 5], [6, 6, 6]]]
tf.slice(input, [1, 0, 0], [2, 1, 3], [1, 1, 1]) ==> [[[3, 3, 3]]]
tf.slice(input, [1, 0, 0], [2, 2, 3], [1, 1, 1]) ==> [[[3, 3, 3],
 [4, 4, 4]]]
tf.slice(input, [1, 1, 0], [2, -1, 3], [1, -1, 1]) ==>[[[4, 4, 4],
 [3, 3, 3]]]

Args:

		input_: A Tensor.

		begin: An int32 or int64 Tensor.

		end: An int32 or int64 Tensor.

		strides: An int32 or int64 Tensor.

		begin_mask: An int32 mask.

		end_mask: An int32 mask.

		ellipsis_mask: An int32 mask.

		new_axis_mask: An int32 mask.

		shrink_axis_mask: An int32 mask.

		var: The variable coresponding to input_ or None

		name: A name for the operation (optional).

Returns:

A Tensor the same type as input.

tf.split(split_dim, num_split, value, name='split') {#split}

Splits a tensor into num_split tensors along one dimension.

Splits value along dimension split_dim into num_split smaller tensors.
Requires that num_split evenly divide value.shape[split_dim].

For example:

'value' is a tensor with shape [5, 30]
Split 'value' into 3 tensors along dimension 1
split0, split1, split2 = tf.split(1, 3, value)
tf.shape(split0) ==> [5, 10]

Note: If you are splitting along an axis by the length of that axis, consider
using unpack, e.g.

num_items = t.get_shape()[axis].value
[tf.squeeze(s, [axis]) for s in tf.split(axis, num_items, t)]

can be rewritten as

tf.unpack(t, axis=axis)

Args:

		split_dim: A 0-D int32 Tensor. The dimension along which to split.
Must be in the range [0, rank(value)).

		num_split: A Python integer. The number of ways to split.

		value: The Tensor to split.

		name: A name for the operation (optional).

Returns:

num_split Tensor objects resulting from splitting value.

tf.tile(input, multiples, name=None) {#tile}

Constructs a tensor by tiling a given tensor.

This operation creates a new tensor by replicating input multiples times.
The output tensor’s i’th dimension has input.dims(i) * multiples[i] elements,
and the values of input are replicated multiples[i] times along the ‘i’th
dimension. For example, tiling [a b c d] by [2] produces
[a b c d a b c d].

Args:

		input: A Tensor. 1-D or higher.

		multiples: A Tensor. Must be one of the following types: int32, int64.
1-D. Length must be the same as the number of dimensions in input

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.pad(tensor, paddings, mode='CONSTANT', name=None) {#pad}

Pads a tensor.

This operation pads a tensor according to the paddings you specify.
paddings is an integer tensor with shape [n, 2], where n is the rank of
tensor. For each dimension D of input, paddings[D, 0] indicates how
many values to add before the contents of tensor in that dimension, and
paddings[D, 1] indicates how many values to add after the contents of
tensor in that dimension. If mode is “REFLECT” then both paddings[D, 0]
and paddings[D, 1] must be no greater than tensor.dim_size(D) - 1. If
mode is “SYMMETRIC” then both paddings[D, 0] and paddings[D, 1] must be
no greater than tensor.dim_size(D).

The padded size of each dimension D of the output is:

paddings[D, 0] + tensor.dim_size(D) + paddings[D, 1]

For example:

't' is [[1, 2, 3], [4, 5, 6]].
'paddings' is [[1, 1,], [2, 2]].
rank of 't' is 2.
pad(t, paddings, "CONSTANT") ==> [[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 2, 3, 0, 0],
 [0, 0, 4, 5, 6, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]]

pad(t, paddings, "REFLECT") ==> [[6, 5, 4, 5, 6, 5, 4],
 [3, 2, 1, 2, 3, 2, 1],
 [6, 5, 4, 5, 6, 5, 4],
 [3, 2, 1, 2, 3, 2, 1]]

pad(t, paddings, "SYMMETRIC") ==> [[2, 1, 1, 2, 3, 3, 2],
 [2, 1, 1, 2, 3, 3, 2],
 [5, 4, 4, 5, 6, 6, 5],
 [5, 4, 4, 5, 6, 6, 5]]

Args:

		tensor: A Tensor.

		paddings: A Tensor of type int32.

		mode: One of “CONSTANT”, “REFLECT”, or “SYMMETRIC”.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as tensor.

Raises:

		ValueError: When mode is not one of “CONSTANT”, “REFLECT”, or “SYMMETRIC”.

tf.concat(concat_dim, values, name='concat') {#concat}

Concatenates tensors along one dimension.

Concatenates the list of tensors values along dimension concat_dim. If
values[i].shape = [D0, D1, ... Dconcat_dim(i), ...Dn], the concatenated
result has shape

[D0, D1, ... Rconcat_dim, ...Dn]

where

Rconcat_dim = sum(Dconcat_dim(i))

That is, the data from the input tensors is joined along the concat_dim
dimension.

The number of dimensions of the input tensors must match, and all dimensions
except concat_dim must be equal.

For example:

t1 = [[1, 2, 3], [4, 5, 6]]
t2 = [[7, 8, 9], [10, 11, 12]]
tf.concat(0, [t1, t2]) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
tf.concat(1, [t1, t2]) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]

tensor t3 with shape [2, 3]
tensor t4 with shape [2, 3]
tf.shape(tf.concat(0, [t3, t4])) ==> [4, 3]
tf.shape(tf.concat(1, [t3, t4])) ==> [2, 6]

Note: If you are concatenating along a new axis consider using pack.
E.g.

tf.concat(axis, [tf.expand_dims(t, axis) for t in tensors])

can be rewritten as

tf.pack(tensors, axis=axis)

Args:

		concat_dim: 0-D int32 Tensor. Dimension along which to concatenate.

		values: A list of Tensor objects or a single Tensor.

		name: A name for the operation (optional).

Returns:

A Tensor resulting from concatenation of the input tensors.

tf.pack(values, axis=0, name='pack') {#pack}

Packs a list of rank-R tensors into one rank-(R+1) tensor.

Packs the list of tensors in values into a tensor with rank one higher than
each tensor in values, by packing them along the axis dimension.
Given a list of length N of tensors of shape (A, B, C);

if axis == 0 then the output tensor will have the shape (N, A, B, C).
if axis == 1 then the output tensor will have the shape (A, N, B, C).
Etc.

For example:

'x' is [1, 4]
'y' is [2, 5]
'z' is [3, 6]
pack([x, y, z]) => [[1, 4], [2, 5], [3, 6]] # Pack along first dim.
pack([x, y, z], axis=1) => [[1, 2, 3], [4, 5, 6]]

This is the opposite of unpack. The numpy equivalent is

tf.pack([x, y, z]) = np.asarray([x, y, z])

Args:

		values: A list of Tensor objects with the same shape and type.

		axis: An int. The axis to pack along. Defaults to the first dimension.
Supports negative indexes.

		name: A name for this operation (optional).

Returns:

		output: A packed Tensor with the same type as values.

Raises:

		ValueError: If axis is out of the range [-(R+1), R+1).

tf.unpack(value, num=None, axis=0, name='unpack') {#unpack}

Unpacks the given dimension of a rank-R tensor into rank-(R-1) tensors.

Unpacks num tensors from value by chipping it along the axis dimension.
If num is not specified (the default), it is inferred from value‘s shape.
If value.shape[axis] is not known, ValueError is raised.

For example, given a tensor of shape (A, B, C, D);

If axis == 0 then the i’th tensor in output is the slice
value[i, :, :, :] and each tensor in output will have shape (B, C, D).
(Note that the dimension unpacked along is gone, unlike split).

If axis == 1 then the i’th tensor in output is the slice
value[:, i, :, :] and each tensor in output will have shape (A, C, D).
Etc.

This is the opposite of pack. The numpy equivalent is

tf.unpack(x, n) = list(x)

Args:

		value: A rank R > 0 Tensor to be unpacked.

		num: An int. The length of the dimension axis. Automatically inferred
if None (the default).

		axis: An int. The axis to unpack along. Defaults to the first
dimension. Supports negative indexes.

		name: A name for the operation (optional).

Returns:

The list of Tensor objects unpacked from value.

Raises:

		ValueError: If num is unspecified and cannot be inferred.

		ValueError: If axis is out of the range [-R, R).

tf.reverse_sequence(input, seq_lengths, seq_dim, batch_dim=None, name=None) {#reverse_sequence}

Reverses variable length slices.

This op first slices input along the dimension batch_dim, and for each
slice i, reverses the first seq_lengths[i] elements along
the dimension seq_dim.

The elements of seq_lengths must obey seq_lengths[i] < input.dims[seq_dim],
and seq_lengths must be a vector of length input.dims[batch_dim].

The output slice i along dimension batch_dim is then given by input
slice i, with the first seq_lengths[i] slices along dimension
seq_dim reversed.

For example:

Given this:
batch_dim = 0
seq_dim = 1
input.dims = (4, 8, ...)
seq_lengths = [7, 2, 3, 5]

then slices of input are reversed on seq_dim, but only up to seq_lengths:
output[0, 0:7, :, ...] = input[0, 7:0:-1, :, ...]
output[1, 0:2, :, ...] = input[1, 2:0:-1, :, ...]
output[2, 0:3, :, ...] = input[2, 3:0:-1, :, ...]
output[3, 0:5, :, ...] = input[3, 5:0:-1, :, ...]

while entries past seq_lens are copied through:
output[0, 7:, :, ...] = input[0, 7:, :, ...]
output[1, 2:, :, ...] = input[1, 2:, :, ...]
output[2, 3:, :, ...] = input[2, 3:, :, ...]
output[3, 2:, :, ...] = input[3, 2:, :, ...]

In contrast, if:

Given this:
batch_dim = 2
seq_dim = 0
input.dims = (8, ?, 4, ...)
seq_lengths = [7, 2, 3, 5]

then slices of input are reversed on seq_dim, but only up to seq_lengths:
output[0:7, :, 0, :, ...] = input[7:0:-1, :, 0, :, ...]
output[0:2, :, 1, :, ...] = input[2:0:-1, :, 1, :, ...]
output[0:3, :, 2, :, ...] = input[3:0:-1, :, 2, :, ...]
output[0:5, :, 3, :, ...] = input[5:0:-1, :, 3, :, ...]

while entries past seq_lens are copied through:
output[7:, :, 0, :, ...] = input[7:, :, 0, :, ...]
output[2:, :, 1, :, ...] = input[2:, :, 1, :, ...]
output[3:, :, 2, :, ...] = input[3:, :, 2, :, ...]
output[2:, :, 3, :, ...] = input[2:, :, 3, :, ...]

Args:

		input: A Tensor. The input to reverse.

		seq_lengths: A Tensor. Must be one of the following types: int32, int64.
1-D with length input.dims(batch_dim) and
max(seq_lengths) < input.dims(seq_dim)

		seq_dim: An int. The dimension which is partially reversed.

		batch_dim: An optional int. Defaults to 0.
The dimension along which reversal is performed.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
The partially reversed input. It has the same shape as input.

tf.reverse(tensor, dims, name=None) {#reverse}

Reverses specific dimensions of a tensor.

Given a tensor, and a bool tensor dims representing the dimensions
of tensor, this operation reverses each dimension i of tensor where
dims[i] is True.

tensor can have up to 8 dimensions. The number of dimensions
of tensor must equal the number of elements in dims. In other words:

rank(tensor) = size(dims)

For example:

tensor 't' is [[[[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]]]
tensor 't' shape is [1, 2, 3, 4]

'dims' is [False, False, False, True]
reverse(t, dims) ==> [[[[3, 2, 1, 0],
 [7, 6, 5, 4],
 [11, 10, 9, 8]],
 [[15, 14, 13, 12],
 [19, 18, 17, 16],
 [23, 22, 21, 20]]]]

'dims' is [False, True, False, False]
reverse(t, dims) ==> [[[[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]
 [[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]]]]

'dims' is [False, False, True, False]
reverse(t, dims) ==> [[[[8, 9, 10, 11],
 [4, 5, 6, 7],
 [0, 1, 2, 3]]
 [[20, 21, 22, 23],
 [16, 17, 18, 19],
 [12, 13, 14, 15]]]]

Args:

		tensor: A Tensor. Must be one of the following types: uint8, int8, int32, int64, bool, half, float32, float64, complex64, complex128.
Up to 8-D.

		dims: A Tensor of type bool. 1-D. The dimensions to reverse.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as tensor. The same shape as tensor.

tf.transpose(a, perm=None, name='transpose') {#transpose}

Transposes a. Permutes the dimensions according to perm.

The returned tensor’s dimension i will correspond to the input dimension
perm[i]. If perm is not given, it is set to (n-1...0), where n is
the rank of the input tensor. Hence by default, this operation performs a
regular matrix transpose on 2-D input Tensors.

For example:

'x' is [[1 2 3]
[4 5 6]]
tf.transpose(x) ==> [[1 4]
 [2 5]
 [3 6]]

Equivalently
tf.transpose(x, perm=[1, 0]) ==> [[1 4]
 [2 5]
 [3 6]]

'perm' is more useful for n-dimensional tensors, for n > 2
'x' is [[[1 2 3]
[4 5 6]]
[[7 8 9]
[10 11 12]]]
Take the transpose of the matrices in dimension-0
tf.transpose(x, perm=[0, 2, 1]) ==> [[[1 4]
 [2 5]
 [3 6]]

 [[7 10]
 [8 11]
 [9 12]]]

Args:

		a: A Tensor.

		perm: A permutation of the dimensions of a.

		name: A name for the operation (optional).

Returns:

A transposed Tensor.

tf.extract_image_patches(images, ksizes, strides, rates, padding, name=None) {#extract_image_patches}

Extract patches from images and put them in the “depth” output dimension.

Args:

		images: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.
4-D Tensor with shape [batch, in_rows, in_cols, depth].

		ksizes: A list of ints that has length >= 4.
The size of the sliding window for each dimension of images.

		strides: A list of ints that has length >= 4.
1-D of length 4. How far the centers of two consecutive patches are in
the images. Must be: [1, stride_rows, stride_cols, 1].

		rates: A list of ints that has length >= 4.
1-D of length 4. Must be: [1, rate_rows, rate_cols, 1]. This is the
input stride, specifying how far two consecutive patch samples are in the
input. Equivalent to extracting patches with
patch_sizes_eff = patch_sizes + (patch_sizes - 1) * (rates - 1), followed by subsampling them spatially by a factor ofrates`.

		padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.

We specify the size-related attributes as:

 ksizes = [1, ksize_rows, ksize_cols, 1]
 strides = [1, strides_rows, strides_cols, 1]
 rates = [1, rates_rows, rates_cols, 1]

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as images.
4-D Tensor with shape [batch, out_rows, out_cols, ksize_rows * ksize_cols * depth] containing image patches with size
ksize_rows x ksize_cols x depth vectorized in the “depth” dimension.

tf.space_to_batch_nd(input, block_shape, paddings, name=None) {#space_to_batch_nd}

SpaceToBatch for N-D tensors of type T.

This operation divides “spatial” dimensions [1, ..., M] of the input into a
grid of blocks of shape block_shape, and interleaves these blocks with the
“batch” dimension (0) such that in the output, the spatial dimensions
[1, ..., M] correspond to the position within the grid, and the batch
dimension combines both the position within a spatial block and the original
batch position. Prior to division into blocks, the spatial dimensions of the
input are optionally zero padded according to paddings. See below for a
precise description.

Args:

		input: A Tensor.
N-D with shape input_shape = [batch] + spatial_shape + remaining_shape,
where spatial_shape has M dimensions.

		block_shape: A Tensor. Must be one of the following types: int32, int64.
1-D with shape [M], all values must be >= 1.

		paddings: A Tensor. Must be one of the following types: int32, int64.
2-D with shape [M, 2], all values must be >= 0.
paddings[i] = [pad_start, pad_end] specifies the padding for input dimension
i + 1, which corresponds to spatial dimension i. It is required that
block_shape[i] divides input_shape[i + 1] + pad_start + pad_end.

This operation is equivalent to the following steps:

		Zero-pad the start and end of dimensions [1, ..., M] of the
input according to paddings to produce padded of shape padded_shape.

		Reshape padded to reshaped_padded of shape:
[batch] +
[padded_shape[1] / block_shape[0],
block_shape[0],
...,
padded_shape[M] / block_shape[M-1],
block_shape[M-1]] +
remaining_shape

		Permute dimensions of reshaped_padded to produce
permuted_reshaped_padded of shape:
block_shape +
[batch] +
[padded_shape[1] / block_shape[0],
...,
padded_shape[M] / block_shape[M-1]] +
remaining_shape

		Reshape permuted_reshaped_padded to flatten block_shape into the batch
dimension, producing an output tensor of shape:
[batch * prod(block_shape)] +
[padded_shape[1] / block_shape[0],
...,
padded_shape[M] / block_shape[M-1]] +
remaining_shape

Some examples:

(1) For the following input of shape [1, 2, 2, 1], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:

x = [[[[1], [2]], [[3], [4]]]]

The output tensor has shape [4, 1, 1, 1] and value:

[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]

(2) For the following input of shape [1, 2, 2, 3], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:

x = [[[[1, 2, 3], [4, 5, 6]],
 [[7, 8, 9], [10, 11, 12]]]]

The output tensor has shape [4, 1, 1, 3] and value:

[[[1, 2, 3]], [[4, 5, 6]], [[7, 8, 9]], [[10, 11, 12]]]

(3) For the following input of shape [1, 4, 4, 1], block_shape = [2, 2], and
paddings = [[0, 0], [0, 0]]:

x = [[[[1], [2], [3], [4]],
 [[5], [6], [7], [8]],
 [[9], [10], [11], [12]],
 [[13], [14], [15], [16]]]]

The output tensor has shape [4, 2, 2, 1] and value:

x = [[[[1], [3]], [[5], [7]]],
 [[[2], [4]], [[10], [12]]],
 [[[5], [7]], [[13], [15]]],
 [[[6], [8]], [[14], [16]]]]

(4) For the following input of shape [2, 2, 4, 1], block_shape = [2, 2], and
paddings = [[0, 0], [2, 0]]:

x = [[[[1], [2], [3], [4]],
 [[5], [6], [7], [8]]],
 [[[9], [10], [11], [12]],
 [[13], [14], [15], [16]]]]

The output tensor has shape [8, 1, 3, 1] and value:

x = [[[[0], [1], [3]]], [[[0], [9], [11]]],
 [[[0], [2], [4]]], [[[0], [10], [12]]],
 [[[0], [5], [7]]], [[[0], [13], [15]]],
 [[[0], [6], [8]]], [[[0], [14], [16]]]]

Among others, this operation is useful for reducing atrous convolution into
regular convolution.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.space_to_batch(input, paddings, block_size, name=None) {#space_to_batch}

SpaceToBatch for 4-D tensors of type T.

This is a legacy version of the more general SpaceToBatchND.

Zero-pads and then rearranges (permutes) blocks of spatial data into batch.
More specifically, this op outputs a copy of the input tensor where values from
the height and width dimensions are moved to the batch dimension. After
the zero-padding, both height and width of the input must be divisible by the
block size.

Args:

		input: A Tensor. 4-D with shape [batch, height, width, depth].

		paddings: A Tensor. Must be one of the following types: int32, int64.
2-D tensor of non-negative integers with shape [2, 2]. It specifies
the padding of the input with zeros across the spatial dimensions as follows:

 paddings = [[pad_top, pad_bottom], [pad_left, pad_right]]

The effective spatial dimensions of the zero-padded input tensor will be:

 height_pad = pad_top + height + pad_bottom
 width_pad = pad_left + width + pad_right

The attr block_size must be greater than one. It indicates the block size.

		Non-overlapping blocks of size block_size x block size in the height and
width dimensions are rearranged into the batch dimension at each location.

		The batch of the output tensor is batch * block_size * block_size.

		Both height_pad and width_pad must be divisible by block_size.

The shape of the output will be:

 [batch*block_size*block_size, height_pad/block_size, width_pad/block_size,
 depth]

Some examples:

(1) For the following input of shape [1, 2, 2, 1] and block_size of 2:

x = [[[[1], [2]], [[3], [4]]]]

The output tensor has shape [4, 1, 1, 1] and value:

[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]

(2) For the following input of shape [1, 2, 2, 3] and block_size of 2:

x = [[[[1, 2, 3], [4, 5, 6]],
 [[7, 8, 9], [10, 11, 12]]]]

The output tensor has shape [4, 1, 1, 3] and value:

[[[1, 2, 3]], [[4, 5, 6]], [[7, 8, 9]], [[10, 11, 12]]]

(3) For the following input of shape [1, 4, 4, 1] and block_size of 2:

x = [[[[1], [2], [3], [4]],
 [[5], [6], [7], [8]],
 [[9], [10], [11], [12]],
 [[13], [14], [15], [16]]]]

The output tensor has shape [4, 2, 2, 1] and value:

x = [[[[1], [3]], [[5], [7]]],
 [[[2], [4]], [[10], [12]]],
 [[[5], [7]], [[13], [15]]],
 [[[6], [8]], [[14], [16]]]]

(4) For the following input of shape [2, 2, 4, 1] and block_size of 2:

x = [[[[1], [2], [3], [4]],
 [[5], [6], [7], [8]]],
 [[[9], [10], [11], [12]],
 [[13], [14], [15], [16]]]]

The output tensor has shape [8, 1, 2, 1] and value:

x = [[[[1], [3]]], [[[9], [11]]], [[[2], [4]]], [[[10], [12]]],
 [[[5], [7]]], [[[13], [15]]], [[[6], [8]]], [[[14], [16]]]]

Among others, this operation is useful for reducing atrous convolution into
regular convolution.

		block_size: An int that is >= 2.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.required_space_to_batch_paddings(input_shape, block_shape, base_paddings=None, name=None) {#required_space_to_batch_paddings}

Calculate padding required to make block_shape divide input_shape.

This function can be used to calculate a suitable paddings argument for use
with space_to_batch_nd and batch_to_space_nd.

Args:

		input_shape: int32 Tensor of shape [N].

		block_shape: int32 Tensor of shape [N].

		base_paddings: Optional int32 Tensor of shape [N, 2]. Specifies the minimum
amount of padding to use. All elements must be >= 0. If not specified,
defaults to 0.

		name: string. Optional name prefix.

Returns:

(paddings, crops), where:

paddings and crops are int32 Tensors of rank 2 and shape [N, 2]

		satisfying:

paddings[i, 0] = base_paddings[i, 0].
0 <= paddings[i, 1] - base_paddings[i, 1] < block_shape[i]
(input_shape[i] + paddings[i, 0] + paddings[i, 1]) % block_shape[i] == 0

crops[i, 0] = 0
crops[i, 1] = paddings[i, 1] - base_paddings[i, 1]

		Raises: ValueError if called with incompatible shapes.

tf.batch_to_space_nd(input, block_shape, crops, name=None) {#batch_to_space_nd}

BatchToSpace for N-D tensors of type T.

This operation reshapes the “batch” dimension 0 into M + 1 dimensions of shape
block_shape + [batch], interleaves these blocks back into the grid defined by
the spatial dimensions [1, ..., M], to obtain a result with the same rank as
the input. The spatial dimensions of this intermediate result are then
optionally cropped according to crops to produce the output. This is the
reverse of SpaceToBatch. See below for a precise description.

Args:

		input: A Tensor.
N-D with shape input_shape = [batch] + spatial_shape + remaining_shape,
where spatial_shape has M dimensions.

		block_shape: A Tensor. Must be one of the following types: int32, int64.
1-D with shape [M], all values must be >= 1.

		crops: A Tensor. Must be one of the following types: int32, int64.
2-D with shape [M, 2], all values must be >= 0.
crops[i] = [crop_start, crop_end] specifies the amount to crop from input
dimension i + 1, which corresponds to spatial dimension i. It is
required that
crop_start[i] + crop_end[i] <= block_shape[i] * input_shape[i + 1].

This operation is equivalent to the following steps:

		Reshape input to reshaped of shape:
[block_shape[0], ..., block_shape[M-1],
batch / prod(block_shape),
input_shape[1], ..., input_shape[N-1]]

		Permute dimensions of reshaped to produce permuted of shape
[batch / prod(block_shape),

input_shape[1], block_shape[0],
...,
input_shape[M], block_shape[M-1],

input_shape[M+1], ..., input_shape[N-1]]

		Reshape permuted to produce reshaped_permuted of shape
[batch / prod(block_shape),

input_shape[1] * block_shape[0],
...,
input_shape[M] * block_shape[M-1],

input_shape[M+1],
...,
input_shape[N-1]]

		Crop the start and end of dimensions [1, ..., M] of
reshaped_permuted according to crops to produce the output of shape:
[batch / prod(block_shape),

input_shape[1] * block_shape[0] - crops[0,0] - crops[0,1],
...,
input_shape[M] * block_shape[M-1] - crops[M-1,0] - crops[M-1,1],

input_shape[M+1], ..., input_shape[N-1]]

Some examples:

(1) For the following input of shape [4, 1, 1, 1], block_shape = [2, 2], and
crops = [[0, 0], [0, 0]]:

[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]

The output tensor has shape [1, 2, 2, 1] and value:

x = [[[[1], [2]], [[3], [4]]]]

(2) For the following input of shape [4, 1, 1, 3], block_shape = [2, 2], and
crops = [[0, 0], [0, 0]]:

[[[1, 2, 3]], [[4, 5, 6]], [[7, 8, 9]], [[10, 11, 12]]]

The output tensor has shape [1, 2, 2, 3] and value:

x = [[[[1, 2, 3], [4, 5, 6]],
 [[7, 8, 9], [10, 11, 12]]]]

(3) For the following input of shape [4, 2, 2, 1], block_shape = [2, 2], and
crops = [[0, 0], [0, 0]]:

x = [[[[1], [3]], [[5], [7]]],
 [[[2], [4]], [[10], [12]]],
 [[[5], [7]], [[13], [15]]],
 [[[6], [8]], [[14], [16]]]]

The output tensor has shape [1, 4, 4, 1] and value:

x = [[[1], [2], [3], [4]],
 [[5], [6], [7], [8]],
 [[9], [10], [11], [12]],
 [[13], [14], [15], [16]]]

(4) For the following input of shape [8, 1, 3, 1], block_shape = [2, 2], and
crops = [[0, 0], [2, 0]]:

x = [[[[0], [1], [3]]], [[[0], [9], [11]]],
 [[[0], [2], [4]]], [[[0], [10], [12]]],
 [[[0], [5], [7]]], [[[0], [13], [15]]],
 [[[0], [6], [8]]], [[[0], [14], [16]]]]

The output tensor has shape [2, 2, 4, 1] and value:

x = [[[[1], [2], [3], [4]],
 [[5], [6], [7], [8]]],
 [[[9], [10], [11], [12]],
 [[13], [14], [15], [16]]]]

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.batch_to_space(input, crops, block_size, name=None) {#batch_to_space}

BatchToSpace for 4-D tensors of type T.

This is a legacy version of the more general BatchToSpaceND.

Rearranges (permutes) data from batch into blocks of spatial data, followed by
cropping. This is the reverse transformation of SpaceToBatch. More specifically,
this op outputs a copy of the input tensor where values from the batch
dimension are moved in spatial blocks to the height and width dimensions,
followed by cropping along the height and width dimensions.

Args:

		input: A Tensor. 4-D tensor with shape
[batch*block_size*block_size, height_pad/block_size, width_pad/block_size, depth]. Note that the batch size of the input tensor must be divisible by
block_size * block_size.

		crops: A Tensor. Must be one of the following types: int32, int64.
2-D tensor of non-negative integers with shape [2, 2]. It specifies
how many elements to crop from the intermediate result across the spatial
dimensions as follows:

 crops = [[crop_top, crop_bottom], [crop_left, crop_right]]

		block_size: An int that is >= 2.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
4-D with shape [batch, height, width, depth], where:

 height = height_pad - crop_top - crop_bottom
 width = width_pad - crop_left - crop_right

The attr block_size must be greater than one. It indicates the block size.

Some examples:

(1) For the following input of shape [4, 1, 1, 1] and block_size of 2:

[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]

The output tensor has shape [1, 2, 2, 1] and value:

x = [[[[1], [2]], [[3], [4]]]]

(2) For the following input of shape [4, 1, 1, 3] and block_size of 2:

[[[1, 2, 3]], [[4, 5, 6]], [[7, 8, 9]], [[10, 11, 12]]]

The output tensor has shape [1, 2, 2, 3] and value:

x = [[[[1, 2, 3], [4, 5, 6]],
 [[7, 8, 9], [10, 11, 12]]]]

(3) For the following input of shape [4, 2, 2, 1] and block_size of 2:

x = [[[[1], [3]], [[5], [7]]],
 [[[2], [4]], [[10], [12]]],
 [[[5], [7]], [[13], [15]]],
 [[[6], [8]], [[14], [16]]]]

The output tensor has shape [1, 4, 4, 1] and value:

x = [[[1], [2], [3], [4]],
 [[5], [6], [7], [8]],
 [[9], [10], [11], [12]],
 [[13], [14], [15], [16]]]

(4) For the following input of shape [8, 1, 2, 1] and block_size of 2:

x = [[[[1], [3]]], [[[9], [11]]], [[[2], [4]]], [[[10], [12]]],
 [[[5], [7]]], [[[13], [15]]], [[[6], [8]]], [[[14], [16]]]]

The output tensor has shape [2, 2, 4, 1] and value:

x = [[[[1], [3]], [[5], [7]]],
 [[[2], [4]], [[10], [12]]],
 [[[5], [7]], [[13], [15]]],
 [[[6], [8]], [[14], [16]]]]

tf.space_to_depth(input, block_size, name=None) {#space_to_depth}

SpaceToDepth for tensors of type T.

Rearranges blocks of spatial data, into depth. More specifically,
this op outputs a copy of the input tensor where values from the height
and width dimensions are moved to the depth dimension.
The attr block_size indicates the input block size and how the data is moved.

		Non-overlapping blocks of size block_size x block size are rearranged
into depth at each location.

		The depth of the output tensor is input_depth * block_size * block_size.

		The input tensor’s height and width must be divisible by block_size.

That is, assuming the input is in the shape:
[batch, height, width, depth],
the shape of the output will be:
[batch, height/block_size, width/block_size, depth*block_size*block_size]

This operation requires that the input tensor be of rank 4, and that
block_size be >=1 and a divisor of both the input height and width.

This operation is useful for resizing the activations between convolutions
(but keeping all data), e.g. instead of pooling. It is also useful for training
purely convolutional models.

For example, given this input of shape [1, 2, 2, 1], and block_size of 2:

x = [[[[1], [2]],
 [[3], [4]]]]

This operation will output a tensor of shape [1, 1, 1, 4]:

[[[[1, 2, 3, 4]]]]

Here, the input has a batch of 1 and each batch element has shape [2, 2, 1],
the corresponding output will have a single element (i.e. width and height are
both 1) and will have a depth of 4 channels (1 * block_size * block_size).
The output element shape is [1, 1, 4].

For an input tensor with larger depth, here of shape [1, 2, 2, 3], e.g.

x = [[[[1, 2, 3], [4, 5, 6]],
 [[7, 8, 9], [10, 11, 12]]]]

This operation, for block_size of 2, will return the following tensor of shape
[1, 1, 1, 12]

[[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]]

Similarly, for the following input of shape [1 4 4 1], and a block size of 2:

x = [[[[1], [2], [5], [6]],
 [[3], [4], [7], [8]],
 [[9], [10], [13], [14]],
 [[11], [12], [15], [16]]]]

the operator will return the following tensor of shape [1 2 2 4]:

x = [[[[1, 2, 3, 4],
 [5, 6, 7, 8]],
 [[9, 10, 11, 12],
 [13, 14, 15, 16]]]]

Args:

		input: A Tensor.

		block_size: An int that is >= 2. The size of the spatial block.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.depth_to_space(input, block_size, name=None) {#depth_to_space}

DepthToSpace for tensors of type T.

Rearranges data from depth into blocks of spatial data.
This is the reverse transformation of SpaceToDepth. More specifically,
this op outputs a copy of the input tensor where values from the depth
dimension are moved in spatial blocks to the height and width dimensions.
The attr block_size indicates the input block size and how the data is moved.

		Chunks of data of size block_size * block_size from depth are rearranged
into non-overlapping blocks of size block_size x block_size

		The width the output tensor is input_depth * block_size, whereas the
height is input_height * block_size.

		The depth of the input tensor must be divisible by
block_size * block_size.

That is, assuming the input is in the shape:
[batch, height, width, depth],
the shape of the output will be:
[batch, height*block_size, width*block_size, depth/(block_size*block_size)]

This operation requires that the input tensor be of rank 4, and that
block_size be >=1 and that block_size * block_size be a divisor of the
input depth.

This operation is useful for resizing the activations between convolutions
(but keeping all data), e.g. instead of pooling. It is also useful for training
purely convolutional models.

For example, given this input of shape [1, 1, 1, 4], and a block size of 2:

x = [[[[1, 2, 3, 4]]]]

This operation will output a tensor of shape [1, 2, 2, 1]:

 [[[[1], [2]],
 [[3], [4]]]]

Here, the input has a batch of 1 and each batch element has shape [1, 1, 4],
the corresponding output will have 2x2 elements and will have a depth of
1 channel (1 = 4 / (block_size * block_size)).
The output element shape is [2, 2, 1].

For an input tensor with larger depth, here of shape [1, 1, 1, 12], e.g.

x = [[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]]

This operation, for block size of 2, will return the following tensor of shape
[1, 2, 2, 3]

 [[[[1, 2, 3], [4, 5, 6]],
 [[7, 8, 9], [10, 11, 12]]]]

Similarly, for the following input of shape [1 2 2 4], and a block size of 2:

x = [[[[1, 2, 3, 4],
 [5, 6, 7, 8]],
 [[9, 10, 11, 12],
 [13, 14, 15, 16]]]]

the operator will return the following tensor of shape [1 4 4 1]:

x = [[[1], [2], [5], [6]],
 [[3], [4], [7], [8]],
 [[9], [10], [13], [14]],
 [[11], [12], [15], [16]]]

Args:

		input: A Tensor.

		block_size: An int that is >= 2.
The size of the spatial block, same as in Space2Depth.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.gather(params, indices, validate_indices=None, name=None) {#gather}

Gather slices from params according to indices.

indices must be an integer tensor of any dimension (usually 0-D or 1-D).
Produces an output tensor with shape indices.shape + params.shape[1:] where:

Scalar indices
output[:, ..., :] = params[indices, :, ... :]

Vector indices
output[i, :, ..., :] = params[indices[i], :, ... :]

Higher rank indices
output[i, ..., j, :, ... :] = params[indices[i, ..., j], :, ..., :]

If indices is a permutation and len(indices) == params.shape[0] then
this operation will permute params accordingly.

[image:]

Args:

		params: A Tensor.

		indices: A Tensor. Must be one of the following types: int32, int64.

		validate_indices: An optional bool. Defaults to True.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as params.

tf.gather_nd(params, indices, name=None) {#gather_nd}

Gather values or slices from params according to indices.

params is a Tensor of rank R and indices is a Tensor of rank M.

indices must be integer tensor, containing indices into params.
It must be shape [d_0, ..., d_N, R] where 0 < R <= M.

The innermost dimension of indices (with length R) corresponds to
indices into elements (if R = M) or slices (if R < M) along the Nth
dimension of params.

Produces an output tensor with shape

[d_0, ..., d_{n-1}, params.shape[R], ..., params.shape[M-1]].

Some examples below.

Simple indexing into a matrix:

indices = [[0, 0], [1, 1]]
params = [['a', 'b'], ['c', 'd']]
output = ['a', 'd']

Slice indexing into a matrix:

indices = [[1], [0]]
params = [['a', 'b'], ['c', 'd']]
output = [['c', 'd'], ['a', 'b']]

Indexing into a 3-tensor:

indices = [[1]]
params = [[['a0', 'b0'], ['c0', 'd0']],
 [['a1', 'b1'], ['c1', 'd1']]]
output = [[['a1', 'b1'], ['c1', 'd1']]]

indices = [[0, 1], [1, 0]]
params = [[['a0', 'b0'], ['c0', 'd0']],
 [['a1', 'b1'], ['c1', 'd1']]]
output = [['c0', 'd0'], ['a1', 'b1']]

indices = [[0, 0, 1], [1, 0, 1]]
params = [[['a0', 'b0'], ['c0', 'd0']],
 [['a1', 'b1'], ['c1', 'd1']]]
output = ['b0', 'b1']

Batched indexing into a matrix:

indices = [[[0, 0]], [[0, 1]]]
params = [['a', 'b'], ['c', 'd']]
output = [['a'], ['b']]

Batched slice indexing into a matrix:

indices = [[[1]], [[0]]]
params = [['a', 'b'], ['c', 'd']]
output = [[['c', 'd']], [['a', 'b']]]

Batched indexing into a 3-tensor:

indices = [[[1]], [[0]]]
params = [[['a0', 'b0'], ['c0', 'd0']],
 [['a1', 'b1'], ['c1', 'd1']]]
output = [[[['a1', 'b1'], ['c1', 'd1']]],
 [[['a0', 'b0'], ['c0', 'd0']]]]

indices = [[[0, 1], [1, 0]], [[0, 0], [1, 1]]]
params = [[['a0', 'b0'], ['c0', 'd0']],
 [['a1', 'b1'], ['c1', 'd1']]]
output = [[['c0', 'd0'], ['a1', 'b1']],
 [['a0', 'b0'], ['c1', 'd1']]]

indices = [[[0, 0, 1], [1, 0, 1]], [[0, 1, 1], [1, 1, 0]]]
params = [[['a0', 'b0'], ['c0', 'd0']],
 [['a1', 'b1'], ['c1', 'd1']]]
output = [['b0', 'b1'], ['d0', 'c1']]

Args:

		params: A Tensor. M-D. The tensor from which to gather values.

		indices: A Tensor. Must be one of the following types: int32, int64.
(N+1)-D. Index tensor having shape [d_0, ..., d_N, R].

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as params.
(N+M-R)-D. Values from params gathered from indices given by
indices.

tf.unique_with_counts(x, out_idx=None, name=None) {#unique_with_counts}

Finds unique elements in a 1-D tensor.

This operation returns a tensor y containing all of the unique elements of x
sorted in the same order that they occur in x. This operation also returns a
tensor idx the same size as x that contains the index of each value of x
in the unique output y. Finally, it returns a third tensor count that
contains the count of each element of y in x. In other words:

y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]

For example:

tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]
y, idx, count = unique_with_counts(x)
y ==> [1, 2, 4, 7, 8]
idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]
count ==> [2, 1, 3, 1, 2]

Args:

		x: A Tensor. 1-D.

		out_idx: An optional tf.DType from: tf.int32, tf.int64. Defaults to tf.int32.

		name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (y, idx, count).

		y: A Tensor. Has the same type as x. 1-D.

		idx: A Tensor of type out_idx. 1-D.

		count: A Tensor of type out_idx. 1-D.

tf.dynamic_partition(data, partitions, num_partitions, name=None) {#dynamic_partition}

Partitions data into num_partitions tensors using indices from partitions.

For each index tuple js of size partitions.ndim, the slice data[js, ...]
becomes part of outputs[partitions[js]]. The slices with partitions[js] = i
are placed in outputs[i] in lexicographic order of js, and the first
dimension of outputs[i] is the number of entries in partitions equal to i.
In detail,

outputs[i].shape = [sum(partitions == i)] + data.shape[partitions.ndim:]

outputs[i] = pack([data[js, ...] for js if partitions[js] == i])

data.shape must start with partitions.shape.

For example:

Scalar partitions
partitions = 1
num_partitions = 2
data = [10, 20]
outputs[0] = [] # Empty with shape [0, 2]
outputs[1] = [[10, 20]]

Vector partitions
partitions = [0, 0, 1, 1, 0]
num_partitions = 2
data = [10, 20, 30, 40, 50]
outputs[0] = [10, 20, 50]
outputs[1] = [30, 40]

[image:]

Args:

		data: A Tensor.

		partitions: A Tensor of type int32.
Any shape. Indices in the range [0, num_partitions).

		num_partitions: An int that is >= 1.
The number of partitions to output.

		name: A name for the operation (optional).

Returns:

A list of num_partitions Tensor objects of the same type as data.

tf.dynamic_stitch(indices, data, name=None) {#dynamic_stitch}

Interleave the values from the data tensors into a single tensor.

Builds a merged tensor such that

merged[indices[m][i, ..., j], ...] = data[m][i, ..., j, ...]

For example, if each indices[m] is scalar or vector, we have

Scalar indices
merged[indices[m], ...] = data[m][...]

Vector indices
merged[indices[m][i], ...] = data[m][i, ...]

Each data[i].shape must start with the corresponding indices[i].shape,
and the rest of data[i].shape must be constant w.r.t. i. That is, we
must have data[i].shape = indices[i].shape + constant. In terms of this
constant, the output shape is

merged.shape = [max(indices)] + constant

Values are merged in order, so if an index appears in both indices[m][i] and
indices[n][j] for (m,i) < (n,j) the slice data[n][j] will appear in the
merged result.

For example:

indices[0] = 6
indices[1] = [4, 1]
indices[2] = [[5, 2], [0, 3]]
data[0] = [61, 62]
data[1] = [[41, 42], [11, 12]]
data[2] = [[[51, 52], [21, 22]], [[1, 2], [31, 32]]]
merged = [[1, 2], [11, 12], [21, 22], [31, 32], [41, 42],
 [51, 52], [61, 62]]

[image:]

Args:

		indices: A list of at least 1 Tensor objects of type int32.

		data: A list with the same number of Tensor objects as indices of Tensor objects of the same type.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.

tf.boolean_mask(tensor, mask, name='boolean_mask') {#boolean_mask}

Apply boolean mask to tensor. Numpy equivalent is tensor[mask].

1-D example
tensor = [0, 1, 2, 3]
mask = [True, False, True, False]
boolean_mask(tensor, mask) ==> [0, 2]

In general, 0 < dim(mask) = K <= dim(tensor), and mask‘s shape must match
the first K dimensions of tensor‘s shape. We then have:
boolean_mask(tensor, mask)[i, j1,...,jd] = tensor[i1,...,iK,j1,...,jd]
where (i1,...,iK) is the ith True entry of mask (row-major order).

Args:

		tensor: N-D tensor.

		mask: K-D boolean tensor, K <= N and K must be known statically.

		name: A name for this operation (optional).

Returns:

Tensor populated by entries in tensor corresponding to True values in
mask.

Raises:

		ValueError: If shapes do not conform.

		Examples:

2-D example
tensor = [[1, 2], [3, 4], [5, 6]]
mask = [True, False, True]
boolean_mask(tensor, mask) ==> [[1, 2], [5, 6]]

tf.one_hot(indices, depth, on_value=None, off_value=None, axis=None, dtype=None, name=None) {#one_hot}

Returns a one-hot tensor.

The locations represented by indices in indices take value on_value,
while all other locations take value off_value.

on_value and off_value must have matching data types. If dtype is also
provided, they must be the same data type as specified by dtype.

If on_value is not provided, it will default to the value 1 with type
dtype

If off_value is not provided, it will default to the value 0 with type
dtype

If the input indices is rank N, the output will have rank N+1. The
new axis is created at dimension axis (default: the new axis is appended
at the end).

If indices is a scalar the output shape will be a vector of length depth

If indices is a vector of length features, the output shape will be:

 features x depth if axis == -1
 depth x features if axis == 0

If indices is a matrix (batch) with shape [batch, features], the output
shape will be:

 batch x features x depth if axis == -1
 batch x depth x features if axis == 1
 depth x batch x features if axis == 0

If dtype is not provided, it will attempt to assume the data type of
on_value or off_value, if one or both are passed in. If none of
on_value, off_value, or dtype are provided, dtype will default to the
value tf.float32

Note: If a non-numeric data type output is desired (tf.string, tf.bool, etc.),
both on_value and off_value must be provided to one_hot

Examples

Suppose that

 indices = [0, 2, -1, 1]
 depth = 3
 on_value = 5.0
 off_value = 0.0
 axis = -1

Then output is [4 x 3]:

 output =
 [5.0 0.0 0.0] // one_hot(0)
 [0.0 0.0 5.0] // one_hot(2)
 [0.0 0.0 0.0] // one_hot(-1)
 [0.0 5.0 0.0] // one_hot(1)

Suppose that

 indices = [[0, 2], [1, -1]]
 depth = 3
 on_value = 1.0
 off_value = 0.0
 axis = -1

Then output is [2 x 2 x 3]:

 output =
 [
 [1.0, 0.0, 0.0] // one_hot(0)
 [0.0, 0.0, 1.0] // one_hot(2)
][
 [0.0, 1.0, 0.0] // one_hot(1)
 [0.0, 0.0, 0.0] // one_hot(-1)
]

Using default values for on_value and off_value:

 indices = [0, 1, 2]
 depth = 3

The output will be

 output =
 [[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]]

Args:

		indices: A Tensor of indices.

		depth: A scalar defining the depth of the one hot dimension.

		on_value: A scalar defining the value to fill in output when indices[j] = i. (default: 1)

		off_value: A scalar defining the value to fill in output when indices[j] != i. (default: 0)

		axis: The axis to fill (default: -1, a new inner-most axis).

		dtype: The data type of the output tensor.

Returns:

		output: The one-hot tensor.

Raises:

		TypeError: If dtype of either on_value or off_value don’t match dtype

		TypeError: If dtype of on_value and off_value don’t match one another

tf.sequence_mask(lengths, maxlen=None, dtype=tf.bool, name=None) {#sequence_mask}

Return a mask tensor representing the first N positions of each row.

Example:

tf.sequence_mask([1, 3, 2], 5) =
 [[True, False, False, False, False],
 [True, True, True, False, False],
 [True, True, False, False, False]]

Args:

		lengths: 1D integer tensor, all its values < maxlen.

		maxlen: scalar integer tensor, maximum length of each row. Default: use
maximum over lengths.

		dtype: output type of the resulting tensor.

		name: name of the op.

Returns:

A 2D mask tensor, as shown in the example above, cast to specified dtype.

Raises:

		ValueError: if the arguments have invalid rank.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/contrib.bayesflow.stochastic_tensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

BayesFlow Stochastic Tensors (contrib)

[TOC]

Classes and helper functions for creating Stochastic Tensors.

StochasticTensor objects wrap Distribution objects. Their
values may be samples from the underlying distribution, or the distribution
mean (as governed by value_type). These objects provide a loss
method for use when sampling from a non-reparameterized distribution.
The lossmethod is used in conjunction with stochastic_graph.surrogate_loss
to produce a single differentiable loss in stochastic graphs having
both continuous and discrete stochastic nodes.

Stochastic Tensor Classes

class tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor {#BaseStochasticTensor}

Base Class for Tensor-like objects that emit stochastic values.

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.__init__() {#BaseStochasticTensor.init}

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.dtype {#BaseStochasticTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.graph {#BaseStochasticTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.input_dict {#BaseStochasticTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.loss(sample_loss) {#BaseStochasticTensor.loss}

Returns the term to add to the surrogate loss.

This method is called by surrogate_loss. The input sample_loss should
have already had stop_gradient applied to it. This is because the
surrogate_loss usually provides a Monte Carlo sample term of the form
differentiable_surrogate * sample_loss where sample_loss is considered
constant with respect to the input for purposes of the gradient.

Args:

		sample_loss: Tensor, sample loss downstream of this StochasticTensor.

Returns:

Either None or a Tensor.

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.name {#BaseStochasticTensor.name}

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.value(name=None) {#BaseStochasticTensor.value}

class tf.contrib.bayesflow.stochastic_tensor.StochasticTensor {#StochasticTensor}

StochasticTensor is a BaseStochasticTensor backed by a distribution.

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.__init__(dist_cls, name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#StochasticTensor.init}

Construct a StochasticTensor.

StochasticTensor will instantiate a distribution from dist_cls and
dist_args and its value method will return the same value each time
it is called. What value is returned is controlled by the
dist_value_type (defaults to SampleAndReshapeValue).

Some distributions’ sample functions are not differentiable (e.g. a sample
from a discrete distribution like a Bernoulli) and so to differentiate
wrt parameters upstream of the sample requires a gradient estimator like
the score function estimator. This is accomplished by passing a
differentiable loss_fn to the StochasticTensor, which
defaults to a function whose derivative is the score function estimator.
Calling stochastic_graph.surrogate_loss(final_losses) will call
loss() on every StochasticTensor upstream of final losses.

loss() will return None for StochasticTensors backed by
reparameterized distributions; it will also return None if the value type is
MeanValueType or if loss_fn=None.

Args:

		dist_cls: a Distribution class.

		name: a name for this StochasticTensor and its ops.

		dist_value_type: a _StochasticValueType, which will determine what the
value of this StochasticTensor will be. If not provided, the
value type set with the value_type context manager will be used.

		loss_fn: callable that takes (dt, dt.value(), influenced_loss), where
dt is this StochasticTensor, and returns a Tensor loss. By
default, loss_fn is the score_function, or more precisely, the
integral of the score function, such that when the gradient is taken,
the score function results. See the stochastic_gradient_estimators
module for additional loss functions and baselines.

		**dist_args: keyword arguments to be passed through to dist_cls on
construction.

Raises:

		TypeError: if dist_cls is not a Distribution.

		TypeError: if loss_fn is not callable.

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.clone(name=None, **dist_args) {#StochasticTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.distribution {#StochasticTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.dtype {#StochasticTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.entropy(name='entropy') {#StochasticTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.graph {#StochasticTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.input_dict {#StochasticTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.loss(final_loss, name='Loss') {#StochasticTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.mean(name='mean') {#StochasticTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.name {#StochasticTensor.name}

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.value(name='value') {#StochasticTensor.value}

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.value_type {#StochasticTensor.value_type}

Stochastic Tensor Value Types

class tf.contrib.bayesflow.stochastic_tensor.MeanValue {#MeanValue}

tf.contrib.bayesflow.stochastic_tensor.MeanValue.__init__(stop_gradient=False) {#MeanValue.init}

tf.contrib.bayesflow.stochastic_tensor.MeanValue.declare_inputs(unused_stochastic_tensor, unused_inputs_dict) {#MeanValue.declare_inputs}

tf.contrib.bayesflow.stochastic_tensor.MeanValue.popped_above(unused_value_type) {#MeanValue.popped_above}

tf.contrib.bayesflow.stochastic_tensor.MeanValue.pushed_above(unused_value_type) {#MeanValue.pushed_above}

tf.contrib.bayesflow.stochastic_tensor.MeanValue.stop_gradient {#MeanValue.stop_gradient}

class tf.contrib.bayesflow.stochastic_tensor.SampleValue {#SampleValue}

Draw n samples along a new outer dimension.

This ValueType draws n samples from StochasticTensors run within its
context, increasing the rank by one along a new outer dimension.

Example:

mu = tf.zeros((2,3))
sigma = tf.ones((2, 3))
with sg.value_type(sg.SampleValue(n=4)):
 dt = sg.DistributionTensor(
 distributions.Normal, mu=mu, sigma=sigma)
draws 4 samples each with shape (2, 3) and concatenates
assertEqual(dt.value().get_shape(), (4, 2, 3))

tf.contrib.bayesflow.stochastic_tensor.SampleValue.__init__(n=1, stop_gradient=False) {#SampleValue.init}

Sample n times and concatenate along a new outer dimension.

Args:

		n: A python integer or int32 tensor. The number of samples to take.

		stop_gradient: If True, StochasticTensors’ values are wrapped in
stop_gradient, to avoid backpropagation through.

tf.contrib.bayesflow.stochastic_tensor.SampleValue.declare_inputs(unused_stochastic_tensor, unused_inputs_dict) {#SampleValue.declare_inputs}

tf.contrib.bayesflow.stochastic_tensor.SampleValue.n {#SampleValue.n}

tf.contrib.bayesflow.stochastic_tensor.SampleValue.popped_above(unused_value_type) {#SampleValue.popped_above}

tf.contrib.bayesflow.stochastic_tensor.SampleValue.pushed_above(unused_value_type) {#SampleValue.pushed_above}

tf.contrib.bayesflow.stochastic_tensor.SampleValue.stop_gradient {#SampleValue.stop_gradient}

class tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue {#SampleAndReshapeValue}

Ask the StochasticTensor for n samples and reshape the result.

Sampling from a StochasticTensor increases the rank of the value by 1
(because each sample represents a new outer dimension).

This ValueType requests n samples from StochasticTensors run within its
context that the outer two dimensions are reshaped to intermix the samples
with the outermost (usually batch) dimension.

Example:

mu and sigma are both shaped (2, 3)
mu = [[0.0, -1.0, 1.0], [0.0, -1.0, 1.0]]
sigma = tf.constant([[1.1, 1.2, 1.3], [1.1, 1.2, 1.3]])

with sg.value_type(sg.SampleAndReshapeValue(n=2)):
 dt = sg.DistributionTensor(
 distributions.Normal, mu=mu, sigma=sigma)

sample(2) creates a (2, 2, 3) tensor, and the two outermost dimensions
are reshaped into one: the final value is a (4, 3) tensor.
dt_value = dt.value()
assertEqual(dt_value.get_shape(), (4, 3))

dt_value_val = sess.run([dt_value])[0] # or e.g. run([tf.identity(dt)])[0]
assertEqual(dt_value_val.shape, (4, 3))

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.__init__(n=1, stop_gradient=False) {#SampleAndReshapeValue.init}

Sample n times and reshape the outer 2 axes so rank does not change.

Args:

		n: A python integer or int32 tensor. The number of samples to take.

		stop_gradient: If True, StochasticTensors’ values are wrapped in
stop_gradient, to avoid backpropagation through.

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.declare_inputs(unused_stochastic_tensor, unused_inputs_dict) {#SampleAndReshapeValue.declare_inputs}

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.n {#SampleAndReshapeValue.n}

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.popped_above(unused_value_type) {#SampleAndReshapeValue.popped_above}

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.pushed_above(unused_value_type) {#SampleAndReshapeValue.pushed_above}

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.stop_gradient {#SampleAndReshapeValue.stop_gradient}

tf.contrib.bayesflow.stochastic_tensor.value_type(dist_value_type) {#value_type}

Creates a value type context for any StochasticTensor created within.

Typical usage:

with sg.value_type(sg.MeanValue(stop_gradients=True)):
 dt = sg.DistributionTensor(distributions.Normal, mu=mu, sigma=sigma)

In the example above, dt.value() (or equivalently, tf.identity(dt)) will
be the mean value of the Normal distribution, i.e., mu (possibly
broadcasted to the shape of sigma). Furthermore, because the MeanValue
was marked with stop_gradients=True, this value will have been wrapped
in a stop_gradients call to disable any possible backpropagation.

Args:

		dist_value_type: An instance of MeanValue, SampleAndReshapeValue, or
any other stochastic value type.

Yields:

A context for StochasticTensor objects that controls the
value created when they are initialized.

Raises:

		TypeError: if dist_value_type is not an instance of a stochastic value
type.

tf.contrib.bayesflow.stochastic_tensor.get_current_value_type() {#get_current_value_type}

Automatically Generated StochasticTensors

class tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor {#BernoulliTensor}

BernoulliTensor is a StochasticTensor backed by the distribution Bernoulli.

tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#BernoulliTensor.init}

tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.clone(name=None, **dist_args) {#BernoulliTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.distribution {#BernoulliTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.dtype {#BernoulliTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.entropy(name='entropy') {#BernoulliTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.graph {#BernoulliTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.input_dict {#BernoulliTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.loss(final_loss, name='Loss') {#BernoulliTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.mean(name='mean') {#BernoulliTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.name {#BernoulliTensor.name}

tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.value(name='value') {#BernoulliTensor.value}

tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.value_type {#BernoulliTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor {#BernoulliWithSigmoidPTensor}

BernoulliWithSigmoidPTensor is a StochasticTensor backed by the distribution BernoulliWithSigmoidP.

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#BernoulliWithSigmoidPTensor.init}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.clone(name=None, **dist_args) {#BernoulliWithSigmoidPTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.distribution {#BernoulliWithSigmoidPTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.dtype {#BernoulliWithSigmoidPTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.entropy(name='entropy') {#BernoulliWithSigmoidPTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.graph {#BernoulliWithSigmoidPTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.input_dict {#BernoulliWithSigmoidPTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.loss(final_loss, name='Loss') {#BernoulliWithSigmoidPTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.mean(name='mean') {#BernoulliWithSigmoidPTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.name {#BernoulliWithSigmoidPTensor.name}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.value(name='value') {#BernoulliWithSigmoidPTensor.value}

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.value_type {#BernoulliWithSigmoidPTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.BetaTensor {#BetaTensor}

BetaTensor is a StochasticTensor backed by the distribution Beta.

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#BetaTensor.init}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.clone(name=None, **dist_args) {#BetaTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.distribution {#BetaTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.dtype {#BetaTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.entropy(name='entropy') {#BetaTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.graph {#BetaTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.input_dict {#BetaTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.loss(final_loss, name='Loss') {#BetaTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.mean(name='mean') {#BetaTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.name {#BetaTensor.name}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.value(name='value') {#BetaTensor.value}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.value_type {#BetaTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor {#BetaWithSoftplusABTensor}

BetaWithSoftplusABTensor is a StochasticTensor backed by the distribution BetaWithSoftplusAB.

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#BetaWithSoftplusABTensor.init}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.clone(name=None, **dist_args) {#BetaWithSoftplusABTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.distribution {#BetaWithSoftplusABTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.dtype {#BetaWithSoftplusABTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.entropy(name='entropy') {#BetaWithSoftplusABTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.graph {#BetaWithSoftplusABTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.input_dict {#BetaWithSoftplusABTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.loss(final_loss, name='Loss') {#BetaWithSoftplusABTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.mean(name='mean') {#BetaWithSoftplusABTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.name {#BetaWithSoftplusABTensor.name}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.value(name='value') {#BetaWithSoftplusABTensor.value}

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.value_type {#BetaWithSoftplusABTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.BinomialTensor {#BinomialTensor}

BinomialTensor is a StochasticTensor backed by the distribution Binomial.

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#BinomialTensor.init}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.clone(name=None, **dist_args) {#BinomialTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.distribution {#BinomialTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.dtype {#BinomialTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.entropy(name='entropy') {#BinomialTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.graph {#BinomialTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.input_dict {#BinomialTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.loss(final_loss, name='Loss') {#BinomialTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.mean(name='mean') {#BinomialTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.name {#BinomialTensor.name}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.value(name='value') {#BinomialTensor.value}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.value_type {#BinomialTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor {#CategoricalTensor}

CategoricalTensor is a StochasticTensor backed by the distribution Categorical.

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#CategoricalTensor.init}

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.clone(name=None, **dist_args) {#CategoricalTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.distribution {#CategoricalTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.dtype {#CategoricalTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.entropy(name='entropy') {#CategoricalTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.graph {#CategoricalTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.input_dict {#CategoricalTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.loss(final_loss, name='Loss') {#CategoricalTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.mean(name='mean') {#CategoricalTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.name {#CategoricalTensor.name}

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.value(name='value') {#CategoricalTensor.value}

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.value_type {#CategoricalTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor {#Chi2Tensor}

Chi2Tensor is a StochasticTensor backed by the distribution Chi2.

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#Chi2Tensor.init}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.clone(name=None, **dist_args) {#Chi2Tensor.clone}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.distribution {#Chi2Tensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.dtype {#Chi2Tensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.entropy(name='entropy') {#Chi2Tensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.graph {#Chi2Tensor.graph}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.input_dict {#Chi2Tensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.loss(final_loss, name='Loss') {#Chi2Tensor.loss}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.mean(name='mean') {#Chi2Tensor.mean}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.name {#Chi2Tensor.name}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.value(name='value') {#Chi2Tensor.value}

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.value_type {#Chi2Tensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor {#Chi2WithAbsDfTensor}

Chi2WithAbsDfTensor is a StochasticTensor backed by the distribution Chi2WithAbsDf.

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#Chi2WithAbsDfTensor.init}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.clone(name=None, **dist_args) {#Chi2WithAbsDfTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.distribution {#Chi2WithAbsDfTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.dtype {#Chi2WithAbsDfTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.entropy(name='entropy') {#Chi2WithAbsDfTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.graph {#Chi2WithAbsDfTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.input_dict {#Chi2WithAbsDfTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.loss(final_loss, name='Loss') {#Chi2WithAbsDfTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.mean(name='mean') {#Chi2WithAbsDfTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.name {#Chi2WithAbsDfTensor.name}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.value(name='value') {#Chi2WithAbsDfTensor.value}

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.value_type {#Chi2WithAbsDfTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.DirichletTensor {#DirichletTensor}

DirichletTensor is a StochasticTensor backed by the distribution Dirichlet.

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#DirichletTensor.init}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.clone(name=None, **dist_args) {#DirichletTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.distribution {#DirichletTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.dtype {#DirichletTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.entropy(name='entropy') {#DirichletTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.graph {#DirichletTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.input_dict {#DirichletTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.loss(final_loss, name='Loss') {#DirichletTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.mean(name='mean') {#DirichletTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.name {#DirichletTensor.name}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.value(name='value') {#DirichletTensor.value}

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.value_type {#DirichletTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor {#DirichletMultinomialTensor}

DirichletMultinomialTensor is a StochasticTensor backed by the distribution DirichletMultinomial.

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#DirichletMultinomialTensor.init}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.clone(name=None, **dist_args) {#DirichletMultinomialTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.distribution {#DirichletMultinomialTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.dtype {#DirichletMultinomialTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.entropy(name='entropy') {#DirichletMultinomialTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.graph {#DirichletMultinomialTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.input_dict {#DirichletMultinomialTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.loss(final_loss, name='Loss') {#DirichletMultinomialTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.mean(name='mean') {#DirichletMultinomialTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.name {#DirichletMultinomialTensor.name}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.value(name='value') {#DirichletMultinomialTensor.value}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.value_type {#DirichletMultinomialTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor {#ExponentialTensor}

ExponentialTensor is a StochasticTensor backed by the distribution Exponential.

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#ExponentialTensor.init}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.clone(name=None, **dist_args) {#ExponentialTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.distribution {#ExponentialTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.dtype {#ExponentialTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.entropy(name='entropy') {#ExponentialTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.graph {#ExponentialTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.input_dict {#ExponentialTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.loss(final_loss, name='Loss') {#ExponentialTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.mean(name='mean') {#ExponentialTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.name {#ExponentialTensor.name}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.value(name='value') {#ExponentialTensor.value}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.value_type {#ExponentialTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor {#ExponentialWithSoftplusLamTensor}

ExponentialWithSoftplusLamTensor is a StochasticTensor backed by the distribution ExponentialWithSoftplusLam.

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#ExponentialWithSoftplusLamTensor.init}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.clone(name=None, **dist_args) {#ExponentialWithSoftplusLamTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.distribution {#ExponentialWithSoftplusLamTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.dtype {#ExponentialWithSoftplusLamTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.entropy(name='entropy') {#ExponentialWithSoftplusLamTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.graph {#ExponentialWithSoftplusLamTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.input_dict {#ExponentialWithSoftplusLamTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.loss(final_loss, name='Loss') {#ExponentialWithSoftplusLamTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.mean(name='mean') {#ExponentialWithSoftplusLamTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.name {#ExponentialWithSoftplusLamTensor.name}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.value(name='value') {#ExponentialWithSoftplusLamTensor.value}

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.value_type {#ExponentialWithSoftplusLamTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.GammaTensor {#GammaTensor}

GammaTensor is a StochasticTensor backed by the distribution Gamma.

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#GammaTensor.init}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.clone(name=None, **dist_args) {#GammaTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.distribution {#GammaTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.dtype {#GammaTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.entropy(name='entropy') {#GammaTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.graph {#GammaTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.input_dict {#GammaTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.loss(final_loss, name='Loss') {#GammaTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.mean(name='mean') {#GammaTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.name {#GammaTensor.name}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.value(name='value') {#GammaTensor.value}

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.value_type {#GammaTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor {#GammaWithSoftplusAlphaBetaTensor}

GammaWithSoftplusAlphaBetaTensor is a StochasticTensor backed by the distribution GammaWithSoftplusAlphaBeta.

tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#GammaWithSoftplusAlphaBetaTensor.init}

tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.clone(name=None, **dist_args) {#GammaWithSoftplusAlphaBetaTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.distribution {#GammaWithSoftplusAlphaBetaTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.dtype {#GammaWithSoftplusAlphaBetaTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.entropy(name='entropy') {#GammaWithSoftplusAlphaBetaTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.graph {#GammaWithSoftplusAlphaBetaTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.input_dict {#GammaWithSoftplusAlphaBetaTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.loss(final_loss, name='Loss') {#GammaWithSoftplusAlphaBetaTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.mean(name='mean') {#GammaWithSoftplusAlphaBetaTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.name {#GammaWithSoftplusAlphaBetaTensor.name}

tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.value(name='value') {#GammaWithSoftplusAlphaBetaTensor.value}

tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.value_type {#GammaWithSoftplusAlphaBetaTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor {#InverseGammaTensor}

InverseGammaTensor is a StochasticTensor backed by the distribution InverseGamma.

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#InverseGammaTensor.init}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.clone(name=None, **dist_args) {#InverseGammaTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.distribution {#InverseGammaTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.dtype {#InverseGammaTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.entropy(name='entropy') {#InverseGammaTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.graph {#InverseGammaTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.input_dict {#InverseGammaTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.loss(final_loss, name='Loss') {#InverseGammaTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.mean(name='mean') {#InverseGammaTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.name {#InverseGammaTensor.name}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.value(name='value') {#InverseGammaTensor.value}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.value_type {#InverseGammaTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor {#InverseGammaWithSoftplusAlphaBetaTensor}

InverseGammaWithSoftplusAlphaBetaTensor is a StochasticTensor backed by the distribution InverseGammaWithSoftplusAlphaBeta.

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#InverseGammaWithSoftplusAlphaBetaTensor.init}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.clone(name=None, **dist_args) {#InverseGammaWithSoftplusAlphaBetaTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.distribution {#InverseGammaWithSoftplusAlphaBetaTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.dtype {#InverseGammaWithSoftplusAlphaBetaTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.entropy(name='entropy') {#InverseGammaWithSoftplusAlphaBetaTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.graph {#InverseGammaWithSoftplusAlphaBetaTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.input_dict {#InverseGammaWithSoftplusAlphaBetaTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.loss(final_loss, name='Loss') {#InverseGammaWithSoftplusAlphaBetaTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.mean(name='mean') {#InverseGammaWithSoftplusAlphaBetaTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.name {#InverseGammaWithSoftplusAlphaBetaTensor.name}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.value(name='value') {#InverseGammaWithSoftplusAlphaBetaTensor.value}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.value_type {#InverseGammaWithSoftplusAlphaBetaTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor {#LaplaceTensor}

LaplaceTensor is a StochasticTensor backed by the distribution Laplace.

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#LaplaceTensor.init}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.clone(name=None, **dist_args) {#LaplaceTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.distribution {#LaplaceTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.dtype {#LaplaceTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.entropy(name='entropy') {#LaplaceTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.graph {#LaplaceTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.input_dict {#LaplaceTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.loss(final_loss, name='Loss') {#LaplaceTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.mean(name='mean') {#LaplaceTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.name {#LaplaceTensor.name}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.value(name='value') {#LaplaceTensor.value}

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.value_type {#LaplaceTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor {#LaplaceWithSoftplusScaleTensor}

LaplaceWithSoftplusScaleTensor is a StochasticTensor backed by the distribution LaplaceWithSoftplusScale.

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#LaplaceWithSoftplusScaleTensor.init}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.clone(name=None, **dist_args) {#LaplaceWithSoftplusScaleTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.distribution {#LaplaceWithSoftplusScaleTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.dtype {#LaplaceWithSoftplusScaleTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.entropy(name='entropy') {#LaplaceWithSoftplusScaleTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.graph {#LaplaceWithSoftplusScaleTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.input_dict {#LaplaceWithSoftplusScaleTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.loss(final_loss, name='Loss') {#LaplaceWithSoftplusScaleTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.mean(name='mean') {#LaplaceWithSoftplusScaleTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.name {#LaplaceWithSoftplusScaleTensor.name}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.value(name='value') {#LaplaceWithSoftplusScaleTensor.value}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.value_type {#LaplaceWithSoftplusScaleTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.MixtureTensor {#MixtureTensor}

MixtureTensor is a StochasticTensor backed by the distribution Mixture.

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#MixtureTensor.init}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.clone(name=None, **dist_args) {#MixtureTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.distribution {#MixtureTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.dtype {#MixtureTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.entropy(name='entropy') {#MixtureTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.graph {#MixtureTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.input_dict {#MixtureTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.loss(final_loss, name='Loss') {#MixtureTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.mean(name='mean') {#MixtureTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.name {#MixtureTensor.name}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.value(name='value') {#MixtureTensor.value}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.value_type {#MixtureTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor {#MultinomialTensor}

MultinomialTensor is a StochasticTensor backed by the distribution Multinomial.

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#MultinomialTensor.init}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.clone(name=None, **dist_args) {#MultinomialTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.distribution {#MultinomialTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.dtype {#MultinomialTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.entropy(name='entropy') {#MultinomialTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.graph {#MultinomialTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.input_dict {#MultinomialTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.loss(final_loss, name='Loss') {#MultinomialTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.mean(name='mean') {#MultinomialTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.name {#MultinomialTensor.name}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.value(name='value') {#MultinomialTensor.value}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.value_type {#MultinomialTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor {#MultivariateNormalCholeskyTensor}

MultivariateNormalCholeskyTensor is a StochasticTensor backed by the distribution MultivariateNormalCholesky.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#MultivariateNormalCholeskyTensor.init}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.clone(name=None, **dist_args) {#MultivariateNormalCholeskyTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.distribution {#MultivariateNormalCholeskyTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.dtype {#MultivariateNormalCholeskyTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.entropy(name='entropy') {#MultivariateNormalCholeskyTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.graph {#MultivariateNormalCholeskyTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.input_dict {#MultivariateNormalCholeskyTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.loss(final_loss, name='Loss') {#MultivariateNormalCholeskyTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.mean(name='mean') {#MultivariateNormalCholeskyTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.name {#MultivariateNormalCholeskyTensor.name}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.value(name='value') {#MultivariateNormalCholeskyTensor.value}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.value_type {#MultivariateNormalCholeskyTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor {#MultivariateNormalDiagTensor}

MultivariateNormalDiagTensor is a StochasticTensor backed by the distribution MultivariateNormalDiag.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#MultivariateNormalDiagTensor.init}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.clone(name=None, **dist_args) {#MultivariateNormalDiagTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.distribution {#MultivariateNormalDiagTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.dtype {#MultivariateNormalDiagTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.entropy(name='entropy') {#MultivariateNormalDiagTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.graph {#MultivariateNormalDiagTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.input_dict {#MultivariateNormalDiagTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.loss(final_loss, name='Loss') {#MultivariateNormalDiagTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.mean(name='mean') {#MultivariateNormalDiagTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.name {#MultivariateNormalDiagTensor.name}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.value(name='value') {#MultivariateNormalDiagTensor.value}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.value_type {#MultivariateNormalDiagTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor {#MultivariateNormalDiagPlusVDVTTensor}

MultivariateNormalDiagPlusVDVTTensor is a StochasticTensor backed by the distribution MultivariateNormalDiagPlusVDVT.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#MultivariateNormalDiagPlusVDVTTensor.init}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.clone(name=None, **dist_args) {#MultivariateNormalDiagPlusVDVTTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.distribution {#MultivariateNormalDiagPlusVDVTTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.dtype {#MultivariateNormalDiagPlusVDVTTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.entropy(name='entropy') {#MultivariateNormalDiagPlusVDVTTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.graph {#MultivariateNormalDiagPlusVDVTTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.input_dict {#MultivariateNormalDiagPlusVDVTTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.loss(final_loss, name='Loss') {#MultivariateNormalDiagPlusVDVTTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.mean(name='mean') {#MultivariateNormalDiagPlusVDVTTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.name {#MultivariateNormalDiagPlusVDVTTensor.name}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.value(name='value') {#MultivariateNormalDiagPlusVDVTTensor.value}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.value_type {#MultivariateNormalDiagPlusVDVTTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor {#MultivariateNormalDiagWithSoftplusStDevTensor}

MultivariateNormalDiagWithSoftplusStDevTensor is a StochasticTensor backed by the distribution MultivariateNormalDiagWithSoftplusStDev.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#MultivariateNormalDiagWithSoftplusStDevTensor.init}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.clone(name=None, **dist_args) {#MultivariateNormalDiagWithSoftplusStDevTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.distribution {#MultivariateNormalDiagWithSoftplusStDevTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.dtype {#MultivariateNormalDiagWithSoftplusStDevTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.entropy(name='entropy') {#MultivariateNormalDiagWithSoftplusStDevTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.graph {#MultivariateNormalDiagWithSoftplusStDevTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.input_dict {#MultivariateNormalDiagWithSoftplusStDevTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.loss(final_loss, name='Loss') {#MultivariateNormalDiagWithSoftplusStDevTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.mean(name='mean') {#MultivariateNormalDiagWithSoftplusStDevTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.name {#MultivariateNormalDiagWithSoftplusStDevTensor.name}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.value(name='value') {#MultivariateNormalDiagWithSoftplusStDevTensor.value}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.value_type {#MultivariateNormalDiagWithSoftplusStDevTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor {#MultivariateNormalFullTensor}

MultivariateNormalFullTensor is a StochasticTensor backed by the distribution MultivariateNormalFull.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#MultivariateNormalFullTensor.init}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.clone(name=None, **dist_args) {#MultivariateNormalFullTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.distribution {#MultivariateNormalFullTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.dtype {#MultivariateNormalFullTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.entropy(name='entropy') {#MultivariateNormalFullTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.graph {#MultivariateNormalFullTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.input_dict {#MultivariateNormalFullTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.loss(final_loss, name='Loss') {#MultivariateNormalFullTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.mean(name='mean') {#MultivariateNormalFullTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.name {#MultivariateNormalFullTensor.name}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.value(name='value') {#MultivariateNormalFullTensor.value}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.value_type {#MultivariateNormalFullTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.NormalTensor {#NormalTensor}

NormalTensor is a StochasticTensor backed by the distribution Normal.

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#NormalTensor.init}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.clone(name=None, **dist_args) {#NormalTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.distribution {#NormalTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.dtype {#NormalTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.entropy(name='entropy') {#NormalTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.graph {#NormalTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.input_dict {#NormalTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.loss(final_loss, name='Loss') {#NormalTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.mean(name='mean') {#NormalTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.name {#NormalTensor.name}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.value(name='value') {#NormalTensor.value}

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.value_type {#NormalTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor {#NormalWithSoftplusSigmaTensor}

NormalWithSoftplusSigmaTensor is a StochasticTensor backed by the distribution NormalWithSoftplusSigma.

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#NormalWithSoftplusSigmaTensor.init}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.clone(name=None, **dist_args) {#NormalWithSoftplusSigmaTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.distribution {#NormalWithSoftplusSigmaTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.dtype {#NormalWithSoftplusSigmaTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.entropy(name='entropy') {#NormalWithSoftplusSigmaTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.graph {#NormalWithSoftplusSigmaTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.input_dict {#NormalWithSoftplusSigmaTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.loss(final_loss, name='Loss') {#NormalWithSoftplusSigmaTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.mean(name='mean') {#NormalWithSoftplusSigmaTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.name {#NormalWithSoftplusSigmaTensor.name}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.value(name='value') {#NormalWithSoftplusSigmaTensor.value}

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.value_type {#NormalWithSoftplusSigmaTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.PoissonTensor {#PoissonTensor}

PoissonTensor is a StochasticTensor backed by the distribution Poisson.

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#PoissonTensor.init}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.clone(name=None, **dist_args) {#PoissonTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.distribution {#PoissonTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.dtype {#PoissonTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.entropy(name='entropy') {#PoissonTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.graph {#PoissonTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.input_dict {#PoissonTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.loss(final_loss, name='Loss') {#PoissonTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.mean(name='mean') {#PoissonTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.name {#PoissonTensor.name}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.value(name='value') {#PoissonTensor.value}

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.value_type {#PoissonTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor {#QuantizedDistributionTensor}

QuantizedDistributionTensor is a StochasticTensor backed by the distribution QuantizedDistribution.

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#QuantizedDistributionTensor.init}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.clone(name=None, **dist_args) {#QuantizedDistributionTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.distribution {#QuantizedDistributionTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.dtype {#QuantizedDistributionTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.entropy(name='entropy') {#QuantizedDistributionTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.graph {#QuantizedDistributionTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.input_dict {#QuantizedDistributionTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.loss(final_loss, name='Loss') {#QuantizedDistributionTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.mean(name='mean') {#QuantizedDistributionTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.name {#QuantizedDistributionTensor.name}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.value(name='value') {#QuantizedDistributionTensor.value}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.value_type {#QuantizedDistributionTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.StudentTTensor {#StudentTTensor}

StudentTTensor is a StochasticTensor backed by the distribution StudentT.

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#StudentTTensor.init}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.clone(name=None, **dist_args) {#StudentTTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.distribution {#StudentTTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.dtype {#StudentTTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.entropy(name='entropy') {#StudentTTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.graph {#StudentTTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.input_dict {#StudentTTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.loss(final_loss, name='Loss') {#StudentTTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.mean(name='mean') {#StudentTTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.name {#StudentTTensor.name}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.value(name='value') {#StudentTTensor.value}

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.value_type {#StudentTTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor {#StudentTWithAbsDfSoftplusSigmaTensor}

StudentTWithAbsDfSoftplusSigmaTensor is a StochasticTensor backed by the distribution StudentTWithAbsDfSoftplusSigma.

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#StudentTWithAbsDfSoftplusSigmaTensor.init}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.clone(name=None, **dist_args) {#StudentTWithAbsDfSoftplusSigmaTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.distribution {#StudentTWithAbsDfSoftplusSigmaTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.dtype {#StudentTWithAbsDfSoftplusSigmaTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.entropy(name='entropy') {#StudentTWithAbsDfSoftplusSigmaTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.graph {#StudentTWithAbsDfSoftplusSigmaTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.input_dict {#StudentTWithAbsDfSoftplusSigmaTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.loss(final_loss, name='Loss') {#StudentTWithAbsDfSoftplusSigmaTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.mean(name='mean') {#StudentTWithAbsDfSoftplusSigmaTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.name {#StudentTWithAbsDfSoftplusSigmaTensor.name}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.value(name='value') {#StudentTWithAbsDfSoftplusSigmaTensor.value}

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.value_type {#StudentTWithAbsDfSoftplusSigmaTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor {#TransformedDistributionTensor}

TransformedDistributionTensor is a StochasticTensor backed by the distribution TransformedDistribution.

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#TransformedDistributionTensor.init}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.clone(name=None, **dist_args) {#TransformedDistributionTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.distribution {#TransformedDistributionTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.dtype {#TransformedDistributionTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.entropy(name='entropy') {#TransformedDistributionTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.graph {#TransformedDistributionTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.input_dict {#TransformedDistributionTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.loss(final_loss, name='Loss') {#TransformedDistributionTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.mean(name='mean') {#TransformedDistributionTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.name {#TransformedDistributionTensor.name}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.value(name='value') {#TransformedDistributionTensor.value}

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.value_type {#TransformedDistributionTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.UniformTensor {#UniformTensor}

UniformTensor is a StochasticTensor backed by the distribution Uniform.

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#UniformTensor.init}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.clone(name=None, **dist_args) {#UniformTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.distribution {#UniformTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.dtype {#UniformTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.entropy(name='entropy') {#UniformTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.graph {#UniformTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.input_dict {#UniformTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.loss(final_loss, name='Loss') {#UniformTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.mean(name='mean') {#UniformTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.name {#UniformTensor.name}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.value(name='value') {#UniformTensor.value}

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.value_type {#UniformTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor {#WishartCholeskyTensor}

WishartCholeskyTensor is a StochasticTensor backed by the distribution WishartCholesky.

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#WishartCholeskyTensor.init}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.clone(name=None, **dist_args) {#WishartCholeskyTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.distribution {#WishartCholeskyTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.dtype {#WishartCholeskyTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.entropy(name='entropy') {#WishartCholeskyTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.graph {#WishartCholeskyTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.input_dict {#WishartCholeskyTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.loss(final_loss, name='Loss') {#WishartCholeskyTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.mean(name='mean') {#WishartCholeskyTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.name {#WishartCholeskyTensor.name}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.value(name='value') {#WishartCholeskyTensor.value}

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.value_type {#WishartCholeskyTensor.value_type}

class tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor {#WishartFullTensor}

WishartFullTensor is a StochasticTensor backed by the distribution WishartFull.

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#WishartFullTensor.init}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.clone(name=None, **dist_args) {#WishartFullTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.distribution {#WishartFullTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.dtype {#WishartFullTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.entropy(name='entropy') {#WishartFullTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.graph {#WishartFullTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.input_dict {#WishartFullTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.loss(final_loss, name='Loss') {#WishartFullTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.mean(name='mean') {#WishartFullTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.name {#WishartFullTensor.name}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.value(name='value') {#WishartFullTensor.value}

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.value_type {#WishartFullTensor.value_type}

Other Functions and Classes

class tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor {#ObservedStochasticTensor}

A StochasticTensor with an observed value.

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.__init__(dist_cls, value, name=None, **dist_args) {#ObservedStochasticTensor.init}

Construct an ObservedStochasticTensor.

ObservedStochasticTensor will instantiate a distribution from dist_cls
and dist_args but use the provided value instead of sampling from the
distribution. The provided value argument must be appropriately shaped
to have come from the constructed distribution.

Args:

		dist_cls: a Distribution class.

		value: a Tensor containing the observed value

		name: a name for this ObservedStochasticTensor and its ops.

		**dist_args: keyword arguments to be passed through to dist_cls on
construction.

Raises:

		TypeError: if dist_cls is not a Distribution.

		ValueError: if value is not compatible with the distribution.

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.clone(name=None, **dist_args) {#ObservedStochasticTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.distribution {#ObservedStochasticTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.dtype {#ObservedStochasticTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.entropy(name='entropy') {#ObservedStochasticTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.graph {#ObservedStochasticTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.input_dict {#ObservedStochasticTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.loss(final_loss, name=None) {#ObservedStochasticTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.mean(name='mean') {#ObservedStochasticTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.name {#ObservedStochasticTensor.name}

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.value(name='value') {#ObservedStochasticTensor.value}

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.value_type {#ObservedStochasticTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/control_flow_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Control Flow

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Control Flow Operations

TensorFlow provides several operations and classes that you can use to control
the execution of operations and add conditional dependencies to your graph.

tf.identity(input, name=None) {#identity}

Return a tensor with the same shape and contents as the input tensor or value.

Args:

		input: A Tensor.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.tuple(tensors, name=None, control_inputs=None) {#tuple}

Group tensors together.

This creates a tuple of tensors with the same values as the tensors
argument, except that the value of each tensor is only returned after the
values of all tensors have been computed.

control_inputs contains additional ops that have to finish before this op
finishes, but whose outputs are not returned.

This can be used as a “join” mechanism for parallel computations: all the
argument tensors can be computed in parallel, but the values of any tensor
returned by tuple are only available after all the parallel computations
are done.

See also group and with_dependencies.

Args:

		tensors: A list of Tensors or IndexedSlices, some entries can be None.

		name: (optional) A name to use as a name_scope for the operation.

		control_inputs: List of additional ops to finish before returning.

Returns:

Same as tensors.

Raises:

		ValueError: If tensors does not contain any Tensor or IndexedSlices.

		TypeError: If control_inputs is not a list of Operation or Tensor
objects.

tf.group(*inputs, **kwargs) {#group}

Create an op that groups multiple operations.

When this op finishes, all ops in input have finished. This op has no
output.

See also tuple and with_dependencies.

Args:

		*inputs: Zero or more tensors to group.

		**kwargs: Optional parameters to pass when constructing the NodeDef.

		name: A name for this operation (optional).

Returns:

An Operation that executes all its inputs.

Raises:

		ValueError: If an unknown keyword argument is provided.

tf.no_op(name=None) {#no_op}

Does nothing. Only useful as a placeholder for control edges.

Args:

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.count_up_to(ref, limit, name=None) {#count_up_to}

Increments ‘ref’ until it reaches ‘limit’.

This operation outputs “ref” after the update is done. This makes it
easier to chain operations that need to use the updated value.

Args:

		ref: A mutable Tensor. Must be one of the following types: int32, int64.
Should be from a scalar Variable node.

		limit: An int.
If incrementing ref would bring it above limit, instead generates an
‘OutOfRange’ error.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as ref.
A copy of the input before increment. If nothing else modifies the
input, the values produced will all be distinct.

tf.cond(pred, fn1, fn2, name=None) {#cond}

Return either fn1() or fn2() based on the boolean predicate pred.

fn1 and fn2 both return lists of output tensors. fn1 and fn2 must have
the same non-zero number and type of outputs.

Note that the conditional execution applies only to the operations defined in
fn1 and fn2. Consider the following simple program:

z = tf.mul(a, b)
result = tf.cond(x < y, lambda: tf.add(x, z), lambda: tf.square(y))

If x < y, the tf.add operation will be executed and tf.square
operation will not be executed. Since z is needed for at least one
branch of the cond, the tf.mul operation is always executed, unconditionally.
Although this behavior is consistent with the dataflow model of TensorFlow,
it has occasionally surprised some users who expected a lazier semantics.

Args:

		pred: A scalar determining whether to return the result of fn1 or fn2.

		fn1: The callable to be performed if pred is true.

		fn2: The callable to be performed if pref is false.

		name: Optional name prefix for the returned tensors.

Returns:

Tensors returned by the call to either fn1 or fn2. If the callables
return a singleton list, the element is extracted from the list.

Raises:

		TypeError: if fn1 or fn2 is not callable.

		ValueError: if fn1 and fn2 do not return the same number of tensors, or
return tensors of different types.

		Example:

 x = tf.constant(2)
 y = tf.constant(5)
 def f1(): return tf.mul(x, 17)
 def f2(): return tf.add(y, 23)
 r = cond(tf.less(x, y), f1, f2)
 # r is set to f1().
 # Operations in f2 (e.g., tf.add) are not executed.

tf.case(pred_fn_pairs, default, exclusive=False, name='case') {#case}

Create a case operation.

The pred_fn_pairs parameter is a dict or list of pairs of size N.
Each pair contains a boolean scalar tensor and a python callable that
creates the tensors to be returned if the boolean evaluates to True.
default is a callable generating a list of tensors. All the callables
in pred_fn_pairs as well as default should return the same number
and types of tensors.

If exclusive==True, all predicates are evaluated, and a logging operation
with an error is returned if more than one of the predicates evaluates to
True. If exclusive==False, execution stops are the first predicate which
evaluates to True, and the tensors generated by the corresponding function
are returned immediately. If none of the predicates evaluate to True, this
operation returns the tensors generated by default.

Example 1:
Pseudocode:

 if (x < y) return 17;
 else return 23;

Expressions:

 f1 = lambda: tf.constant(17)
 f2 = lambda: tf.constant(23)
 r = case([(tf.less(x, y), f1)], default=f2)

Example 2:
Pseudocode:

 if (x < y && x > z) raise OpError("Only one predicate may evaluate true");
 if (x < y) return 17;
 else if (x > z) return 23;
 else return -1;

Expressions:

 x = tf.constant(0)
 y = tf.constant(1)
 z = tf.constant(2)
 def f1(): return tf.constant(17)
 def f2(): return tf.constant(23)
 def f3(): return tf.constant(-1)
 r = case({tf.less(x, y): f1, tf.greater(x, z): f2},
 default=f3, exclusive=True)

Args:

		pred_fn_pairs: Dict or list of pairs of a boolean scalar tensor and a
callable which returns a list of tensors.

		default: A callable that returns a list of tensors.

		exclusive: True iff more than one predicate is allowed to evaluate to True.

		name: A name for this operation (optional).

Returns:

The tensors returned by the first pair whose predicate evaluated to True, or
those returned by default if none does.

Raises:

		TypeError: If pred_fn_pairs is not a list/dictionary.

		TypeError: If pred_fn_pairs is a list but does not contain 2-tuples.

		TypeError: If fns[i] is not callable for any i, or default is not
callable.

tf.while_loop(cond, body, loop_vars, shape_invariants=None, parallel_iterations=10, back_prop=True, swap_memory=False, name=None) {#while_loop}

Repeat body while the condition cond is true.

cond is a callable returning a boolean scalar tensor. body is a callable
returning a (possibly nested) tuple or list of tensors of the same
arity (length and structure) and types as loop_vars. loop_vars is a
(possibly nested) tuple or list of tensors that is passed to both cond
and body. cond and body both take as many arguments as there are
loop_vars.

While cond evaluates to true, body is executed.

In addition to regular Tensors or IndexedSlices, the body may accept and
return TensorArray objects. The flows of the TensorArray objects will
be appropriately forwarded between loops and during gradient calculations.

For correctness, tf.while_loop() strictly enforces shape invariants for
the loop variables. A shape invariant is a (possibly partial) shape that
is unchanged across the iterations of the loop. An error will be raised
if the shape of a loop variable after an iteration is determined to be more
general than or incompatible with its shape invariant. For example, a shape
of [11, None] is more general than a shape of [11, 17], and [11, 21] is not
compatible with [11, 17]. By default (if the argument shape_invariants is
not specified), it is assumed that the initial shape of each tensor in
loop_vars is the same in every iteration. The shape_invariants argument
allows the caller to specify a less specific shape invariant for each loop
variable, which is needed if the shape varies between iterations. The
Tensor.set_shape()
function may also be used in the body function to indicate that
the output loop variable has a particular shape. The shape invariant for
SparseTensor and IndexedSlices are treated specially as follows:

a) If a loop variable is a SparseTensor, the shape invariant must be
TensorShape([r]) where r is the rank of the dense tensor represented
by the sparse tensor. It means the shapes of the three tensors of the
SparseTensor are ([None], [None, r], [r]). NOTE: The shape invariant here
is the shape of the SparseTensor.shape property. It must be the shape of
a vector.

b) If a loop variable is an IndexedSlices, the shape invariant must be
a shape invariant of the values tensor of the IndexedSlices. It means
the shapes of the three tensors of the IndexedSlices are (shape, [shape[0]],
[shape.ndims]).

while_loop implements non-strict semantics, enabling multiple iterations
to run in parallel. The maximum number of parallel iterations can be
controlled by parallel_iterations, which gives users some control over
memory consumption and execution order. For correct programs, while_loop
should return the same result for any parallel_iterations > 0.

For training, TensorFlow remembers the tensors that are produced in the
forward inference but needed in back propagation. These tensors can be a
main source of memory consumption and often cause OOM problems when training
on GPUs. When the flag swap_memory is true, we swap out these tensors from
GPU to CPU. This for example allows us to train RNN models with very long
sequences and large batches.

Args:

		cond: A callable that represents the termination condition of the loop.

		body: A callable that represents the loop body.

		loop_vars: A (possibly nested) tuple or list of numpy array, Tensor,
and TensorArray objects.

		shape_invariants: The shape invariants for the loop variables.

		parallel_iterations: The number of iterations allowed to run in parallel.

		back_prop: Whether backprop is enabled for this while loop.

		swap_memory: Whether GPU-CPU memory swap is enabled for this loop.

		name: Optional name prefix for the returned tensors.

Returns:

The output tensors for the loop variables after the loop. When the length
of loop_vars is 1 this is a Tensor, TensorArray or IndexedSlice and when
the length of loop_vars is greater than 1 it returns a list.

Raises:

		TypeError: if cond or body is not callable.

		ValueError: if loop_vars is empty.

		Example:

i = tf.constant(0)
c = lambda i: tf.less(i, 10)
b = lambda i: tf.add(i, 1)
r = tf.while_loop(c, b, [i])

Example with nesting:

ijk_0 = (tf.constant(0), (tf.constant(1), tf.constant(2)))
c = lambda i, (j, k): i < 10
b = lambda i, (j, k): (i + 1, ((j + k), (j - k)))
ijk_final = tf.while_loop(c, b, ijk_0)

Example using shape_invariants:

i0 = tf.constant(0)
m0 = tf.ones([2, 2])
c = lambda i, m: i < 10
b = lambda i, m: [i+1, tf.concat(0, [m, m])]
tf.while_loop(
 c, b, loop_vars=[i0, m0],
 shape_invariants=[i0.get_shape(), tensor_shape.TensorShape([None, 2])])

Logical Operators

TensorFlow provides several operations that you can use to add logical operators
to your graph.

tf.logical_and(x, y, name=None) {#logical_and}

Returns the truth value of x AND y element-wise.

NOTE: LogicalAnd supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor of type bool.

		y: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.logical_not(x, name=None) {#logical_not}

Returns the truth value of NOT x element-wise.

Args:

		x: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.logical_or(x, y, name=None) {#logical_or}

Returns the truth value of x OR y element-wise.

NOTE: LogicalOr supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor of type bool.

		y: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.logical_xor(x, y, name='LogicalXor') {#logical_xor}

x ^ y = (x | y) & ~(x & y).

Comparison Operators

TensorFlow provides several operations that you can use to add comparison
operators to your graph.

tf.equal(x, y, name=None) {#equal}

Returns the truth value of (x == y) element-wise.

NOTE: Equal supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, int16, int32, int64, complex64, quint8, qint8, qint32, string, bool, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.not_equal(x, y, name=None) {#not_equal}

Returns the truth value of (x != y) element-wise.

NOTE: NotEqual supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, int16, int32, int64, complex64, quint8, qint8, qint32, string, bool, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.less(x, y, name=None) {#less}

Returns the truth value of (x < y) element-wise.

NOTE: Less supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.less_equal(x, y, name=None) {#less_equal}

Returns the truth value of (x <= y) element-wise.

NOTE: LessEqual supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.greater(x, y, name=None) {#greater}

Returns the truth value of (x > y) element-wise.

NOTE: Greater supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.greater_equal(x, y, name=None) {#greater_equal}

Returns the truth value of (x >= y) element-wise.

NOTE: GreaterEqual supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.select(condition, t, e, name=None) {#select}

Selects elements from t or e, depending on condition.

The t, and e tensors must all have the same shape,
and the output will also have that shape. The condition tensor
must be a scalar if t and e are scalars. If t and e are vectors
or higher rank, then condition must be either a vector with size
matching the first dimension of t, or must have the same shape as t.

The condition tensor acts as a mask that chooses, based on the value at each
element, whether the corresponding element / row in the output should be
taken from t (if true) or e (if false).

If condition is a vector and t and e are higher rank matrices, then
it chooses which row (outer dimension) to copy from t and e.
If condition has the same shape as t and e, then it chooses which
element to copy from t and e.

For example:

'condition' tensor is [[True, False]
[False, True]]
't' is [[1, 2],
[3, 4]]
'e' is [[5, 6],
[7, 8]]
select(condition, t, e) ==> [[1, 6],
 [7, 4]]

'condition' tensor is [True, False]
't' is [[1, 2],
[3, 4]]
'e' is [[5, 6],
[7, 8]]
select(condition, t, e) ==> [[1, 2],
 [7, 8]]

Args:

		condition: A Tensor of type bool.

		t: A Tensor which may have the same shape as condition.
If condition is rank 1, t may have higher rank,
but its first dimension must match the size of condition.

		e: A Tensor with the same type and shape as t.

		name: A name for the operation (optional).

Returns:

A Tensor with the same type and shape as t and e.

tf.where(input, name=None) {#where}

Returns locations of true values in a boolean tensor.

This operation returns the coordinates of true elements in input. The
coordinates are returned in a 2-D tensor where the first dimension (rows)
represents the number of true elements, and the second dimension (columns)
represents the coordinates of the true elements. Keep in mind, the shape of
the output tensor can vary depending on how many true values there are in
input. Indices are output in row-major order.

For example:

'input' tensor is [[True, False]
[True, False]]
'input' has two true values, so output has two coordinates.
'input' has rank of 2, so coordinates have two indices.
where(input) ==> [[0, 0],
 [1, 0]]

`input` tensor is [[[True, False]
[True, False]]
[[False, True]
[False, True]]
[[False, False]
[False, True]]]
'input' has 5 true values, so output has 5 coordinates.
'input' has rank of 3, so coordinates have three indices.
where(input) ==> [[0, 0, 0],
 [0, 1, 0],
 [1, 0, 1],
 [1, 1, 1],
 [2, 1, 1]]

Args:

		input: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type int64.

Debugging Operations

TensorFlow provides several operations that you can use to validate values and
debug your graph.

tf.is_finite(x, name=None) {#is_finite}

Returns which elements of x are finite.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.is_inf(x, name=None) {#is_inf}

Returns which elements of x are Inf.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.is_nan(x, name=None) {#is_nan}

Returns which elements of x are NaN.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.verify_tensor_all_finite(t, msg, name=None) {#verify_tensor_all_finite}

Assert that the tensor does not contain any NaN’s or Inf’s.

Args:

		t: Tensor to check.

		msg: Message to log on failure.

		name: A name for this operation (optional).

Returns:

Same tensor as t.

tf.check_numerics(tensor, message, name=None) {#check_numerics}

Checks a tensor for NaN and Inf values.

When run, reports an InvalidArgument error if tensor has any values
that are not a number (NaN) or infinity (Inf). Otherwise, passes tensor as-is.

Args:

		tensor: A Tensor. Must be one of the following types: half, float32, float64.

		message: A string. Prefix of the error message.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as tensor.

tf.add_check_numerics_ops() {#add_check_numerics_ops}

Connect a check_numerics to every floating point tensor.

check_numerics operations themselves are added for each half, float,
or double tensor in the graph. For all ops in the graph, the
check_numerics op for all of its (half, float, or double) inputs
is guaranteed to run before the check_numerics op on any of its outputs.

Returns:

A group op depending on all check_numerics ops added.

tf.Assert(condition, data, summarize=None, name=None) {#Assert}

Asserts that the given condition is true.

If condition evaluates to false, print the list of tensors in data.
summarize determines how many entries of the tensors to print.

NOTE: To ensure that Assert executes, one usually attaches a dependency:

 # Ensure maximum element of x is smaller or equal to 1
assert_op = tf.Assert(tf.less_equal(tf.reduce_max(x), 1.), [x])
x = tf.with_dependencies([assert_op], x)

Args:

		condition: The condition to evaluate.

		data: The tensors to print out when condition is false.

		summarize: Print this many entries of each tensor.

		name: A name for this operation (optional).

Returns:

		assert_op: An Operation that, when executed, raises a
tf.errors.InvalidArgumentError if condition is not true.

tf.Print(input_, data, message=None, first_n=None, summarize=None, name=None) {#Print}

Prints a list of tensors.

This is an identity op with the side effect of printing data when
evaluating.

Args:

		input_: A tensor passed through this op.

		data: A list of tensors to print out when op is evaluated.

		message: A string, prefix of the error message.

		first_n: Only log first_n number of times. Negative numbers log always;
this is the default.

		summarize: Only print this many entries of each tensor. If None, then a
maximum of 3 elements are printed per input tensor.

		name: A name for the operation (optional).

Returns:

Same tensor as input_.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.image.encode_png.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.encode_png(image, compression=None, name=None) {#encode_png}

PNG-encode an image.

image is a 3-D uint8 or uint16 Tensor of shape [height, width, channels]
where channels is:

		1: for grayscale.

		2: for grayscale + alpha.

		3: for RGB.

		4: for RGBA.

The ZLIB compression level, compression, can be -1 for the PNG-encoder
default or a value from 0 to 9. 9 is the highest compression level, generating
the smallest output, but is slower.

Args:

		image: A Tensor. Must be one of the following types: uint8, uint16.
3-D with shape [height, width, channels].

		compression: An optional int. Defaults to -1. Compression level.

		name: A name for the operation (optional).

Returns:

A Tensor of type string. 0-D. PNG-encoded image.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.framework.assign_from_checkpoint_fn.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.assign_from_checkpoint_fn(model_path, var_list, ignore_missing_vars=False, reshape_variables=False) {#assign_from_checkpoint_fn}

Returns a function that assigns specific variables from a checkpoint.

Args:

		model_path: The full path to the model checkpoint. To get latest checkpoint
use model_path = tf.train.latest_checkpoint(checkpoint_dir)

		var_list: A list of Variable objects or a dictionary mapping names in the
checkpoint to the correspoing variables to initialize. If empty or None,
it would return no_op(), None.

		ignore_missing_vars: Boolean, if True it would ignore variables missing in
the checkpoint with a warning instead of failing.

		reshape_variables: Boolean, if True it would automatically reshape variables
which are of different shape then the ones stored in the checkpoint but
which have the same number of elements.

Returns:

A function that takes a single argument, a tf.Session, that applies the
assignment operation.

Raises:

		ValueError: If the checkpoint specified at model_path is missing one of
the variables in var_list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.train.string_input_producer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.string_input_producer(string_tensor, num_epochs=None, shuffle=True, seed=None, capacity=32, shared_name=None, name=None) {#string_input_producer}

Output strings (e.g. filenames) to a queue for an input pipeline.

Args:

		string_tensor: A 1-D string tensor with the strings to produce.

		num_epochs: An integer (optional). If specified, string_input_producer
produces each string from string_tensor num_epochs times before
generating an OutOfRange error. If not specified,
string_input_producer can cycle through the strings in string_tensor
an unlimited number of times.

		shuffle: Boolean. If true, the strings are randomly shuffled within each
epoch.

		seed: An integer (optional). Seed used if shuffle == True.

		capacity: An integer. Sets the queue capacity.

		shared_name: (optional). If set, this queue will be shared under the given
name across multiple sessions.

		name: A name for the operations (optional).

Returns:

A queue with the output strings. A QueueRunner for the Queue
is added to the current Graph‘s QUEUE_RUNNER collection.

Raises:

		ValueError: If the string_tensor is a null Python list. At runtime,
will fail with an assertion if string_tensor becomes a null tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.nn.zero_fraction.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.zero_fraction(value, name=None) {#zero_fraction}

Returns the fraction of zeros in value.

If value is empty, the result is nan.

This is useful in summaries to measure and report sparsity. For example,

z = tf.Relu(...)
summ = tf.scalar_summary('sparsity', tf.nn.zero_fraction(z))

Args:

		value: A tensor of numeric type.

		name: A name for the operation (optional).

Returns:

The fraction of zeros in value, with type float32.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.contrib.graph_editor.get_walks_union_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.get_walks_union_ops(forward_seed_ops, backward_seed_ops, forward_inclusive=True, backward_inclusive=True, within_ops=None, control_inputs=False, control_outputs=None, control_ios=None) {#get_walks_union_ops}

Return the union of a foward and a backward walk.

Args:

		forward_seed_ops: an iterable of operations from which the forward graph
walk starts. If a list of tensors is given instead, the seed_ops are set
to be the consumers of those tensors.

		backward_seed_ops: an iterable of operations from which the backward graph
walk starts. If a list of tensors is given instead, the seed_ops are set
to be the generators of those tensors.

		forward_inclusive: if True the given forward_seed_ops are also part of the
resulting set.

		backward_inclusive: if True the given backward_seed_ops are also part of the
resulting set.

		within_ops: restrict the search within those operations. If within_ops is
None, the search is done within the whole graph.

		control_inputs: A boolean indicating whether control inputs are enabled.

		control_outputs: An instance of util.ControlOutputs or None. If not None,
control outputs are enabled.

		control_ios: An instance of util.ControlOutputs or None. If not None, both
control inputs and control outputs are enabled. This is equivalent to set
control_inputs to True and control_outputs to the util.ControlOutputs
instance.

Returns:

A Python set of all the tf.Operation in the union of a foward and a
backward walk.

Raises:

		TypeError: if forward_seed_ops or backward_seed_ops or within_ops cannot be
converted to a list of tf.Operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.sparse_mask.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_mask(a, mask_indices, name=None) {#sparse_mask}

Masks elements of IndexedSlices.

Given an IndexedSlices instance a, returns another IndexedSlices that
contains a subset of the slices of a. Only the slices at indices not
specified in mask_indices are returned.

This is useful when you need to extract a subset of slices in an
IndexedSlices object.

For example:

`a` contains slices at indices [12, 26, 37, 45] from a large tensor
with shape [1000, 10]
a.indices => [12, 26, 37, 45]
tf.shape(a.values) => [4, 10]

`b` will be the subset of `a` slices at its second and third indices, so
we want to mask its first and last indices (which are at absolute
indices 12, 45)
b = tf.sparse_mask(a, [12, 45])

b.indices => [26, 37]
tf.shape(b.values) => [2, 10]

Args:

		a: An IndexedSlices instance.

		mask_indices: Indices of elements to mask.

		name: A name for the operation (optional).

Returns:

The masked IndexedSlices instance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.scalar_mul.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.scalar_mul(scalar, x) {#scalar_mul}

Multiplies a scalar times a Tensor or IndexedSlices object.

Intended for use in gradient code which might deal with IndexedSlices
objects, which are easy to multiply by a scalar but more expensive to
multiply with arbitrary tensors.

Args:

		scalar: A 0-D scalar Tensor. Must have known shape.

		x: A Tensor or IndexedSlices to be scaled.

Returns:

scalar * x of the same type (Tensor or IndexedSlices) as x.

Raises:

		ValueError: if scalar is not a 0-D scalar.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.python_io.tf_record_iterator.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.python_io.tf_record_iterator(path, options=None) {#tf_record_iterator}

An iterator that read the records from a TFRecords file.

Args:

		path: The path to the TFRecords file.

		options: (optional) A TFRecordOptions object.

Yields:

Strings.

Raises:

		IOError: If path cannot be opened for reading.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard9/tf.DeviceSpec.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Represents a (possibly partial) specification for a TensorFlow device.

DeviceSpecs are used throughout TensorFlow to describe where state is stored
and computations occur. Using DeviceSpec allows you to parse device spec
strings to verify their validity, merge them or compose them programmatically.

Example:

Place the operations on device "GPU:0" in the "ps" job.
device_spec = DeviceSpec(job="ps", device_type="GPU", device_index=0)
with tf.device(device_spec):
 # Both my_var and squared_var will be placed on /job:ps/device:GPU:0.
 my_var = tf.Variable(..., name="my_variable")
 squared_var = tf.square(my_var)

If a DeviceSpec is partially specified, it will be merged with other
DeviceSpecs according to the scope in which it is defined. DeviceSpec
components defined in inner scopes take precedence over those defined in
outer scopes.

with tf.device(DeviceSpec(job="train",)):
 with tf.device(DeviceSpec(job="ps", device_type="GPU", device_index=0):
 # Nodes created here will be assigned to /job:ps/device:GPU:0.
 with tf.device(DeviceSpec(device_type="GPU", device_index=1):
 # Nodes created here will be assigned to /job:train/device:GPU:1.

A DeviceSpec consists of 5 components – each of
which is optionally specified:

		Job: The job name.

		Replica: The replica index.

		Task: The task index.

		Device type: The device type string (e.g. “CPU” or “GPU”).

		Device index: The device index.

tf.DeviceSpec.__init__(job=None, replica=None, task=None, device_type=None, device_index=None) {#DeviceSpec.init}

Create a new DeviceSpec object.

Args:

		job: string. Optional job name.

		replica: int. Optional replica index.

		task: int. Optional task index.

		device_type: Optional device type string (e.g. “CPU” or “GPU”)

		device_index: int. Optional device index. If left
unspecified, device represents ‘any’ device_index.

tf.DeviceSpec.from_string(spec) {#DeviceSpec.from_string}

Construct a DeviceSpec from a string.

Args:

		spec: a string of the form
/job:/replica:/task:/device:CPU:
or
/job:/replica:/task:/device:GPU:
as cpu and gpu are mutually exclusive.
All entries are optional.

Returns:

A DeviceSpec.

tf.DeviceSpec.job {#DeviceSpec.job}

tf.DeviceSpec.merge_from(dev) {#DeviceSpec.merge_from}

Merge the properties of “dev” into this DeviceSpec.

Args:

		dev: a DeviceSpec.

tf.DeviceSpec.parse_from_string(spec) {#DeviceSpec.parse_from_string}

Parse a DeviceSpec name into its components.

Args:

		spec: a string of the form
/job:/replica:/task:/device:CPU:
or
/job:/replica:/task:/device:GPU:
as cpu and gpu are mutually exclusive.
All entries are optional.

Returns:

The DeviceSpec.

Raises:

		ValueError: if the spec was not valid.

tf.DeviceSpec.replica {#DeviceSpec.replica}

tf.DeviceSpec.task {#DeviceSpec.task}

tf.DeviceSpec.to_string() {#DeviceSpec.to_string}

Return a string representation of this DeviceSpec.

Returns:

a string of the form
/job:/replica:/task:/device:<device_type>:.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/state_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Variables

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Variables

class tf.Variable {#Variable}

See the Variables How To for a high
level overview.

A variable maintains state in the graph across calls to run(). You add a
variable to the graph by constructing an instance of the class Variable.

The Variable() constructor requires an initial value for the variable,
which can be a Tensor of any type and shape. The initial value defines the
type and shape of the variable. After construction, the type and shape of
the variable are fixed. The value can be changed using one of the assign
methods.

If you want to change the shape of a variable later you have to use an
assign Op with validate_shape=False.

Just like any Tensor, variables created with Variable() can be used as
inputs for other Ops in the graph. Additionally, all the operators
overloaded for the Tensor class are carried over to variables, so you can
also add nodes to the graph by just doing arithmetic on variables.

import tensorflow as tf

Create a variable.
w = tf.Variable(<initial-value>, name=<optional-name>)

Use the variable in the graph like any Tensor.
y = tf.matmul(w, ...another variable or tensor...)

The overloaded operators are available too.
z = tf.sigmoid(w + y)

Assign a new value to the variable with `assign()` or a related method.
w.assign(w + 1.0)
w.assign_add(1.0)

When you launch the graph, variables have to be explicitly initialized before
you can run Ops that use their value. You can initialize a variable by
running its initializer op, restoring the variable from a save file, or
simply running an assign Op that assigns a value to the variable. In fact,
the variable initializer op is just an assign Op that assigns the
variable’s initial value to the variable itself.

Launch the graph in a session.
with tf.Session() as sess:
 # Run the variable initializer.
 sess.run(w.initializer)
 # ...you now can run ops that use the value of 'w'...

The most common initialization pattern is to use the convenience function
initialize_all_variables() to add an Op to the graph that initializes
all the variables. You then run that Op after launching the graph.

Add an Op to initialize all variables.
init_op = tf.initialize_all_variables()

Launch the graph in a session.
with tf.Session() as sess:
 # Run the Op that initializes all variables.
 sess.run(init_op)
 # ...you can now run any Op that uses variable values...

If you need to create a variable with an initial value dependent on another
variable, use the other variable’s initialized_value(). This ensures that
variables are initialized in the right order.

All variables are automatically collected in the graph where they are
created. By default, the constructor adds the new variable to the graph
collection GraphKeys.VARIABLES. The convenience function
all_variables() returns the contents of that collection.

When building a machine learning model it is often convenient to distinguish
between variables holding the trainable model parameters and other variables
such as a global step variable used to count training steps. To make this
easier, the variable constructor supports a trainable=<bool> parameter. If
True, the new variable is also added to the graph collection
GraphKeys.TRAINABLE_VARIABLES. The convenience function
trainable_variables() returns the contents of this collection. The
various Optimizer classes use this collection as the default list of
variables to optimize.

Creating a variable.

tf.Variable.__init__(initial_value=None, trainable=True, collections=None, validate_shape=True, caching_device=None, name=None, variable_def=None, dtype=None) {#Variable.init}

Creates a new variable with value initial_value.

The new variable is added to the graph collections listed in collections,
which defaults to [GraphKeys.VARIABLES].

If trainable is True the variable is also added to the graph collection
GraphKeys.TRAINABLE_VARIABLES.

This constructor creates both a variable Op and an assign Op to set the
variable to its initial value.

Args:

		initial_value: A Tensor, or Python object convertible to a Tensor,
which is the initial value for the Variable. The initial value must have
a shape specified unless validate_shape is set to False. Can also be a
callable with no argument that returns the initial value when called. In
that case, dtype must be specified. (Note that initializer functions
from init_ops.py must first be bound to a shape before being used here.)

		trainable: If True, the default, also adds the variable to the graph
collection GraphKeys.TRAINABLE_VARIABLES. This collection is used as
the default list of variables to use by the Optimizer classes.

		collections: List of graph collections keys. The new variable is added to
these collections. Defaults to [GraphKeys.VARIABLES].

		validate_shape: If False, allows the variable to be initialized with a
value of unknown shape. If True, the default, the shape of
initial_value must be known.

		caching_device: Optional device string describing where the Variable
should be cached for reading. Defaults to the Variable’s device.
If not None, caches on another device. Typical use is to cache
on the device where the Ops using the Variable reside, to deduplicate
copying through Switch and other conditional statements.

		name: Optional name for the variable. Defaults to 'Variable' and gets
uniquified automatically.

		variable_def: VariableDef protocol buffer. If not None, recreates
the Variable object with its contents. variable_def and the other
arguments are mutually exclusive.

		dtype: If set, initial_value will be converted to the given type.
If None, either the datatype will be kept (if initial_value is
a Tensor), or convert_to_tensor will decide.

Raises:

		ValueError: If both variable_def and initial_value are specified.

		ValueError: If the initial value is not specified, or does not have a
shape and validate_shape is True.

tf.Variable.initialized_value() {#Variable.initialized_value}

Returns the value of the initialized variable.

You should use this instead of the variable itself to initialize another
variable with a value that depends on the value of this variable.

Initialize 'v' with a random tensor.
v = tf.Variable(tf.truncated_normal([10, 40]))
Use `initialized_value` to guarantee that `v` has been
initialized before its value is used to initialize `w`.
The random values are picked only once.
w = tf.Variable(v.initialized_value() * 2.0)

Returns:

A Tensor holding the value of this variable after its initializer
has run.

Changing a variable value.

tf.Variable.assign(value, use_locking=False) {#Variable.assign}

Assigns a new value to the variable.

This is essentially a shortcut for assign(self, value).

Args:

		value: A Tensor. The new value for this variable.

		use_locking: If True, use locking during the assignment.

Returns:

A Tensor that will hold the new value of this variable after
the assignment has completed.

tf.Variable.assign_add(delta, use_locking=False) {#Variable.assign_add}

Adds a value to this variable.

This is essentially a shortcut for assign_add(self, delta).

Args:

		delta: A Tensor. The value to add to this variable.

		use_locking: If True, use locking during the operation.

Returns:

A Tensor that will hold the new value of this variable after
the addition has completed.

tf.Variable.assign_sub(delta, use_locking=False) {#Variable.assign_sub}

Subtracts a value from this variable.

This is essentially a shortcut for assign_sub(self, delta).

Args:

		delta: A Tensor. The value to subtract from this variable.

		use_locking: If True, use locking during the operation.

Returns:

A Tensor that will hold the new value of this variable after
the subtraction has completed.

tf.Variable.scatter_sub(sparse_delta, use_locking=False) {#Variable.scatter_sub}

Subtracts IndexedSlices from this variable.

This is essentially a shortcut for scatter_sub(self, sparse_delta.indices, sparse_delta.values).

Args:

		sparse_delta: IndexedSlices to be subtracted from this variable.

		use_locking: If True, use locking during the operation.

Returns:

A Tensor that will hold the new value of this variable after
the scattered subtraction has completed.

Raises:

		ValueError: if sparse_delta is not an IndexedSlices.

tf.Variable.count_up_to(limit) {#Variable.count_up_to}

Increments this variable until it reaches limit.

When that Op is run it tries to increment the variable by 1. If
incrementing the variable would bring it above limit then the Op raises
the exception OutOfRangeError.

If no error is raised, the Op outputs the value of the variable before
the increment.

This is essentially a shortcut for count_up_to(self, limit).

Args:

		limit: value at which incrementing the variable raises an error.

Returns:

A Tensor that will hold the variable value before the increment. If no
other Op modifies this variable, the values produced will all be
distinct.

tf.Variable.eval(session=None) {#Variable.eval}

In a session, computes and returns the value of this variable.

This is not a graph construction method, it does not add ops to the graph.

This convenience method requires a session where the graph containing this
variable has been launched. If no session is passed, the default session is
used. See the Session class for
more information on launching a graph and on sessions.

v = tf.Variable([1, 2])
init = tf.initialize_all_variables()

with tf.Session() as sess:
 sess.run(init)
 # Usage passing the session explicitly.
 print(v.eval(sess))
 # Usage with the default session. The 'with' block
 # above makes 'sess' the default session.
 print(v.eval())

Args:

		session: The session to use to evaluate this variable. If
none, the default session is used.

Returns:

A numpy ndarray with a copy of the value of this variable.

Properties.

tf.Variable.name {#Variable.name}

The name of this variable.

tf.Variable.dtype {#Variable.dtype}

The DType of this variable.

tf.Variable.get_shape() {#Variable.get_shape}

The TensorShape of this variable.

Returns:

A TensorShape.

tf.Variable.device {#Variable.device}

The device of this variable.

tf.Variable.initializer {#Variable.initializer}

The initializer operation for this variable.

tf.Variable.graph {#Variable.graph}

The Graph of this variable.

tf.Variable.op {#Variable.op}

The Operation of this variable.

Other Methods

tf.Variable.__abs__(a, *args) {#Variable.abs}

Computes the absolute value of a tensor.

Given a tensor of real numbers x, this operation returns a tensor
containing the absolute value of each element in x. For example, if x is
an input element and y is an output element, this operation computes
\(y = |x|\).

See tf.complex_abs() to compute the absolute value of a complex
number.

Args:

		x: A Tensor or SparseTensor of type float32, float64, int32, or
int64.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor the same size and type as x with absolute
values.

tf.Variable.__add__(a, *args) {#Variable.add}

Returns x + y element-wise.

NOTE: Add supports broadcasting. AddN does not. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, int16, int32, int64, complex64, complex128, string.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Variable.__and__(a, *args) {#Variable.and}

Returns the truth value of x AND y element-wise.

NOTE: LogicalAnd supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor of type bool.

		y: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Variable.__div__(a, *args) {#Variable.div}

Returns x / y element-wise.

NOTE: Div supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Variable.__floordiv__(a, *args) {#Variable.floordiv}

Divides x / y elementwise, rounding down for floating point.

The same as tf.div(x,y) for integers, but uses tf.floor(tf.div(x,y)) for
floating point arguments so that the result is always an integer (though
possibly an integer represented as floating point). This op is generated by
x // y floor division in Python 3 and in Python 2.7 with
from __future__ import division.

Note that for efficiency, floordiv uses C semantics for negative numbers
(unlike Python and Numpy).

x and y must have the same type, and the result will have the same type
as well.

Args:

		x: Tensor numerator of real numeric type.

		y: Tensor denominator of real numeric type.

		name: A name for the operation (optional).

Returns:

x / y rounded down (except possibly towards zero for negative integers).

Raises:

		TypeError: If the inputs are complex.

tf.Variable.__ge__(a, *args) {#Variable.ge}

Returns the truth value of (x >= y) element-wise.

NOTE: GreaterEqual supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Variable.__getitem__(var, slice_spec) {#Variable.getitem}

Creates a slice helper object given a variable.

This allows creating a sub-tensor from part of the current contents
of a variable.
See
Tensor.__getitem__
for detailed examples of slicing.

This function in addition also allows assignment to a sliced range.
This is similar to __setitem__ functionality in Python. However,
the syntax is different so that the user can capture the assignment
operation for grouping or passing to sess.run().
For example,

import tensorflow as tf
A = tf.Variable([[1,2,3], [4,5,6], [7,8,9]], dtype=tf.float32)
with tf.Session() as sess:
 sess.run(tf.initialize_all_variables())
 print sess.run(A[:2, :2]) # => [[1,2], [4,5]]

 op = A[:2,:2].assign(22. * tf.ones((2, 2)))
 print sess.run(op) # => [[22, 22, 3], [22, 22, 6], [7,8,9]]

Note that assignments currently do not support NumPy broadcasting
semantics.

Args:

		var: An ops.Variable object.

		slice_spec: The arguments to Tensor.__getitem__.

Returns:

The appropriate slice of “tensor”, based on “slice_spec”.
As an operator. The operator also has a assign() method
that can be used to generate an assignment operator.

Raises:

		ValueError: If a slice range is negative size.

		TypeError: If the slice indices aren’t int, slice, or Ellipsis.

tf.Variable.__gt__(a, *args) {#Variable.gt}

Returns the truth value of (x > y) element-wise.

NOTE: Greater supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Variable.__invert__(a, *args) {#Variable.invert}

Returns the truth value of NOT x element-wise.

Args:

		x: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Variable.__iter__() {#Variable.iter}

Dummy method to prevent iteration. Do not call.

NOTE(mrry): If we register getitem as an overloaded operator,
Python will valiantly attempt to iterate over the variable’s Tensor from 0
to infinity. Declaring this method prevents this unintended behavior.

Raises:

		TypeError: when invoked.

tf.Variable.__le__(a, *args) {#Variable.le}

Returns the truth value of (x <= y) element-wise.

NOTE: LessEqual supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Variable.__lt__(a, *args) {#Variable.lt}

Returns the truth value of (x < y) element-wise.

NOTE: Less supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Variable.__mod__(a, *args) {#Variable.mod}

Returns element-wise remainder of division.

NOTE: Mod supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: int32, int64, float32, float64.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Variable.__mul__(a, *args) {#Variable.mul}

Dispatches cwise mul for “DenseDense” and “DenseSparse”.

tf.Variable.__neg__(a, *args) {#Variable.neg}

Computes numerical negative value element-wise.

I.e., \(y = -x\).

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Variable.__or__(a, *args) {#Variable.or}

Returns the truth value of x OR y element-wise.

NOTE: LogicalOr supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor of type bool.

		y: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Variable.__pow__(a, *args) {#Variable.pow}

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for
corresponding elements in x and y. For example:

tensor 'x' is [[2, 2], [3, 3]]
tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]

Args:

		x: A Tensor of type float32, float64, int32, int64, complex64,
or complex128.

		y: A Tensor of type float32, float64, int32, int64, complex64,
or complex128.

		name: A name for the operation (optional).

Returns:

A Tensor.

tf.Variable.__radd__(a, *args) {#Variable.radd}

Returns x + y element-wise.

NOTE: Add supports broadcasting. AddN does not. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, int16, int32, int64, complex64, complex128, string.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Variable.__rand__(a, *args) {#Variable.rand}

Returns the truth value of x AND y element-wise.

NOTE: LogicalAnd supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor of type bool.

		y: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Variable.__rdiv__(a, *args) {#Variable.rdiv}

Returns x / y element-wise.

NOTE: Div supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Variable.__rfloordiv__(a, *args) {#Variable.rfloordiv}

Divides x / y elementwise, rounding down for floating point.

The same as tf.div(x,y) for integers, but uses tf.floor(tf.div(x,y)) for
floating point arguments so that the result is always an integer (though
possibly an integer represented as floating point). This op is generated by
x // y floor division in Python 3 and in Python 2.7 with
from __future__ import division.

Note that for efficiency, floordiv uses C semantics for negative numbers
(unlike Python and Numpy).

x and y must have the same type, and the result will have the same type
as well.

Args:

		x: Tensor numerator of real numeric type.

		y: Tensor denominator of real numeric type.

		name: A name for the operation (optional).

Returns:

x / y rounded down (except possibly towards zero for negative integers).

Raises:

		TypeError: If the inputs are complex.

tf.Variable.__rmod__(a, *args) {#Variable.rmod}

Returns element-wise remainder of division.

NOTE: Mod supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: int32, int64, float32, float64.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Variable.__rmul__(a, *args) {#Variable.rmul}

Dispatches cwise mul for “DenseDense” and “DenseSparse”.

tf.Variable.__ror__(a, *args) {#Variable.ror}

Returns the truth value of x OR y element-wise.

NOTE: LogicalOr supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor of type bool.

		y: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Variable.__rpow__(a, *args) {#Variable.rpow}

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for
corresponding elements in x and y. For example:

tensor 'x' is [[2, 2], [3, 3]]
tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]

Args:

		x: A Tensor of type float32, float64, int32, int64, complex64,
or complex128.

		y: A Tensor of type float32, float64, int32, int64, complex64,
or complex128.

		name: A name for the operation (optional).

Returns:

A Tensor.

tf.Variable.__rsub__(a, *args) {#Variable.rsub}

Returns x - y element-wise.

NOTE: Sub supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Variable.__rtruediv__(a, *args) {#Variable.rtruediv}

Divides x / y elementwise, always producing floating point results.

The same as tf.div for floating point arguments, but casts integer arguments
to floating point before dividing so that the result is always floating point.
This op is generated by normal x / y division in Python 3 and in Python 2.7
with from __future__ import division. If you want integer division that
rounds down, use x // y or tf.floordiv.

x and y must have the same numeric type. If the inputs are floating
point, the output will have the same type. If the inputs are integral, the
inputs are cast to float32 for int8 and int16 and float64 for int32
and int64 (matching the behavior of Numpy).

Args:

		x: Tensor numerator of numeric type.

		y: Tensor denominator of numeric type.

		name: A name for the operation (optional).

Returns:

x / y evaluated in floating point.

Raises:

		TypeError: If x and y have different dtypes.

tf.Variable.__rxor__(a, *args) {#Variable.rxor}

x ^ y = (x | y) & ~(x & y).

tf.Variable.__sub__(a, *args) {#Variable.sub}

Returns x - y element-wise.

NOTE: Sub supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Variable.__truediv__(a, *args) {#Variable.truediv}

Divides x / y elementwise, always producing floating point results.

The same as tf.div for floating point arguments, but casts integer arguments
to floating point before dividing so that the result is always floating point.
This op is generated by normal x / y division in Python 3 and in Python 2.7
with from __future__ import division. If you want integer division that
rounds down, use x // y or tf.floordiv.

x and y must have the same numeric type. If the inputs are floating
point, the output will have the same type. If the inputs are integral, the
inputs are cast to float32 for int8 and int16 and float64 for int32
and int64 (matching the behavior of Numpy).

Args:

		x: Tensor numerator of numeric type.

		y: Tensor denominator of numeric type.

		name: A name for the operation (optional).

Returns:

x / y evaluated in floating point.

Raises:

		TypeError: If x and y have different dtypes.

tf.Variable.__xor__(a, *args) {#Variable.xor}

x ^ y = (x | y) & ~(x & y).

tf.Variable.from_proto(variable_def) {#Variable.from_proto}

Returns a Variable object created from variable_def.

tf.Variable.initial_value {#Variable.initial_value}

Returns the Tensor used as the initial value for the variable.

Note that this is different from initialized_value() which runs
the op that initializes the variable before returning its value.
This method returns the tensor that is used by the op that initializes
the variable.

Returns:

A Tensor.

tf.Variable.ref() {#Variable.ref}

Returns a reference to this variable.

You usually do not need to call this method as all ops that need a reference
to the variable call it automatically.

Returns is a Tensor which holds a reference to the variable. You can
assign a new value to the variable by passing the tensor to an assign op.
See value() if you want to get the value of the
variable.

Returns:

A Tensor that is a reference to the variable.

tf.Variable.to_proto() {#Variable.to_proto}

Converts a Variable to a VariableDef protocol buffer.

Returns:

A VariableDef protocol buffer.

tf.Variable.value() {#Variable.value}

Returns the last snapshot of this variable.

You usually do not need to call this method as all ops that need the value
of the variable call it automatically through a convert_to_tensor() call.

Returns a Tensor which holds the value of the variable. You can not
assign a new value to this tensor as it is not a reference to the variable.
See ref() if you want to get a reference to the
variable.

To avoid copies, if the consumer of the returned value is on the same device
as the variable, this actually returns the live value of the variable, not
a copy. Updates to the variable are seen by the consumer. If the consumer
is on a different device it will get a copy of the variable.

Returns:

A Tensor containing the value of the variable.

Variable helper functions

TensorFlow provides a set of functions to help manage the set of variables
collected in the graph.

tf.all_variables() {#all_variables}

Returns all variables that must be saved/restored.

The Variable() constructor automatically adds new variables to the graph
collection GraphKeys.VARIABLES. This convenience function returns the
contents of that collection.

Returns:

A list of Variable objects.

tf.trainable_variables() {#trainable_variables}

Returns all variables created with trainable=True.

When passed trainable=True, the Variable() constructor automatically
adds new variables to the graph collection
GraphKeys.TRAINABLE_VARIABLES. This convenience function returns the
contents of that collection.

Returns:

A list of Variable objects.

tf.local_variables() {#local_variables}

Returns all variables created with collection=[LOCAL_VARIABLES].

Returns:

A list of local Variable objects.

tf.model_variables() {#model_variables}

Returns all variables in the MODEL_VARIABLES collection.

Returns:

A list of local Variable objects.

tf.moving_average_variables() {#moving_average_variables}

Returns all variables that maintain their moving averages.

If an ExponentialMovingAverage object is created and the apply()
method is called on a list of variables, these variables will
be added to the GraphKeys.MOVING_AVERAGE_VARIABLES collection.
This convenience function returns the contents of that collection.

Returns:

A list of Variable objects.

tf.initialize_all_variables() {#initialize_all_variables}

Returns an Op that initializes all variables.

This is just a shortcut for initialize_variables(all_variables())

Returns:

An Op that initializes all variables in the graph.

tf.initialize_variables(var_list, name='init') {#initialize_variables}

Returns an Op that initializes a list of variables.

After you launch the graph in a session, you can run the returned Op to
initialize all the variables in var_list. This Op runs all the
initializers of the variables in var_list in parallel.

Calling initialize_variables() is equivalent to passing the list of
initializers to Group().

If var_list is empty, however, the function still returns an Op that can
be run. That Op just has no effect.

Args:

		var_list: List of Variable objects to initialize.

		name: Optional name for the returned operation.

Returns:

An Op that run the initializers of all the specified variables.

tf.initialize_local_variables() {#initialize_local_variables}

Returns an Op that initializes all local variables.

This is just a shortcut for initialize_variables(local_variables())

Returns:

An Op that initializes all local variables in the graph.

tf.is_variable_initialized(variable) {#is_variable_initialized}

Tests if a variable has been initialized.

Args:

		variable: A Variable.

Returns:

Returns a scalar boolean Tensor, True if the variable has been
initialized, False otherwise.

tf.report_uninitialized_variables(var_list=None, name='report_uninitialized_variables') {#report_uninitialized_variables}

Adds ops to list the names of uninitialized variables.

When run, it returns a 1-D tensor containing the names of uninitialized
variables if there are any, or an empty array if there are none.

Args:

		var_list: List of Variable objects to check. Defaults to the
value of all_variables() + local_variables()

		name: Optional name of the Operation.

Returns:

A 1-D tensor containing names of the uninitialized variables, or an empty
1-D tensor if there are no variables or no uninitialized variables.

tf.assert_variables_initialized(var_list=None) {#assert_variables_initialized}

Returns an Op to check if variables are initialized.

NOTE: This function is obsolete and will be removed in 6 months. Please
change your implementation to use report_uninitialized_variables().

When run, the returned Op will raise the exception FailedPreconditionError
if any of the variables has not yet been initialized.

Note: This function is implemented by trying to fetch the values of the
variables. If one of the variables is not initialized a message may be
logged by the C++ runtime. This is expected.

Args:

		var_list: List of Variable objects to check. Defaults to the
value of all_variables().

Returns:

An Op, or None if there are no variables.

tf.assign(ref, value, validate_shape=None, use_locking=None, name=None) {#assign}

Update ‘ref’ by assigning ‘value’ to it.

This operation outputs “ref” after the assignment is done.
This makes it easier to chain operations that need to use the reset value.

Args:

		ref: A mutable Tensor.
Should be from a Variable node. May be uninitialized.

		value: A Tensor. Must have the same type as ref.
The value to be assigned to the variable.

		validate_shape: An optional bool. Defaults to True.
If true, the operation will validate that the shape
of ‘value’ matches the shape of the Tensor being assigned to. If false,
‘ref’ will take on the shape of ‘value’.

		use_locking: An optional bool. Defaults to True.
If True, the assignment will be protected by a lock;
otherwise the behavior is undefined, but may exhibit less contention.

		name: A name for the operation (optional).

Returns:

Same as “ref”. Returned as a convenience for operations that want
to use the new value after the variable has been reset.

tf.assign_add(ref, value, use_locking=None, name=None) {#assign_add}

Update ‘ref’ by adding ‘value’ to it.

This operation outputs “ref” after the update is done.
This makes it easier to chain operations that need to use the reset value.

Args:

		ref: A mutable Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
Should be from a Variable node.

		value: A Tensor. Must have the same type as ref.
The value to be added to the variable.

		use_locking: An optional bool. Defaults to False.
If True, the addition will be protected by a lock;
otherwise the behavior is undefined, but may exhibit less contention.

		name: A name for the operation (optional).

Returns:

Same as “ref”. Returned as a convenience for operations that want
to use the new value after the variable has been updated.

tf.assign_sub(ref, value, use_locking=None, name=None) {#assign_sub}

Update ‘ref’ by subtracting ‘value’ from it.

This operation outputs “ref” after the update is done.
This makes it easier to chain operations that need to use the reset value.

Args:

		ref: A mutable Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
Should be from a Variable node.

		value: A Tensor. Must have the same type as ref.
The value to be subtracted to the variable.

		use_locking: An optional bool. Defaults to False.
If True, the subtraction will be protected by a lock;
otherwise the behavior is undefined, but may exhibit less contention.

		name: A name for the operation (optional).

Returns:

Same as “ref”. Returned as a convenience for operations that want
to use the new value after the variable has been updated.

Saving and Restoring Variables

class tf.train.Saver {#Saver}

Saves and restores variables.

See Variables
for an overview of variables, saving and restoring.

The Saver class adds ops to save and restore variables to and from
checkpoints. It also provides convenience methods to run these ops.

Checkpoints are binary files in a proprietary format which map variable names
to tensor values. The best way to examine the contents of a checkpoint is to
load it using a Saver.

Savers can automatically number checkpoint filenames with a provided counter.
This lets you keep multiple checkpoints at different steps while training a
model. For example you can number the checkpoint filenames with the training
step number. To avoid filling up disks, savers manage checkpoint files
automatically. For example, they can keep only the N most recent files, or
one checkpoint for every N hours of training.

You number checkpoint filenames by passing a value to the optional
global_step argument to save():

saver.save(sess, 'my-model', global_step=0) ==> filename: 'my-model-0'
...
saver.save(sess, 'my-model', global_step=1000) ==> filename: 'my-model-1000'

Additionally, optional arguments to the Saver() constructor let you control
the proliferation of checkpoint files on disk:

		max_to_keep indicates the maximum number of recent checkpoint files to
keep. As new files are created, older files are deleted. If None or 0,
all checkpoint files are kept. Defaults to 5 (that is, the 5 most recent
checkpoint files are kept.)

		keep_checkpoint_every_n_hours: In addition to keeping the most recent
max_to_keep checkpoint files, you might want to keep one checkpoint file
for every N hours of training. This can be useful if you want to later
analyze how a model progressed during a long training session. For
example, passing keep_checkpoint_every_n_hours=2 ensures that you keep
one checkpoint file for every 2 hours of training. The default value of
10,000 hours effectively disables the feature.

Note that you still have to call the save() method to save the model.
Passing these arguments to the constructor will not save variables
automatically for you.

A training program that saves regularly looks like:

...
Create a saver.
saver = tf.train.Saver(...variables...)
Launch the graph and train, saving the model every 1,000 steps.
sess = tf.Session()
for step in xrange(1000000):
 sess.run(..training_op..)
 if step % 1000 == 0:
 # Append the step number to the checkpoint name:
 saver.save(sess, 'my-model', global_step=step)

In addition to checkpoint files, savers keep a protocol buffer on disk with
the list of recent checkpoints. This is used to manage numbered checkpoint
files and by latest_checkpoint(), which makes it easy to discover the path
to the most recent checkpoint. That protocol buffer is stored in a file named
‘checkpoint’ next to the checkpoint files.

If you create several savers, you can specify a different filename for the
protocol buffer file in the call to save().

tf.train.Saver.__init__(var_list=None, reshape=False, sharded=False, max_to_keep=5, keep_checkpoint_every_n_hours=10000.0, name=None, restore_sequentially=False, saver_def=None, builder=None, defer_build=False, allow_empty=False, write_version=1) {#Saver.init}

Creates a Saver.

The constructor adds ops to save and restore variables.

var_list specifies the variables that will be saved and restored. It can
be passed as a dict or a list:

		A dict of names to variables: The keys are the names that will be
used to save or restore the variables in the checkpoint files.

		A list of variables: The variables will be keyed with their op name in
the checkpoint files.

For example:

v1 = tf.Variable(..., name='v1')
v2 = tf.Variable(..., name='v2')

Pass the variables as a dict:
saver = tf.train.Saver({'v1': v1, 'v2': v2})

Or pass them as a list.
saver = tf.train.Saver([v1, v2])
Passing a list is equivalent to passing a dict with the variable op names
as keys:
saver = tf.train.Saver({v.op.name: v for v in [v1, v2]})

The optional reshape argument, if True, allows restoring a variable from
a save file where the variable had a different shape, but the same number
of elements and type. This is useful if you have reshaped a variable and
want to reload it from an older checkpoint.

The optional sharded argument, if True, instructs the saver to shard
checkpoints per device.

Args:

		var_list: A list of Variable/SaveableObject, or a dictionary mapping
names to SaveableObjects. If None, defaults to the list of all
saveable objects.

		reshape: If True, allows restoring parameters from a checkpoint
where the variables have a different shape.

		sharded: If True, shard the checkpoints, one per device.

		max_to_keep: Maximum number of recent checkpoints to keep.
Defaults to 5.

		keep_checkpoint_every_n_hours: How often to keep checkpoints.
Defaults to 10,000 hours.

		name: String. Optional name to use as a prefix when adding operations.

		restore_sequentially: A Bool, which if true, causes restore of different
variables to happen sequentially within each device. This can lower
memory usage when restoring very large models.

		saver_def: Optional SaverDef proto to use instead of running the
builder. This is only useful for specialty code that wants to recreate
a Saver object for a previously built Graph that had a Saver.
The saver_def proto should be the one returned by the
as_saver_def() call of the Saver that was created for that Graph.

		builder: Optional SaverBuilder to use if a saver_def was not provided.
Defaults to BaseSaverBuilder().

		defer_build: If True, defer adding the save and restore ops to the
build() call. In that case build() should be called before
finalizing the graph or using the saver.

		allow_empty: If False (default) raise an error if there are no
variables in the graph. Otherwise, construct the saver anyway and make
it a no-op.

		write_version: controls what format to use when saving checkpoints. It
also affects certain filepath matching logic. Defaults to V1
currently, and will be switched to the more memory-efficient V2 format
in the future. If set to V2, the Saver is still able to restore from
old V1 checkpoints.

Raises:

		TypeError: If var_list is invalid.

		ValueError: If any of the keys or values in var_list are not unique.

tf.train.Saver.save(sess, save_path, global_step=None, latest_filename=None, meta_graph_suffix='meta', write_meta_graph=True) {#Saver.save}

Saves variables.

This method runs the ops added by the constructor for saving variables.
It requires a session in which the graph was launched. The variables to
save must also have been initialized.

The method returns the path of the newly created checkpoint file. This
path can be passed directly to a call to restore().

Args:

		sess: A Session to use to save the variables.

		save_path: String. Path to the checkpoint filename. If the saver is
sharded, this is the prefix of the sharded checkpoint filename.

		global_step: If provided the global step number is appended to
save_path to create the checkpoint filename. The optional argument
can be a Tensor, a Tensor name or an integer.

		latest_filename: Optional name for the protocol buffer file that will
contains the list of most recent checkpoint filenames. That file,
kept in the same directory as the checkpoint files, is automatically
managed by the saver to keep track of recent checkpoints. Defaults to
‘checkpoint’.

		meta_graph_suffix: Suffix for MetaGraphDef file. Defaults to ‘meta’.

		write_meta_graph: Boolean indicating whether or not to write the meta
graph file.

Returns:

A string: path at which the variables were saved. If the saver is
sharded, this string ends with: ‘-?????-of-nnnnn’ where ‘nnnnn’
is the number of shards created.
If the saver is empty, returns None.

Raises:

		TypeError: If sess is not a Session.

		ValueError: If latest_filename contains path components, or if it
collides with save_path.

		RuntimeError: If save and restore ops weren’t built.

tf.train.Saver.restore(sess, save_path) {#Saver.restore}

Restores previously saved variables.

This method runs the ops added by the constructor for restoring variables.
It requires a session in which the graph was launched. The variables to
restore do not have to have been initialized, as restoring is itself a way
to initialize variables.

The save_path argument is typically a value previously returned from a
save() call, or a call to latest_checkpoint().

Args:

		sess: A Session to use to restore the parameters.

		save_path: Path where parameters were previously saved.

Raises:

		ValueError: If the given save_path does not point to a file.

Other utility methods.

tf.train.Saver.last_checkpoints {#Saver.last_checkpoints}

List of not-yet-deleted checkpoint filenames.

You can pass any of the returned values to restore().

Returns:

A list of checkpoint filenames, sorted from oldest to newest.

tf.train.Saver.set_last_checkpoints_with_time(last_checkpoints_with_time) {#Saver.set_last_checkpoints_with_time}

Sets the list of old checkpoint filenames and timestamps.

Args:

		last_checkpoints_with_time: A list of tuples of checkpoint filenames and
timestamps.

Raises:

		AssertionError: If last_checkpoints_with_time is not a list.

tf.train.Saver.recover_last_checkpoints(checkpoint_paths) {#Saver.recover_last_checkpoints}

Recovers the internal saver state after a crash.

This method is useful for recovering the “self._last_checkpoints” state.

Globs for the checkpoints pointed to by checkpoint_paths. If the files
exist, use their mtime as the checkpoint timestamp.

Args:

		checkpoint_paths: a list of checkpoint paths.

tf.train.Saver.as_saver_def() {#Saver.as_saver_def}

Generates a SaverDef representation of this saver.

Returns:

A SaverDef proto.

Other Methods

tf.train.Saver.build() {#Saver.build}

Builds saver_def.

tf.train.Saver.export_meta_graph(filename=None, collection_list=None, as_text=False) {#Saver.export_meta_graph}

Writes MetaGraphDef to save_path/filename.

Args:

		filename: Optional meta_graph filename including the path.

		collection_list: List of string keys to collect.

		as_text: If True, writes the meta_graph as an ASCII proto.

Returns:

A MetaGraphDef proto.

tf.train.Saver.from_proto(saver_def) {#Saver.from_proto}

Returns a Saver object created from saver_def.

tf.train.Saver.set_last_checkpoints(last_checkpoints) {#Saver.set_last_checkpoints}

DEPRECATED: Use set_last_checkpoints_with_time.

Sets the list of old checkpoint filenames.

Args:

		last_checkpoints: A list of checkpoint filenames.

Raises:

		AssertionError: If last_checkpoints is not a list.

tf.train.Saver.to_proto() {#Saver.to_proto}

Converts this Saver to a SaverDef protocol buffer.

Returns:

A SaverDef protocol buffer.

tf.train.latest_checkpoint(checkpoint_dir, latest_filename=None) {#latest_checkpoint}

Finds the filename of latest saved checkpoint file.

Args:

		checkpoint_dir: Directory where the variables were saved.

		latest_filename: Optional name for the protocol buffer file that
contains the list of most recent checkpoint filenames.
See the corresponding argument to Saver.save().

Returns:

The full path to the latest checkpoint or None if no checkpoint was found.

tf.train.get_checkpoint_state(checkpoint_dir, latest_filename=None) {#get_checkpoint_state}

Returns CheckpointState proto from the “checkpoint” file.

If the “checkpoint” file contains a valid CheckpointState
proto, returns it.

Args:

		checkpoint_dir: The directory of checkpoints.

		latest_filename: Optional name of the checkpoint file. Default to
‘checkpoint’.

Returns:

A CheckpointState if the state was available, None
otherwise.

Raises:

		ValueError: if the checkpoint read doesn’t have model_checkpoint_path set.

tf.train.update_checkpoint_state(save_dir, model_checkpoint_path, all_model_checkpoint_paths=None, latest_filename=None) {#update_checkpoint_state}

Updates the content of the ‘checkpoint’ file.

This updates the checkpoint file containing a CheckpointState
proto.

Args:

		save_dir: Directory where the model was saved.

		model_checkpoint_path: The checkpoint file.

		all_model_checkpoint_paths: List of strings. Paths to all not-yet-deleted
checkpoints, sorted from oldest to newest. If this is a non-empty list,
the last element must be equal to model_checkpoint_path. These paths
are also saved in the CheckpointState proto.

		latest_filename: Optional name of the checkpoint file. Default to
‘checkpoint’.

Raises:

		RuntimeError: If the save paths conflict.

Sharing Variables

TensorFlow provides several classes and operations that you can use to
create variables contingent on certain conditions.

tf.get_variable(name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True, collections=None, caching_device=None, partitioner=None, validate_shape=True, custom_getter=None) {#get_variable}

Gets an existing variable with these parameters or create a new one.

This function prefixes the name with the current variable scope
and performs reuse checks. See the
Variable Scope How To
for an extensive description of how reusing works. Here is a basic example:

with tf.variable_scope("foo"):
 v = tf.get_variable("v", [1]) # v.name == "foo/v:0"
 w = tf.get_variable("w", [1]) # w.name == "foo/w:0"
with tf.variable_scope("foo", reuse=True)
 v1 = tf.get_variable("v") # The same as v above.

If initializer is None (the default), the default initializer passed in
the variable scope will be used. If that one is None too, a
uniform_unit_scaling_initializer will be used. The initializer can also be
a Tensor, in which case the variable is initialized to this value and shape.

Similarly, if the regularizer is None (the default), the default regularizer
passed in the variable scope will be used (if that is None too,
then by default no regularization is performed).

If a partitioner is provided, first a sharded Variable is created
via _get_partitioned_variable, and the return value is a
Tensor composed of the shards concatenated along the partition axis.

Some useful partitioners are available. See, e.g.,
variable_axis_size_partitioner and min_max_variable_partitioner.

Args:

		name: The name of the new or existing variable.

		shape: Shape of the new or existing variable.

		dtype: Type of the new or existing variable (defaults to DT_FLOAT).

		initializer: Initializer for the variable if one is created.

		regularizer: A (Tensor -> Tensor or None) function; the result of
applying it on a newly created variable will be added to the collection
GraphKeys.REGULARIZATION_LOSSES and can be used for regularization.

		trainable: If True also add the variable to the graph collection
GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

		collections: List of graph collections keys to add the Variable to.
Defaults to [GraphKeys.VARIABLES] (see tf.Variable).

		caching_device: Optional device string or function describing where the
Variable should be cached for reading. Defaults to the Variable’s
device. If not None, caches on another device. Typical use is to
cache on the device where the Ops using the Variable reside, to
deduplicate copying through Switch and other conditional statements.

		partitioner: Optional callable that accepts a fully defined TensorShape
and dtype of the Variable to be created, and returns a list of
partitions for each axis (currently only one axis can be partitioned).

		validate_shape: If False, allows the variable to be initialized with a
value of unknown shape. If True, the default, the shape of initial_value
must be known.

		custom_getter: Callable that takes as a first argument the true getter, and
allows overwriting the internal get_variable method.
The signature of custom_getter should match that of this method,
but the most future-proof version will allow for changes:
def custom_getter(getter, *args, **kwargs). Direct access to
all get_variable parameters is also allowed:
def custom_getter(getter, name, *args, **kwargs). A simple identity
custom getter that simply creates variables with modified names is:

def custom_getter(getter, name, *args, **kwargs):
 return getter(name + '_suffix', *args, **kwargs)

Returns:

The created or existing variable.

Raises:

		ValueError: when creating a new variable and shape is not declared,
when violating reuse during variable creation, or when initializer dtype
and dtype don’t match. Reuse is set inside variable_scope.

class tf.VariableScope {#VariableScope}

Variable scope object to carry defaults to provide to get_variable.

Many of the arguments we need for get_variable in a variable store are most
easily handled with a context. This object is used for the defaults.

Attributes:
name: name of the current scope, used as prefix in get_variable.
initializer: default initializer passed to get_variable.
regularizer: default regularizer passed to get_variable.
reuse: Boolean or None, setting the reuse in get_variable.
caching_device: string, callable, or None: the caching device passed to
get_variable.
partitioner: callable or None: the partitioner passed to get_variable.
custom_getter: default custom getter passed to get_variable.
name_scope: The name passed to tf.name_scope.
dtype: default type passed to get_variable (defaults to DT_FLOAT).

tf.VariableScope.__init__(reuse, name='', initializer=None, regularizer=None, caching_device=None, partitioner=None, custom_getter=None, name_scope='', dtype=tf.float32) {#VariableScope.init}

Creates a new VariableScope with the given properties.

tf.VariableScope.caching_device {#VariableScope.caching_device}

tf.VariableScope.custom_getter {#VariableScope.custom_getter}

tf.VariableScope.dtype {#VariableScope.dtype}

tf.VariableScope.get_variable(var_store, name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True, collections=None, caching_device=None, partitioner=None, validate_shape=True, custom_getter=None) {#VariableScope.get_variable}

Gets an existing variable with this name or create a new one.

tf.VariableScope.initializer {#VariableScope.initializer}

tf.VariableScope.name {#VariableScope.name}

tf.VariableScope.original_name_scope {#VariableScope.original_name_scope}

tf.VariableScope.partitioner {#VariableScope.partitioner}

tf.VariableScope.regularizer {#VariableScope.regularizer}

tf.VariableScope.reuse {#VariableScope.reuse}

tf.VariableScope.reuse_variables() {#VariableScope.reuse_variables}

Reuse variables in this scope.

tf.VariableScope.set_caching_device(caching_device) {#VariableScope.set_caching_device}

Set caching_device for this scope.

tf.VariableScope.set_custom_getter(custom_getter) {#VariableScope.set_custom_getter}

Set custom getter for this scope.

tf.VariableScope.set_dtype(dtype) {#VariableScope.set_dtype}

Set data type for this scope.

tf.VariableScope.set_initializer(initializer) {#VariableScope.set_initializer}

Set initializer for this scope.

tf.VariableScope.set_partitioner(partitioner) {#VariableScope.set_partitioner}

Set partitioner for this scope.

tf.VariableScope.set_regularizer(regularizer) {#VariableScope.set_regularizer}

Set regularizer for this scope.

tf.variable_scope(name_or_scope, default_name=None, values=None, initializer=None, regularizer=None, caching_device=None, partitioner=None, custom_getter=None, reuse=None, dtype=None) {#variable_scope}

Returns a context manager for defining ops that creates variables (layers).

This context manager validates that the (optional) values are from
the same graph, ensures that graph is the default graph, and pushes a
name scope and a variable scope.

If name_or_scope is not None, it is used as is. If scope is None, then
default_name is used. In that case, if the same name has been previously
used in the same scope, it will made unique be appending _N to it.

Variable scope allows to create new variables and to share already created
ones while providing checks to not create or share by accident. For details,
see the Variable Scope How To,
here we present only a few basic examples.

Simple example of how to create a new variable:

with tf.variable_scope("foo"):
 with tf.variable_scope("bar"):
 v = tf.get_variable("v", [1])
 assert v.name == "foo/bar/v:0"

Basic example of sharing a variable:

with tf.variable_scope("foo"):
 v = tf.get_variable("v", [1])
with tf.variable_scope("foo", reuse=True):
 v1 = tf.get_variable("v", [1])
assert v1 == v

Sharing a variable by capturing a scope and setting reuse:

with tf.variable_scope("foo") as scope:
 v = tf.get_variable("v", [1])
 scope.reuse_variables()
 v1 = tf.get_variable("v", [1])
assert v1 == v

To prevent accidental sharing of variables, we raise an exception when
getting an existing variable in a non-reusing scope.

with tf.variable_scope("foo"):
 v = tf.get_variable("v", [1])
 v1 = tf.get_variable("v", [1])
 # Raises ValueError("... v already exists ...").

Similarly, we raise an exception when trying to get a variable that
does not exist in reuse mode.

with tf.variable_scope("foo", reuse=True):
 v = tf.get_variable("v", [1])
 # Raises ValueError("... v does not exists ...").

Note that the reuse flag is inherited: if we open a reusing scope,
then all its sub-scopes become reusing as well.

Args:

		name_or_scope: string or VariableScope: the scope to open.

		default_name: The default name to use if the name_or_scope argument is
None, this name will be uniquified. If name_or_scope is provided it
won’t be used and therefore it is not required and can be None.

		values: The list of Tensor arguments that are passed to the op function.

		initializer: default initializer for variables within this scope.

		regularizer: default regularizer for variables within this scope.

		caching_device: default caching device for variables within this scope.

		partitioner: default partitioner for variables within this scope.

		custom_getter: default custom getter for variables within this scope.

		reuse: True or None; if True, we go into reuse mode for this scope as
well as all sub-scopes; if None, we just inherit the parent scope reuse.

		dtype: type of variables created in this scope (defaults to the type
in the passed scope, or inherited from parent scope).

Returns:

A scope that can be to captured and reused.

Raises:

		ValueError: when trying to reuse within a create scope, or create within
a reuse scope, or if reuse is not None or True.

		TypeError: when the types of some arguments are not appropriate.

tf.variable_op_scope(values, name_or_scope, default_name=None, initializer=None, regularizer=None, caching_device=None, partitioner=None, custom_getter=None, reuse=None, dtype=None) {#variable_op_scope}

Deprecated: context manager for defining an op that creates variables.

tf.get_variable_scope() {#get_variable_scope}

Returns the current variable scope.

tf.make_template(name_, func_, create_scope_now_=False, unique_name_=None, **kwargs) {#make_template}

Given an arbitrary function, wrap it so that it does variable sharing.

This wraps func_ in a Template and partially evaluates it. Templates are
functions that create variables the first time they are called and reuse them
thereafter. In order for func_ to be compatible with a Template it must
have the following properties:

		The function should create all trainable variables and any variables that
should be reused by calling tf.get_variable. If a trainable variable is
created using tf.Variable, then a ValueError will be thrown. Variables
that are intended to be locals can be created by specifying
tf.Variable(..., trainable=false).

		The function may use variable scopes and other templates internally to
create and reuse variables, but it shouldn’t use tf.get_variables to
capture variables that are defined outside of the scope of the function.

		Internal scopes and variable names should not depend on any arguments that
are not supplied to make_template. In general you will get a ValueError
telling you that you are trying to reuse a variable that doesn’t exist
if you make a mistake.

In the following example, both z and w will be scaled by the same y. It
is important to note that if we didn’t assign scalar_name and used a
different name for z and w that a ValueError would be thrown because it
couldn’t reuse the variable.

def my_op(x, scalar_name):
 var1 = tf.get_variable(scalar_name,
 shape=[],
 initializer=tf.constant_initializer(1))
 return x * var1

scale_by_y = tf.make_template('scale_by_y', my_op, scalar_name='y')

z = scale_by_y(input1)
w = scale_by_y(input2)

As a safe-guard, the returned function will raise a ValueError after the
first call if trainable variables are created by calling tf.Variable.

If all of these are true, then 2 properties are enforced by the template:

		Calling the same template multiple times will share all non-local
variables.

		Two different templates are guaranteed to be unique, unless you reenter the
same variable scope as the initial definition of a template and redefine
it. An examples of this exception:

def my_op(x, scalar_name):
 var1 = tf.get_variable(scalar_name,
 shape=[],
 initializer=tf.constant_initializer(1))
 return x * var1

with tf.variable_scope('scope') as vs:
 scale_by_y = tf.make_template('scale_by_y', my_op, scalar_name='y')
 z = scale_by_y(input1)
 w = scale_by_y(input2)

Creates a template that reuses the variables above.
with tf.variable_scope(vs, reuse=True):
 scale_by_y2 = tf.make_template('scale_by_y', my_op, scalar_name='y')
 z2 = scale_by_y2(input1)
 w2 = scale_by_y2(input2)

Depending on the value of create_scope_now_, the full variable scope may be
captured either at the time of first call or at the time of construction. If
this option is set to True, then all Tensors created by repeated calls to the
template will have an extra trailing _N+1 to their name, as the first time the
scope is entered in the Template constructor no Tensors are created.

Note: name_, func_ and create_scope_now_ have a trailing underscore to
reduce the likelihood of collisions with kwargs.

Args:

		name_: A name for the scope created by this template. If necessary, the name
will be made unique by appending _N to the name.

		func_: The function to wrap.

		create_scope_now_: Boolean controlling whether the scope should be created
when the template is constructed or when the template is called. Default
is False, meaning the scope is created when the template is called.

		unique_name_: When used, it overrides name_ and is not made unique. If a
template of the same scope/unique_name already exists and reuse is false,
an error is raised. Defaults to None.

		**kwargs: Keyword arguments to apply to func_.

Returns:

A function to encapsulate a set of variables which should be created once
and reused. An enclosing scope will created, either where make_template
is called, or wherever the result is called, depending on the value of
create_scope_now_. Regardless of the value, the first time the template
is called it will enter the scope with no reuse, and call func_ to create
variables, which are guaranteed to be unique. All subsequent calls will
re-enter the scope and reuse those variables.

Raises:

		ValueError: if the name is None.

tf.no_regularizer(_) {#no_regularizer}

Use this function to prevent regularization of variables.

tf.constant_initializer(value=0, dtype=tf.float32) {#constant_initializer}

Returns an initializer that generates tensors with constant values.

The resulting tensor is populated with values of type dtype, as
specified by arguments value following the desired shape of the
new tensor (see examples below).

The argument value can be a constant value, or a list of values of type
dtype. If value is a list, then the length of the list must be less
than or equal to the number of elements implied by the desired shape of the
tensor. In the case where the total number of elements in value is less
than the number of elements required by the tensor shape, the last element
in value will be used to fill the remaining entries. If the total number of
elements in value is greater than the number of elements required by the
tensor shape, the initializer will raise a ValueError.

Args:

		value: A Python scalar, list of values, or a N-dimensional numpy array. All
elements of the initialized variable will be set to the corresponding
value in the value argument.

		dtype: The data type.

Returns:

An initializer that generates tensors with constant values.

Examples:

The following example can be rewritten using a numpy.ndarray instead
of the value list, even reshaped, as shown in the two commented lines
below the value list initialization.

 >>> import numpy as np
 >>> import tensorflow as tf

 >>> value = [0, 1, 2, 3, 4, 5, 6, 7]
 >>> # value = np.array(value)
 >>> # value = value.reshape([2, 4])
 >>> init = tf.constant_initializer(value)

 >>> print('fitting shape:')
 >>> tf.reset_default_graph()
 >>> with tf.Session():
 >>> x = tf.get_variable('x', shape=[2, 4], initializer=init)
 >>> x.initializer.run()
 >>> print(x.eval())

 fitting shape:
 [[0. 1. 2. 3.]
 [4. 5. 6. 7.]]

 >>> print('larger shape:')
 >>> tf.reset_default_graph()
 >>> with tf.Session():
 >>> x = tf.get_variable('x', shape=[3, 4], initializer=init)
 >>> x.initializer.run()
 >>> print(x.eval())

 larger shape:
 [[0. 1. 2. 3.]
 [4. 5. 6. 7.]
 [7. 7. 7. 7.]]

 >>> print('smaller shape:')
 >>> tf.reset_default_graph()
 >>> with tf.Session():
 >>> x = tf.get_variable('x', shape=[2, 3], initializer=init)

* `ValueError`: Too many elements provided. Needed at most 6, but received 8

tf.random_normal_initializer(mean=0.0, stddev=1.0, seed=None, dtype=tf.float32) {#random_normal_initializer}

Returns an initializer that generates tensors with a normal distribution.

Args:

		mean: a python scalar or a scalar tensor. Mean of the random values
to generate.

		stddev: a python scalar or a scalar tensor. Standard deviation of the
random values to generate.

		seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

		dtype: The data type. Only floating point types are supported.

Returns:

An initializer that generates tensors with a normal distribution.

Raises:

		ValueError: if dtype is not a floating point type.

tf.truncated_normal_initializer(mean=0.0, stddev=1.0, seed=None, dtype=tf.float32) {#truncated_normal_initializer}

Returns an initializer that generates a truncated normal distribution.

These values are similar to values from a random_normal_initializer
except that values more than two standard deviations from the mean
are discarded and re-drawn. This is the recommended initializer for
neural network weights and filters.

Args:

		mean: a python scalar or a scalar tensor. Mean of the random values
to generate.

		stddev: a python scalar or a scalar tensor. Standard deviation of the
random values to generate.

		seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

		dtype: The data type. Only floating point types are supported.

Returns:

An initializer that generates tensors with a truncated normal
distribution.

Raises:

		ValueError: if dtype is not a floating point type.

tf.random_uniform_initializer(minval=0, maxval=None, seed=None, dtype=tf.float32) {#random_uniform_initializer}

Returns an initializer that generates tensors with a uniform distribution.

Args:

		minval: A python scalar or a scalar tensor. Lower bound of the range
of random values to generate.

		maxval: A python scalar or a scalar tensor. Upper bound of the range
of random values to generate. Defaults to 1 for float types.

		seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

		dtype: The data type.

Returns:

An initializer that generates tensors with a uniform distribution.

tf.uniform_unit_scaling_initializer(factor=1.0, seed=None, dtype=tf.float32) {#uniform_unit_scaling_initializer}

Returns an initializer that generates tensors without scaling variance.

When initializing a deep network, it is in principle advantageous to keep
the scale of the input variance constant, so it does not explode or diminish
by reaching the final layer. If the input is x and the operation x * W,
and we want to initialize W uniformly at random, we need to pick W from

[-sqrt(3) / sqrt(dim), sqrt(3) / sqrt(dim)]

to keep the scale intact, where dim = W.shape[0] (the size of the input).
A similar calculation for convolutional networks gives an analogous result
with dim equal to the product of the first 3 dimensions. When
nonlinearities are present, we need to multiply this by a constant factor.
See Sussillo et al., 2014 [https://arxiv.org/abs/1412.6558]
(pdf [http://arxiv.org/pdf/1412.6558.pdf]) for deeper motivation, experiments
and the calculation of constants. In section 2.3 there, the constants were
numerically computed: for a linear layer it’s 1.0, relu: ~1.43, tanh: ~1.15.

Args:

		factor: Float. A multiplicative factor by which the values will be scaled.

		seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

		dtype: The data type. Only floating point types are supported.

Returns:

An initializer that generates tensors with unit variance.

Raises:

		ValueError: if dtype is not a floating point type.

tf.zeros_initializer(shape, dtype=tf.float32, partition_info=None) {#zeros_initializer}

An adaptor for zeros() to match the Initializer spec.

tf.ones_initializer(shape, dtype=tf.float32, partition_info=None) {#ones_initializer}

An adaptor for ones() to match the Initializer spec.

Variable Partitioners for Sharding

tf.fixed_size_partitioner(num_shards, axis=0) {#fixed_size_partitioner}

Partitioner to specify a fixed number of shards along given axis.

Args:

		num_shards: int, number of shards to partition variable.

		axis: int, axis to partition on.

Returns:

A partition function usable as the partitioner argument to
variable_scope, get_variable, and get_partitioned_variable_list.

tf.variable_axis_size_partitioner(max_shard_bytes, axis=0, bytes_per_string_element=16, max_shards=None) {#variable_axis_size_partitioner}

Get a partitioner for VariableScope to keep shards below max_shard_bytes.

This partitioner will shard a Variable along one axis, attempting to keep
the maximum shard size below max_shard_bytes. In practice, this is not
always possible when sharding along only one axis. When this happens,
this axis is sharded as much as possible (i.e., every dimension becomes
a separate shard).

If the partitioner hits the max_shards limit, then each shard may end up
larger than max_shard_bytes. By default max_shards equals None and no
limit on the number of shards is enforced.

One reasonable value for max_shard_bytes is (64 << 20) - 1, or almost
64MB, to keep below the protobuf byte limit.

Args:

		max_shard_bytes: The maximum size any given shard is allowed to be.

		axis: The axis to partition along. Default: outermost axis.

		bytes_per_string_element: If the Variable is of type string, this provides
an estimate of how large each scalar in the Variable is.

		max_shards: The maximum number of shards in int created taking precedence
over max_shard_bytes.

Returns:

A partition function usable as the partitioner argument to
variable_scope, get_variable, and get_partitioned_variable_list.

Raises:

		ValueError: If any of the byte counts are non-positive.

tf.min_max_variable_partitioner(max_partitions=1, axis=0, min_slice_size=262144, bytes_per_string_element=16) {#min_max_variable_partitioner}

Partitioner to allocate minimum size per slice.

Returns a partitioner that partitions the variable of given shape and dtype
such that each partition has a minimum of min_slice_size slice of the
variable. The maximum number of such partitions (upper bound) is given by
max_partitions.

Args:

		max_partitions: Upper bound on the number of partitions. Defaults to 1.

		axis: Axis along which to partition the variable. Defaults to 0.

		min_slice_size: Minimum size of the variable slice per partition. Defaults
to 256K.

		bytes_per_string_element: If the Variable is of type string, this provides
an estimate of how large each scalar in the Variable is.

Returns:

A partition function usable as the partitioner argument to
variable_scope, get_variable, and get_partitioned_variable_list.

Sparse Variable Updates

The sparse update ops modify a subset of the entries in a dense Variable,
either overwriting the entries or adding / subtracting a delta. These are
useful for training embedding models and similar lookup-based networks, since
only a small subset of embedding vectors change in any given step.

Since a sparse update of a large tensor may be generated automatically during
gradient computation (as in the gradient of
tf.gather),
an IndexedSlices class is provided that encapsulates a set
of sparse indices and values. IndexedSlices objects are detected and handled
automatically by the optimizers in most cases.

tf.scatter_update(ref, indices, updates, use_locking=None, name=None) {#scatter_update}

Applies sparse updates to a variable reference.

This operation computes

Scalar indices
ref[indices, ...] = updates[...]

Vector indices (for each i)
ref[indices[i], ...] = updates[i, ...]

High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] = updates[i, ..., j, ...]

This operation outputs ref after the update is done.
This makes it easier to chain operations that need to use the reset value.

If values in ref is to be updated more than once, because there are
duplicate entires in indices, the order at which the updates happen
for each value is undefined.

Requires updates.shape = indices.shape + ref.shape[1:].

[image:]

Args:

		ref: A mutable Tensor. Should be from a Variable node.

		indices: A Tensor. Must be one of the following types: int32, int64.
A tensor of indices into the first dimension of ref.

		updates: A Tensor. Must have the same type as ref.
A tensor of updated values to store in ref.

		use_locking: An optional bool. Defaults to True.
If True, the assignment will be protected by a lock;
otherwise the behavior is undefined, but may exhibit less contention.

		name: A name for the operation (optional).

Returns:

Same as ref. Returned as a convenience for operations that want
to use the updated values after the update is done.

tf.scatter_add(ref, indices, updates, use_locking=None, name=None) {#scatter_add}

Adds sparse updates to a variable reference.

This operation computes

Scalar indices
ref[indices, ...] += updates[...]

Vector indices (for each i)
ref[indices[i], ...] += updates[i, ...]

High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] += updates[i, ..., j, ...]

This operation outputs ref after the update is done.
This makes it easier to chain operations that need to use the reset value.

Duplicate entries are handled correctly: if multiple indices reference
the same location, their contributions add.

Requires updates.shape = indices.shape + ref.shape[1:].

[image:]

Args:

		ref: A mutable Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
Should be from a Variable node.

		indices: A Tensor. Must be one of the following types: int32, int64.
A tensor of indices into the first dimension of ref.

		updates: A Tensor. Must have the same type as ref.
A tensor of updated values to add to ref.

		use_locking: An optional bool. Defaults to False.
If True, the addition will be protected by a lock;
otherwise the behavior is undefined, but may exhibit less contention.

		name: A name for the operation (optional).

Returns:

Same as ref. Returned as a convenience for operations that want
to use the updated values after the update is done.

tf.scatter_sub(ref, indices, updates, use_locking=None, name=None) {#scatter_sub}

Subtracts sparse updates to a variable reference.

Scalar indices
ref[indices, ...] -= updates[...]

Vector indices (for each i)
ref[indices[i], ...] -= updates[i, ...]

High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] -= updates[i, ..., j, ...]

This operation outputs ref after the update is done.
This makes it easier to chain operations that need to use the reset value.

Duplicate entries are handled correctly: if multiple indices reference
the same location, their (negated) contributions add.

Requires updates.shape = indices.shape + ref.shape[1:].

[image:]

Args:

		ref: A mutable Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
Should be from a Variable node.

		indices: A Tensor. Must be one of the following types: int32, int64.
A tensor of indices into the first dimension of ref.

		updates: A Tensor. Must have the same type as ref.
A tensor of updated values to subtract from ref.

		use_locking: An optional bool. Defaults to False.
If True, the subtraction will be protected by a lock;
otherwise the behavior is undefined, but may exhibit less contention.

		name: A name for the operation (optional).

Returns:

Same as ref. Returned as a convenience for operations that want
to use the updated values after the update is done.

tf.scatter_mul(ref, indices, updates, use_locking=None, name=None) {#scatter_mul}

Multiplies sparse updates into a variable reference.

This operation computes

Scalar indices
ref[indices, ...] *= updates[...]

Vector indices (for each i)
ref[indices[i], ...] *= updates[i, ...]

High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] *= updates[i, ..., j, ...]

This operation outputs ref after the update is done.
This makes it easier to chain operations that need to use the reset value.

Duplicate entries are handled correctly: if multiple indices reference
the same location, their contributions multiply.

Requires updates.shape = indices.shape + ref.shape[1:].

Args:

		ref: A mutable Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
Should be from a Variable node.

		indices: A Tensor. Must be one of the following types: int32, int64.
A tensor of indices into the first dimension of ref.

		updates: A Tensor. Must have the same type as ref.
A tensor of updated values to multiply to ref.

		use_locking: An optional bool. Defaults to False.
If True, the operation will be protected by a lock;
otherwise the behavior is undefined, but may exhibit less contention.

		name: A name for the operation (optional).

Returns:

Same as ref. Returned as a convenience for operations that want
to use the updated values after the update is done.

tf.scatter_div(ref, indices, updates, use_locking=None, name=None) {#scatter_div}

Divides a variable reference by sparse updates.

This operation computes

Scalar indices
ref[indices, ...] /= updates[...]

Vector indices (for each i)
ref[indices[i], ...] /= updates[i, ...]

High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] /= updates[i, ..., j, ...]

This operation outputs ref after the update is done.
This makes it easier to chain operations that need to use the reset value.

Duplicate entries are handled correctly: if multiple indices reference
the same location, their contributions divide.

Requires updates.shape = indices.shape + ref.shape[1:].

Args:

		ref: A mutable Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
Should be from a Variable node.

		indices: A Tensor. Must be one of the following types: int32, int64.
A tensor of indices into the first dimension of ref.

		updates: A Tensor. Must have the same type as ref.
A tensor of values that ref is divided by.

		use_locking: An optional bool. Defaults to False.
If True, the operation will be protected by a lock;
otherwise the behavior is undefined, but may exhibit less contention.

		name: A name for the operation (optional).

Returns:

Same as ref. Returned as a convenience for operations that want
to use the updated values after the update is done.

tf.sparse_mask(a, mask_indices, name=None) {#sparse_mask}

Masks elements of IndexedSlices.

Given an IndexedSlices instance a, returns another IndexedSlices that
contains a subset of the slices of a. Only the slices at indices not
specified in mask_indices are returned.

This is useful when you need to extract a subset of slices in an
IndexedSlices object.

For example:

`a` contains slices at indices [12, 26, 37, 45] from a large tensor
with shape [1000, 10]
a.indices => [12, 26, 37, 45]
tf.shape(a.values) => [4, 10]

`b` will be the subset of `a` slices at its second and third indices, so
we want to mask its first and last indices (which are at absolute
indices 12, 45)
b = tf.sparse_mask(a, [12, 45])

b.indices => [26, 37]
tf.shape(b.values) => [2, 10]

Args:

		a: An IndexedSlices instance.

		mask_indices: Indices of elements to mask.

		name: A name for the operation (optional).

Returns:

The masked IndexedSlices instance.

class tf.IndexedSlices {#IndexedSlices}

A sparse representation of a set of tensor slices at given indices.

This class is a simple wrapper for a pair of Tensor objects:

		values: A Tensor of any dtype with shape [D0, D1, ..., Dn].

		indices: A 1-D integer Tensor with shape [D0].

An IndexedSlices is typically used to represent a subset of a larger
tensor dense of shape [LARGE0, D1, .. , DN] where LARGE0 >> D0.
The values in indices are the indices in the first dimension of
the slices that have been extracted from the larger tensor.

The dense tensor dense represented by an IndexedSlices slices has

dense[slices.indices[i], :, :, :, ...] = slices.values[i, :, :, :, ...]

The IndexedSlices class is used principally in the definition of
gradients for operations that have sparse gradients
(e.g. tf.gather).

Contrast this representation with
SparseTensor,
which uses multi-dimensional indices and scalar values.

tf.IndexedSlices.__init__(values, indices, dense_shape=None) {#IndexedSlices.init}

Creates an IndexedSlices.

tf.IndexedSlices.values {#IndexedSlices.values}

A Tensor containing the values of the slices.

tf.IndexedSlices.indices {#IndexedSlices.indices}

A 1-D Tensor containing the indices of the slices.

tf.IndexedSlices.dense_shape {#IndexedSlices.dense_shape}

A 1-D Tensor containing the shape of the corresponding dense tensor.

tf.IndexedSlices.name {#IndexedSlices.name}

The name of this IndexedSlices.

tf.IndexedSlices.dtype {#IndexedSlices.dtype}

The DType of elements in this tensor.

tf.IndexedSlices.device {#IndexedSlices.device}

The name of the device on which values will be produced, or None.

tf.IndexedSlices.op {#IndexedSlices.op}

The Operation that produces values as an output.

Other Methods

tf.IndexedSlices.__neg__() {#IndexedSlices.neg}

tf.IndexedSlices.__str__() {#IndexedSlices.str}

tf.IndexedSlices.graph {#IndexedSlices.graph}

The Graph that contains the values, indices, and shape tensors.

Exporting and Importing Meta Graphs

tf.train.export_meta_graph(filename=None, meta_info_def=None, graph_def=None, saver_def=None, collection_list=None, as_text=False) {#export_meta_graph}

Returns MetaGraphDef proto. Optionally writes it to filename.

This function exports the graph, saver, and collection objects into
MetaGraphDef protocol buffer with the intention of it being imported
at a later time or location to restart training, run inference, or be
a subgraph.

Args:

		filename: Optional filename including the path for writing the
generated MetaGraphDef protocol buffer.

		meta_info_def: MetaInfoDef protocol buffer.

		graph_def: GraphDef protocol buffer.

		saver_def: SaverDef protocol buffer.

		collection_list: List of string keys to collect.

		as_text: If True, writes the MetaGraphDef as an ASCII proto.

Returns:

A MetaGraphDef proto.

tf.train.import_meta_graph(meta_graph_or_file, clear_devices=False) {#import_meta_graph}

Recreates a Graph saved in a MetaGraphDef proto.

This function takes a MetaGraphDef protocol buffer as input. If
the argument is a file containing a MetaGraphDef protocol buffer ,
it constructs a protocol buffer from the file content. The function
then adds all the nodes from the graph_def field to the
current graph, recreates all the collections, and returns a saver
constructed from the saver_def field.

In combination with export_meta_graph(), this function can be used to

		Serialize a graph along with other Python objects such as QueueRunner,
Variable into a MetaGraphDef.

		Restart training from a saved graph and checkpoints.

		Run inference from a saved graph and checkpoints.

...
Create a saver.
saver = tf.train.Saver(...variables...)
Remember the training_op we want to run by adding it to a collection.
tf.add_to_collection('train_op', train_op)
sess = tf.Session()
for step in xrange(1000000):
 sess.run(train_op)
 if step % 1000 == 0:
 # Saves checkpoint, which by default also exports a meta_graph
 # named 'my-model-global_step.meta'.
 saver.save(sess, 'my-model', global_step=step)

Later we can continue training from this saved meta_graph without building
the model from scratch.

with tf.Session() as sess:
 new_saver = tf.train.import_meta_graph('my-save-dir/my-model-10000.meta')
 new_saver.restore(sess, 'my-save-dir/my-model-10000')
 # tf.get_collection() returns a list. In this example we only want the
 # first one.
 train_op = tf.get_collection('train_op')[0]
 for step in xrange(1000000):
 sess.run(train_op)

NOTE: Restarting training from saved meta_graph only works if the
device assignments have not changed.

Args:

		meta_graph_or_file: MetaGraphDef protocol buffer or filename (including
the path) containing a MetaGraphDef.

		clear_devices: Boolean which controls whether to clear device information
from graph_def. Default false.

Returns:

A saver constructed from saver_def in MetaGraphDef or None.

A None value is returned if no variables exist in the MetaGraphDef
(i.e., there are no variables to restore).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/math_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Math

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Note: Elementwise binary operations in TensorFlow follow numpy-style
broadcasting [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html].

Arithmetic Operators

TensorFlow provides several operations that you can use to add basic arithmetic
operators to your graph.

tf.add(x, y, name=None) {#add}

Returns x + y element-wise.

NOTE: Add supports broadcasting. AddN does not. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, int16, int32, int64, complex64, complex128, string.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.sub(x, y, name=None) {#sub}

Returns x - y element-wise.

NOTE: Sub supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.mul(x, y, name=None) {#mul}

Returns x * y element-wise.

NOTE: Mul supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.scalar_mul(scalar, x) {#scalar_mul}

Multiplies a scalar times a Tensor or IndexedSlices object.

Intended for use in gradient code which might deal with IndexedSlices
objects, which are easy to multiply by a scalar but more expensive to
multiply with arbitrary tensors.

Args:

		scalar: A 0-D scalar Tensor. Must have known shape.

		x: A Tensor or IndexedSlices to be scaled.

Returns:

scalar * x of the same type (Tensor or IndexedSlices) as x.

Raises:

		ValueError: if scalar is not a 0-D scalar.

tf.div(x, y, name=None) {#div}

Returns x / y element-wise.

NOTE: Div supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.truediv(x, y, name=None) {#truediv}

Divides x / y elementwise, always producing floating point results.

The same as tf.div for floating point arguments, but casts integer arguments
to floating point before dividing so that the result is always floating point.
This op is generated by normal x / y division in Python 3 and in Python 2.7
with from __future__ import division. If you want integer division that
rounds down, use x // y or tf.floordiv.

x and y must have the same numeric type. If the inputs are floating
point, the output will have the same type. If the inputs are integral, the
inputs are cast to float32 for int8 and int16 and float64 for int32
and int64 (matching the behavior of Numpy).

Args:

		x: Tensor numerator of numeric type.

		y: Tensor denominator of numeric type.

		name: A name for the operation (optional).

Returns:

x / y evaluated in floating point.

Raises:

		TypeError: If x and y have different dtypes.

tf.floordiv(x, y, name=None) {#floordiv}

Divides x / y elementwise, rounding down for floating point.

The same as tf.div(x,y) for integers, but uses tf.floor(tf.div(x,y)) for
floating point arguments so that the result is always an integer (though
possibly an integer represented as floating point). This op is generated by
x // y floor division in Python 3 and in Python 2.7 with
from __future__ import division.

Note that for efficiency, floordiv uses C semantics for negative numbers
(unlike Python and Numpy).

x and y must have the same type, and the result will have the same type
as well.

Args:

		x: Tensor numerator of real numeric type.

		y: Tensor denominator of real numeric type.

		name: A name for the operation (optional).

Returns:

x / y rounded down (except possibly towards zero for negative integers).

Raises:

		TypeError: If the inputs are complex.

tf.mod(x, y, name=None) {#mod}

Returns element-wise remainder of division.

NOTE: Mod supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: int32, int64, float32, float64.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.cross(a, b, name=None) {#cross}

Compute the pairwise cross product.

a and b must be the same shape; they can either be simple 3-element vectors,
or any shape where the innermost dimension is 3. In the latter case, each pair
of corresponding 3-element vectors is cross-multiplied independently.

Args:

		a: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.
A tensor containing 3-element vectors.

		b: A Tensor. Must have the same type as a.
Another tensor, of same type and shape as a.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as a.
Pairwise cross product of the vectors in a and b.

Basic Math Functions

TensorFlow provides several operations that you can use to add basic
mathematical functions to your graph.

tf.add_n(inputs, name=None) {#add_n}

Adds all input tensors element-wise.

Args:

		inputs: A list of Tensor objects, each with same shape and type.

		name: A name for the operation (optional).

Returns:

A Tensor of same shape and type as the elements of inputs.

Raises:

		ValueError: If inputs don’t all have same shape and dtype or the shape
cannot be inferred.

tf.abs(x, name=None) {#abs}

Computes the absolute value of a tensor.

Given a tensor of real numbers x, this operation returns a tensor
containing the absolute value of each element in x. For example, if x is
an input element and y is an output element, this operation computes
\(y = |x|\).

See tf.complex_abs() to compute the absolute value of a complex
number.

Args:

		x: A Tensor or SparseTensor of type float32, float64, int32, or
int64.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor the same size and type as x with absolute
values.

tf.neg(x, name=None) {#neg}

Computes numerical negative value element-wise.

I.e., (y = -x).

Args:

		x: A Tensor or SparseTensor. Must be one of the following types: half,
float32, float64, int32, int64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor, respectively. Has the same type as x.

tf.sign(x, name=None) {#sign}

Returns an element-wise indication of the sign of a number.

y = sign(x) = -1 if x < 0; 0 if x == 0; 1 if x > 0.

For complex numbers, y = sign(x) = x / |x| if x != 0, otherwise y = 0.

Args:

		x: A Tensor or SparseTensor. Must be one of the following types: half,
float32, float64, int32, int64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor, respectively. Has the same type as x.

tf.inv(x, name=None) {#inv}

Computes the reciprocal of x element-wise.

I.e., \(y = 1 / x\).

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.square(x, name=None) {#square}

Computes square of x element-wise.

I.e., (y = x * x = x^2).

Args:

		x: A Tensor or SparseTensor. Must be one of the following types: half,
float32, float64, int32, int64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor. Has the same type as x.

tf.round(x, name=None) {#round}

Rounds the values of a tensor to the nearest integer, element-wise.

For example:

'a' is [0.9, 2.5, 2.3, -4.4]
tf.round(a) ==> [1.0, 3.0, 2.0, -4.0]

Args:

		x: A Tensor of type float32 or float64.

		name: A name for the operation (optional).

Returns:

A Tensor of same shape and type as x.

tf.sqrt(x, name=None) {#sqrt}

Computes square root of x element-wise.

I.e., (y = \sqrt{x} = x^{1/2}).

Args:

		x: A Tensor or SparseTensor. Must be one of the following types: half,
float32, float64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor, respectively. Has the same type as x.

tf.rsqrt(x, name=None) {#rsqrt}

Computes reciprocal of square root of x element-wise.

I.e., \(y = 1 / \sqrt{x}\).

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.pow(x, y, name=None) {#pow}

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for
corresponding elements in x and y. For example:

tensor 'x' is [[2, 2], [3, 3]]
tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]

Args:

		x: A Tensor of type float32, float64, int32, int64, complex64,
or complex128.

		y: A Tensor of type float32, float64, int32, int64, complex64,
or complex128.

		name: A name for the operation (optional).

Returns:

A Tensor.

tf.exp(x, name=None) {#exp}

Computes exponential of x element-wise. \(y = e^x\).

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.log(x, name=None) {#log}

Computes natural logarithm of x element-wise.

I.e., \(y = \log_e x\).

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.ceil(x, name=None) {#ceil}

Returns element-wise smallest integer in not less than x.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.floor(x, name=None) {#floor}

Returns element-wise largest integer not greater than x.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.maximum(x, y, name=None) {#maximum}

Returns the max of x and y (i.e. x > y ? x : y) element-wise.

NOTE: Maximum supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.minimum(x, y, name=None) {#minimum}

Returns the min of x and y (i.e. x < y ? x : y) element-wise.

NOTE: Minimum supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.cos(x, name=None) {#cos}

Computes cos of x element-wise.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.sin(x, name=None) {#sin}

Computes sin of x element-wise.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.lbeta(x, name='lbeta') {#lbeta}

Computes ln(|Beta(x)|), reducing along the last dimension.

Given one-dimensional z = [z_0,...,z_{K-1}], we define

Beta(z) = \prod_j Gamma(z_j) / Gamma(\sum_j z_j)

And for n + 1 dimensional x with shape [N1, ..., Nn, K], we define
lbeta(x)[i1, ..., in] = Log(|Beta(x[i1, ..., in, :])|). In other words,
the last dimension is treated as the z vector.

Note that if z = [u, v], then
Beta(z) = int_0^1 t^{u-1} (1 - t)^{v-1} dt, which defines the traditional
bivariate beta function.

Args:

		x: A rank n + 1 Tensor with type float, or double.

		name: A name for the operation (optional).

Returns:

The logarithm of |Beta(x)| reducing along the last dimension.

Raises:

		ValueError: If x is empty with rank one or less.

tf.tan(x, name=None) {#tan}

Computes tan of x element-wise.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.acos(x, name=None) {#acos}

Computes acos of x element-wise.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.asin(x, name=None) {#asin}

Computes asin of x element-wise.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.atan(x, name=None) {#atan}

Computes atan of x element-wise.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.lgamma(x, name=None) {#lgamma}

Computes the log of the absolute value of Gamma(x) element-wise.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.digamma(x, name=None) {#digamma}

Computes Psi, the derivative of Lgamma (the log of the absolute value of

Gamma(x)), element-wise.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.erf(x, name=None) {#erf}

Computes the Gauss error function of x element-wise.

Args:

		x: A Tensor of SparseTensor. Must be one of the following types: half,
float32, float64.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor, respectively. Has the same type as x.

tf.erfc(x, name=None) {#erfc}

Computes the complementary error function of x element-wise.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.squared_difference(x, y, name=None) {#squared_difference}

Returns (x - y)(x - y) element-wise.

NOTE: SquaredDifference supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.igamma(a, x, name=None) {#igamma}

Compute the lower regularized incomplete Gamma function Q(a, x).

The lower regularized incomplete Gamma function is defined as:

P(a, x) = gamma(a, x) / Gamma(a) = 1 - Q(a, x)

where

gamma(a, x) = int_{0}^{x} t^{a-1} exp(-t) dt

is the lower incomplete Gamma function.

Note, above Q(a, x) (Igammac) is the upper regularized complete
Gamma function.

Args:

		a: A Tensor. Must be one of the following types: float32, float64.

		x: A Tensor. Must have the same type as a.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as a.

tf.igammac(a, x, name=None) {#igammac}

Compute the upper regularized incomplete Gamma function Q(a, x).

The upper regularized incomplete Gamma function is defined as:

Q(a, x) = Gamma(a, x) / Gamma(a) = 1 - P(a, x)

where

Gamma(a, x) = int_{x}^{\infty} t^{a-1} exp(-t) dt

is the upper incomplete Gama function.

Note, above P(a, x) (Igamma) is the lower regularized complete
Gamma function.

Args:

		a: A Tensor. Must be one of the following types: float32, float64.

		x: A Tensor. Must have the same type as a.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as a.

tf.zeta(x, q, name=None) {#zeta}

Compute the Hurwitz zeta function \(\zeta(x, q)\).

The Hurwitz zeta function is defined as:

\zeta(x, q) = \sum_{n=0}^{\infty} (q + n)^{-x}

Args:

		x: A Tensor. Must be one of the following types: float32, float64.

		q: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.polygamma(a, x, name=None) {#polygamma}

Compute the polygamma function \(\psi^{(n)}(x)\).

The polygamma function is defined as:

\psi^{(n)}(x) = \frac{d^n}{dx^n} \psi(x)

where \(\psi(x)\) is the digamma function.

Args:

		a: A Tensor. Must be one of the following types: float32, float64.

		x: A Tensor. Must have the same type as a.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as a.

tf.betainc(a, b, x, name=None) {#betainc}

Compute the regularized incomplete beta integral \(I_x(a, b)\).

The regularized incomplete beta integral is defined as:

I_x(a, b) = \frac{B(x; a, b)}{B(a, b)}

where

B(x; a, b) = \int_0^x t^{a-1} (1 - t)^{b-1} dt

is the incomplete beta function and \(B(a, b)\) is the complete
beta function.

Args:

		a: A Tensor. Must be one of the following types: float32, float64.

		b: A Tensor. Must have the same type as a.

		x: A Tensor. Must have the same type as a.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as a.

Matrix Math Functions

TensorFlow provides several operations that you can use to add linear algebra
functions on matrices to your graph.

tf.diag(diagonal, name=None) {#diag}

Returns a diagonal tensor with a given diagonal values.

Given a diagonal, this operation returns a tensor with the diagonal and
everything else padded with zeros. The diagonal is computed as follows:

Assume diagonal has dimensions [D1,..., Dk], then the output is a tensor of
rank 2k with dimensions [D1,..., Dk, D1,..., Dk] where:

output[i1,..., ik, i1,..., ik] = diagonal[i1, ..., ik] and 0 everywhere else.

For example:

'diagonal' is [1, 2, 3, 4]
tf.diag(diagonal) ==> [[1, 0, 0, 0]
 [0, 2, 0, 0]
 [0, 0, 3, 0]
 [0, 0, 0, 4]]

Args:

		diagonal: A Tensor. Must be one of the following types: float32, float64, int32, int64, complex64, complex128.
Rank k tensor where k is at most 3.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as diagonal.

tf.diag_part(input, name=None) {#diag_part}

Returns the diagonal part of the tensor.

This operation returns a tensor with the diagonal part
of the input. The diagonal part is computed as follows:

Assume input has dimensions [D1,..., Dk, D1,..., Dk], then the output is a
tensor of rank k with dimensions [D1,..., Dk] where:

diagonal[i1,..., ik] = input[i1, ..., ik, i1,..., ik].

For example:

'input' is [[1, 0, 0, 0]
 [0, 2, 0, 0]
 [0, 0, 3, 0]
 [0, 0, 0, 4]]

tf.diag_part(input) ==> [1, 2, 3, 4]

Args:

		input: A Tensor. Must be one of the following types: float32, float64, int32, int64, complex64, complex128.
Rank k tensor where k is 2, 4, or 6.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. The extracted diagonal.

tf.trace(x, name=None) {#trace}

Compute the trace of a tensor x.

trace(x) returns the sum of along the diagonal.

For example:

'x' is [[1, 1],
[1, 1]]
tf.trace(x) ==> 2

'x' is [[1,2,3],
[4,5,6],
[7,8,9]]
tf.trace(x) ==> 15

Args:

		x: 2-D tensor.

		name: A name for the operation (optional).

Returns:

The trace of input tensor.

tf.transpose(a, perm=None, name='transpose') {#transpose}

Transposes a. Permutes the dimensions according to perm.

The returned tensor’s dimension i will correspond to the input dimension
perm[i]. If perm is not given, it is set to (n-1...0), where n is
the rank of the input tensor. Hence by default, this operation performs a
regular matrix transpose on 2-D input Tensors.

For example:

'x' is [[1 2 3]
[4 5 6]]
tf.transpose(x) ==> [[1 4]
 [2 5]
 [3 6]]

Equivalently
tf.transpose(x, perm=[1, 0]) ==> [[1 4]
 [2 5]
 [3 6]]

'perm' is more useful for n-dimensional tensors, for n > 2
'x' is [[[1 2 3]
[4 5 6]]
[[7 8 9]
[10 11 12]]]
Take the transpose of the matrices in dimension-0
tf.transpose(x, perm=[0, 2, 1]) ==> [[[1 4]
 [2 5]
 [3 6]]

 [[7 10]
 [8 11]
 [9 12]]]

Args:

		a: A Tensor.

		perm: A permutation of the dimensions of a.

		name: A name for the operation (optional).

Returns:

A transposed Tensor.

tf.matrix_diag(diagonal, name=None) {#matrix_diag}

Returns a batched diagonal tensor with a given batched diagonal values.

Given a diagonal, this operation returns a tensor with the diagonal and
everything else padded with zeros. The diagonal is computed as follows:

Assume diagonal has k dimensions [I, J, K, ..., N], then the output is a
tensor of rank k+1 with dimensions [I, J, K, ..., N, N]` where:

output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n].

For example:

'diagonal' is [[1, 2, 3, 4], [5, 6, 7, 8]]

and diagonal.shape = (2, 4)

tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0]
 [0, 2, 0, 0]
 [0, 0, 3, 0]
 [0, 0, 0, 4]],
 [[5, 0, 0, 0]
 [0, 6, 0, 0]
 [0, 0, 7, 0]
 [0, 0, 0, 8]]]

which has shape (2, 4, 4)

Args:

		diagonal: A Tensor. Rank k, where k >= 1.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as diagonal.
Rank k+1, with output.shape = diagonal.shape + [diagonal.shape[-1]].

tf.matrix_diag_part(input, name=None) {#matrix_diag_part}

Returns the batched diagonal part of a batched tensor.

This operation returns a tensor with the diagonal part
of the batched input. The diagonal part is computed as follows:

Assume input has k dimensions [I, J, K, ..., N, N], then the output is a
tensor of rank k - 1 with dimensions [I, J, K, ..., N] where:

diagonal[i, j, k, ..., n] = input[i, j, k, ..., n, n].

The input must be at least a matrix.

For example:

'input' is [[[1, 0, 0, 0]
 [0, 2, 0, 0]
 [0, 0, 3, 0]
 [0, 0, 0, 4]],
 [[5, 0, 0, 0]
 [0, 6, 0, 0]
 [0, 0, 7, 0]
 [0, 0, 0, 8]]]

and input.shape = (2, 4, 4)

tf.matrix_diag_part(input) ==> [[1, 2, 3, 4], [5, 6, 7, 8]]

which has shape (2, 4)

Args:

		input: A Tensor.
Rank k tensor where k >= 2 and the last two dimensions are equal.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
The extracted diagonal(s) having shape
diagonal.shape = input.shape[:-1].

tf.matrix_band_part(input, num_lower, num_upper, name=None) {#matrix_band_part}

Copy a tensor setting everything outside a central band in each innermost matrix

to zero.

The band part is computed as follows:
Assume input has k dimensions [I, J, K, ..., M, N], then the output is a
tensor with the same shape where

band[i, j, k, ..., m, n] = in_band(m, n) * input[i, j, k, ..., m, n].

The indicator function ‘in_band(m, n)is one if(num_lower < 0 || (m-n) <= num_lower)) &&
(num_upper < 0 || (n-m) <= num_upper)`, and zero otherwise.

For example:

if 'input' is [[0, 1, 2, 3]
 [-1, 0, 1, 2]
 [-2, -1, 0, 1]
 [-3, -2, -1, 0]],

tf.matrix_band_part(input, 1, -1) ==> [[0, 1, 2, 3]
 [-1, 0, 1, 2]
 [0, -1, 0, 1]
 [0, 0, -1, 0]],

tf.matrix_band_part(input, 2, 1) ==> [[0, 1, 0, 0]
 [-1, 0, 1, 0]
 [-2, -1, 0, 1]
 [0, -2, -1, 0]]

Useful special cases:

 tf.matrix_band_part(input, 0, -1) ==> Upper triangular part.
 tf.matrix_band_part(input, -1, 0) ==> Lower triangular part.
 tf.matrix_band_part(input, 0, 0) ==> Diagonal.

Args:

		input: A Tensor. Rank k tensor.

		num_lower: A Tensor of type int64.
0-D tensor. Number of subdiagonals to keep. If negative, keep entire
lower triangle.

		num_upper: A Tensor of type int64.
0-D tensor. Number of superdiagonals to keep. If negative, keep
entire upper triangle.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
Rank k tensor of the same shape as input. The extracted banded tensor.

tf.matrix_set_diag(input, diagonal, name=None) {#matrix_set_diag}

Returns a batched matrix tensor with new batched diagonal values.

Given input and diagonal, this operation returns a tensor with the
same shape and values as input, except for the diagonals of the innermost
matrices. These will be overwritten by the values in diagonal.
The batched matrices must be square.

The output is computed as follows:

Assume input has k+1 dimensions [I, J, K, ..., N, N] and diagonal has
k dimensions [I, J, K, ..., N]. Then the output is a
tensor of rank k+1 with dimensions [I, J, K, ..., N, N]` where:

		output[i, j, k, ..., m, n] = diagonal[i, j, k, ..., n] for m == n.

		output[i, j, k, ..., m, n] = input[i, j, k, ..., m, n] for m != n.

Args:

		input: A Tensor. Rank k+1, where k >= 1.

		diagonal: A Tensor. Must have the same type as input.
Rank k, where k >= 1.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
Rank k+1, with output.shape = input.shape.

tf.matrix_transpose(a, name='matrix_transpose') {#matrix_transpose}

Transposes last two dimensions of tensor a.

For example:

Matrix with no batch dimension.
'x' is [[1 2 3]
[4 5 6]]
tf.matrix_transpose(x) ==> [[1 4]
 [2 5]
 [3 6]]

Matrix with two batch dimensions.
x.shape is [1, 2, 3, 4]
tf.matrix_transpose(x) is shape [1, 2, 4, 3]

Args:

		a: A Tensor with rank >= 2.

		name: A name for the operation (optional).

Returns:

A transposed batch matrix Tensor.

Raises:

		ValueError: If a is determined statically to have rank < 2.

tf.matmul(a, b, transpose_a=False, transpose_b=False, a_is_sparse=False, b_is_sparse=False, name=None) {#matmul}

Multiplies matrix a by matrix b, producing a * b.

The inputs must be two-dimensional matrices, with matching inner dimensions,
possibly after transposition.

Both matrices must be of the same type. The supported types are:
float32, float64, int32, complex64.

Either matrix can be transposed on the fly by setting the corresponding flag
to True. This is False by default.

If one or both of the matrices contain a lot of zeros, a more efficient
multiplication algorithm can be used by setting the corresponding
a_is_sparse or b_is_sparse flag to True. These are False by default.

For example:

2-D tensor `a`
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3]) => [[1. 2. 3.]
 [4. 5. 6.]]
2-D tensor `b`
b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2]) => [[7. 8.]
 [9. 10.]
 [11. 12.]]
c = tf.matmul(a, b) => [[58 64]
 [139 154]]

Args:

		a: Tensor of type float32, float64, int32 or complex64.

		b: Tensor with same type as a.

		transpose_a: If True, a is transposed before multiplication.

		transpose_b: If True, b is transposed before multiplication.

		a_is_sparse: If True, a is treated as a sparse matrix.

		b_is_sparse: If True, b is treated as a sparse matrix.

		name: Name for the operation (optional).

Returns:

A Tensor of the same type as a.

tf.batch_matmul(x, y, adj_x=None, adj_y=None, name=None) {#batch_matmul}

Multiplies slices of two tensors in batches.

Multiplies all slices of Tensor x and y (each slice can be
viewed as an element of a batch), and arranges the individual results
in a single output tensor of the same batch size. Each of the
individual slices can optionally be adjointed (to adjoint a matrix
means to transpose and conjugate it) before multiplication by setting
the adj_x or adj_y flag to True, which are by default False.

The input tensors x and y are 3-D or higher with shape [..., r_x, c_x]
and [..., r_y, c_y].

The output tensor is 3-D or higher with shape [..., r_o, c_o], where:

r_o = c_x if adj_x else r_x
c_o = r_y if adj_y else c_y

It is computed as:

output[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :])

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, complex64, complex128.
3-D or higher with shape [..., r_x, c_x].

		y: A Tensor. Must have the same type as x.
3-D or higher with shape [..., r_y, c_y].

		adj_x: An optional bool. Defaults to False.
If True, adjoint the slices of x. Defaults to False.

		adj_y: An optional bool. Defaults to False.
If True, adjoint the slices of y. Defaults to False.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.
3-D or higher with shape [..., r_o, c_o]

tf.matrix_determinant(input, name=None) {#matrix_determinant}

Computes the determinant of one ore more square matrices.

The input is a tensor of shape [..., M, M] whose inner-most 2 dimensions
form square matrices. The output is a tensor containing the determinants
for all input submatrices [..., :, :].

Args:

		input: A Tensor. Must be one of the following types: float32, float64.
Shape is [..., M, M].

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shape is [...].

tf.matrix_inverse(input, adjoint=None, name=None) {#matrix_inverse}

Computes the inverse of one or more square invertible matrices or their

adjoints (conjugate transposes).

The input is a tensor of shape [..., M, M] whose inner-most 2 dimensions
form square matrices. The output is a tensor of the same shape as the input
containing the inverse for all input submatrices [..., :, :].

The op uses LU decomposition with partial pivoting to compute the inverses.

If a matrix is not invertible there is no guarantee what the op does. It
may detect the condition and raise an exception or it may simply return a
garbage result.

Args:

		input: A Tensor. Must be one of the following types: float64, float32.
Shape is [..., M, M].

		adjoint: An optional bool. Defaults to False.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shape is [..., M, M].

tf.cholesky(input, name=None) {#cholesky}

Computes the Cholesky decomposition of one or more square matrices.

The input is a tensor of shape [..., M, M] whose inner-most 2 dimensions
form square matrices, with the same constraints as the single matrix Cholesky
decomposition above. The output is a tensor of the same shape as the input
containing the Cholesky decompositions for all input submatrices [..., :, :].

Args:

		input: A Tensor. Must be one of the following types: float64, float32.
Shape is [..., M, M].

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shape is [..., M, M].

tf.cholesky_solve(chol, rhs, name=None) {#cholesky_solve}

Solves systems of linear eqns A X = RHS, given Cholesky factorizations.

Solve 10 separate 2x2 linear systems:
A = ... # shape 10 x 2 x 2
RHS = ... # shape 10 x 2 x 1
chol = tf.cholesky(A) # shape 10 x 2 x 2
X = tf.cholesky_solve(chol, RHS) # shape 10 x 2 x 1
tf.matmul(A, X) ~ RHS
X[3, :, 0] # Solution to the linear system A[3, :, :] x = RHS[3, :, 0]

Solve five linear systems (K = 5) for every member of the length 10 batch.
A = ... # shape 10 x 2 x 2
RHS = ... # shape 10 x 2 x 5
...
X[3, :, 2] # Solution to the linear system A[3, :, :] x = RHS[3, :, 2]

Args:

		chol: A Tensor. Must be float32 or float64, shape is [..., M, M].
Cholesky factorization of A, e.g. chol = tf.cholesky(A).
For that reason, only the lower triangular parts (including the diagonal)
of the last two dimensions of chol are used. The strictly upper part is
assumed to be zero and not accessed.

		rhs: A Tensor, same type as chol, shape is [..., M, K].

		name: A name to give this Op. Defaults to cholesky_solve.

Returns:

Solution to A x = rhs, shape [..., M, K].

tf.matrix_solve(matrix, rhs, adjoint=None, name=None) {#matrix_solve}

Solves systems of linear equations.

Matrix is a tensor of shape [..., M, M] whose inner-most 2 dimensions
form square matrices. Rhs is a tensor of shape [..., M, K]. The output is
a tensor shape [..., M, K]. If adjoint is False then each output matrix
satisfies matrix[..., :, :] * output[..., :, :] = rhs[..., :, :].
If adjoint is True then each output matrix satisfies
adjoint(matrix[..., :, :]) * output[..., :, :] = rhs[..., :, :].

Args:

		matrix: A Tensor. Must be one of the following types: float64, float32.
Shape is [..., M, M].

		rhs: A Tensor. Must have the same type as matrix.
Shape is [..., M, K].

		adjoint: An optional bool. Defaults to False.
Boolean indicating whether to solve with matrix or its (block-wise)
adjoint.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as matrix. Shape is [..., M, K].

tf.matrix_triangular_solve(matrix, rhs, lower=None, adjoint=None, name=None) {#matrix_triangular_solve}

Solves systems of linear equations with upper or lower triangular matrices by

backsubstitution.

matrix is a tensor of shape [..., M, M] whose inner-most 2 dimensions form
square matrices. If lower is True then the strictly upper triangular part
of each inner-most matrix is assumed to be zero and not accessed.
If lower is False then the strictly lower triangular part of each inner-most
matrix is assumed to be zero and not accessed.
rhs is a tensor of shape [..., M, K].

The output is a tensor of shape [..., M, K]. If adjoint is
True then the innermost matrices in outputsatisfy matrix equationsmatrix[..., :, :] * output[..., :, :] = rhs[..., :, :]. IfadjointisFalsethen the strictly then the innermost matrices inoutputsatisfy matrix equationsadjoint(matrix[..., i, k]) * output[..., k, j] = rhs[..., i, j]`.

Args:

		matrix: A Tensor. Must be one of the following types: float64, float32.
Shape is [..., M, M].

		rhs: A Tensor. Must have the same type as matrix.
Shape is [..., M, K].

		lower: An optional bool. Defaults to True.
Boolean indicating whether the innermost matrices in matrix are
lower or upper triangular.

		adjoint: An optional bool. Defaults to False.
Boolean indicating whether to solve with matrix or its (block-wise)
adjoint.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as matrix. Shape is [..., M, K].

tf.matrix_solve_ls(matrix, rhs, l2_regularizer=0.0, fast=True, name=None) {#matrix_solve_ls}

Solves one or more linear least-squares problems.

matrix is a tensor of shape [..., M, N] whose inner-most 2 dimensions
form M-by-N matrices. Rhs is a tensor of shape [..., M, K] whose
inner-most 2 dimensions form M-by-K matrices. The computed output is a
Tensor of shape [..., N, K] whose inner-most 2 dimensions form M-by-K
matrices that solve the equations
matrix[..., :, :] * output[..., :, :] = rhs[..., :, :] in the least squares
sense.

Below we will use the following notation for each pair of matrix and
right-hand sides in the batch:

matrix=\(A \in \Re^{m \times n}\),
rhs=\(B \in \Re^{m \times k}\),
output=\(X \in \Re^{n \times k}\),
l2_regularizer=\(\lambda\).

If fast is True, then the solution is computed by solving the normal
equations using Cholesky decomposition. Specifically, if \(m \ge n\) then
\(X = (A^T A + \lambda I)^{-1} A^T B\), which solves the least-squares
problem \(X = \mathrm{argmin}_{Z \in \Re^{n \times k}} ||A Z - B||_F^2 +
\lambda ||Z||F^2\). If \(m \lt n\) then output is computed as
\(X = A^T (A A^T + \lambda I)^{-1} B\), which (for \(\lambda = 0\)) is
the minimum-norm solution to the under-determined linear system, i.e.
\(X = \mathrm{argmin}{Z \in \Re^{n \times k}} ||Z||F^2 \), subject to
\(A Z = B\). Notice that the fast path is only numerically stable when
\(A\) is numerically full rank and has a condition number
\(\mathrm{cond}(A) \lt \frac{1}{\sqrt{\epsilon{mach}}}\) or\(\lambda\)
is sufficiently large.

If fast is False an algorithm based on the numerically robust complete
orthogonal decomposition is used. This computes the minimum-norm
least-squares solution, even when \(A\) is rank deficient. This path is
typically 6-7 times slower than the fast path. If fast is False then
l2_regularizer is ignored.

Args:

		matrix: Tensor of shape [..., M, N].

		rhs: Tensor of shape [..., M, K].

		l2_regularizer: 0-D double Tensor. Ignored if fast=False.

		fast: bool. Defaults to True.

		name: string, optional name of the operation.

Returns:

		output: Tensor of shape [..., N, K] whose inner-most 2 dimensions form
M-by-K matrices that solve the equations
matrix[..., :, :] * output[..., :, :] = rhs[..., :, :] in the least
squares sense.

tf.self_adjoint_eig(tensor, name=None) {#self_adjoint_eig}

Computes the eigen decomposition of a batch of self-adjoint matrices.

Computes the eigenvalues and eigenvectors of the innermost N-by-N matrices
in tensor such that
tensor[...,:,:] * v[..., :,i] = e[..., i] * v[...,:,i], for i=0...N-1.

Args:

		tensor: Tensor of shape [..., N, N]. Only the lower triangular part of
each inner inner matrix is referenced.

		name: string, optional name of the operation.

Returns:

		e: Eigenvalues. Shape is [..., N].

		v: Eigenvectors. Shape is [..., N, N]. The columns of the inner most
matrices contain eigenvectors of the corresponding matrices in tensor

tf.self_adjoint_eigvals(tensor, name=None) {#self_adjoint_eigvals}

Computes the eigenvalues of one or more self-adjoint matrices.

Args:

		tensor: Tensor of shape [..., N, N].

		name: string, optional name of the operation.

Returns:

		e: Eigenvalues. Shape is [..., N]. The vector e[..., :] contains the N
eigenvalues of tensor[..., :, :].

tf.svd(tensor, compute_uv=True, full_matrices=False, name=None) {#svd}

Computes the singular value decompositions of one or more matrices.

Computes the SVD of each inner matrix in tensor such that
tensor[..., :, :] = u[..., :, :] * diag(s[..., :, :]) * transpose(v[..., :, :])

a is a tensor.
s is a tensor of singular values.
u is a tensor of left singular vectors.
v is a tensor of right singular vectors.
s, u, v = svd(a)
s = svd(a, compute_uv=False)

Args:

		matrix: Tensor of shape [..., M, N]. Let P be the minimum of M and
N.

		compute_uv: If True then left and right singular vectors will be
computed and returned in u and v, respectively. Otherwise, only the
singular values will be computed, which can be significantly faster.

		full_matrices: If true, compute full-sized u and v. If false
(the default), compute only the leading P singular vectors.
Ignored if compute_uv is False.

		name: string, optional name of the operation.

Returns:

		s: Singular values. Shape is [..., P].

		u: Right singular vectors. If full_matrices is False (default) then
shape is [..., M, P]; if full_matrices is True then shape is
[..., M, M]. Not returned if compute_uv is False.

		v: Left singular vectors. If full_matrices is False (default) then
shape is [..., N, P]. If full_matrices is True then shape is
[..., N, N]. Not returned if compute_uv is False.

Complex Number Functions

TensorFlow provides several operations that you can use to add complex number
functions to your graph.

tf.complex(real, imag, name=None) {#complex}

Converts two real numbers to a complex number.

Given a tensor real representing the real part of a complex number, and a
tensor imag representing the imaginary part of a complex number, this
operation returns complex numbers elementwise of the form (a + bj), where
a represents the real part and b represents the imag part.

The input tensors real and imag must have the same shape.

For example:

tensor 'real' is [2.25, 3.25]
tensor `imag` is [4.75, 5.75]
tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]]

Args:

		real: A Tensor. Must be one of the following types: float32, float64.

		imag: A Tensor. Must have the same type as real.

		name: A name for the operation (optional).

Returns:

A Tensor of type complex64 or complex128.

tf.complex_abs(x, name=None) {#complex_abs}

Computes the complex absolute value of a tensor.

Given a tensor x of complex numbers, this operation returns a tensor of type
float32 or float64 that is the absolute value of each element in x. All
elements in x must be complex numbers of the form \(a + bj\). The
absolute value is computed as \(\sqrt{a^2 + b^2}\).

For example:

tensor 'x' is [[-2.25 + 4.75j], [-3.25 + 5.75j]]
tf.complex_abs(x) ==> [5.25594902, 6.60492229]

Args:

		x: A Tensor of type complex64 or complex128.

		name: A name for the operation (optional).

Returns:

A Tensor of type float32 or float64.

tf.conj(x, name=None) {#conj}

Returns the complex conjugate of a complex number.

Given a tensor input of complex numbers, this operation returns a tensor of
complex numbers that are the complex conjugate of each element in input. The
complex numbers in input must be of the form \(a + bj\), where a is the
real part and b is the imaginary part.

The complex conjugate returned by this operation is of the form \(a - bj\).

For example:

tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.conj(input) ==> [-2.25 - 4.75j, 3.25 - 5.75j]

If x is real, it is returned unchanged.

Args:

		x: Tensor to conjugate. Must have numeric type.

		name: A name for the operation (optional).

Returns:

A Tensor that is the conjugate of x (with the same type).

Raises:

		TypeError: If x is not a numeric tensor.

tf.imag(input, name=None) {#imag}

Returns the imaginary part of a complex number.

Given a tensor input of complex numbers, this operation returns a tensor of
type float32 or float64 that is the imaginary part of each element in
input. All elements in input must be complex numbers of the form (a +
bj), where a is the real part and b is the imaginary part returned by
this operation.

For example:

tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.imag(input) ==> [4.75, 5.75]

Args:

		input: A Tensor. Must be one of the following types: complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor of type float32 or float64.

tf.real(input, name=None) {#real}

Returns the real part of a complex number.

Given a tensor input of complex numbers, this operation returns a tensor of
type float32 or float64 that is the real part of each element in input.
All elements in input must be complex numbers of the form (a + bj),
where a is the real part returned by this operation and b is the
imaginary part.

For example:

tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.real(input) ==> [-2.25, 3.25]

If input is already real, it is returned unchanged.

Args:

		input: A Tensor. Must have numeric type.

		name: A name for the operation (optional).

Returns:

A Tensor of type float32 or float64.

Fourier Transform Functions

TensorFlow provides several operations that you can use to add discrete
Fourier transform functions to your graph.

tf.fft(input, name=None) {#fft}

Compute the 1-dimensional discrete Fourier Transform over the inner-most

dimension of input.

Args:

		input: A Tensor of type complex64. A complex64 tensor.

		name: A name for the operation (optional).

Returns:

A Tensor of type complex64.
A complex64 tensor of the same shape as input. The inner-most
dimension of input is replaced with its 1D Fourier Transform.

tf.ifft(input, name=None) {#ifft}

Compute the inverse 1-dimensional discrete Fourier Transform over the inner-most

dimension of input.

Args:

		input: A Tensor of type complex64. A complex64 tensor.

		name: A name for the operation (optional).

Returns:

A Tensor of type complex64.
A complex64 tensor of the same shape as input. The inner-most
dimension of input is replaced with its inverse 1D Fourier Transform.

tf.fft2d(input, name=None) {#fft2d}

Compute the 2-dimensional discrete Fourier Transform over the inner-most

2 dimensions of input.

Args:

		input: A Tensor of type complex64. A complex64 tensor.

		name: A name for the operation (optional).

Returns:

A Tensor of type complex64.
A complex64 tensor of the same shape as input. The inner-most 2
dimensions of input are replaced with their 2D Fourier Transform.

tf.ifft2d(input, name=None) {#ifft2d}

Compute the inverse 2-dimensional discrete Fourier Transform over the inner-most

2 dimensions of input.

Args:

		input: A Tensor of type complex64. A complex64 tensor.

		name: A name for the operation (optional).

Returns:

A Tensor of type complex64.
A complex64 tensor of the same shape as input. The inner-most 2
dimensions of input are replaced with their inverse 2D Fourier Transform.

tf.fft3d(input, name=None) {#fft3d}

Compute the 3-dimensional discrete Fourier Transform over the inner-most 3

dimensions of input.

Args:

		input: A Tensor of type complex64. A complex64 tensor.

		name: A name for the operation (optional).

Returns:

A Tensor of type complex64.
A complex64 tensor of the same shape as input. The inner-most 3
dimensions of input are replaced with their 3D Fourier Transform.

tf.ifft3d(input, name=None) {#ifft3d}

Compute the inverse 3-dimensional discrete Fourier Transform over the inner-most

3 dimensions of input.

Args:

		input: A Tensor of type complex64. A complex64 tensor.

		name: A name for the operation (optional).

Returns:

A Tensor of type complex64.
A complex64 tensor of the same shape as input. The inner-most 3
dimensions of input are replaced with their inverse 3D Fourier Transform.

Reduction

TensorFlow provides several operations that you can use to perform
common math computations that reduce various dimensions of a tensor.

tf.reduce_sum(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_sum}

Computes the sum of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

'x' is [[1, 1, 1]
[1, 1, 1]]
tf.reduce_sum(x) ==> 6
tf.reduce_sum(x, 0) ==> [2, 2, 2]
tf.reduce_sum(x, 1) ==> [3, 3]
tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]
tf.reduce_sum(x, [0, 1]) ==> 6

Args:

		input_tensor: The tensor to reduce. Should have numeric type.

		reduction_indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

		keep_dims: If true, retains reduced dimensions with length 1.

		name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce_prod(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_prod}

Computes the product of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

Args:

		input_tensor: The tensor to reduce. Should have numeric type.

		reduction_indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

		keep_dims: If true, retains reduced dimensions with length 1.

		name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce_min(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_min}

Computes the minimum of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

Args:

		input_tensor: The tensor to reduce. Should have numeric type.

		reduction_indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

		keep_dims: If true, retains reduced dimensions with length 1.

		name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce_max(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_max}

Computes the maximum of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

Args:

		input_tensor: The tensor to reduce. Should have numeric type.

		reduction_indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

		keep_dims: If true, retains reduced dimensions with length 1.

		name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce_mean(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_mean}

Computes the mean of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

'x' is [[1., 1.]
[2., 2.]]
tf.reduce_mean(x) ==> 1.5
tf.reduce_mean(x, 0) ==> [1.5, 1.5]
tf.reduce_mean(x, 1) ==> [1., 2.]

Args:

		input_tensor: The tensor to reduce. Should have numeric type.

		reduction_indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

		keep_dims: If true, retains reduced dimensions with length 1.

		name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce_all(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_all}

Computes the “logical and” of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

'x' is [[True, True]
[False, False]]
tf.reduce_all(x) ==> False
tf.reduce_all(x, 0) ==> [False, False]
tf.reduce_all(x, 1) ==> [True, False]

Args:

		input_tensor: The boolean tensor to reduce.

		reduction_indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

		keep_dims: If true, retains reduced dimensions with length 1.

		name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce_any(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_any}

Computes the “logical or” of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

'x' is [[True, True]
[False, False]]
tf.reduce_any(x) ==> True
tf.reduce_any(x, 0) ==> [True, True]
tf.reduce_any(x, 1) ==> [True, False]

Args:

		input_tensor: The boolean tensor to reduce.

		reduction_indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

		keep_dims: If true, retains reduced dimensions with length 1.

		name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce_logsumexp(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_logsumexp}

Computes log(sum(exp(elements across dimensions of a tensor))).

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

This funciton is more numerically stable than log(sum(exp(input))). It avoids
overflows caused by taking the exp of large inputs and underflows caused by
taking the log of small inputs.

For example:

'x' is [[0, 0, 0]]
[0, 0, 0]]
tf.reduce_logsumexp(x) ==> log(6)
tf.reduce_logsumexp(x, 0) ==> [log(2), log(2), log(2)]
tf.reduce_logsumexp(x, 1) ==> [log(3), log(3)]
tf.reduce_logsumexp(x, 1, keep_dims=True) ==> [[log(3)], [log(3)]]
tf.reduce_logsumexp(x, [0, 1]) ==> log(6)

Args:

		input_tensor: The tensor to reduce. Should have numeric type.

		reduction_indices: The dimensions to reduce. If None (the defaut),
reduces all dimensions.

		keep_dims: If true, retains reduced dimensions with length 1.

		name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.accumulate_n(inputs, shape=None, tensor_dtype=None, name=None) {#accumulate_n}

Returns the element-wise sum of a list of tensors.

Optionally, pass shape and tensor_dtype for shape and type checking,
otherwise, these are inferred.

NOTE: This operation is not differentiable and cannot be used if inputs depend
on trainable variables. Please use tf.add_n for such cases.

For example:

tensor 'a' is [[1, 2], [3, 4]]
tensor `b` is [[5, 0], [0, 6]]
tf.accumulate_n([a, b, a]) ==> [[7, 4], [6, 14]]

Explicitly pass shape and type
tf.accumulate_n([a, b, a], shape=[2, 2], tensor_dtype=tf.int32)
 ==> [[7, 4], [6, 14]]

Args:

		inputs: A list of Tensor objects, each with same shape and type.

		shape: Shape of elements of inputs.

		tensor_dtype: The type of inputs.

		name: A name for the operation (optional).

Returns:

A Tensor of same shape and type as the elements of inputs.

Raises:

		ValueError: If inputs don’t all have same shape and dtype or the shape
cannot be inferred.

tf.einsum(axes, *inputs) {#einsum}

A generalized contraction between tensors of arbitrary dimension.

Like numpy.einsum.

Scan

TensorFlow provides several operations that you can use to perform scans
(running totals) across one axis of a tensor.

tf.cumsum(x, axis=0, exclusive=False, reverse=False, name=None) {#cumsum}

Compute the cumulative sum of the tensor x along axis.

By default, this op performs an inclusive cumsum, which means that the first
element of the input is identical to the first element of the output:

tf.cumsum([a, b, c]) ==> [a, a + b, a + b + c]

By setting the exclusive kwarg to True, an exclusive cumsum is performed
instead:

tf.cumsum([a, b, c], exclusive=True) ==> [0, a, a + b]

By setting the reverse kwarg to True, the cumsum is performed in the
opposite direction:

tf.cumsum([a, b, c], reverse=True) ==> [a + b + c, b + c, c]

This is more efficient than using separate tf.reverse ops.

The reverse and exclusive kwargs can also be combined:

tf.cumsum([a, b, c], exclusive=True, reverse=True) ==> [b + c, c, 0]

Args:

		x: A Tensor. Must be one of the following types: float32, float64,
int64, int32, uint8, uint16, int16, int8, complex64,
complex128, qint8, quint8, qint32, half.

		axis: A Tensor of type int32 (default: 0).

		reverse: A bool (default: False).

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.cumprod(x, axis=0, exclusive=False, reverse=False, name=None) {#cumprod}

Compute the cumulative product of the tensor x along axis.

By default, this op performs an inclusive cumprod, which means that the
first
element of the input is identical to the first element of the output:

tf.cumprod([a, b, c]) ==> [a, a * b, a * b * c]

By setting the exclusive kwarg to True, an exclusive cumprod is
performed
instead:

tf.cumprod([a, b, c], exclusive=True) ==> [0, a, a * b]

By setting the reverse kwarg to True, the cumprod is performed in the
opposite direction:

tf.cumprod([a, b, c], reverse=True) ==> [a * b * c, b * c, c]

This is more efficient than using separate tf.reverse ops.

The reverse and exclusive kwargs can also be combined:

tf.cumprod([a, b, c], exclusive=True, reverse=True) ==> [b * c, c, 0]

Args:

		x: A Tensor. Must be one of the following types: float32, float64,
int64, int32, uint8, uint16, int16, int8, complex64,
complex128, qint8, quint8, qint32, half.

		axis: A Tensor of type int32 (default: 0).

		reverse: A bool (default: False).

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

Segmentation

TensorFlow provides several operations that you can use to perform common
math computations on tensor segments.
Here a segmentation is a partitioning of a tensor along
the first dimension, i.e. it defines a mapping from the first dimension onto
segment_ids. The segment_ids tensor should be the size of
the first dimension, d0, with consecutive IDs in the range 0 to k,
where k<d0.
In particular, a segmentation of a matrix tensor is a mapping of rows to
segments.

For example:

c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])
tf.segment_sum(c, tf.constant([0, 0, 1]))
 ==> [[0 0 0 0]
 [5 6 7 8]]

tf.segment_sum(data, segment_ids, name=None) {#segment_sum}

Computes the sum along segments of a tensor.

Read the section on Segmentation
for an explanation of segments.

Computes a tensor such that
\(output_i = \sum_j data_j\) where sum is over j such
that segment_ids[j] == i.

[image:]

Args:

		data: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.

		segment_ids: A Tensor. Must be one of the following types: int32, int64.
A 1-D tensor whose rank is equal to the rank of data‘s
first dimension. Values should be sorted and can be repeated.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.
Has same shape as data, except for dimension 0 which
has size k, the number of segments.

tf.segment_prod(data, segment_ids, name=None) {#segment_prod}

Computes the product along segments of a tensor.

Read the section on
Segmentation for an explanation
of segments.

Computes a tensor such that
\(output_i = \prod_j data_j\) where the product is over j such
that segment_ids[j] == i.

[image:]

Args:

		data: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.

		segment_ids: A Tensor. Must be one of the following types: int32, int64.
A 1-D tensor whose rank is equal to the rank of data‘s
first dimension. Values should be sorted and can be repeated.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.
Has same shape as data, except for dimension 0 which
has size k, the number of segments.

tf.segment_min(data, segment_ids, name=None) {#segment_min}

Computes the minimum along segments of a tensor.

Read the section on
Segmentation for an explanation
of segments.

Computes a tensor such that
\(output_i = \min_j(data_j)\) where min is over j such
that segment_ids[j] == i.

[image:]

Args:

		data: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		segment_ids: A Tensor. Must be one of the following types: int32, int64.
A 1-D tensor whose rank is equal to the rank of data‘s
first dimension. Values should be sorted and can be repeated.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.
Has same shape as data, except for dimension 0 which
has size k, the number of segments.

tf.segment_max(data, segment_ids, name=None) {#segment_max}

Computes the maximum along segments of a tensor.

Read the section on Segmentation
for an explanation of segments.

Computes a tensor such that
\(output_i = \max_j(data_j)\) where max is over j such
that segment_ids[j] == i.

[image:]

Args:

		data: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		segment_ids: A Tensor. Must be one of the following types: int32, int64.
A 1-D tensor whose rank is equal to the rank of data‘s
first dimension. Values should be sorted and can be repeated.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.
Has same shape as data, except for dimension 0 which
has size k, the number of segments.

tf.segment_mean(data, segment_ids, name=None) {#segment_mean}

Computes the mean along segments of a tensor.

Read the section on
Segmentation for an explanation
of segments.

Computes a tensor such that
\(output_i = \frac{\sum_j data_j}{N}\) where mean is
over j such that segment_ids[j] == i and N is the total number of
values summed.

[image:]

Args:

		data: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		segment_ids: A Tensor. Must be one of the following types: int32, int64.
A 1-D tensor whose rank is equal to the rank of data‘s
first dimension. Values should be sorted and can be repeated.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.
Has same shape as data, except for dimension 0 which
has size k, the number of segments.

tf.unsorted_segment_sum(data, segment_ids, num_segments, name=None) {#unsorted_segment_sum}

Computes the sum along segments of a tensor.

Read the section on
Segmentation for an explanation
of segments.

Computes a tensor such that
(output[i] = sum_{j...} data[j...] where the sum is over tuples j... such
that segment_ids[j...] == i. Unlike SegmentSum, segment_ids
need not be sorted and need not cover all values in the full
range of valid values.

If the sum is empty for a given segment ID i, output[i] = 0.

num_segments should equal the number of distinct segment IDs.

[image:]

Args:

		data: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.

		segment_ids: A Tensor. Must be one of the following types: int32, int64.
A tensor whose shape is a prefix of data.shape.

		num_segments: A Tensor of type int32.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.
Has same shape as data, except for the first segment_ids.rank
dimensions, which are replaced with a single dimension which has size
num_segments.

tf.sparse_segment_sum(data, indices, segment_ids, name=None) {#sparse_segment_sum}

Computes the sum along sparse segments of a tensor.

Read the section on
Segmentation for an explanation
of segments.

Like SegmentSum, but segment_ids can have rank less than data‘s first
dimension, selecting a subset of dimension 0, specified by indices.

For example:

c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])

Select two rows, one segment.
tf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 0]))
 ==> [[0 0 0 0]]

Select two rows, two segment.
tf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 1]))
 ==> [[1 2 3 4]
 [-1 -2 -3 -4]]

Select all rows, two segments.
tf.sparse_segment_sum(c, tf.constant([0, 1, 2]), tf.constant([0, 0, 1]))
 ==> [[0 0 0 0]
 [5 6 7 8]]

Which is equivalent to:
tf.segment_sum(c, tf.constant([0, 0, 1]))

Args:

		data: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		indices: A Tensor. Must be one of the following types: int32, int64.
A 1-D tensor. Has same rank as segment_ids.

		segment_ids: A Tensor of type int32.
A 1-D tensor. Values should be sorted and can be repeated.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.
Has same shape as data, except for dimension 0 which
has size k, the number of segments.

tf.sparse_segment_mean(data, indices, segment_ids, name=None) {#sparse_segment_mean}

Computes the mean along sparse segments of a tensor.

Read the section on
Segmentation for an explanation
of segments.

Like SegmentMean, but segment_ids can have rank less than data‘s first
dimension, selecting a subset of dimension 0, specified by indices.

Args:

		data: A Tensor. Must be one of the following types: float32, float64.

		indices: A Tensor. Must be one of the following types: int32, int64.
A 1-D tensor. Has same rank as segment_ids.

		segment_ids: A Tensor of type int32.
A 1-D tensor. Values should be sorted and can be repeated.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.
Has same shape as data, except for dimension 0 which
has size k, the number of segments.

tf.sparse_segment_sqrt_n(data, indices, segment_ids, name=None) {#sparse_segment_sqrt_n}

Computes the sum along sparse segments of a tensor divided by the sqrt of N.

N is the size of the segment being reduced.

Read the section on
Segmentation for an explanation
of segments.

Args:

		data: A Tensor. Must be one of the following types: float32, float64.

		indices: A Tensor. Must be one of the following types: int32, int64.
A 1-D tensor. Has same rank as segment_ids.

		segment_ids: A Tensor of type int32.
A 1-D tensor. Values should be sorted and can be repeated.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.
Has same shape as data, except for dimension 0 which
has size k, the number of segments.

Sequence Comparison and Indexing

TensorFlow provides several operations that you can use to add sequence
comparison and index extraction to your graph. You can use these operations to
determine sequence differences and determine the indexes of specific values in
a tensor.

tf.argmin(input, dimension, name=None) {#argmin}

Returns the index with the smallest value across dimensions of a tensor.

Args:

		input: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.

		dimension: A Tensor. Must be one of the following types: int32, int64.
int32, 0 <= dimension < rank(input). Describes which dimension
of the input Tensor to reduce across. For vectors, use dimension = 0.

		name: A name for the operation (optional).

Returns:

A Tensor of type int64.

tf.argmax(input, dimension, name=None) {#argmax}

Returns the index with the largest value across dimensions of a tensor.

Args:

		input: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.

		dimension: A Tensor. Must be one of the following types: int32, int64.
int32, 0 <= dimension < rank(input). Describes which dimension
of the input Tensor to reduce across. For vectors, use dimension = 0.

		name: A name for the operation (optional).

Returns:

A Tensor of type int64.

tf.listdiff(x, y, out_idx=None, name=None) {#listdiff}

Computes the difference between two lists of numbers or strings.

Given a list x and a list y, this operation returns a list out that
represents all values that are in x but not in y. The returned list out
is sorted in the same order that the numbers appear in x (duplicates are
preserved). This operation also returns a list idx that represents the
position of each out element in x. In other words:

out[i] = x[idx[i]] for i in [0, 1, ..., len(out) - 1]

For example, given this input:

x = [1, 2, 3, 4, 5, 6]
y = [1, 3, 5]

This operation would return:

out ==> [2, 4, 6]
idx ==> [1, 3, 5]

Args:

		x: A Tensor. 1-D. Values to keep.

		y: A Tensor. Must have the same type as x. 1-D. Values to remove.

		out_idx: An optional tf.DType from: tf.int32, tf.int64. Defaults to tf.int32.

		name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (out, idx).

		out: A Tensor. Has the same type as x. 1-D. Values present in x but not in y.

		idx: A Tensor of type out_idx. 1-D. Positions of x values preserved in out.

tf.where(input, name=None) {#where}

Returns locations of true values in a boolean tensor.

This operation returns the coordinates of true elements in input. The
coordinates are returned in a 2-D tensor where the first dimension (rows)
represents the number of true elements, and the second dimension (columns)
represents the coordinates of the true elements. Keep in mind, the shape of
the output tensor can vary depending on how many true values there are in
input. Indices are output in row-major order.

For example:

'input' tensor is [[True, False]
[True, False]]
'input' has two true values, so output has two coordinates.
'input' has rank of 2, so coordinates have two indices.
where(input) ==> [[0, 0],
 [1, 0]]

`input` tensor is [[[True, False]
[True, False]]
[[False, True]
[False, True]]
[[False, False]
[False, True]]]
'input' has 5 true values, so output has 5 coordinates.
'input' has rank of 3, so coordinates have three indices.
where(input) ==> [[0, 0, 0],
 [0, 1, 0],
 [1, 0, 1],
 [1, 1, 1],
 [2, 1, 1]]

Args:

		input: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type int64.

tf.unique(x, out_idx=None, name=None) {#unique}

Finds unique elements in a 1-D tensor.

This operation returns a tensor y containing all of the unique elements of x
sorted in the same order that they occur in x. This operation also returns a
tensor idx the same size as x that contains the index of each value of x
in the unique output y. In other words:

y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]

For example:

tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]
y, idx = unique(x)
y ==> [1, 2, 4, 7, 8]
idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]

Args:

		x: A Tensor. 1-D.

		out_idx: An optional tf.DType from: tf.int32, tf.int64. Defaults to tf.int32.

		name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (y, idx).

		y: A Tensor. Has the same type as x. 1-D.

		idx: A Tensor of type out_idx. 1-D.

tf.edit_distance(hypothesis, truth, normalize=True, name='edit_distance') {#edit_distance}

Computes the Levenshtein distance between sequences.

This operation takes variable-length sequences (hypothesis and truth),
each provided as a SparseTensor, and computes the Levenshtein distance.
You can normalize the edit distance by length of truth by setting
normalize to true.

For example, given the following input:

'hypothesis' is a tensor of shape `[2, 1]` with variable-length values:
(0,0) = ["a"]
(1,0) = ["b"]
hypothesis = tf.SparseTensor(
 [[0, 0, 0],
 [1, 0, 0]],
 ["a", "b"]
 (2, 1, 1))

'truth' is a tensor of shape `[2, 2]` with variable-length values:
(0,0) = []
(0,1) = ["a"]
(1,0) = ["b", "c"]
(1,1) = ["a"]
truth = tf.SparseTensor(
 [[0, 1, 0],
 [1, 0, 0],
 [1, 0, 1],
 [1, 1, 0]]
 ["a", "b", "c", "a"],
 (2, 2, 2))

normalize = True

This operation would return the following:

'output' is a tensor of shape `[2, 2]` with edit distances normalized
by 'truth' lengths.
output ==> [[inf, 1.0], # (0,0): no truth, (0,1): no hypothesis
 [0.5, 1.0]] # (1,0): addition, (1,1): no hypothesis

Args:

		hypothesis: A SparseTensor containing hypothesis sequences.

		truth: A SparseTensor containing truth sequences.

		normalize: A bool. If True, normalizes the Levenshtein distance by
length of truth.

		name: A name for the operation (optional).

Returns:

A dense Tensor with rank R - 1, where R is the rank of the
SparseTensor inputs hypothesis and truth.

Raises:

		TypeError: If either hypothesis or truth are not a SparseTensor.

tf.invert_permutation(x, name=None) {#invert_permutation}

Computes the inverse permutation of a tensor.

This operation computes the inverse of an index permutation. It takes a 1-D
integer tensor x, which represents the indices of a zero-based array, and
swaps each value with its index position. In other words, for an output tensor
y and an input tensor x, this operation computes the following:

y[x[i]] = i for i in [0, 1, ..., len(x) - 1]

The values must include 0. There can be no duplicate values or negative values.

For example:

tensor `x` is [3, 4, 0, 2, 1]
invert_permutation(x) ==> [2, 4, 3, 0, 1]

Args:

		x: A Tensor. Must be one of the following types: int32, int64. 1-D.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x. 1-D.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.errors.NotFoundError.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Raised when a requested entity (e.g., a file or directory) was not found.

For example, running the
tf.WholeFileReader.read()
operation could raise NotFoundError if it receives the name of a file that
does not exist.

tf.errors.NotFoundError.__init__(node_def, op, message) {#NotFoundError.init}

Creates a NotFoundError.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/session_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Tensor Handle Operations

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Tensor Handle Operations.

TensorFlow provides several operators that allows the user to keep tensors
“in-place” across run calls.

tf.get_session_handle(data, name=None) {#get_session_handle}

Return the handle of data.

This is EXPERIMENTAL and subject to change.

Keep data “in-place” in the runtime and create a handle that can be
used to retrieve data in a subsequent run().

Combined with get_session_tensor, we can keep a tensor produced in
one run call in place, and use it as the input in a future run call.

Args:

		data: A tensor to be stored in the session.

		name: Optional name prefix for the return tensor.

Returns:

A scalar string tensor representing a unique handle for data.

Raises:

		TypeError: if data is not a Tensor.

		Example:

c = tf.mul(a, b)
h = tf.get_session_handle(c)
h = sess.run(h)

p, a = tf.get_session_tensor(h.handle, tf.float32)
b = tf.mul(a, 10)
c = sess.run(b, feed_dict={p: h.handle})

tf.get_session_tensor(handle, dtype, name=None) {#get_session_tensor}

Get the tensor of type dtype by feeding a tensor handle.

This is EXPERIMENTAL and subject to change.

Get the value of the tensor from a tensor handle. The tensor
is produced in a previous run() and stored in the state of the
session.

Args:

		handle: The string representation of a persistent tensor handle.

		dtype: The type of the output tensor.

		name: Optional name prefix for the return tensor.

Returns:

A pair of tensors. The first is a placeholder for feeding a
tensor handle and the second is the tensor in the session state
keyed by the tensor handle.

		Example:

c = tf.mul(a, b)
h = tf.get_session_handle(c)
h = sess.run(h)

p, a = tf.get_session_tensor(h.handle, tf.float32)
b = tf.mul(a, 10)
c = sess.run(b, feed_dict={p: h.handle})

tf.delete_session_tensor(handle, name=None) {#delete_session_tensor}

Delete the tensor for the given tensor handle.

This is EXPERIMENTAL and subject to change.

Delete the tensor of a given tensor handle. The tensor is produced
in a previous run() and stored in the state of the session.

Args:

		handle: The string representation of a persistent tensor handle.

		name: Optional name prefix for the return tensor.

Returns:

A pair of graph elements. The first is a placeholder for feeding a
tensor handle and the second is a deletion operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.batch_to_space.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.batch_to_space(input, crops, block_size, name=None) {#batch_to_space}

BatchToSpace for 4-D tensors of type T.

This is a legacy version of the more general BatchToSpaceND.

Rearranges (permutes) data from batch into blocks of spatial data, followed by
cropping. This is the reverse transformation of SpaceToBatch. More specifically,
this op outputs a copy of the input tensor where values from the batch
dimension are moved in spatial blocks to the height and width dimensions,
followed by cropping along the height and width dimensions.

Args:

		input: A Tensor. 4-D tensor with shape
[batch*block_size*block_size, height_pad/block_size, width_pad/block_size, depth]. Note that the batch size of the input tensor must be divisible by
block_size * block_size.

		crops: A Tensor. Must be one of the following types: int32, int64.
2-D tensor of non-negative integers with shape [2, 2]. It specifies
how many elements to crop from the intermediate result across the spatial
dimensions as follows:

 crops = [[crop_top, crop_bottom], [crop_left, crop_right]]

		block_size: An int that is >= 2.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
4-D with shape [batch, height, width, depth], where:

 height = height_pad - crop_top - crop_bottom
 width = width_pad - crop_left - crop_right

The attr block_size must be greater than one. It indicates the block size.

Some examples:

(1) For the following input of shape [4, 1, 1, 1] and block_size of 2:

[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]

The output tensor has shape [1, 2, 2, 1] and value:

x = [[[[1], [2]], [[3], [4]]]]

(2) For the following input of shape [4, 1, 1, 3] and block_size of 2:

[[[1, 2, 3]], [[4, 5, 6]], [[7, 8, 9]], [[10, 11, 12]]]

The output tensor has shape [1, 2, 2, 3] and value:

x = [[[[1, 2, 3], [4, 5, 6]],
 [[7, 8, 9], [10, 11, 12]]]]

(3) For the following input of shape [4, 2, 2, 1] and block_size of 2:

x = [[[[1], [3]], [[5], [7]]],
 [[[2], [4]], [[10], [12]]],
 [[[5], [7]], [[13], [15]]],
 [[[6], [8]], [[14], [16]]]]

The output tensor has shape [1, 4, 4, 1] and value:

x = [[[1], [2], [3], [4]],
 [[5], [6], [7], [8]],
 [[9], [10], [11], [12]],
 [[13], [14], [15], [16]]]

(4) For the following input of shape [8, 1, 2, 1] and block_size of 2:

x = [[[[1], [3]]], [[[9], [11]]], [[[2], [4]]], [[[10], [12]]],
 [[[5], [7]]], [[[13], [15]]], [[[6], [8]]], [[[14], [16]]]]

The output tensor has shape [2, 2, 4, 1] and value:

x = [[[[1], [3]], [[5], [7]]],
 [[[2], [4]], [[10], [12]]],
 [[[5], [7]], [[13], [15]]],
 [[[6], [8]], [[14], [16]]]]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 MultivariateNormalCholeskyTensor is a StochasticTensor backed by the distribution MultivariateNormalCholesky.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#MultivariateNormalCholeskyTensor.init}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.clone(name=None, **dist_args) {#MultivariateNormalCholeskyTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.distribution {#MultivariateNormalCholeskyTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.dtype {#MultivariateNormalCholeskyTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.entropy(name='entropy') {#MultivariateNormalCholeskyTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.graph {#MultivariateNormalCholeskyTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.input_dict {#MultivariateNormalCholeskyTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.loss(final_loss, name='Loss') {#MultivariateNormalCholeskyTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.mean(name='mean') {#MultivariateNormalCholeskyTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.name {#MultivariateNormalCholeskyTensor.name}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.value(name='value') {#MultivariateNormalCholeskyTensor.value}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.value_type {#MultivariateNormalCholeskyTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.constant_initializer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.constant_initializer(value=0, dtype=tf.float32) {#constant_initializer}

Returns an initializer that generates tensors with constant values.

The resulting tensor is populated with values of type dtype, as
specified by arguments value following the desired shape of the
new tensor (see examples below).

The argument value can be a constant value, or a list of values of type
dtype. If value is a list, then the length of the list must be less
than or equal to the number of elements implied by the desired shape of the
tensor. In the case where the total number of elements in value is less
than the number of elements required by the tensor shape, the last element
in value will be used to fill the remaining entries. If the total number of
elements in value is greater than the number of elements required by the
tensor shape, the initializer will raise a ValueError.

Args:

		value: A Python scalar, list of values, or a N-dimensional numpy array. All
elements of the initialized variable will be set to the corresponding
value in the value argument.

		dtype: The data type.

Returns:

An initializer that generates tensors with constant values.

Examples:

The following example can be rewritten using a numpy.ndarray instead
of the value list, even reshaped, as shown in the two commented lines
below the value list initialization.

 >>> import numpy as np
 >>> import tensorflow as tf

 >>> value = [0, 1, 2, 3, 4, 5, 6, 7]
 >>> # value = np.array(value)
 >>> # value = value.reshape([2, 4])
 >>> init = tf.constant_initializer(value)

 >>> print('fitting shape:')
 >>> tf.reset_default_graph()
 >>> with tf.Session():
 >>> x = tf.get_variable('x', shape=[2, 4], initializer=init)
 >>> x.initializer.run()
 >>> print(x.eval())

 fitting shape:
 [[0. 1. 2. 3.]
 [4. 5. 6. 7.]]

 >>> print('larger shape:')
 >>> tf.reset_default_graph()
 >>> with tf.Session():
 >>> x = tf.get_variable('x', shape=[3, 4], initializer=init)
 >>> x.initializer.run()
 >>> print(x.eval())

 larger shape:
 [[0. 1. 2. 3.]
 [4. 5. 6. 7.]
 [7. 7. 7. 7.]]

 >>> print('smaller shape:')
 >>> tf.reset_default_graph()
 >>> with tf.Session():
 >>> x = tf.get_variable('x', shape=[2, 3], initializer=init)

* `ValueError`: Too many elements provided. Needed at most 6, but received 8

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.train.GradientDescentOptimizer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Optimizer that implements the gradient descent algorithm.

tf.train.GradientDescentOptimizer.__init__(learning_rate, use_locking=False, name='GradientDescent') {#GradientDescentOptimizer.init}

Construct a new gradient descent optimizer.

Args:

		learning_rate: A Tensor or a floating point value. The learning
rate to use.

		use_locking: If True use locks for update operations.

		name: Optional name prefix for the operations created when applying
gradients. Defaults to “GradientDescent”.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.graph_editor.filter_ts.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.filter_ts(ops, positive_filter) {#filter_ts}

Get all the tensors which are input or output of an op in ops.

Args:

		ops: an object convertible to a list of tf.Operation.

		positive_filter: a function deciding whether to keep a tensor or not.
If True, all the tensors are returned.

Returns:

A list of tf.Tensor.

Raises:

		TypeError: if ops cannot be converted to a list of tf.Operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.learn.LinearClassifier.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Linear classifier model.

Train a linear model to classify instances into one of multiple possible
classes. When number of possible classes is 2, this is binary classification.

Example:

education = sparse_column_with_hash_bucket(column_name="education",
 hash_bucket_size=1000)
occupation = sparse_column_with_hash_bucket(column_name="occupation",
 hash_bucket_size=1000)

education_x_occupation = crossed_column(columns=[education, occupation],
 hash_bucket_size=10000)

Estimator using the default optimizer.
estimator = LinearClassifier(
 feature_columns=[occupation, education_x_occupation])

Or estimator using the FTRL optimizer with regularization.
estimator = LinearClassifier(
 feature_columns=[occupation, education_x_occupation],
 optimizer=tf.train.FtrlOptimizer(
 learning_rate=0.1,
 l1_regularization_strength=0.001
))

Or estimator using the SDCAOptimizer.
estimator = LinearClassifier(
 feature_columns=[occupation, education_x_occupation],
 optimizer=tf.contrib.linear_optimizer.SDCAOptimizer(
 example_id_column='example_id',
 num_loss_partitions=...,
 symmetric_l2_regularization=2.0
))

Input builders
def input_fn_train: # returns x, y
 ...
def input_fn_eval: # returns x, y
 ...
estimator.fit(input_fn=input_fn_train)
estimator.evaluate(input_fn=input_fn_eval)
estimator.predict(x=x)

Input of fit and evaluate should have following features,
otherwise there will be a KeyError:

		if weight_column_name is not None, a feature with
key=weight_column_name whose value is a Tensor.

		for each column in feature_columns:
		if column is a SparseColumn, a feature with key=column.name
whose value is a SparseTensor.

		if column is a WeightedSparseColumn, two features: the first with
key the id column name, the second with key the weight column name.
Both features’ value must be a SparseTensor.

		if column is a RealValuedColumn, a feature with key=column.name
whose value is a Tensor.

tf.contrib.learn.LinearClassifier.__init__(feature_columns, model_dir=None, n_classes=2, weight_column_name=None, optimizer=None, gradient_clip_norm=None, enable_centered_bias=None, _joint_weight=False, config=None) {#LinearClassifier.init}

Construct a LinearClassifier estimator object.

Args:

		feature_columns: An iterable containing all the feature columns used by
the model. All items in the set should be instances of classes derived
from FeatureColumn.

		model_dir: Directory to save model parameters, graph and etc. This can
also be used to load checkpoints from the directory into a estimator
to continue training a previously saved model.

		n_classes: number of target classes. Default is binary classification.

		weight_column_name: A string defining feature column name representing
weights. It is used to down weight or boost examples during training. It
will be multiplied by the loss of the example.

		optimizer: The optimizer used to train the model. If specified, it should
be either an instance of tf.Optimizer or the SDCAOptimizer. If None,
the Ftrl optimizer will be used.

		gradient_clip_norm: A float > 0. If provided, gradients are clipped
to their global norm with this clipping ratio. See
tf.clip_by_global_norm for more details.

		enable_centered_bias: A bool. If True, estimator will learn a centered
bias variable for each class. Rest of the model structure learns the
residual after centered bias.
_joint_weight: If True, the weights for all columns will be stored in a
single (possibly partitioned) variable. It’s more efficient, but it’s
incompatible with SDCAOptimizer, and requires all feature columns are
sparse and use the ‘sum’ combiner.

		config: RunConfig object to configure the runtime settings.

Returns:

A LinearClassifier estimator.

Raises:

		ValueError: if n_classes < 2.

tf.contrib.learn.LinearClassifier.bias_ {#LinearClassifier.bias_}

tf.contrib.learn.LinearClassifier.config {#LinearClassifier.config}

tf.contrib.learn.LinearClassifier.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) {#LinearClassifier.evaluate}

See evaluable.Evaluable.

tf.contrib.learn.LinearClassifier.export(export_dir, input_fn=None, input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, default_batch_size=1, exports_to_keep=None) {#LinearClassifier.export}

See BaseEstimator.export.

tf.contrib.learn.LinearClassifier.fit(x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None) {#LinearClassifier.fit}

See trainable.Trainable.

tf.contrib.learn.LinearClassifier.get_estimator() {#LinearClassifier.get_estimator}

tf.contrib.learn.LinearClassifier.get_variable_names() {#LinearClassifier.get_variable_names}

tf.contrib.learn.LinearClassifier.get_variable_value(name) {#LinearClassifier.get_variable_value}

tf.contrib.learn.LinearClassifier.model_dir {#LinearClassifier.model_dir}

tf.contrib.learn.LinearClassifier.predict(x=None, input_fn=None, batch_size=None, as_iterable=False) {#LinearClassifier.predict}

Runs inference to determine the predicted class.

tf.contrib.learn.LinearClassifier.predict_proba(x=None, input_fn=None, batch_size=None, outputs=None, as_iterable=False) {#LinearClassifier.predict_proba}

Runs inference to determine the class probability predictions.

tf.contrib.learn.LinearClassifier.weights_ {#LinearClassifier.weights_}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.SparseTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Represents a sparse tensor.

TensorFlow represents a sparse tensor as three separate dense tensors:
indices, values, and shape. In Python, the three tensors are
collected into a SparseTensor class for ease of use. If you have separate
indices, values, and shape tensors, wrap them in a SparseTensor
object before passing to the ops below.

Concretely, the sparse tensor SparseTensor(indices, values, shape)
comprises the following components, where N and ndims are the number
of values and number of dimensions in the SparseTensor, respectively:

		indices: A 2-D int64 tensor of shape [N, ndims], which specifies
the indices of the elements in the sparse tensor that contain nonzero
values (elements are zero-indexed). For example, indices=[[1,3], [2,4]]
specifies that the elements with indexes of [1,3] and [2,4] have
nonzero values.

		values: A 1-D tensor of any type and shape [N], which supplies the
values for each element in indices. For example, given
indices=[[1,3], [2,4]], the parameter values=[18, 3.6] specifies
that element [1,3] of the sparse tensor has a value of 18, and element
[2,4] of the tensor has a value of 3.6.

		shape: A 1-D int64 tensor of shape [ndims], which specifies the shape
of the sparse tensor. Takes a list indicating the number of elements in
each dimension. For example, shape=[3,6] specifies a two-dimensional 3x6
tensor, shape=[2,3,4] specifies a three-dimensional 2x3x4 tensor, and
shape=[9] specifies a one-dimensional tensor with 9 elements.

The corresponding dense tensor satisfies:

dense.shape = shape
dense[tuple(indices[i])] = values[i]

By convention, indices should be sorted in row-major order (or equivalently
lexicographic order on the tuples indices[i]). This is not enforced when
SparseTensor objects are constructed, but most ops assume correct ordering.
If the ordering of sparse tensor st is wrong, a fixed version can be
obtained by calling tf.sparse_reorder(st).

Example: The sparse tensor

SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2], shape=[3, 4])

represents the dense tensor

[[1, 0, 0, 0]
 [0, 0, 2, 0]
 [0, 0, 0, 0]]

tf.SparseTensor.__init__(indices, values, shape) {#SparseTensor.init}

Creates a SparseTensor.

Args:

		indices: A 2-D int64 tensor of shape [N, ndims].

		values: A 1-D tensor of any type and shape [N].

		shape: A 1-D int64 tensor of shape [ndims].

Returns:

A SparseTensor

tf.SparseTensor.indices {#SparseTensor.indices}

The indices of non-zero values in the represented dense tensor.

Returns:

A 2-D Tensor of int64 with shape [N, ndims], where N is the
number of non-zero values in the tensor, and ndims is the rank.

tf.SparseTensor.values {#SparseTensor.values}

The non-zero values in the represented dense tensor.

Returns:

A 1-D Tensor of any data type.

tf.SparseTensor.shape {#SparseTensor.shape}

A 1-D Tensor of int64 representing the shape of the dense tensor.

tf.SparseTensor.dtype {#SparseTensor.dtype}

The DType of elements in this tensor.

tf.SparseTensor.op {#SparseTensor.op}

The Operation that produces values as an output.

tf.SparseTensor.graph {#SparseTensor.graph}

The Graph that contains the index, value, and shape tensors.

Other Methods

tf.SparseTensor.__div__(sp_x, y) {#SparseTensor.div}

Component-wise divides a SparseTensor by a dense Tensor.

Limitation: this Op only broadcasts the dense side to the sparse side, but not
the other direction.

Args:

		sp_indices: A Tensor of type int64.
2-D. N x R matrix with the indices of non-empty values in a
SparseTensor, possibly not in canonical ordering.

		sp_values: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
1-D. N non-empty values corresponding to sp_indices.

		sp_shape: A Tensor of type int64.
1-D. Shape of the input SparseTensor.

		dense: A Tensor. Must have the same type as sp_values.
R-D. The dense Tensor operand.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as sp_values.
1-D. The N values that are operated on.

tf.SparseTensor.__mul__(sp_x, y) {#SparseTensor.mul}

Component-wise multiplies a SparseTensor by a dense Tensor.

The output locations corresponding to the implicitly zero elements in the sparse
tensor will be zero (i.e., will not take up storage space), regardless of the
contents of the dense tensor (even if it’s +/-INF and that INF*0 == NaN).

Limitation: this Op only broadcasts the dense side to the sparse side, but not
the other direction.

Args:

		sp_indices: A Tensor of type int64.
2-D. N x R matrix with the indices of non-empty values in a
SparseTensor, possibly not in canonical ordering.

		sp_values: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
1-D. N non-empty values corresponding to sp_indices.

		sp_shape: A Tensor of type int64.
1-D. Shape of the input SparseTensor.

		dense: A Tensor. Must have the same type as sp_values.
R-D. The dense Tensor operand.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as sp_values.
1-D. The N values that are operated on.

tf.SparseTensor.__str__() {#SparseTensor.str}

tf.SparseTensor.__truediv__(sp_x, y) {#SparseTensor.truediv}

Internal helper function for ‘sp_t / dense_t’.

tf.SparseTensor.eval(feed_dict=None, session=None) {#SparseTensor.eval}

Evaluates this sparse tensor in a Session.

Calling this method will execute all preceding operations that
produce the inputs needed for the operation that produces this
tensor.

N.B. Before invoking SparseTensor.eval(), its graph must have been
launched in a session, and either a default session must be
available, or session must be specified explicitly.

Args:

		feed_dict: A dictionary that maps Tensor objects to feed values.
See Session.run() for a
description of the valid feed values.

		session: (Optional.) The Session to be used to evaluate this sparse
tensor. If none, the default session will be used.

Returns:

A SparseTensorValue object.

tf.SparseTensor.from_value(cls, sparse_tensor_value) {#SparseTensor.from_value}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.greater_equal.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.greater_equal(x, y, name=None) {#greater_equal}

Returns the truth value of (x >= y) element-wise.

NOTE: GreaterEqual supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.graph_editor.swap_outputs.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.swap_outputs(sgv0, sgv1) {#swap_outputs}

Swap all the outputs of sgv0 and sgv1 (see _reroute_outputs).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.train.generate_checkpoint_state_proto.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.generate_checkpoint_state_proto(save_dir, model_checkpoint_path, all_model_checkpoint_paths=None) {#generate_checkpoint_state_proto}

Generates a checkpoint state proto.

Args:

		save_dir: Directory where the model was saved.

		model_checkpoint_path: The checkpoint file.

		all_model_checkpoint_paths: List of strings. Paths to all not-yet-deleted
checkpoints, sorted from oldest to newest. If this is a non-empty list,
the last element must be equal to model_checkpoint_path. These paths
are also saved in the CheckpointState proto.

Returns:

CheckpointState proto with model_checkpoint_path and
all_model_checkpoint_paths updated to either absolute paths or
relative paths to the current save_dir.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.copy_graph.copy_op_to_graph.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.copy_graph.copy_op_to_graph(org_instance, to_graph, variables, scope='') {#copy_op_to_graph}

Given an Operation ‘org_instancefrom oneGraph, initializes and returns a copy of it from anotherGraph, under the specified scope (default“”`).

The copying is done recursively, so any Operation whose output
is required to evaluate the org_instance, is also copied (unless
already done).

Since Variable instances are copied separately, those required
to evaluate org_instance must be provided as input.

Args:
org_instance: An Operation from some Graph. Could be a
Placeholder as well.
to_graph: The Graph to copy org_instance to.
variables: An iterable of Variable instances to copy org_instance to.
scope: A scope for the new Variable (default "").

Returns:

The copied `Operation` from `to_graph`.

Raises:

		TypeError: If org_instance is not an Operation or Tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.bayesflow.stochastic_tensor.BetaTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 BetaTensor is a StochasticTensor backed by the distribution Beta.

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#BetaTensor.init}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.clone(name=None, **dist_args) {#BetaTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.distribution {#BetaTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.dtype {#BetaTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.entropy(name='entropy') {#BetaTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.graph {#BetaTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.input_dict {#BetaTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.loss(final_loss, name='Loss') {#BetaTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.mean(name='mean') {#BetaTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.name {#BetaTensor.name}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.value(name='value') {#BetaTensor.value}

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.value_type {#BetaTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.framework.get_model_variables.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.get_model_variables(scope=None, suffix=None) {#get_model_variables}

Gets the list of model variables, filtered by scope and/or suffix.

Args:

		scope: an optional scope for filtering the variables to return.

		suffix: an optional suffix for filtering the variables to return.

Returns:

a list of variables in collection with scope and suffix.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.all_variables.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.all_variables() {#all_variables}

Returns all variables that must be saved/restored.

The Variable() constructor automatically adds new variables to the graph
collection GraphKeys.VARIABLES. This convenience function returns the
contents of that collection.

Returns:

A list of Variable objects.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.DirichletMultinomial.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 DirichletMultinomial mixture distribution.

This distribution is parameterized by a vector alpha of concentration
parameters for k classes and n, the counts per each class..

Mathematical details

The Dirichlet Multinomial is a distribution over k-class count data, meaning
for each k-tuple of non-negative integer counts = [c_1,...,c_k], we have a
probability of these draws being made from the distribution. The distribution
has hyperparameters alpha = (alpha_1,...,alpha_k), and probability mass
function (pmf):

pmf(counts) = N! / (n_1!...n_k!) * Beta(alpha + c) / Beta(alpha)

where above N = sum_j n_j, N! is N factorial, and
Beta(x) = prod_j Gamma(x_j) / Gamma(sum_j x_j) is the multivariate beta
function.

This is a mixture distribution in that M samples can be produced by:

		Choose class probabilities p = (p_1,...,p_k) ~ Dir(alpha)

		Draw integers m = (n_1,...,n_k) ~ Multinomial(N, p)

This class provides methods to create indexed batches of Dirichlet
Multinomial distributions. If the provided alpha is rank 2 or higher, for
every fixed set of leading dimensions, the last dimension represents one
single Dirichlet Multinomial distribution. When calling distribution
functions (e.g. dist.pmf(counts)), alpha and counts are broadcast to the
same shape (if possible). In all cases, the last dimension of alpha/counts
represents single Dirichlet Multinomial distributions.

Examples

alpha = [1, 2, 3]
n = 2
dist = DirichletMultinomial(n, alpha)

Creates a 3-class distribution, with the 3rd class is most likely to be drawn.
The distribution functions can be evaluated on counts.

counts same shape as alpha.
counts = [0, 0, 2]
dist.pmf(counts) # Shape []

alpha will be broadcast to [[1, 2, 3], [1, 2, 3]] to match counts.
counts = [[1, 1, 0], [1, 0, 1]]
dist.pmf(counts) # Shape [2]

alpha will be broadcast to shape [5, 7, 3] to match counts.
counts = [[...]] # Shape [5, 7, 3]
dist.pmf(counts) # Shape [5, 7]

Creates a 2-batch of 3-class distributions.

alpha = [[1, 2, 3], [4, 5, 6]] # Shape [2, 3]
n = [3, 3]
dist = DirichletMultinomial(n, alpha)

counts will be broadcast to [[2, 1, 0], [2, 1, 0]] to match alpha.
counts = [2, 1, 0]
dist.pmf(counts) # Shape [2]

tf.contrib.distributions.DirichletMultinomial.__init__(n, alpha, validate_args=False, allow_nan_stats=True, name='DirichletMultinomial') {#DirichletMultinomial.init}

Initialize a batch of DirichletMultinomial distributions.

Args:

		n: Non-negative floating point tensor, whose dtype is the same as
alpha. The shape is broadcastable to [N1,..., Nm] with m >= 0.
Defines this as a batch of N1 x ... x Nm different Dirichlet
multinomial distributions. Its components should be equal to integer
values.

		alpha: Positive floating point tensor, whose dtype is the same as
n with shape broadcastable to [N1,..., Nm, k] m >= 0. Defines
this as a batch of N1 x ... x Nm different k class Dirichlet
multinomial distributions.

		validate_args: Boolean, default False. Whether to assert valid
values for parameters alpha and n, and x in prob and
log_prob. If False, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to prefix Ops created by this distribution class.

		Examples:

Define 1-batch of 2-class Dirichlet multinomial distribution,
also known as a beta-binomial.
dist = DirichletMultinomial(2.0, [1.1, 2.0])

Define a 2-batch of 3-class distributions.
dist = DirichletMultinomial([3., 4], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])

tf.contrib.distributions.DirichletMultinomial.allow_nan_stats {#DirichletMultinomial.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.DirichletMultinomial.alpha {#DirichletMultinomial.alpha}

Parameter defining this distribution.

tf.contrib.distributions.DirichletMultinomial.alpha_sum {#DirichletMultinomial.alpha_sum}

Summation of alpha parameter.

tf.contrib.distributions.DirichletMultinomial.batch_shape(name='batch_shape') {#DirichletMultinomial.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.DirichletMultinomial.cdf(value, name='cdf') {#DirichletMultinomial.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.DirichletMultinomial.dtype {#DirichletMultinomial.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.DirichletMultinomial.entropy(name='entropy') {#DirichletMultinomial.entropy}

Shanon entropy in nats.

tf.contrib.distributions.DirichletMultinomial.event_shape(name='event_shape') {#DirichletMultinomial.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.DirichletMultinomial.get_batch_shape() {#DirichletMultinomial.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.DirichletMultinomial.get_event_shape() {#DirichletMultinomial.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.DirichletMultinomial.is_continuous {#DirichletMultinomial.is_continuous}

tf.contrib.distributions.DirichletMultinomial.is_reparameterized {#DirichletMultinomial.is_reparameterized}

tf.contrib.distributions.DirichletMultinomial.log_cdf(value, name='log_cdf') {#DirichletMultinomial.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.DirichletMultinomial.log_pdf(value, name='log_pdf') {#DirichletMultinomial.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.DirichletMultinomial.log_pmf(value, name='log_pmf') {#DirichletMultinomial.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.DirichletMultinomial.log_prob(value, name='log_prob') {#DirichletMultinomial.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.DirichletMultinomial.log_survival_function(value, name='log_survival_function') {#DirichletMultinomial.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.DirichletMultinomial.mean(name='mean') {#DirichletMultinomial.mean}

Mean.

tf.contrib.distributions.DirichletMultinomial.mode(name='mode') {#DirichletMultinomial.mode}

Mode.

tf.contrib.distributions.DirichletMultinomial.n {#DirichletMultinomial.n}

Parameter defining this distribution.

tf.contrib.distributions.DirichletMultinomial.name {#DirichletMultinomial.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.DirichletMultinomial.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#DirichletMultinomial.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.DirichletMultinomial.param_static_shapes(cls, sample_shape) {#DirichletMultinomial.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.DirichletMultinomial.parameters {#DirichletMultinomial.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.DirichletMultinomial.pdf(value, name='pdf') {#DirichletMultinomial.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.DirichletMultinomial.pmf(value, name='pmf') {#DirichletMultinomial.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.DirichletMultinomial.prob(value, name='prob') {#DirichletMultinomial.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.DirichletMultinomial.sample(sample_shape=(), seed=None, name='sample') {#DirichletMultinomial.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.DirichletMultinomial.sample_n(n, seed=None, name='sample_n') {#DirichletMultinomial.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.DirichletMultinomial.std(name='std') {#DirichletMultinomial.std}

Standard deviation.

tf.contrib.distributions.DirichletMultinomial.survival_function(value, name='survival_function') {#DirichletMultinomial.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.DirichletMultinomial.validate_args {#DirichletMultinomial.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.DirichletMultinomial.variance(name='variance') {#DirichletMultinomial.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.image.random_hue.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.random_hue(image, max_delta, seed=None) {#random_hue}

Adjust the hue of an RGB image by a random factor.

Equivalent to adjust_hue() but uses a delta randomly
picked in the interval [-max_delta, max_delta].

max_delta must be in the interval [0, 0.5].

Args:

		image: RGB image or images. Size of the last dimension must be 3.

		max_delta: float. Maximum value for the random delta.

		seed: An operation-specific seed. It will be used in conjunction
with the graph-level seed to determine the real seeds that will be
used in this operation. Please see the documentation of
set_random_seed for its interaction with the graph-level random seed.

Returns:

3-D float tensor of shape [height, width, channels].

Raises:

		ValueError: if max_delta is invalid.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.image.random_contrast.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.random_contrast(image, lower, upper, seed=None) {#random_contrast}

Adjust the contrast of an image by a random factor.

Equivalent to adjust_contrast() but uses a contrast_factor randomly
picked in the interval [lower, upper].

Args:

		image: An image tensor with 3 or more dimensions.

		lower: float. Lower bound for the random contrast factor.

		upper: float. Upper bound for the random contrast factor.

		seed: A Python integer. Used to create a random seed. See
set_random_seed
for behavior.

Returns:

The contrast-adjusted tensor.

Raises:

		ValueError: if upper <= lower or if lower < 0.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.ifft2d.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.ifft2d(input, name=None) {#ifft2d}

Compute the inverse 2-dimensional discrete Fourier Transform over the inner-most

2 dimensions of input.

Args:

		input: A Tensor of type complex64. A complex64 tensor.

		name: A name for the operation (optional).

Returns:

A Tensor of type complex64.
A complex64 tensor of the same shape as input. The inner-most 2
dimensions of input are replaced with their inverse 2D Fourier Transform.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.FIFOQueue.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A queue implementation that dequeues elements in first-in first-out order.

See tf.QueueBase for a description of the methods on
this class.

tf.FIFOQueue.__init__(capacity, dtypes, shapes=None, names=None, shared_name=None, name='fifo_queue') {#FIFOQueue.init}

Creates a queue that dequeues elements in a first-in first-out order.

A FIFOQueue has bounded capacity; supports multiple concurrent
producers and consumers; and provides exactly-once delivery.

A FIFOQueue holds a list of up to capacity elements. Each
element is a fixed-length tuple of tensors whose dtypes are
described by dtypes, and whose shapes are optionally described
by the shapes argument.

If the shapes argument is specified, each component of a queue
element must have the respective fixed shape. If it is
unspecified, different queue elements may have different shapes,
but the use of dequeue_many is disallowed.

Args:

		capacity: An integer. The upper bound on the number of elements
that may be stored in this queue.

		dtypes: A list of DType objects. The length of dtypes must equal
the number of tensors in each queue element.

		shapes: (Optional.) A list of fully-defined TensorShape objects
with the same length as dtypes, or None.

		names: (Optional.) A list of string naming the components in the queue
with the same length as dtypes, or None. If specified the dequeue
methods return a dictionary with the names as keys.

		shared_name: (Optional.) If non-empty, this queue will be shared under
the given name across multiple sessions.

		name: Optional name for the queue operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.nn.log_softmax.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.log_softmax(logits, dim=-1, name=None) {#log_softmax}

Computes log softmax activations.

For each batch i and class j we have

logsoftmax = logits - reduce_sum(exp(logits), dim)

Args:

		logits: A non-empty Tensor. Must be one of the following types: half,
float32, float64.

		dim: The dimension softmax would be performed on. The default is -1 which
indicates the last dimension.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as logits. Same shape as logits.

Raises:

		InvalidArgumentError: if logits is empty or dim is beyond the last
dimension of logits.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.Gamma.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 The Gamma distribution with parameter alpha and beta.

The parameters are the shape and inverse scale parameters alpha, beta.

The PDF of this distribution is:

pdf(x) = (beta^alpha)(x^(alpha-1))e^(-x*beta)/Gamma(alpha), x > 0

and the CDF of this distribution is:

cdf(x) = GammaInc(alpha, beta * x) / Gamma(alpha), x > 0

where GammaInc is the incomplete lower Gamma function.

WARNING: This distribution may draw 0-valued samples for small alpha values.
See the note on tf.random_gamma.

Examples:

dist = Gamma(alpha=3.0, beta=2.0)
dist2 = Gamma(alpha=[3.0, 4.0], beta=[2.0, 3.0])

tf.contrib.distributions.Gamma.__init__(alpha, beta, validate_args=False, allow_nan_stats=True, name='Gamma') {#Gamma.init}

Construct Gamma distributions with parameters alpha and beta.

The parameters alpha and beta must be shaped in a way that supports
broadcasting (e.g. alpha + beta is a valid operation).

Args:

		alpha: Floating point tensor, the shape params of the
distribution(s).
alpha must contain only positive values.

		beta: Floating point tensor, the inverse scale params of the
distribution(s).
beta must contain only positive values.

		validate_args: Boolean, default False. Whether to assert that
a > 0, b > 0, and that x > 0 in the methods prob(x) and
log_prob(x). If validate_args is False and the inputs are
invalid, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to prepend to all ops created by this distribution.

Raises:

		TypeError: if alpha and beta are different dtypes.

tf.contrib.distributions.Gamma.allow_nan_stats {#Gamma.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Gamma.alpha {#Gamma.alpha}

Shape parameter.

tf.contrib.distributions.Gamma.batch_shape(name='batch_shape') {#Gamma.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Gamma.beta {#Gamma.beta}

Inverse scale parameter.

tf.contrib.distributions.Gamma.cdf(value, name='cdf') {#Gamma.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Gamma.dtype {#Gamma.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Gamma.entropy(name='entropy') {#Gamma.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Gamma.event_shape(name='event_shape') {#Gamma.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Gamma.get_batch_shape() {#Gamma.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Gamma.get_event_shape() {#Gamma.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Gamma.is_continuous {#Gamma.is_continuous}

tf.contrib.distributions.Gamma.is_reparameterized {#Gamma.is_reparameterized}

tf.contrib.distributions.Gamma.log_cdf(value, name='log_cdf') {#Gamma.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Gamma.log_pdf(value, name='log_pdf') {#Gamma.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Gamma.log_pmf(value, name='log_pmf') {#Gamma.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Gamma.log_prob(value, name='log_prob') {#Gamma.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Gamma.log_survival_function(value, name='log_survival_function') {#Gamma.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Gamma.mean(name='mean') {#Gamma.mean}

Mean.

tf.contrib.distributions.Gamma.mode(name='mode') {#Gamma.mode}

Mode.

tf.contrib.distributions.Gamma.name {#Gamma.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Gamma.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Gamma.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Gamma.param_static_shapes(cls, sample_shape) {#Gamma.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Gamma.parameters {#Gamma.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Gamma.pdf(value, name='pdf') {#Gamma.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Gamma.pmf(value, name='pmf') {#Gamma.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Gamma.prob(value, name='prob') {#Gamma.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Gamma.sample(sample_shape=(), seed=None, name='sample') {#Gamma.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Gamma.sample_n(n, seed=None, name='sample_n') {#Gamma.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Gamma.std(name='std') {#Gamma.std}

Standard deviation.

tf.contrib.distributions.Gamma.survival_function(value, name='survival_function') {#Gamma.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Gamma.validate_args {#Gamma.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Gamma.variance(name='variance') {#Gamma.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.errors.AlreadyExistsError.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Raised when an entity that we attempted to create already exists.

For example, running an operation that saves a file
(e.g. tf.train.Saver.save())
could potentially raise this exception if an explicit filename for an
existing file was passed.

tf.errors.AlreadyExistsError.__init__(node_def, op, message) {#AlreadyExistsError.init}

Creates an AlreadyExistsError.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.graph_editor.reroute_b2a_ts.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.reroute_b2a_ts(ts0, ts1, can_modify=None, cannot_modify=None) {#reroute_b2a_ts}

For each tensor’s pair, replace the end of t0 by the end of t1.

B0 B1 B0 B1
| | => |
A0 A1 A0 A1

The end of the tensors in ts0 are left dangling.

Args:

		ts0: an object convertible to a list of tf.Tensor.

		ts1: an object convertible to a list of tf.Tensor.

		can_modify: iterable of operations which can be modified. Any operation
outside within_ops will be left untouched by this function.

		cannot_modify: iterable of operations which cannot be modified.
Any operation within cannot_modify will be left untouched by this
function.

Returns:

The number of individual modifications made by the function.

Raises:

		TypeError: if ts0 or ts1 cannot be converted to a list of tf.Tensor.

		TypeError: if can_modify or cannot_modify is not None and cannot be
converted to a list of tf.Operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.graph_editor.select_ts.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.select_ts(*args, **kwargs) {#select_ts}

Helper to select tensors.

Args:

		*args: list of 1) regular expressions (compiled or not) or 2) (array of)
tf.Tensor. tf.Operation instances are silently ignored.

		**kwargs: ‘graph’: tf.Graph in which to perform the regex query.This is
required when using regex.
‘positive_filter’: an elem if selected only if positive_filter(elem) is
True. This is optional.
‘restrict_ts_regex’: a regular expression is ignored if it doesn’t start
with the substring “(?#ts)”.

Returns:

A list of tf.Tensor.

Raises:

		TypeError: if the optional keyword argument graph is not a tf.Graph
or if an argument in args is not an (array of) tf.Tensor
or an (array of) tf.Operation (silently ignored) or a string
or a regular expression.

		ValueError: if one of the keyword arguments is unexpected or if a regular
expression is used without passing a graph as a keyword argument.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.einsum.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.einsum(axes, *inputs) {#einsum}

A generalized contraction between tensors of arbitrary dimension.

Like numpy.einsum.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.graph_editor.copy_op_handler.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.copy_op_handler(info, op, copy_shape=True) {#copy_op_handler}

Copy a tf.Operation.

Args:

		info: Transform._Info instance.

		op: the tf.Operation to be copied.

		copy_shape: also copy the shape of the tensor

Returns:

A copy of op.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.metrics.streaming_sparse_recall_at_k.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.streaming_sparse_recall_at_k(*args, **kwargs) {#streaming_sparse_recall_at_k}

Computes recall@k of the predictions with respect to sparse labels. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-10-19.
Instructions for updating:
ignore_mask is being deprecated. Instead use weights with values 0.0 and 1.0 to mask values. For example, weights=tf.logical_not(mask).

If class_id is specified, we calculate recall by considering only the
entries in the batch for which class_id is in the label, and computing
the fraction of them for which class_id is in the top-k predictions.
If class_id is not specified, we’ll calculate recall as how often on
average a class among the labels of a batch entry is in the top-k
predictions.

streaming_sparse_recall_at_k creates two local variables,
true_positive_at_<k> and false_negative_at_<k>, that are used to compute
the recall_at_k frequency. This frequency is ultimately returned as
recall_at_<k>: an idempotent operation that simply divides
true_positive_at_<k> by total (true_positive_at_<k> + recall_at_<k>).

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
recall_at_<k>. Internally, a top_k operation computes a Tensor
indicating the top k predictions. Set operations applied to top_k and
labels calculate the true positives and false negatives weighted by
weights. Then update_op increments true_positive_at_<k> and
false_negative_at_<k> using these values.

If weights is None, weights default to 1. Use weights of 0 to mask values.
Alternatively, if ignore_mask is not None, then mask values where
ignore_mask is True.

Args:
predictions: Float Tensor with shape [D1, ... DN, num_classes] where
N >= 1. Commonly, N=1 and predictions has shape [batch size, num_classes].
The final dimension contains the logit values for each class. [D1, ... DN]
must match labels.
labels: int64 Tensor or SparseTensor with shape
[D1, ... DN, num_labels], where N >= 1 and num_labels is the number of
target classes for the associated prediction. Commonly, N=1 and labels
has shape [batch_size, num_labels]. [D1, ... DN] must match labels.
Values should be in range [0, num_classes], where num_classes is the last
dimension of predictions.
k: Integer, k for @k metric.
class_id: Integer class ID for which we want binary metrics. This should be
in range [0, num_classes], where num_classes is the last dimension of
predictions.
ignore_mask: An optional, bool Tensor whose shape is broadcastable to
the the first [D1, ... DN] dimensions of predictions and labels.
weights: An optional Tensor whose shape is broadcastable to the the first
[D1, ... DN] dimensions of predictions and labels.
metrics_collections: An optional list of collections that values should
be added to.
updates_collections: An optional list of collections that updates should
be added to.
name: Name of new update operation, and namespace for other dependant ops.

Returns:
recall: Scalar float64 Tensor with the value of true_positives divided
by the sum of true_positives and false_negatives.
update_op: Operation that increments true_positives and
false_negatives variables appropriately, and whose value matches
recall.

Raises:
ValueError: If ignore_mask is not None and its shape doesn’t match
predictions, or if weights is not None and its shape doesn’t match
predictions, or if either metrics_collections or updates_collections
are not a list or tuple.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.nn.max_pool.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.max_pool(value, ksize, strides, padding, data_format='NHWC', name=None) {#max_pool}

Performs the max pooling on the input.

Args:

		value: A 4-D Tensor with shape [batch, height, width, channels] and
type tf.float32.

		ksize: A list of ints that has length >= 4. The size of the window for
each dimension of the input tensor.

		strides: A list of ints that has length >= 4. The stride of the sliding
window for each dimension of the input tensor.

		padding: A string, either 'VALID' or 'SAME'. The padding algorithm.
See the comment here [https://www.tensorflow.org/api_docs/python/nn.html#convolution]

		data_format: A string. ‘NHWC’ and ‘NCHW’ are supported.

		name: Optional name for the operation.

Returns:

A Tensor with type tf.float32. The max pooled output tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.framework.get_local_variables.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.get_local_variables(scope=None, suffix=None) {#get_local_variables}

Gets the list of model variables, filtered by scope and/or suffix.

Args:

		scope: an optional scope for filtering the variables to return.

		suffix: an optional suffix for filtering the variables to return.

Returns:

a list of variables in collection with scope and suffix.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.Multinomial.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Multinomial distribution.

This distribution is parameterized by a vector p of probability
parameters for k classes and n, the counts per each class..

Mathematical details

The Multinomial is a distribution over k-class count data, meaning
for each k-tuple of non-negative integer counts = [n_1,...,n_k], we have a
probability of these draws being made from the distribution. The distribution
has hyperparameters p = (p_1,...,p_k), and probability mass
function (pmf):

pmf(counts) = n! / (n_1!...n_k!) * (p_1)^n_1*(p_2)^n_2*...(p_k)^n_k

where above n = sum_j n_j, n! is n factorial.

Examples

Create a 3-class distribution, with the 3rd class is most likely to be drawn,
using logits..

logits = [-50., -43, 0]
dist = Multinomial(n=4., logits=logits)

Create a 3-class distribution, with the 3rd class is most likely to be drawn.

p = [.2, .3, .5]
dist = Multinomial(n=4., p=p)

The distribution functions can be evaluated on counts.

counts same shape as p.
counts = [1., 0, 3]
dist.prob(counts) # Shape []

p will be broadcast to [[.2, .3, .5], [.2, .3, .5]] to match counts.
counts = [[1., 2, 1], [2, 2, 0]]
dist.prob(counts) # Shape [2]

p will be broadcast to shape [5, 7, 3] to match counts.
counts = [[...]] # Shape [5, 7, 3]
dist.prob(counts) # Shape [5, 7]

Create a 2-batch of 3-class distributions.

p = [[.1, .2, .7], [.3, .3, .4]] # Shape [2, 3]
dist = Multinomial(n=[4., 5], p=p)

counts = [[2., 1, 1], [3, 1, 1]]
dist.prob(counts) # Shape [2]

tf.contrib.distributions.Multinomial.__init__(n, logits=None, p=None, validate_args=False, allow_nan_stats=True, name='Multinomial') {#Multinomial.init}

Initialize a batch of Multinomial distributions.

Args:

		n: Non-negative floating point tensor with shape broadcastable to
[N1,..., Nm] with m >= 0. Defines this as a batch of
N1 x ... x Nm different Multinomial distributions. Its components
should be equal to integer values.

		logits: Floating point tensor representing the log-odds of a
positive event with shape broadcastable to [N1,..., Nm, k], m >= 0,
and the same dtype as n. Defines this as a batch of N1 x ... x Nm
different k class Multinomial distributions.

		p: Positive floating point tensor with shape broadcastable to
[N1,..., Nm, k] m >= 0 and same dtype as n. Defines this as
a batch of N1 x ... x Nm different k class Multinomial
distributions. p‘s components in the last portion of its shape should
sum up to 1.

		validate_args: Boolean, default False. Whether to assert valid
values for parameters n and p, and x in prob and log_prob.
If False, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to prefix Ops created by this distribution class.

		Examples:

Define 1-batch of 2-class multinomial distribution,
also known as a Binomial distribution.
dist = Multinomial(n=2., p=[.1, .9])

Define a 2-batch of 3-class distributions.
dist = Multinomial(n=[4., 5], p=[[.1, .3, .6], [.4, .05, .55]])

tf.contrib.distributions.Multinomial.allow_nan_stats {#Multinomial.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Multinomial.batch_shape(name='batch_shape') {#Multinomial.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Multinomial.cdf(value, name='cdf') {#Multinomial.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Multinomial.dtype {#Multinomial.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Multinomial.entropy(name='entropy') {#Multinomial.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Multinomial.event_shape(name='event_shape') {#Multinomial.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Multinomial.get_batch_shape() {#Multinomial.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Multinomial.get_event_shape() {#Multinomial.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Multinomial.is_continuous {#Multinomial.is_continuous}

tf.contrib.distributions.Multinomial.is_reparameterized {#Multinomial.is_reparameterized}

tf.contrib.distributions.Multinomial.log_cdf(value, name='log_cdf') {#Multinomial.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Multinomial.log_pdf(value, name='log_pdf') {#Multinomial.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Multinomial.log_pmf(value, name='log_pmf') {#Multinomial.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Multinomial.log_prob(value, name='log_prob') {#Multinomial.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Multinomial.log_survival_function(value, name='log_survival_function') {#Multinomial.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Multinomial.logits {#Multinomial.logits}

Log-odds.

tf.contrib.distributions.Multinomial.mean(name='mean') {#Multinomial.mean}

Mean.

tf.contrib.distributions.Multinomial.mode(name='mode') {#Multinomial.mode}

Mode.

tf.contrib.distributions.Multinomial.n {#Multinomial.n}

Number of trials.

tf.contrib.distributions.Multinomial.name {#Multinomial.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Multinomial.p {#Multinomial.p}

Event probabilities.

tf.contrib.distributions.Multinomial.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Multinomial.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Multinomial.param_static_shapes(cls, sample_shape) {#Multinomial.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Multinomial.parameters {#Multinomial.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Multinomial.pdf(value, name='pdf') {#Multinomial.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Multinomial.pmf(value, name='pmf') {#Multinomial.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Multinomial.prob(value, name='prob') {#Multinomial.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Multinomial.sample(sample_shape=(), seed=None, name='sample') {#Multinomial.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Multinomial.sample_n(n, seed=None, name='sample_n') {#Multinomial.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Multinomial.std(name='std') {#Multinomial.std}

Standard deviation.

tf.contrib.distributions.Multinomial.survival_function(value, name='survival_function') {#Multinomial.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Multinomial.validate_args {#Multinomial.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Multinomial.variance(name='variance') {#Multinomial.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.distributions.StudentT.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Student’s t distribution with degree-of-freedom parameter df.

Mathematical details

The PDF of this distribution is:

f(t) = gamma((df+1)/2)/sqrt(df*pi)/gamma(df/2)*(1+t^2/df)^(-(df+1)/2)

Examples

Examples of initialization of one or a batch of distributions.

Define a single scalar Student t distribution.
single_dist = tf.contrib.distributions.StudentT(df=3)

Evaluate the pdf at 1, returning a scalar Tensor.
single_dist.pdf(1.)

Define a batch of two scalar valued Student t's.
The first has degrees of freedom 2, mean 1, and scale 11.
The second 3, 2 and 22.
multi_dist = tf.contrib.distributions.StudentT(df=[2, 3],
 mu=[1, 2.],
 sigma=[11, 22.])

Evaluate the pdf of the first distribution on 0, and the second on 1.5,
returning a length two tensor.
multi_dist.pdf([0, 1.5])

Get 3 samples, returning a 3 x 2 tensor.
multi_dist.sample(3)

Arguments are broadcast when possible.

Define a batch of two Student's t distributions.
Both have df 2 and mean 1, but different scales.
dist = tf.contrib.distributions.StudentT(df=2, mu=1, sigma=[11, 22.])

Evaluate the pdf of both distributions on the same point, 3.0,
returning a length 2 tensor.
dist.pdf(3.0)

tf.contrib.distributions.StudentT.__init__(df, mu, sigma, validate_args=False, allow_nan_stats=True, name='StudentT') {#StudentT.init}

Construct Student’s t distributions.

The distributions have degree of freedom df, mean mu, and scale sigma.

The parameters df, mu, and sigma must be shaped in a way that supports
broadcasting (e.g. df + mu + sigma is a valid operation).

Args:

		df: Floating point tensor, the degrees of freedom of the
distribution(s). df must contain only positive values.

		mu: Floating point tensor, the means of the distribution(s).

		sigma: Floating point tensor, the scaling factor for the
distribution(s). sigma must contain only positive values.
Note that sigma is not the standard deviation of this distribution.

		validate_args: Boolean, default False. Whether to assert that
df > 0 and sigma > 0. If validate_args is False and inputs are
invalid, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to give Ops created by the initializer.

Raises:

		TypeError: if mu and sigma are different dtypes.

tf.contrib.distributions.StudentT.allow_nan_stats {#StudentT.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.StudentT.batch_shape(name='batch_shape') {#StudentT.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.StudentT.cdf(value, name='cdf') {#StudentT.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.StudentT.df {#StudentT.df}

Degrees of freedom in these Student’s t distribution(s).

tf.contrib.distributions.StudentT.dtype {#StudentT.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.StudentT.entropy(name='entropy') {#StudentT.entropy}

Shanon entropy in nats.

tf.contrib.distributions.StudentT.event_shape(name='event_shape') {#StudentT.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.StudentT.get_batch_shape() {#StudentT.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.StudentT.get_event_shape() {#StudentT.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.StudentT.is_continuous {#StudentT.is_continuous}

tf.contrib.distributions.StudentT.is_reparameterized {#StudentT.is_reparameterized}

tf.contrib.distributions.StudentT.log_cdf(value, name='log_cdf') {#StudentT.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.StudentT.log_pdf(value, name='log_pdf') {#StudentT.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.StudentT.log_pmf(value, name='log_pmf') {#StudentT.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.StudentT.log_prob(value, name='log_prob') {#StudentT.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.StudentT.log_survival_function(value, name='log_survival_function') {#StudentT.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.StudentT.mean(name='mean') {#StudentT.mean}

Mean.

tf.contrib.distributions.StudentT.mode(name='mode') {#StudentT.mode}

Mode.

tf.contrib.distributions.StudentT.mu {#StudentT.mu}

Locations of these Student’s t distribution(s).

tf.contrib.distributions.StudentT.name {#StudentT.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.StudentT.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#StudentT.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.StudentT.param_static_shapes(cls, sample_shape) {#StudentT.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.StudentT.parameters {#StudentT.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.StudentT.pdf(value, name='pdf') {#StudentT.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.StudentT.pmf(value, name='pmf') {#StudentT.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.StudentT.prob(value, name='prob') {#StudentT.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.StudentT.sample(sample_shape=(), seed=None, name='sample') {#StudentT.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.StudentT.sample_n(n, seed=None, name='sample_n') {#StudentT.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.StudentT.sigma {#StudentT.sigma}

Scaling factors of these Student’s t distribution(s).

tf.contrib.distributions.StudentT.std(name='std') {#StudentT.std}

Standard deviation.

tf.contrib.distributions.StudentT.survival_function(value, name='survival_function') {#StudentT.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.StudentT.validate_args {#StudentT.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.StudentT.variance(name='variance') {#StudentT.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.random_gamma.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.random_gamma(shape, alpha, beta=None, dtype=tf.float32, seed=None, name=None) {#random_gamma}

Draws shape samples from each of the given Gamma distribution(s).

alpha is the shape parameter describing the distribution(s), and beta is
the inverse scale parameter(s).

Example:

samples = tf.random_gamma([10], [0.5, 1.5])

samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents

the samples drawn from each distribution

samples = tf.random_gamma([7, 5], [0.5, 1.5])

samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1]

represents the 7x5 samples drawn from each of the two distributions

samples = tf.random_gamma([30], [[1.],[3.],[5.]], beta=[[3., 4.]])

samples has shape [30, 3, 2], with 30 samples each of 3x2 distributions.

Note that for small alpha values, there is a chance you will draw a value of
exactly 0, which gets worse for lower-precision dtypes, even though zero is
not in the support of the gamma distribution.

Relevant cdfs (~chance you will draw a exactly-0 value):

 stats.gamma(.01).cdf(np.finfo(np.float16).tiny)
 0.91269738769897879
 stats.gamma(.01).cdf(np.finfo(np.float32).tiny)
 0.41992668622045726
 stats.gamma(.01).cdf(np.finfo(np.float64).tiny)
 0.00084322740680686662
 stats.gamma(.35).cdf(np.finfo(np.float16).tiny)
 0.037583276135263931
 stats.gamma(.35).cdf(np.finfo(np.float32).tiny)
 5.9514895726818067e-14
 stats.gamma(.35).cdf(np.finfo(np.float64).tiny)
 2.3529843400647272e-108

Args:

		shape: A 1-D integer Tensor or Python array. The shape of the output samples
to be drawn per alpha/beta-parameterized distribution.

		alpha: A Tensor or Python value or N-D array of type dtype. alpha
provides the shape parameter(s) describing the gamma distribution(s) to
sample. Must be broadcastable with beta.

		beta: A Tensor or Python value or N-D array of type dtype. Defaults to 1.
beta provides the inverse scale parameter(s) of the gamma
distribution(s) to sample. Must be broadcastable with alpha.

		dtype: The type of alpha, beta, and the output: float16, float32, or
float64.

		seed: A Python integer. Used to create a random seed for the distributions.
See
set_random_seed
for behavior.

		name: Optional name for the operation.

Returns:

		samples: a Tensor of shape tf.concat(shape, tf.shape(alpha + beta)) with
values of type dtype.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.util.constant_value.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.util.constant_value(tensor) {#constant_value}

Returns the constant value of the given tensor, if efficiently calculable.

This function attempts to partially evaluate the given tensor, and
returns its value as a numpy ndarray if this succeeds.

TODO(mrry): Consider whether this function should use a registration
mechanism like gradients and ShapeFunctions, so that it is easily
extensible.

NOTE: If constant_value(tensor) returns a non-None result, it will no
longer be possible to feed a different value for tensor. This allows the
result of this function to influence the graph that is constructed, and
permits static shape optimizations.

Args:

		tensor: The Tensor to be evaluated.

Returns:

A numpy ndarray containing the constant value of the given tensor,
or None if it cannot be calculated.

Raises:

		TypeError: if tensor is not an ops.Tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.image.convert_image_dtype.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.convert_image_dtype(image, dtype, saturate=False, name=None) {#convert_image_dtype}

Convert image to dtype, scaling its values if needed.

Images that are represented using floating point values are expected to have
values in the range [0,1). Image data stored in integer data types are
expected to have values in the range [0,MAX], where MAX is the largest
positive representable number for the data type.

This op converts between data types, scaling the values appropriately before
casting.

Note that converting from floating point inputs to integer types may lead to
over/underflow problems. Set saturate to True to avoid such problem in
problematic conversions. If enabled, saturation will clip the output into the
allowed range before performing a potentially dangerous cast (and only before
performing such a cast, i.e., when casting from a floating point to an integer
type, and when casting from a signed to an unsigned type; saturate has no
effect on casts between floats, or on casts that increase the type’s range).

Args:

		image: An image.

		dtype: A DType to convert image to.

		saturate: If True, clip the input before casting (if necessary).

		name: A name for this operation (optional).

Returns:

image, converted to dtype.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 LaplaceWithSoftplusScaleTensor is a StochasticTensor backed by the distribution LaplaceWithSoftplusScale.

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#LaplaceWithSoftplusScaleTensor.init}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.clone(name=None, **dist_args) {#LaplaceWithSoftplusScaleTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.distribution {#LaplaceWithSoftplusScaleTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.dtype {#LaplaceWithSoftplusScaleTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.entropy(name='entropy') {#LaplaceWithSoftplusScaleTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.graph {#LaplaceWithSoftplusScaleTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.input_dict {#LaplaceWithSoftplusScaleTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.loss(final_loss, name='Loss') {#LaplaceWithSoftplusScaleTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.mean(name='mean') {#LaplaceWithSoftplusScaleTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.name {#LaplaceWithSoftplusScaleTensor.name}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.value(name='value') {#LaplaceWithSoftplusScaleTensor.value}

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.value_type {#LaplaceWithSoftplusScaleTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.normal_conjugates_known_sigma_posterior.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.distributions.normal_conjugates_known_sigma_posterior(prior, sigma, s, n) {#normal_conjugates_known_sigma_posterior}

Posterior Normal distribution with conjugate prior on the mean.

This model assumes that n observations (with sum s) come from a
Normal with unknown mean mu (described by the Normal prior)
and known variance sigma^2. The “known sigma posterior” is
the distribution of the unknown mu.

Accepts a prior Normal distribution object, having parameters
mu0 and sigma0, as well as known sigma values of the predictive
distribution(s) (also assumed Normal),
and statistical estimates s (the sum(s) of the observations) and
n (the number(s) of observations).

Returns a posterior (also Normal) distribution object, with parameters
(mu', sigma'^2), where:

mu ~ N(mu', sigma'^2)
sigma'^2 = 1/(1/sigma0^2 + n/sigma^2),
mu' = (mu0/sigma0^2 + s/sigma^2) * sigma'^2.

Distribution parameters from prior, as well as sigma, s, and n.
will broadcast in the case of multidimensional sets of parameters.

Args:

		prior: Normal object of type dtype:
the prior distribution having parameters (mu0, sigma0).

		sigma: tensor of type dtype, taking values sigma > 0.
The known stddev parameter(s).

		s: Tensor of type dtype. The sum(s) of observations.

		n: Tensor of type int. The number(s) of observations.

Returns:

A new Normal posterior distribution object for the unknown observation
mean mu.

Raises:

		TypeError: if dtype of s does not match dtype, or prior is not a
Normal object.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.graph_editor.transform_op_if_inside_handler.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.transform_op_if_inside_handler(info, op, keep_if_possible=True) {#transform_op_if_inside_handler}

Transform an optional op only if it is inside the subgraph.

This handler is typically use to handle original op: it is fine to keep them
if they are inside the subgraph, otherwise they are just ignored.

Args:

		info: Transform._Info instance.

		op: the optional op to transform (or ignore).

		keep_if_possible: re-attach to the original op if possible, that is,
if the source graph and the destination graph are the same.

Returns:

The transformed op or None.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.RegisterGradient.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A decorator for registering the gradient function for an op type.

This decorator is only used when defining a new op type. For an op
with m inputs and n outputs, the gradient function is a function
that takes the original Operation and n Tensor objects
(representing the gradients with respect to each output of the op),
and returns m Tensor objects (representing the partial gradients
with respect to each input of the op).

For example, assuming that operations of type "Sub" take two
inputs x and y, and return a single output x - y, the
following gradient function would be registered:

@tf.RegisterGradient("Sub")
def _sub_grad(unused_op, grad):
 return grad, tf.neg(grad)

The decorator argument op_type is the string type of an
operation. This corresponds to the OpDef.name field for the proto
that defines the operation.

tf.RegisterGradient.__init__(op_type) {#RegisterGradient.init}

Creates a new decorator with op_type as the Operation type.

Args:

		op_type: The string type of an operation. This corresponds to the
OpDef.name field for the proto that defines the operation.

Other Methods

tf.RegisterGradient.__call__(f) {#RegisterGradient.call}

Registers the function f as gradient function for op_type.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.reduce_join.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.reduce_join(inputs, reduction_indices, keep_dims=None, separator=None, name=None) {#reduce_join}

Joins a string Tensor across the given dimensions.

Computes the string join across dimensions in the given string Tensor of shape
[d_0, d_1, ..., d_n-1]. Returns a new Tensor created by joining the input
strings with the given separator (default: empty string). Negative indices are
counted backwards from the end, with -1 being equivalent to n - 1. Passing
an empty reduction_indices joins all strings in linear index order and outputs
a scalar string.

For example:

tensor `a` is [["a", "b"], ["c", "d"]]
tf.reduce_join(a, 0) ==> ["ac", "bd"]
tf.reduce_join(a, 1) ==> ["ab", "cd"]
tf.reduce_join(a, -2) = tf.reduce_join(a, 0) ==> ["ac", "bd"]
tf.reduce_join(a, -1) = tf.reduce_join(a, 1) ==> ["ab", "cd"]
tf.reduce_join(a, 0, keep_dims=True) ==> [["ac", "bd"]]
tf.reduce_join(a, 1, keep_dims=True) ==> [["ab"], ["cd"]]
tf.reduce_join(a, 0, separator=".") ==> ["a.c", "b.d"]
tf.reduce_join(a, [0, 1]) ==> ["acbd"]
tf.reduce_join(a, [1, 0]) ==> ["abcd"]
tf.reduce_join(a, []) ==> ["abcd"]

Args:

		inputs: A Tensor of type string.
The input to be joined. All reduced indices must have non-zero size.

		reduction_indices: A Tensor of type int32.
The dimensions to reduce over. Dimensions are reduced in the
order specified. Omitting reduction_indices is equivalent to passing
[n-1, n-2, ..., 0]. Negative indices from -n to -1 are supported.

		keep_dims: An optional bool. Defaults to False.
If True, retain reduced dimensions with length 1.

		separator: An optional string. Defaults to "".
The separator to use when joining.

		name: A name for the operation (optional).

Returns:

A Tensor of type string.
Has shape equal to that of the input with reduced dimensions removed or
set to 1 depending on keep_dims.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.learn.Estimator.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Estimator class is the basic TensorFlow model trainer/evaluator.

tf.contrib.learn.Estimator.__init__(model_fn=None, model_dir=None, config=None, params=None, feature_engineering_fn=None) {#Estimator.init}

Constructs an Estimator instance.

Args:

		model_fn: Model function, takes features and targets tensors or dicts of
tensors and returns predictions and loss tensors.
Supports next three signatures for the function:

		(features, targets) -> (predictions, loss, train_op)

		(features, targets, mode) -> (predictions, loss, train_op)

		(features, targets, mode, params) -> (predictions, loss, train_op)

Where

		features are single Tensor or dict of Tensors
(depending on data passed to fit),

		targets are Tensor or dict of Tensors (for multi-head
models). If mode is ModeKeys.INFER, targets=None will be
passed. If the model_fn‘s signature does not accept
mode, the model_fn must still be able to handle
targets=None.

		mode represents if this training, evaluation or
prediction. See ModeKeys.

		params is a dict of hyperparameters. Will receive what
is passed to Estimator in params parameter. This allows
to configure Estimators from hyper parameter tunning.

		model_dir: Directory to save model parameters, graph and etc. This can
also be used to load checkpoints from the directory into a estimator to
continue training a previously saved model.

		config: Configuration object.

		params: dict of hyper parameters that will be passed into model_fn.
Keys are names of parameters, values are basic python types.

		feature_engineering_fn: Feature engineering function. Takes features and
targets which are the output of input_fn and
returns features and targets which will be fed
into model_fn. Please check model_fn for
a definition of features and targets.

Raises:

		ValueError: parameters of model_fn don’t match params.

tf.contrib.learn.Estimator.__repr__() {#Estimator.repr}

tf.contrib.learn.Estimator.config {#Estimator.config}

tf.contrib.learn.Estimator.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) {#Estimator.evaluate}

See Evaluable.

Raises:

		ValueError: If at least one of x or y is provided, and at least one of
input_fn or feed_fn is provided.
Or if metrics is not None or dict.

tf.contrib.learn.Estimator.export(*args, **kwargs) {#Estimator.export}

Exports inference graph into given dir. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23.
Instructions for updating:
The signature of the input_fn accepted by export is changing to be consistent with what’s used by tf.Learn Estimator’s train/evaluate. input_fn and input_feature_key will become required args, and use_deprecated_input_fn will default to False and be removed altogether.

Args:
 export_dir: A string containing a directory to write the exported graph
 and checkpoints.
 input_fn: If `use_deprecated_input_fn` is true, then a function that given
 `Tensor` of `Example` strings, parses it into features that are then
 passed to the model. Otherwise, a function that takes no argument and
 returns a tuple of (features, targets), where features is a dict of
 string key to `Tensor` and targets is a `Tensor` that's currently not
 used (and so can be `None`).
 input_feature_key: Only used if `use_deprecated_input_fn` is false. String
 key into the features dict returned by `input_fn` that corresponds toa
 the raw `Example` strings `Tensor` that the exported model will take as
 input.
 use_deprecated_input_fn: Determines the signature format of `input_fn`.
 signature_fn: Function that returns a default signature and a named
 signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s
 for features and `Tensor` or `dict` of `Tensor`s for predictions.
 prediction_key: The key for a tensor in the `predictions` dict (output
 from the `model_fn`) to use as the `predictions` input to the
 `signature_fn`. Optional. If `None`, predictions will pass to
 `signature_fn` without filtering.
 default_batch_size: Default batch size of the `Example` placeholder.
 exports_to_keep: Number of exports to keep.

Returns:
 The string path to the exported directory. NB: this functionality was
 added ca. 2016/09/25; clients that depend on the return value may need
 to handle the case where this function returns None because subclasses
 are not returning a value.

tf.contrib.learn.Estimator.fit(x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None) {#Estimator.fit}

See Trainable.

Raises:

		ValueError: If x or y are not None while input_fn is not None.

		ValueError: If both steps and max_steps are not None.

tf.contrib.learn.Estimator.get_params(deep=True) {#Estimator.get_params}

Get parameters for this estimator.

Args:

		deep: boolean, optional

If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns:

params : mapping of string to any
Parameter names mapped to their values.

tf.contrib.learn.Estimator.get_variable_names() {#Estimator.get_variable_names}

Returns list of all variable names in this model.

Returns:

List of names.

tf.contrib.learn.Estimator.get_variable_value(name) {#Estimator.get_variable_value}

Returns value of the variable given by name.

Args:

		name: string, name of the tensor.

Returns:

Numpy array - value of the tensor.

tf.contrib.learn.Estimator.model_dir {#Estimator.model_dir}

tf.contrib.learn.Estimator.partial_fit(x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None) {#Estimator.partial_fit}

Incremental fit on a batch of samples.

This method is expected to be called several times consecutively
on different or the same chunks of the dataset. This either can
implement iterative training or out-of-core/online training.

This is especially useful when the whole dataset is too big to
fit in memory at the same time. Or when model is taking long time
to converge, and you want to split up training into subparts.

Args:

		x: Matrix of shape [n_samples, n_features...]. Can be iterator that
returns arrays of features. The training input samples for fitting the
model. If set, input_fn must be None.

		y: Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of targets. The training target values
(class labels in classification, real numbers in regression). If set,
input_fn must be None.

		input_fn: Input function. If set, x, y, and batch_size must be
None.

		steps: Number of steps for which to train model. If None, train forever.

		batch_size: minibatch size to use on the input, defaults to first
dimension of x. Must be None if input_fn is provided.

		monitors: List of BaseMonitor subclass instances. Used for callbacks
inside the training loop.

Returns:

self, for chaining.

Raises:

		ValueError: If at least one of x and y is provided, and input_fn is
provided.

tf.contrib.learn.Estimator.predict(*args, **kwargs) {#Estimator.predict}

Returns predictions for given features. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-15.
Instructions for updating:
The default behavior of predict() is changing. The default value for
as_iterable will change to True, and then the flag will be removed
altogether. The behavior of this flag is described below.

Args:
 x: Matrix of shape [n_samples, n_features...]. Can be iterator that
 returns arrays of features. The training input samples for fitting the
 model. If set, `input_fn` must be `None`.
 input_fn: Input function. If set, `x` and 'batch_size' must be `None`.
 batch_size: Override default batch size. If set, 'input_fn' must be
 'None'.
 outputs: list of `str`, name of the output to predict.
 If `None`, returns all.
 as_iterable: If True, return an iterable which keeps yielding predictions
 for each example until inputs are exhausted. Note: The inputs must
 terminate if you want the iterable to terminate (e.g. be sure to pass
 num_epochs=1 if you are using something like read_batch_features).

Returns:
 A numpy array of predicted classes or regression values if the
 constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict`
 of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of
 predictions if as_iterable is True.

Raises:
 ValueError: If x and input_fn are both provided or both `None`.

tf.contrib.learn.Estimator.set_params(**params) {#Estimator.set_params}

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.

Args:

		**params: Parameters.

Returns:

self

Raises:

		ValueError: If params contain invalid names.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.multinomial.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.multinomial(logits, num_samples, seed=None, name=None) {#multinomial}

Draws samples from a multinomial distribution.

Example:

samples has shape [1, 5], where each value is either 0 or 1 with equal
probability.
samples = tf.multinomial(tf.log([[10., 10.]]), 5)

Args:

		logits: 2-D Tensor with shape [batch_size, num_classes]. Each slice
[i, :] represents the unnormalized log probabilities for all classes.

		num_samples: 0-D. Number of independent samples to draw for each row slice.

		seed: A Python integer. Used to create a random seed for the distribution.
See
set_random_seed
for behavior.

		name: Optional name for the operation.

Returns:

The drawn samples of shape [batch_size, num_samples].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.learn.monitors.ValidationMonitor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Runs evaluation of a given estimator, at most every N steps.

Note that the evaluation is done based on the saved checkpoint, which will
usually be older than the current step.

Can do early stopping on validation metrics if early_stopping_rounds is
provided.

tf.contrib.learn.monitors.ValidationMonitor.__init__(x=None, y=None, input_fn=None, batch_size=None, eval_steps=None, every_n_steps=100, metrics=None, early_stopping_rounds=None, early_stopping_metric='loss', early_stopping_metric_minimize=True, name=None) {#ValidationMonitor.init}

Initializes a ValidationMonitor.

Args:

		x: See BaseEstimator.evaluate.

		y: See BaseEstimator.evaluate.

		input_fn: See BaseEstimator.evaluate.

		batch_size: See BaseEstimator.evaluate.

		eval_steps: See BaseEstimator.evaluate.

		every_n_steps: Check for new checkpoints to evaluate every N steps. If a
new checkpoint is found, it is evaluated. See EveryN.

		metrics: See BaseEstimator.evaluate.

		early_stopping_rounds: int. If the metric indicated by
early_stopping_metric does not change according to
early_stopping_metric_minimize for this many steps, then training
will be stopped.

		early_stopping_metric: string, name of the metric to check for early
stopping.

		early_stopping_metric_minimize: bool, True if early_stopping_metric is
expected to decrease (thus early stopping occurs when this metric
stops decreasing), False if early_stopping_metric is expected to
increase. Typically, early_stopping_metric_minimize is True for
loss metrics like mean squared error, and False for performance
metrics like accuracy.

		name: See BaseEstimator.evaluate.

Raises:

		ValueError: If both x and input_fn are provided.

tf.contrib.learn.monitors.ValidationMonitor.begin(max_steps=None) {#ValidationMonitor.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.ValidationMonitor.best_step {#ValidationMonitor.best_step}

Returns the step at which the best early stopping metric was found.

tf.contrib.learn.monitors.ValidationMonitor.best_value {#ValidationMonitor.best_value}

Returns the best early stopping metric value found so far.

tf.contrib.learn.monitors.ValidationMonitor.early_stopped {#ValidationMonitor.early_stopped}

Returns True if this monitor caused an early stop.

tf.contrib.learn.monitors.ValidationMonitor.end(session=None) {#ValidationMonitor.end}

tf.contrib.learn.monitors.ValidationMonitor.epoch_begin(epoch) {#ValidationMonitor.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.ValidationMonitor.epoch_end(epoch) {#ValidationMonitor.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.ValidationMonitor.every_n_post_step(step, session) {#ValidationMonitor.every_n_post_step}

Callback after a step is finished or end() is called.

Args:

		step: int, the current value of the global step.

		session: Session object.

tf.contrib.learn.monitors.ValidationMonitor.every_n_step_begin(step) {#ValidationMonitor.every_n_step_begin}

Callback before every n’th step begins.

Args:

		step: int, the current value of the global step.

Returns:

A list of tensors that will be evaluated at this step.

tf.contrib.learn.monitors.ValidationMonitor.every_n_step_end(step, outputs) {#ValidationMonitor.every_n_step_end}

tf.contrib.learn.monitors.ValidationMonitor.post_step(step, session) {#ValidationMonitor.post_step}

tf.contrib.learn.monitors.ValidationMonitor.run_on_all_workers {#ValidationMonitor.run_on_all_workers}

tf.contrib.learn.monitors.ValidationMonitor.set_estimator(estimator) {#ValidationMonitor.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.ValidationMonitor.step_begin(step) {#ValidationMonitor.step_begin}

Overrides BaseMonitor.step_begin.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

Returns:

A list, the result of every_n_step_begin, if that was called this step,
or an empty list otherwise.

Raises:

		ValueError: if called more than once during a step.

tf.contrib.learn.monitors.ValidationMonitor.step_end(step, output) {#ValidationMonitor.step_end}

Overrides BaseMonitor.step_end.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool, the result of every_n_step_end, if that was called this step,
or False otherwise.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.learn.monitors.SummaryWriterCache.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Cache for summary writers.

This class caches summary writers, one per directory.

tf.contrib.learn.monitors.SummaryWriterCache.clear() {#SummaryWriterCache.clear}

Clear cached summary writers. Currently only used for unit tests.

tf.contrib.learn.monitors.SummaryWriterCache.get(logdir) {#SummaryWriterCache.get}

Returns the SummaryWriter for the specified directory.

Args:

		logdir: str, name of the directory.

Returns:

A SummaryWriter.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.sparse_concat.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_concat(concat_dim, sp_inputs, name=None, expand_nonconcat_dim=False) {#sparse_concat}

Concatenates a list of SparseTensor along the specified dimension.

Concatenation is with respect to the dense versions of each sparse input.
It is assumed that each inputs is a SparseTensor whose elements are ordered
along increasing dimension number.

If expand_nonconcat_dim is False, all inputs’ shapes must match, except for
the concat dimension. If expand_nonconcat_dim is True, then inputs’ shapes are
allowd to vary among all inputs.

The indices, values, and shapes lists must have the same length.

If expand_nonconcat_dim is False, then the output shape is identical to the
inputs’, except along the concat dimension, where it is the sum of the inputs’
sizes along that dimension.

If expand_nonconcat_dim is True, then the output shape along the non-concat
dimensions will be expand to be the largest among all inputs, and it is the
sum of the inputs sizes along the concat dimension.

The output elements will be resorted to preserve the sort order along
increasing dimension number.

This op runs in O(M log M) time, where M is the total number of non-empty
values across all inputs. This is due to the need for an internal sort in
order to concatenate efficiently across an arbitrary dimension.

For example, if concat_dim = 1 and the inputs are

sp_inputs[0]: shape = [2, 3]
[0, 2]: "a"
[1, 0]: "b"
[1, 1]: "c"

sp_inputs[1]: shape = [2, 4]
[0, 1]: "d"
[0, 2]: "e"

then the output will be

shape = [2, 7]
[0, 2]: "a"
[0, 4]: "d"
[0, 5]: "e"
[1, 0]: "b"
[1, 1]: "c"

Graphically this is equivalent to doing

[a] concat [d e] = [a d e]
[b c] [] [b c]

Another example, if ‘concat_dim = 1’ and the inputs are

sp_inputs[0]: shape = [3, 3]
[0, 2]: "a"
[1, 0]: "b"
[2, 1]: "c"

sp_inputs[1]: shape = [2, 4]
[0, 1]: "d"
[0, 2]: "e"

if expand_nonconcat_dim = False, this will result in an error. But if
expand_nonconcat_dim = True, this will result in:

shape = [3, 7]
[0, 2]: "a"
[0, 4]: "d"
[0, 5]: "e"
[1, 0]: "b"
[2, 1]: "c"

Graphically this is equivalent to doing

[a] concat [d e] = [a d e]
[b] [] [b]
[c] [c]

Args:

		concat_dim: Dimension to concatenate along. Must be in range [-rank, rank),
where rank is the number of dimensions in each input SparseTensor.

		sp_inputs: List of SparseTensor to concatenate.

		name: A name prefix for the returned tensors (optional).

		expand_nonconcat_dim: Whether to allow the expansion in the non-concat
dimensions. Defaulted to False.

Returns:

A SparseTensor with the concatenated output.

Raises:

		TypeError: If sp_inputs is not a list of SparseTensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.trace.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.trace(x, name=None) {#trace}

Compute the trace of a tensor x.

trace(x) returns the sum of along the diagonal.

For example:

'x' is [[1, 1],
[1, 1]]
tf.trace(x) ==> 2

'x' is [[1,2,3],
[4,5,6],
[7,8,9]]
tf.trace(x) ==> 15

Args:

		x: 2-D tensor.

		name: A name for the operation (optional).

Returns:

The trace of input tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.check_numerics.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.check_numerics(tensor, message, name=None) {#check_numerics}

Checks a tensor for NaN and Inf values.

When run, reports an InvalidArgument error if tensor has any values
that are not a number (NaN) or infinity (Inf). Otherwise, passes tensor as-is.

Args:

		tensor: A Tensor. Must be one of the following types: half, float32, float64.

		message: A string. Prefix of the error message.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.losses.add_loss.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.losses.add_loss(*args, **kwargs) {#add_loss}

Adds a externally defined loss to the collection of losses.

Args:

		loss: A loss Tensor.

		loss_collection: Optional collection to add the loss to.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.assert_type.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.assert_type(tensor, tf_type, message=None, name=None) {#assert_type}

Statically asserts that the given Tensor is of the specified type.

Args:

		tensor: A tensorflow Tensor.

		tf_type: A tensorflow type (dtypes.float32, tf.int64, dtypes.bool, etc).

		message: A string to prefix to the default message.

		name: A name to give this Op. Defaults to “assert_type”

Raises:

		TypeError: If the tensors data type doesn’t match tf_type.

Returns:

A no_op that does nothing. Type can be determined statically.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.InverseGamma.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 The InverseGamma distribution with parameter alpha and beta.

The parameters are the shape and inverse scale parameters alpha, beta.

The PDF of this distribution is:

pdf(x) = (beta^alpha)/Gamma(alpha)(x^(-alpha-1))e^(-beta/x), x > 0

and the CDF of this distribution is:

cdf(x) = GammaInc(alpha, beta / x) / Gamma(alpha), x > 0

where GammaInc is the upper incomplete Gamma function.

Examples:

dist = InverseGamma(alpha=3.0, beta=2.0)
dist2 = InverseGamma(alpha=[3.0, 4.0], beta=[2.0, 3.0])

tf.contrib.distributions.InverseGamma.__init__(alpha, beta, validate_args=False, allow_nan_stats=True, name='InverseGamma') {#InverseGamma.init}

Construct InverseGamma distributions with parameters alpha and beta.

The parameters alpha and beta must be shaped in a way that supports
broadcasting (e.g. alpha + beta is a valid operation).

Args:

		alpha: Floating point tensor, the shape params of the
distribution(s).
alpha must contain only positive values.

		beta: Floating point tensor, the scale params of the distribution(s).
beta must contain only positive values.

		validate_args: Boolean, default False. Whether to assert that
a > 0, b > 0, and that x > 0 in the methods prob(x) and
log_prob(x). If validate_args is False and the inputs are
invalid, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to prepend to all ops created by this distribution.

Raises:

		TypeError: if alpha and beta are different dtypes.

tf.contrib.distributions.InverseGamma.allow_nan_stats {#InverseGamma.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.InverseGamma.alpha {#InverseGamma.alpha}

Shape parameter.

tf.contrib.distributions.InverseGamma.batch_shape(name='batch_shape') {#InverseGamma.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.InverseGamma.beta {#InverseGamma.beta}

Scale parameter.

tf.contrib.distributions.InverseGamma.cdf(value, name='cdf') {#InverseGamma.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.InverseGamma.dtype {#InverseGamma.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.InverseGamma.entropy(name='entropy') {#InverseGamma.entropy}

Shanon entropy in nats.

tf.contrib.distributions.InverseGamma.event_shape(name='event_shape') {#InverseGamma.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.InverseGamma.get_batch_shape() {#InverseGamma.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.InverseGamma.get_event_shape() {#InverseGamma.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.InverseGamma.is_continuous {#InverseGamma.is_continuous}

tf.contrib.distributions.InverseGamma.is_reparameterized {#InverseGamma.is_reparameterized}

tf.contrib.distributions.InverseGamma.log_cdf(value, name='log_cdf') {#InverseGamma.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.InverseGamma.log_pdf(value, name='log_pdf') {#InverseGamma.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.InverseGamma.log_pmf(value, name='log_pmf') {#InverseGamma.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.InverseGamma.log_prob(value, name='log_prob') {#InverseGamma.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.InverseGamma.log_survival_function(value, name='log_survival_function') {#InverseGamma.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.InverseGamma.mean(name='mean') {#InverseGamma.mean}

Mean.

tf.contrib.distributions.InverseGamma.mode(name='mode') {#InverseGamma.mode}

Mode.

tf.contrib.distributions.InverseGamma.name {#InverseGamma.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.InverseGamma.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#InverseGamma.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.InverseGamma.param_static_shapes(cls, sample_shape) {#InverseGamma.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.InverseGamma.parameters {#InverseGamma.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.InverseGamma.pdf(value, name='pdf') {#InverseGamma.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.InverseGamma.pmf(value, name='pmf') {#InverseGamma.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.InverseGamma.prob(value, name='prob') {#InverseGamma.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.InverseGamma.sample(sample_shape=(), seed=None, name='sample') {#InverseGamma.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.InverseGamma.sample_n(n, seed=None, name='sample_n') {#InverseGamma.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.InverseGamma.std(name='std') {#InverseGamma.std}

Standard deviation.

tf.contrib.distributions.InverseGamma.survival_function(value, name='survival_function') {#InverseGamma.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.InverseGamma.validate_args {#InverseGamma.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.InverseGamma.variance(name='variance') {#InverseGamma.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.complex_abs.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.complex_abs(x, name=None) {#complex_abs}

Computes the complex absolute value of a tensor.

Given a tensor x of complex numbers, this operation returns a tensor of type
float32 or float64 that is the absolute value of each element in x. All
elements in x must be complex numbers of the form \(a + bj\). The
absolute value is computed as \(\sqrt{a^2 + b^2}\).

For example:

tensor 'x' is [[-2.25 + 4.75j], [-3.25 + 5.75j]]
tf.complex_abs(x) ==> [5.25594902, 6.60492229]

Args:

		x: A Tensor of type complex64 or complex128.

		name: A name for the operation (optional).

Returns:

A Tensor of type float32 or float64.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.scalar_summary.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.scalar_summary(tags, values, collections=None, name=None) {#scalar_summary}

Outputs a Summary protocol buffer with scalar values.

The input tags and values must have the same shape. The generated
summary has a summary value for each tag-value pair in tags and values.

Args:

		tags: A string Tensor. Tags for the summaries.

		values: A real numeric Tensor. Values for the summaries.

		collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to [GraphKeys.SUMMARIES].

		name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized Summary protocol
buffer.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.to_double.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.to_double(x, name='ToDouble') {#to_double}

Casts a tensor to type float64.

Args:

		x: A Tensor or SparseTensor.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x with type float64.

Raises:

		TypeError: If x cannot be cast to the float64.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.image.adjust_contrast.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.adjust_contrast(images, contrast_factor) {#adjust_contrast}

Adjust contrast of RGB or grayscale images.

This is a convenience method that converts an RGB image to float
representation, adjusts its contrast, and then converts it back to the
original data type. If several adjustments are chained it is advisable to
minimize the number of redundant conversions.

images is a tensor of at least 3 dimensions. The last 3 dimensions are
interpreted as [height, width, channels]. The other dimensions only
represent a collection of images, such as [batch, height, width, channels].

Contrast is adjusted independently for each channel of each image.

For each channel, this Op computes the mean of the image pixels in the
channel and then adjusts each component x of each pixel to
(x - mean) * contrast_factor + mean.

Args:

		images: Images to adjust. At least 3-D.

		contrast_factor: A float multiplier for adjusting contrast.

Returns:

The contrast-adjusted image or images.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.svd.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.svd(tensor, compute_uv=True, full_matrices=False, name=None) {#svd}

Computes the singular value decompositions of one or more matrices.

Computes the SVD of each inner matrix in tensor such that
tensor[..., :, :] = u[..., :, :] * diag(s[..., :, :]) * transpose(v[..., :, :])

a is a tensor.
s is a tensor of singular values.
u is a tensor of left singular vectors.
v is a tensor of right singular vectors.
s, u, v = svd(a)
s = svd(a, compute_uv=False)

Args:

		matrix: Tensor of shape [..., M, N]. Let P be the minimum of M and
N.

		compute_uv: If True then left and right singular vectors will be
computed and returned in u and v, respectively. Otherwise, only the
singular values will be computed, which can be significantly faster.

		full_matrices: If true, compute full-sized u and v. If false
(the default), compute only the leading P singular vectors.
Ignored if compute_uv is False.

		name: string, optional name of the operation.

Returns:

		s: Singular values. Shape is [..., P].

		u: Right singular vectors. If full_matrices is False (default) then
shape is [..., M, P]; if full_matrices is True then shape is
[..., M, M]. Not returned if compute_uv is False.

		v: Left singular vectors. If full_matrices is False (default) then
shape is [..., N, P]. If full_matrices is True then shape is
[..., N, N]. Not returned if compute_uv is False.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.test.compute_gradient_error.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.test.compute_gradient_error(x, x_shape, y, y_shape, x_init_value=None, delta=0.001, init_targets=None) {#compute_gradient_error}

Computes the gradient error.

Computes the maximum error for dy/dx between the computed Jacobian and the
numerically estimated Jacobian.

This function will modify the tensors passed in as it adds more operations
and hence changing the consumers of the operations of the input tensors.

This function adds operations to the current session. To compute the error
using a particular device, such as a GPU, use the standard methods for
setting a device (e.g. using with sess.graph.device() or setting a device
function in the session constructor).

Args:

		x: a tensor or list of tensors

		x_shape: the dimensions of x as a tuple or an array of ints. If x is a list,
then this is the list of shapes.

		y: a tensor

		y_shape: the dimensions of y as a tuple or an array of ints.

		x_init_value: (optional) a numpy array of the same shape as “x”
representing the initial value of x. If x is a list, this should be a list
of numpy arrays. If this is none, the function will pick a random tensor
as the initial value.

		delta: (optional) the amount of perturbation.

		init_targets: list of targets to run to initialize model params.
TODO(mrry): Remove this argument.

Returns:

The maximum error in between the two Jacobians.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.learn.monitors.StopAtStep.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Monitor to request stop at a specified step.

tf.contrib.learn.monitors.StopAtStep.__init__(num_steps=None, last_step=None) {#StopAtStep.init}

Create a StopAtStep monitor.

This monitor requests stop after either a number of steps have been
executed or a last step has been reached. Only of the two options can be
specified.

if num_steps is specified, it indicates the number of steps to execute
after begin() is called. If instead last_step is specified, it
indicates the last step we want to execute, as passed to the step_begin()
call.

Args:

		num_steps: Number of steps to execute.

		last_step: Step after which to stop.

Raises:

		ValueError: If one of the arguments is invalid.

tf.contrib.learn.monitors.StopAtStep.begin(max_steps=None) {#StopAtStep.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.StopAtStep.end(session=None) {#StopAtStep.end}

Callback at the end of training/evaluation.

Args:

		session: A tf.Session object that can be used to run ops.

Raises:

		ValueError: if we’ve not begun a run.

tf.contrib.learn.monitors.StopAtStep.epoch_begin(epoch) {#StopAtStep.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.StopAtStep.epoch_end(epoch) {#StopAtStep.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.StopAtStep.post_step(step, session) {#StopAtStep.post_step}

Callback after the step is finished.

Called after step_end and receives session to perform extra session.run
calls. If failure occurred in the process, will be called as well.

Args:

		step: int, global step of the model.

		session: Session object.

tf.contrib.learn.monitors.StopAtStep.run_on_all_workers {#StopAtStep.run_on_all_workers}

tf.contrib.learn.monitors.StopAtStep.set_estimator(estimator) {#StopAtStep.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.StopAtStep.step_begin(step) {#StopAtStep.step_begin}

tf.contrib.learn.monitors.StopAtStep.step_end(step, output) {#StopAtStep.step_end}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.stop_gradient.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.stop_gradient(input, name=None) {#stop_gradient}

Stops gradient computation.

When executed in a graph, this op outputs its input tensor as-is.

When building ops to compute gradients, this op prevents the contribution of
its inputs to be taken into account. Normally, the gradient generator adds ops
to a graph to compute the derivatives of a specified ‘loss’ by recursively
finding out inputs that contributed to its computation. If you insert this op
in the graph it inputs are masked from the gradient generator. They are not
taken into account for computing gradients.

This is useful any time you want to compute a value with TensorFlow but need
to pretend that the value was a constant. Some examples include:

		The EM algorithm where the M-step should not involve backpropagation
through the output of the E-step.

		Contrastive divergence training of Boltzmann machines where, when
differentiating the energy function, the training must not backpropagate
through the graph that generated the samples from the model.

		Adversarial training, where no backprop should happen through the adversarial
example generation process.

Args:

		input: A Tensor.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.decode_csv.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.decode_csv(records, record_defaults, field_delim=None, name=None) {#decode_csv}

Convert CSV records to tensors. Each column maps to one tensor.

RFC 4180 format is expected for the CSV records.
(https://tools.ietf.org/html/rfc4180)
Note that we allow leading and trailing spaces with int or float field.

Args:

		records: A Tensor of type string.
Each string is a record/row in the csv and all records should have
the same format.

		record_defaults: A list of Tensor objects with types from: float32, int32, int64, string.
One tensor per column of the input record, with either a
scalar default value for that column or empty if the column is required.

		field_delim: An optional string. Defaults to ",".
delimiter to separate fields in a record.

		name: A name for the operation (optional).

Returns:

A list of Tensor objects. Has the same type as record_defaults.
Each tensor will have the same shape as records.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.learn.monitors.SummarySaver.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Saves summaries every N steps.

tf.contrib.learn.monitors.SummarySaver.__init__(summary_op, save_steps=100, output_dir=None, summary_writer=None, scaffold=None) {#SummarySaver.init}

Initializes a SummarySaver monitor.

Args:

		summary_op: Tensor of type string. A serialized Summary protocol
buffer, as output by TF summary methods like scalar_summary or
merge_all_summaries.

		save_steps: int, save summaries every N steps. See EveryN.

		output_dir: string, the directory to save the summaries to. Only used
if no summary_writer is supplied.

		summary_writer: SummaryWriter. If None and an output_dir was passed,
one will be created accordingly.

		scaffold: Scaffold to get summary_op if it’s not provided.

tf.contrib.learn.monitors.SummarySaver.begin(max_steps=None) {#SummarySaver.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.SummarySaver.end(session=None) {#SummarySaver.end}

tf.contrib.learn.monitors.SummarySaver.epoch_begin(epoch) {#SummarySaver.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.SummarySaver.epoch_end(epoch) {#SummarySaver.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.SummarySaver.every_n_post_step(step, session) {#SummarySaver.every_n_post_step}

Callback after a step is finished or end() is called.

Args:

		step: int, the current value of the global step.

		session: Session object.

tf.contrib.learn.monitors.SummarySaver.every_n_step_begin(step) {#SummarySaver.every_n_step_begin}

tf.contrib.learn.monitors.SummarySaver.every_n_step_end(step, outputs) {#SummarySaver.every_n_step_end}

tf.contrib.learn.monitors.SummarySaver.post_step(step, session) {#SummarySaver.post_step}

tf.contrib.learn.monitors.SummarySaver.run_on_all_workers {#SummarySaver.run_on_all_workers}

tf.contrib.learn.monitors.SummarySaver.set_estimator(estimator) {#SummarySaver.set_estimator}

tf.contrib.learn.monitors.SummarySaver.step_begin(step) {#SummarySaver.step_begin}

Overrides BaseMonitor.step_begin.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

Returns:

A list, the result of every_n_step_begin, if that was called this step,
or an empty list otherwise.

Raises:

		ValueError: if called more than once during a step.

tf.contrib.learn.monitors.SummarySaver.step_end(step, output) {#SummarySaver.step_end}

Overrides BaseMonitor.step_end.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool, the result of every_n_step_end, if that was called this step,
or False otherwise.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.bayesflow.stochastic_tensor.SampleValue.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Draw n samples along a new outer dimension.

This ValueType draws n samples from StochasticTensors run within its
context, increasing the rank by one along a new outer dimension.

Example:

mu = tf.zeros((2,3))
sigma = tf.ones((2, 3))
with sg.value_type(sg.SampleValue(n=4)):
 dt = sg.DistributionTensor(
 distributions.Normal, mu=mu, sigma=sigma)
draws 4 samples each with shape (2, 3) and concatenates
assertEqual(dt.value().get_shape(), (4, 2, 3))

tf.contrib.bayesflow.stochastic_tensor.SampleValue.__init__(n=1, stop_gradient=False) {#SampleValue.init}

Sample n times and concatenate along a new outer dimension.

Args:

		n: A python integer or int32 tensor. The number of samples to take.

		stop_gradient: If True, StochasticTensors’ values are wrapped in
stop_gradient, to avoid backpropagation through.

tf.contrib.bayesflow.stochastic_tensor.SampleValue.declare_inputs(unused_stochastic_tensor, unused_inputs_dict) {#SampleValue.declare_inputs}

tf.contrib.bayesflow.stochastic_tensor.SampleValue.n {#SampleValue.n}

tf.contrib.bayesflow.stochastic_tensor.SampleValue.popped_above(unused_value_type) {#SampleValue.popped_above}

tf.contrib.bayesflow.stochastic_tensor.SampleValue.pushed_above(unused_value_type) {#SampleValue.pushed_above}

tf.contrib.bayesflow.stochastic_tensor.SampleValue.stop_gradient {#SampleValue.stop_gradient}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.Binomial.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Binomial distribution.

This distribution is parameterized by a vector p of probabilities and n,
the total counts.

Mathematical details

The Binomial is a distribution over the number of successes in n independent
trials, with each trial having the same probability of success p.
The probability mass function (pmf):

pmf(k) = n! / (k! * (n - k)!) * (p)^k * (1 - p)^(n - k)

Examples

Create a single distribution, corresponding to 5 coin flips.

dist = Binomial(n=5., p=.5)

Create a single distribution (using logits), corresponding to 5 coin flips.

dist = Binomial(n=5., logits=0.)

Creates 3 distributions with the third distribution most likely to have
successes.

p = [.2, .3, .8]
n will be broadcast to [4., 4., 4.], to match p.
dist = Binomial(n=4., p=p)

The distribution functions can be evaluated on counts.

counts same shape as p.
counts = [1., 2, 3]
dist.prob(counts) # Shape [3]

p will be broadcast to [[.2, .3, .8], [.2, .3, .8]] to match counts.
counts = [[1., 2, 1], [2, 2, 4]]
dist.prob(counts) # Shape [2, 3]

p will be broadcast to shape [5, 7, 3] to match counts.
counts = [[...]] # Shape [5, 7, 3]
dist.prob(counts) # Shape [5, 7, 3]

tf.contrib.distributions.Binomial.__init__(n, logits=None, p=None, validate_args=False, allow_nan_stats=True, name='Binomial') {#Binomial.init}

Initialize a batch of Binomial distributions.

Args:

		n: Non-negative floating point tensor with shape broadcastable to
[N1,..., Nm] with m >= 0 and the same dtype as p or logits.
Defines this as a batch of N1 x ... x Nm different Binomial
distributions. Its components should be equal to integer values.

		logits: Floating point tensor representing the log-odds of a
positive event with shape broadcastable to [N1,..., Nm] m >= 0, and
the same dtype as n. Each entry represents logits for the probability
of success for independent Binomial distributions.

		p: Positive floating point tensor with shape broadcastable to
[N1,..., Nm] m >= 0, p in [0, 1]. Each entry represents the
probability of success for independent Binomial distributions.

		validate_args: Boolean, default False. Whether to assert valid values
for parameters n, p, and x in prob and log_prob.
If False and inputs are invalid, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to prefix Ops created by this distribution class.

		Examples:

Define 1-batch of a binomial distribution.
dist = Binomial(n=2., p=.9)

Define a 2-batch.
dist = Binomial(n=[4., 5], p=[.1, .3])

tf.contrib.distributions.Binomial.allow_nan_stats {#Binomial.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Binomial.batch_shape(name='batch_shape') {#Binomial.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Binomial.cdf(value, name='cdf') {#Binomial.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Binomial.dtype {#Binomial.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Binomial.entropy(name='entropy') {#Binomial.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Binomial.event_shape(name='event_shape') {#Binomial.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Binomial.get_batch_shape() {#Binomial.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Binomial.get_event_shape() {#Binomial.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Binomial.is_continuous {#Binomial.is_continuous}

tf.contrib.distributions.Binomial.is_reparameterized {#Binomial.is_reparameterized}

tf.contrib.distributions.Binomial.log_cdf(value, name='log_cdf') {#Binomial.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Binomial.log_pdf(value, name='log_pdf') {#Binomial.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Binomial.log_pmf(value, name='log_pmf') {#Binomial.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Binomial.log_prob(value, name='log_prob') {#Binomial.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Binomial.log_survival_function(value, name='log_survival_function') {#Binomial.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Binomial.logits {#Binomial.logits}

Log-odds.

tf.contrib.distributions.Binomial.mean(name='mean') {#Binomial.mean}

Mean.

tf.contrib.distributions.Binomial.mode(name='mode') {#Binomial.mode}

Mode.

tf.contrib.distributions.Binomial.n {#Binomial.n}

Number of trials.

tf.contrib.distributions.Binomial.name {#Binomial.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Binomial.p {#Binomial.p}

Probability of success.

tf.contrib.distributions.Binomial.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Binomial.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Binomial.param_static_shapes(cls, sample_shape) {#Binomial.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Binomial.parameters {#Binomial.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Binomial.pdf(value, name='pdf') {#Binomial.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Binomial.pmf(value, name='pmf') {#Binomial.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Binomial.prob(value, name='prob') {#Binomial.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Binomial.sample(sample_shape=(), seed=None, name='sample') {#Binomial.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Binomial.sample_n(n, seed=None, name='sample_n') {#Binomial.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Binomial.std(name='std') {#Binomial.std}

Standard deviation.

tf.contrib.distributions.Binomial.survival_function(value, name='survival_function') {#Binomial.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Binomial.validate_args {#Binomial.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Binomial.variance(name='variance') {#Binomial.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.sparse_softmax.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_softmax(sp_input, name=None) {#sparse_softmax}

Applies softmax to a batched N-D SparseTensor.

The inputs represent an N-D SparseTensor with logical shape [..., B, C]
(where N >= 2), and with indices sorted in the canonical lexicographic
order.

This op is equivalent to applying the normal tf.nn.softmax() to each
innermost logical submatrix with shape [B, C], but with the catch that the
implicitly zero elements do not participate. Specifically, the algorithm is
equivalent to:

(1) Applies tf.nn.softmax() to a densified view of each innermost
submatrix with shape [B, C], along the size-C dimension;
(2) Masks out the original implicitly-zero locations;
(3) Renormalizes the remaining elements.

Hence, the SparseTensor result has exactly the same non-zero indices and
shape.

Example:

First batch:
[? e.]
[1. ?]
Second batch:
[e ?]
[e e]
shape = [2, 2, 2] # 3-D SparseTensor
values = np.asarray([[[0., np.e], [1., 0.]], [[np.e, 0.], [np.e, np.e]]])
indices = np.vstack(np.where(values)).astype(np.int64).T

result = tf.sparse_softmax(tf.SparseTensor(indices, values, shape))
...returning a 3-D SparseTensor, equivalent to:
[? 1.] [1 ?]
[1. ?] and [.5 .5]
where ? means implicitly zero.

Args:

		sp_input: N-D SparseTensor, where N >= 2.

		name: optional name of the operation.

Returns:

		output: N-D SparseTensor representing the results.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.logical_xor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.logical_xor(x, y, name='LogicalXor') {#logical_xor}

x ^ y = (x | y) & ~(x & y).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.graph_editor.op_type.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.op_type(op_types, op=None) {#op_type}

Check if an op is of the given type.

Args:

		op_types: tuple of strings containing the types to check against.
For instance: (“Add”, “Const”)

		op: the operation to check (or None).

Returns:

if op is not None, return True if the op is of the correct type.
if op is None, return a lambda function which does the type checking.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.graph_editor.select_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.select_ops(*args, **kwargs) {#select_ops}

Helper to select operations.

Args:

		*args: list of 1) regular expressions (compiled or not) or 2) (array of)
tf.Operation. tf.Tensor instances are silently ignored.

		**kwargs: ‘graph’: tf.Graph in which to perform the regex query.This is
required when using regex.
‘positive_filter’: an elem if selected only if positive_filter(elem) is
True. This is optional.
‘restrict_ops_regex’: a regular expression is ignored if it doesn’t start
with the substring “(?#ops)”.

Returns:

A list of tf.Operation.

Raises:

		TypeError: if the optional keyword argument graph is not a tf.Graph
or if an argument in args is not an (array of) tf.Operation
or an (array of) tf.Tensor (silently ignored) or a string
or a regular expression.

		ValueError: if one of the keyword arguments is unexpected or if a regular
expression is used without passing a graph as a keyword argument.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.zeros.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.zeros(shape, dtype=tf.float32, name=None) {#zeros}

Creates a tensor with all elements set to zero.

This operation returns a tensor of type dtype with shape shape and
all elements set to zero.

For example:

tf.zeros([3, 4], tf.int32) ==> [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

Args:

		shape: Either a list of integers, or a 1-D Tensor of type int32.

		dtype: The type of an element in the resulting Tensor.

		name: A name for the operation (optional).

Returns:

A Tensor with all elements set to zero.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.is_non_decreasing.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.is_non_decreasing(x, name=None) {#is_non_decreasing}

Returns True if x is non-decreasing.

Elements of x are compared in row-major order. The tensor [x[0],...]
is non-decreasing if for every adjacent pair we have x[i] <= x[i+1].
If x has less than two elements, it is trivially non-decreasing.

See also: is_strictly_increasing

Args:

		x: Numeric Tensor.

		name: A name for this operation (optional). Defaults to “is_non_decreasing”

Returns:

Boolean Tensor, equal to True iff x is non-decreasing.

Raises:

		TypeError: if x is not a numeric tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.graph_editor.placeholder_name.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.placeholder_name(t=None, scope=None) {#placeholder_name}

Create placeholder name for tjhe graph editor.

Args:

		t: optional tensor on which the placeholder operation’s name will be based
on

		scope: absolute scope with which to predix the placeholder’s name. None
means that the scope of t is preserved. “” means the root scope.

Returns:

A new placeholder name prefixed by “geph”. Note that “geph” stands for
Graph Editor PlaceHolder. This convention allows to quickly identify the
placeholder generated by the Graph Editor.

Raises:

		TypeError: if t is not None or a tf.Tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/contrib.ffmpeg.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

FFmpeg (contrib)

[TOC]

Encoding and decoding audio using FFmpeg

TensorFlow provides Ops to decode and encode audio files using the
FFmpeg [https://www.ffmpeg.org/] library. FFmpeg must be
locally installed [https://ffmpeg.org/download.html] for these Ops to succeed.

Example:

from tensorflow.contrib import ffmpeg

audio_binary = tf.read_file('song.mp3')
waveform = ffmpeg.decode_audio(
 audio_binary, file_format='mp3', samples_per_second=44100, channel_count=2)
uncompressed_binary = ffmpeg.encode_audio(
 waveform, file_format='wav', samples_per_second=44100)

tf.contrib.ffmpeg.decode_audio(contents, file_format=None, samples_per_second=None, channel_count=None) {#decode_audio}

Create an op that decodes the contents of an audio file.

Note that ffmpeg is free to select the “best” audio track from an mp4.
https://trac.ffmpeg.org/wiki/Map

Args:

		contents: The binary contents of the audio file to decode. This is a
scalar.

		file_format: A string specifying which format the contents will conform
to. This can be mp3, mp4, ogg, or wav.

		samples_per_second: The number of samples per second that is assumed.
In some cases, resampling will occur to generate the correct sample
rate.

		channel_count: The number of channels that should be created from the
audio contents. If the contents have more than this number, then
some channels will be merged or dropped. If contents has fewer than
this, then additional channels will be created from the existing ones.

Returns:

A rank 2 tensor that has time along dimension 0 and channels along
dimension 1. Dimension 0 will be samples_per_second * length wide, and
dimension 1 will be channel_count wide. If ffmpeg fails to decode the
audio then an empty tensor will be returned.

tf.contrib.ffmpeg.encode_audio(audio, file_format=None, samples_per_second=None) {#encode_audio}

Creates an op that encodes an audio file using sampled audio from a tensor.

Args:

		audio: A rank 2 tensor that has time along dimension 0 and channels along
dimension 1. Dimension 0 is samples_per_second * length long in
seconds.

		file_format: The type of file to encode. “wav” is the only supported format.

		samples_per_second: The number of samples in the audio tensor per second of
audio.

Returns:

A scalar tensor that contains the encoded audio in the specified file
format.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.erf.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.erf(x, name=None) {#erf}

Computes the Gauss error function of x element-wise.

Args:

		x: A Tensor of SparseTensor. Must be one of the following types: half,
float32, float64.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor, respectively. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.is_nan.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.is_nan(x, name=None) {#is_nan}

Returns which elements of x are NaN.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.losses.compute_weighted_loss.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.losses.compute_weighted_loss(losses, weight=1.0) {#compute_weighted_loss}

Computes the weighted loss.

Args:

		losses: A tensor of size [batch_size, d1, ... dN].

		weight: A tensor of size [1] or [batch_size, d1, ... dK] where K < N.

Returns:

A scalar Tensor that returns the weighted loss.

Raises:

		ValueError: If the weight is None or the shape is not compatible with the
losses shape or if the number of dimensions (rank) of either losses or
weight is missing.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.framework.get_global_step.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.get_global_step(graph=None) {#get_global_step}

Get the global step tensor.

The global step tensor must be an integer variable. We first try to find it
in the collection GLOBAL_STEP, or by name global_step:0.

Args:

		graph: The graph to find the global step in. If missing, use default graph.

Returns:

The global step variable, or None if none was found.

Raises:

		TypeError: If the global step tensor has a non-integer type, or if it is not
a Variable.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/index.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow Python reference documentation

		Building Graphs:
		add_to_collection

		as_dtype

		container

		control_dependencies

		convert_to_tensor

		convert_to_tensor_or_indexed_slices

		device

		DeviceSpec

		Dimension

		DType

		get_collection

		get_collection_ref

		get_default_graph

		get_seed

		Graph

		GraphKeys

		import_graph_def

		load_file_system_library

		load_op_library

		name_scope

		NoGradient

		NotDifferentiable

		op_scope

		Operation

		register_tensor_conversion_function

		RegisterGradient

		RegisterShape

		reset_default_graph

		Tensor

		TensorShape

		Asserts and boolean checks.:
		assert_equal

		assert_greater

		assert_greater_equal

		assert_integer

		assert_less

		assert_less_equal

		assert_negative

		assert_non_negative

		assert_non_positive

		assert_positive

		assert_proper_iterable

		assert_rank

		assert_rank_at_least

		assert_type

		is_non_decreasing

		is_numeric_tensor

		is_strictly_increasing

		Constants, Sequences, and Random Values:
		constant

		fill

		linspace

		multinomial

		ones

		ones_like

		random_crop

		random_gamma

		random_normal

		random_shuffle

		random_uniform

		range

		set_random_seed

		truncated_normal

		zeros

		zeros_like

		Variables:
		all_variables

		assert_variables_initialized

		assign

		assign_add

		assign_sub

		constant_initializer

		count_up_to

		device

		export_meta_graph

		fixed_size_partitioner

		get_checkpoint_state

		get_variable

		get_variable_scope

		import_meta_graph

		IndexedSlices

		initialize_all_variables

		initialize_local_variables

		initialize_variables

		is_variable_initialized

		latest_checkpoint

		local_variables

		make_template

		min_max_variable_partitioner

		model_variables

		moving_average_variables

		no_regularizer

		ones_initializer

		random_normal_initializer

		random_uniform_initializer

		report_uninitialized_variables

		Saver

		scatter_add

		scatter_div

		scatter_mul

		scatter_sub

		scatter_update

		sparse_mask

		trainable_variables

		truncated_normal_initializer

		uniform_unit_scaling_initializer

		update_checkpoint_state

		Variable

		variable_axis_size_partitioner

		variable_op_scope

		variable_scope

		VariableScope

		zeros_initializer

		Tensor Transformations:
		batch_to_space

		batch_to_space_nd

		bitcast

		boolean_mask

		cast

		concat

		depth_to_space

		dynamic_partition

		dynamic_stitch

		expand_dims

		extract_image_patches

		gather

		gather_nd

		meshgrid

		one_hot

		pack

		pad

		rank

		required_space_to_batch_paddings

		reshape

		reverse

		reverse_sequence

		saturate_cast

		sequence_mask

		shape

		shape_n

		size

		slice

		space_to_batch

		space_to_batch_nd

		space_to_depth

		split

		squeeze

		strided_slice

		string_to_number

		tile

		to_bfloat16

		to_double

		to_float

		to_int32

		to_int64

		transpose

		unique_with_counts

		unpack

		Math:
		abs

		accumulate_n

		acos

		add

		add_n

		argmax

		argmin

		asin

		atan

		batch_matmul

		betainc

		ceil

		cholesky

		cholesky_solve

		complex

		complex_abs

		conj

		cos

		cross

		cumprod

		cumsum

		diag

		diag_part

		digamma

		div

		edit_distance

		einsum

		erf

		erfc

		exp

		fft

		fft2d

		fft3d

		floor

		floordiv

		ifft

		ifft2d

		ifft3d

		igamma

		igammac

		imag

		inv

		invert_permutation

		lbeta

		lgamma

		listdiff

		log

		matmul

		matrix_band_part

		matrix_determinant

		matrix_diag

		matrix_diag_part

		matrix_inverse

		matrix_set_diag

		matrix_solve

		matrix_solve_ls

		matrix_transpose

		matrix_triangular_solve

		maximum

		minimum

		mod

		mul

		neg

		polygamma

		pow

		real

		reduce_all

		reduce_any

		reduce_logsumexp

		reduce_max

		reduce_mean

		reduce_min

		reduce_prod

		reduce_sum

		round

		rsqrt

		scalar_mul

		segment_max

		segment_mean

		segment_min

		segment_prod

		segment_sum

		self_adjoint_eig

		self_adjoint_eigvals

		sign

		sin

		sparse_segment_mean

		sparse_segment_sqrt_n

		sparse_segment_sum

		sqrt

		square

		squared_difference

		sub

		svd

		tan

		trace

		transpose

		truediv

		unique

		unsorted_segment_sum

		where

		zeta

		Strings:
		as_string

		decode_base64

		encode_base64

		reduce_join

		string_join

		string_split

		string_to_hash_bucket

		string_to_hash_bucket_fast

		string_to_hash_bucket_strong

		Histograms:
		histogram_fixed_width

		Control Flow:
		add_check_numerics_ops

		Assert

		case

		check_numerics

		cond

		count_up_to

		equal

		greater

		greater_equal

		group

		identity

		is_finite

		is_inf

		is_nan

		less

		less_equal

		logical_and

		logical_not

		logical_or

		logical_xor

		no_op

		not_equal

		Print

		select

		tuple

		verify_tensor_all_finite

		where

		while_loop

		Higher Order Functions:
		foldl

		foldr

		map_fn

		scan

		TensorArray Operations:
		concat

		gather

		pack

		split

		TensorArray

		unpack

		Tensor Handle Operations:
		delete_session_tensor

		get_session_handle

		get_session_tensor

		Images:
		adjust_brightness

		adjust_contrast

		adjust_hue

		adjust_saturation

		central_crop

		convert_image_dtype

		crop_and_resize

		crop_to_bounding_box

		decode_jpeg

		decode_png

		draw_bounding_boxes

		encode_jpeg

		encode_png

		extract_glimpse

		flip_left_right

		flip_up_down

		grayscale_to_rgb

		hsv_to_rgb

		non_max_suppression

		pad_to_bounding_box

		per_image_whitening

		random_brightness

		random_contrast

		random_flip_left_right

		random_flip_up_down

		random_hue

		random_saturation

		resize_area

		resize_bicubic

		resize_bilinear

		resize_image_with_crop_or_pad

		resize_images

		resize_nearest_neighbor

		rgb_to_grayscale

		rgb_to_hsv

		rot90

		sample_distorted_bounding_box

		transpose_image

		Sparse Tensors:
		shape

		sparse_add

		sparse_concat

		sparse_fill_empty_rows

		sparse_maximum

		sparse_merge

		sparse_minimum

		sparse_reduce_sum

		sparse_reduce_sum_sparse

		sparse_reorder

		sparse_reset_shape

		sparse_reshape

		sparse_retain

		sparse_softmax

		sparse_split

		sparse_tensor_dense_matmul

		sparse_tensor_to_dense

		sparse_to_dense

		sparse_to_indicator

		sparse_transpose

		SparseTensor

		SparseTensorValue

		Inputs and Readers:
		batch

		batch_join

		decode_csv

		decode_json_example

		decode_raw

		FIFOQueue

		FixedLenFeature

		FixedLengthRecordReader

		FixedLenSequenceFeature

		IdentityReader

		input_producer

		limit_epochs

		match_filenames_once

		matching_files

		PaddingFIFOQueue

		parse_example

		parse_single_example

		parse_tensor

		placeholder

		placeholder_with_default

		PriorityQueue

		QueueBase

		RandomShuffleQueue

		range_input_producer

		read_file

		ReaderBase

		shuffle_batch

		shuffle_batch_join

		size

		slice_input_producer

		sparse_placeholder

		string_input_producer

		TextLineReader

		TFRecordReader

		VarLenFeature

		WholeFileReader

		Data IO (Python functions):
		tf_record_iterator

		TFRecordWriter

		Neural Network:
		atrous_conv2d

		avg_pool

		avg_pool3d

		batch_normalization

		bias_add

		bidirectional_dynamic_rnn

		bidirectional_rnn

		compute_accidental_hits

		conv1d

		conv2d

		conv2d_transpose

		conv3d

		conv3d_transpose

		crelu

		ctc_beam_search_decoder

		ctc_greedy_decoder

		ctc_loss

		depthwise_conv2d

		depthwise_conv2d_native

		dilation2d

		dropout

		dynamic_rnn

		elu

		embedding_lookup

		embedding_lookup_sparse

		erosion2d

		fixed_unigram_candidate_sampler

		fractional_avg_pool

		fractional_max_pool

		in_top_k

		l2_loss

		l2_normalize

		learned_unigram_candidate_sampler

		local_response_normalization

		log_poisson_loss

		log_softmax

		log_uniform_candidate_sampler

		max_pool

		max_pool3d

		max_pool_with_argmax

		moments

		nce_loss

		normalize_moments

		raw_rnn

		relu

		relu6

		rnn

		sampled_softmax_loss

		separable_conv2d

		sigmoid

		sigmoid_cross_entropy_with_logits

		softmax

		softmax_cross_entropy_with_logits

		softplus

		softsign

		sparse_softmax_cross_entropy_with_logits

		state_saving_rnn

		sufficient_statistics

		tanh

		top_k

		uniform_candidate_sampler

		weighted_cross_entropy_with_logits

		Neural Network RNN Cells:
		BasicLSTMCell

		BasicRNNCell

		DropoutWrapper

		EmbeddingWrapper

		GRUCell

		InputProjectionWrapper

		LSTMCell

		LSTMStateTuple

		MultiRNNCell

		OutputProjectionWrapper

		RNNCell

		Running Graphs:
		AbortedError

		AlreadyExistsError

		CancelledError

		DataLossError

		DeadlineExceededError

		FailedPreconditionError

		get_default_session

		InteractiveSession

		InternalError

		InvalidArgumentError

		NotFoundError

		OpError

		OutOfRangeError

		PermissionDeniedError

		ResourceExhaustedError

		Session

		UnauthenticatedError

		UnavailableError

		UnimplementedError

		UnknownError

		Training:
		AdadeltaOptimizer

		AdagradDAOptimizer

		AdagradOptimizer

		AdamOptimizer

		add_queue_runner

		AggregationMethod

		audio_summary

		clip_by_average_norm

		clip_by_global_norm

		clip_by_norm

		clip_by_value

		ClusterSpec

		Coordinator

		do_quantize_training_on_graphdef

		exponential_decay

		ExponentialMovingAverage

		FtrlOptimizer

		generate_checkpoint_state_proto

		global_norm

		global_step

		GradientDescentOptimizer

		gradients

		histogram_summary

		image_summary

		LooperThread

		merge_all_summaries

		merge_summary

		MomentumOptimizer

		Optimizer

		QueueRunner

		replica_device_setter

		RMSPropOptimizer

		scalar_summary

		Server

		SessionManager

		start_queue_runners

		stop_gradient

		summary_iterator

		SummaryWriter

		Supervisor

		write_graph

		zero_fraction

		Wraps python functions:
		py_func

		Summary Operations:
		scalar

		tensor_summary

		Testing:
		assert_equal_graph_def

		compute_gradient

		compute_gradient_error

		get_temp_dir

		is_built_with_cuda

		main

		BayesFlow Entropy (contrib):
		elbo_ratio

		entropy_shannon

		renyi_alpha

		renyi_ratio

		BayesFlow Monte Carlo (contrib):
		expectation

		expectation_importance_sampler

		expectation_importance_sampler_logspace

		BayesFlow Stochastic Graph (contrib):
		surrogate_loss

		BayesFlow Stochastic Tensors (contrib):
		BaseStochasticTensor

		BernoulliTensor

		BernoulliWithSigmoidPTensor

		BetaTensor

		BetaWithSoftplusABTensor

		BinomialTensor

		CategoricalTensor

		Chi2Tensor

		Chi2WithAbsDfTensor

		DirichletMultinomialTensor

		DirichletTensor

		ExponentialTensor

		ExponentialWithSoftplusLamTensor

		GammaTensor

		GammaWithSoftplusAlphaBetaTensor

		get_current_value_type

		InverseGammaTensor

		InverseGammaWithSoftplusAlphaBetaTensor

		LaplaceTensor

		LaplaceWithSoftplusScaleTensor

		MeanValue

		MixtureTensor

		MultinomialTensor

		MultivariateNormalCholeskyTensor

		MultivariateNormalDiagPlusVDVTTensor

		MultivariateNormalDiagTensor

		MultivariateNormalDiagWithSoftplusStDevTensor

		MultivariateNormalFullTensor

		NormalTensor

		NormalWithSoftplusSigmaTensor

		ObservedStochasticTensor

		PoissonTensor

		QuantizedDistributionTensor

		SampleAndReshapeValue

		SampleValue

		StochasticTensor

		StudentTTensor

		StudentTWithAbsDfSoftplusSigmaTensor

		TransformedDistributionTensor

		UniformTensor

		value_type

		WishartCholeskyTensor

		WishartFullTensor

		BayesFlow Variational Inference (contrib):
		elbo

		elbo_with_log_joint

		ELBOForms

		register_prior

		CRF (contrib):
		crf_binary_score

		crf_log_likelihood

		crf_log_norm

		crf_sequence_score

		crf_unary_score

		CrfForwardRnnCell

		viterbi_decode

		Statistical distributions (contrib):
		BaseDistribution

		Bernoulli

		BernoulliWithSigmoidP

		Beta

		BetaWithSoftplusAB

		Binomial

		Categorical

		Chi2

		Chi2WithAbsDf

		Dirichlet

		DirichletMultinomial

		Distribution

		Exponential

		ExponentialWithSoftplusLam

		Gamma

		GammaWithSoftplusAlphaBeta

		InverseGamma

		InverseGammaWithSoftplusAlphaBeta

		kl

		Laplace

		LaplaceWithSoftplusScale

		matrix_diag_transform

		Mixture

		Multinomial

		MultivariateNormalCholesky

		MultivariateNormalDiag

		MultivariateNormalDiagPlusVDVT

		MultivariateNormalDiagWithSoftplusStDev

		MultivariateNormalFull

		Normal

		normal_congugates_known_sigma_predictive

		normal_conjugates_known_sigma_posterior

		NormalWithSoftplusSigma

		Poisson

		QuantizedDistribution

		RegisterKL

		StudentT

		StudentTWithAbsDfSoftplusSigma

		TransformedDistribution

		Uniform

		WishartCholesky

		WishartFull

		FFmpeg (contrib):
		decode_audio

		encode_audio

		Framework (contrib):
		add_arg_scope

		add_model_variable

		arg_scope

		arg_scoped_arguments

		assert_global_step

		assert_or_get_global_step

		assert_same_float_dtype

		assert_scalar_int

		assign_from_checkpoint

		assign_from_checkpoint_fn

		assign_from_values

		assign_from_values_fn

		convert_to_tensor_or_sparse_tensor

		create_global_step

		deprecated

		deprecated_arg_values

		deprecated_args

		get_global_step

		get_graph_from_inputs

		get_local_variables

		get_model_variables

		get_or_create_global_step

		get_unique_variable

		get_variables

		get_variables_by_name

		get_variables_by_suffix

		get_variables_to_restore

		has_arg_scope

		is_non_decreasing

		is_numeric_tensor

		is_strictly_increasing

		is_tensor

		local_variable

		model_variable

		reduce_sum_n

		variable

		VariableDeviceChooser

		with_same_shape

		with_shape

		Graph Editor (contrib):
		add_control_inputs

		assign_renamed_collections_handler

		bypass

		check_cios

		compute_boundary_ts

		connect

		ControlOutputs

		copy

		copy_op_handler

		copy_with_input_replacements

		detach

		detach_control_inputs

		detach_control_outputs

		detach_inputs

		detach_outputs

		filter_ops

		filter_ops_from_regex

		filter_ts

		filter_ts_from_regex

		get_backward_walk_ops

		get_consuming_ops

		get_forward_walk_ops

		get_generating_ops

		get_name_scope_ops

		get_ops_ios

		get_tensors

		get_walks_intersection_ops

		get_walks_union_ops

		get_within_boundary_ops

		graph_replace

		keep_t_if_possible_handler

		make_list_of_op

		make_list_of_t

		make_placeholder_from_dtype_and_shape

		make_placeholder_from_tensor

		make_view

		make_view_from_scope

		matcher

		op_type

		OpMatcher

		ops

		ph

		placeholder_name

		remove_control_inputs

		replace_t_with_placeholder_handler

		reroute_a2b

		reroute_a2b_inputs

		reroute_a2b_outputs

		reroute_a2b_ts

		reroute_b2a

		reroute_b2a_inputs

		reroute_b2a_outputs

		reroute_b2a_ts

		select_ops

		select_ops_and_ts

		select_ts

		sgv

		sgv_scope

		SubGraphView

		swap

		swap_inputs

		swap_outputs

		swap_ts

		transform_op_if_inside_handler

		transform_op_in_place

		Transformer

		ts

		Layers (contrib):
		apply_regularization

		avg_pool2d

		batch_norm

		convolution2d

		convolution2d_in_plane

		convolution2d_transpose

		flatten

		fully_connected

		l1_regularizer

		l2_regularizer

		layer_norm

		max_pool2d

		one_hot_encoding

		optimize_loss

		repeat

		safe_embedding_lookup_sparse

		separable_convolution2d

		stack

		sum_regularizer

		summarize_activation

		summarize_activations

		summarize_collection

		summarize_tensor

		summarize_tensors

		unit_norm

		variance_scaling_initializer

		xavier_initializer

		xavier_initializer_conv2d

		Learn (contrib):
		BaseEstimator

		DNNClassifier

		DNNRegressor

		Estimator

		evaluate

		extract_dask_data

		extract_dask_labels

		extract_pandas_data

		extract_pandas_labels

		extract_pandas_matrix

		infer

		LinearClassifier

		LinearRegressor

		ModeKeys

		NanLossDuringTrainingError

		read_batch_examples

		read_batch_features

		read_batch_record_features

		run_feeds

		run_n

		RunConfig

		TensorFlowEstimator

		TensorFlowRNNClassifier

		TensorFlowRNNRegressor

		train

		Monitors (contrib):
		BaseMonitor

		CaptureVariable

		CheckpointSaver

		EveryN

		ExportMonitor

		get_default_monitors

		GraphDump

		LoggingTrainable

		NanLoss

		PrintTensor

		RunHookAdapterForMonitors

		StepCounter

		StopAtStep

		SummarySaver

		SummaryWriterCache

		ValidationMonitor

		Losses (contrib):
		absolute_difference

		add_loss

		compute_weighted_loss

		cosine_distance

		get_losses

		get_regularization_losses

		get_total_loss

		hinge_loss

		log_loss

		mean_pairwise_squared_error

		mean_squared_error

		sigmoid_cross_entropy

		softmax_cross_entropy

		sparse_softmax_cross_entropy

		sum_of_pairwise_squares

		sum_of_squares

		RNN (contrib):
		AttentionCellWrapper

		CoupledInputForgetGateLSTMCell

		GridLSTMCell

		GRUBlockCell

		LayerNormBasicLSTMCell

		LSTMBlockCell

		TimeFreqLSTMCell

		Metrics (contrib):
		accuracy

		aggregate_metric_map

		aggregate_metrics

		auc_using_histogram

		confusion_matrix

		set_difference

		set_intersection

		set_size

		set_union

		streaming_accuracy

		streaming_auc

		streaming_covariance

		streaming_mean

		streaming_mean_absolute_error

		streaming_mean_cosine_distance

		streaming_mean_iou

		streaming_mean_relative_error

		streaming_mean_squared_error

		streaming_pearson_correlation

		streaming_percentage_less

		streaming_precision

		streaming_recall

		streaming_recall_at_k

		streaming_root_mean_squared_error

		streaming_sensitivity_at_specificity

		streaming_sparse_average_precision_at_k

		streaming_sparse_precision_at_k

		streaming_sparse_recall_at_k

		streaming_specificity_at_sensitivity

		Training (contrib):
		batch_sequences_with_states

		bucket

		bucket_by_sequence_length

		NextQueuedSequenceBatch

		SequenceQueueingStateSaver

		stratified_sample

		stratified_sample_unknown_dist

		Utilities (contrib):
		constant_value

		make_ndarray

		make_tensor_proto

		ops_used_by_graph_def

		stripped_op_list_for_graph

		Copying Graph Elements (contrib):
		copy_op_to_graph

		copy_variable_to_graph

		get_copied_op

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.train.Server.create_local_server.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.Server.create_local_server(config=None, start=True) {#Server.create_local_server}

Creates a new single-process cluster running on the local host.

This method is a convenience wrapper for creating a
tf.train.Server with a tf.train.ServerDef that specifies a
single-process cluster containing a single task in a job called
"local".

Args:

		config: (Options.) A tf.ConfigProto that specifies default
configuration options for all sessions that run on this server.

		start: (Optional.) Boolean, indicating whether to start the server after
creating it. Defaults to True.

Returns:

A local tf.train.Server.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.SparseTensorValue.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 SparseTensorValue(indices, values, shape)

tf.SparseTensorValue.__getnewargs__() {#SparseTensorValue.getnewargs}

Return self as a plain tuple. Used by copy and pickle.

tf.SparseTensorValue.__getstate__() {#SparseTensorValue.getstate}

Exclude the OrderedDict from pickling

tf.SparseTensorValue.__new__(_cls, indices, values, shape) {#SparseTensorValue.new}

Create new instance of SparseTensorValue(indices, values, shape)

tf.SparseTensorValue.__repr__() {#SparseTensorValue.repr}

Return a nicely formatted representation string

tf.SparseTensorValue.indices {#SparseTensorValue.indices}

Alias for field number 0

tf.SparseTensorValue.shape {#SparseTensorValue.shape}

Alias for field number 2

tf.SparseTensorValue.values {#SparseTensorValue.values}

Alias for field number 1

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/io_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Inputs and Readers

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Placeholders

TensorFlow provides a placeholder operation that must be fed with data
on execution. For more info, see the section on Feeding
data.

tf.placeholder(dtype, shape=None, name=None) {#placeholder}

Inserts a placeholder for a tensor that will be always fed.

Important: This tensor will produce an error if evaluated. Its value must
be fed using the feed_dict optional argument to Session.run(),
Tensor.eval(), or Operation.run().

For example:

x = tf.placeholder(tf.float32, shape=(1024, 1024))
y = tf.matmul(x, x)

with tf.Session() as sess:
 print(sess.run(y)) # ERROR: will fail because x was not fed.

 rand_array = np.random.rand(1024, 1024)
 print(sess.run(y, feed_dict={x: rand_array})) # Will succeed.

Args:

		dtype: The type of elements in the tensor to be fed.

		shape: The shape of the tensor to be fed (optional). If the shape is not
specified, you can feed a tensor of any shape.

		name: A name for the operation (optional).

Returns:

A Tensor that may be used as a handle for feeding a value, but not
evaluated directly.

tf.placeholder_with_default(input, shape, name=None) {#placeholder_with_default}

A placeholder op that passes though input when its output is not fed.

Args:

		input: A Tensor. The default value to produce when output is not fed.

		shape: A tf.TensorShape or list of ints.
The (possibly partial) shape of the tensor.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
A placeholder tensor that defaults to input if it is not fed.

For feeding SparseTensors which are composite type,
there is a convenience function:

tf.sparse_placeholder(dtype, shape=None, name=None) {#sparse_placeholder}

Inserts a placeholder for a sparse tensor that will be always fed.

Important: This sparse tensor will produce an error if evaluated.
Its value must be fed using the feed_dict optional argument to
Session.run(), Tensor.eval(), or Operation.run().

For example:

x = tf.sparse_placeholder(tf.float32)
y = tf.sparse_reduce_sum(x)

with tf.Session() as sess:
 print(sess.run(y)) # ERROR: will fail because x was not fed.

 indices = np.array([[3, 2, 0], [4, 5, 1]], dtype=np.int64)
 values = np.array([1.0, 2.0], dtype=np.float32)
 shape = np.array([7, 9, 2], dtype=np.int64)
 print(sess.run(y, feed_dict={
 x: tf.SparseTensorValue(indices, values, shape)})) # Will succeed.
 print(sess.run(y, feed_dict={
 x: (indices, values, shape)})) # Will succeed.

 sp = tf.SparseTensor(indices=indices, values=values, shape=shape)
 sp_value = sp.eval(session)
 print(sess.run(y, feed_dict={x: sp_value})) # Will succeed.

Args:

		dtype: The type of values elements in the tensor to be fed.

		shape: The shape of the tensor to be fed (optional). If the shape is not
specified, you can feed a sparse tensor of any shape.

		name: A name for prefixing the operations (optional).

Returns:

A SparseTensor that may be used as a handle for feeding a value, but not
evaluated directly.

Readers

TensorFlow provides a set of Reader classes for reading data formats.
For more information on inputs and readers, see Reading
data.

class tf.ReaderBase {#ReaderBase}

Base class for different Reader types, that produce a record every step.

Conceptually, Readers convert string ‘work units’ into records (key,
value pairs). Typically the ‘work units’ are filenames and the
records are extracted from the contents of those files. We want a
single record produced per step, but a work unit can correspond to
many records.

Therefore we introduce some decoupling using a queue. The queue
contains the work units and the Reader dequeues from the queue when
it is asked to produce a record (via Read()) but it has finished the
last work unit.

tf.ReaderBase.__init__(reader_ref, supports_serialize=False) {#ReaderBase.init}

Creates a new ReaderBase.

Args:

		reader_ref: The operation that implements the reader.

		supports_serialize: True if the reader implementation can
serialize its state.

tf.ReaderBase.num_records_produced(name=None) {#ReaderBase.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.ReaderBase.num_work_units_completed(name=None) {#ReaderBase.num_work_units_completed}

Returns the number of work units this reader has finished processing.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.ReaderBase.read(queue, name=None) {#ReaderBase.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

		key: A string scalar Tensor.

		value: A string scalar Tensor.

tf.ReaderBase.read_up_to(queue, num_records, name=None) {#ReaderBase.read_up_to}

Returns up to num_records (key, value pairs) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g., when the
Reader needs to start reading from a new file since it has
finished with the previous file).
It may return less than num_records even before the last batch.

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		num_records: Number of records to read.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (keys, values).

		keys: A 1-D string Tensor.

		values: A 1-D string Tensor.

tf.ReaderBase.reader_ref {#ReaderBase.reader_ref}

Op that implements the reader.

tf.ReaderBase.reset(name=None) {#ReaderBase.reset}

Restore a reader to its initial clean state.

Args:

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.ReaderBase.restore_state(state, name=None) {#ReaderBase.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

		state: A string Tensor.
Result of a SerializeState of a Reader with matching type.

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.ReaderBase.serialize_state(name=None) {#ReaderBase.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

		name: A name for the operation (optional).

Returns:

A string Tensor.

tf.ReaderBase.supports_serialize {#ReaderBase.supports_serialize}

Whether the Reader implementation can serialize its state.

class tf.TextLineReader {#TextLineReader}

A Reader that outputs the lines of a file delimited by newlines.

Newlines are stripped from the output.
See ReaderBase for supported methods.

tf.TextLineReader.__init__(skip_header_lines=None, name=None) {#TextLineReader.init}

Create a TextLineReader.

Args:

		skip_header_lines: An optional int. Defaults to 0. Number of lines
to skip from the beginning of every file.

		name: A name for the operation (optional).

tf.TextLineReader.num_records_produced(name=None) {#TextLineReader.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.TextLineReader.num_work_units_completed(name=None) {#TextLineReader.num_work_units_completed}

Returns the number of work units this reader has finished processing.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.TextLineReader.read(queue, name=None) {#TextLineReader.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

		key: A string scalar Tensor.

		value: A string scalar Tensor.

tf.TextLineReader.read_up_to(queue, num_records, name=None) {#TextLineReader.read_up_to}

Returns up to num_records (key, value pairs) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g., when the
Reader needs to start reading from a new file since it has
finished with the previous file).
It may return less than num_records even before the last batch.

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		num_records: Number of records to read.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (keys, values).

		keys: A 1-D string Tensor.

		values: A 1-D string Tensor.

tf.TextLineReader.reader_ref {#TextLineReader.reader_ref}

Op that implements the reader.

tf.TextLineReader.reset(name=None) {#TextLineReader.reset}

Restore a reader to its initial clean state.

Args:

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.TextLineReader.restore_state(state, name=None) {#TextLineReader.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

		state: A string Tensor.
Result of a SerializeState of a Reader with matching type.

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.TextLineReader.serialize_state(name=None) {#TextLineReader.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

		name: A name for the operation (optional).

Returns:

A string Tensor.

tf.TextLineReader.supports_serialize {#TextLineReader.supports_serialize}

Whether the Reader implementation can serialize its state.

class tf.WholeFileReader {#WholeFileReader}

A Reader that outputs the entire contents of a file as a value.

To use, enqueue filenames in a Queue. The output of Read will
be a filename (key) and the contents of that file (value).

See ReaderBase for supported methods.

tf.WholeFileReader.__init__(name=None) {#WholeFileReader.init}

Create a WholeFileReader.

Args:

		name: A name for the operation (optional).

tf.WholeFileReader.num_records_produced(name=None) {#WholeFileReader.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.WholeFileReader.num_work_units_completed(name=None) {#WholeFileReader.num_work_units_completed}

Returns the number of work units this reader has finished processing.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.WholeFileReader.read(queue, name=None) {#WholeFileReader.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

		key: A string scalar Tensor.

		value: A string scalar Tensor.

tf.WholeFileReader.read_up_to(queue, num_records, name=None) {#WholeFileReader.read_up_to}

Returns up to num_records (key, value pairs) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g., when the
Reader needs to start reading from a new file since it has
finished with the previous file).
It may return less than num_records even before the last batch.

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		num_records: Number of records to read.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (keys, values).

		keys: A 1-D string Tensor.

		values: A 1-D string Tensor.

tf.WholeFileReader.reader_ref {#WholeFileReader.reader_ref}

Op that implements the reader.

tf.WholeFileReader.reset(name=None) {#WholeFileReader.reset}

Restore a reader to its initial clean state.

Args:

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.WholeFileReader.restore_state(state, name=None) {#WholeFileReader.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

		state: A string Tensor.
Result of a SerializeState of a Reader with matching type.

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.WholeFileReader.serialize_state(name=None) {#WholeFileReader.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

		name: A name for the operation (optional).

Returns:

A string Tensor.

tf.WholeFileReader.supports_serialize {#WholeFileReader.supports_serialize}

Whether the Reader implementation can serialize its state.

class tf.IdentityReader {#IdentityReader}

A Reader that outputs the queued work as both the key and value.

To use, enqueue strings in a Queue. Read will take the front
work string and output (work, work).

See ReaderBase for supported methods.

tf.IdentityReader.__init__(name=None) {#IdentityReader.init}

Create a IdentityReader.

Args:

		name: A name for the operation (optional).

tf.IdentityReader.num_records_produced(name=None) {#IdentityReader.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.IdentityReader.num_work_units_completed(name=None) {#IdentityReader.num_work_units_completed}

Returns the number of work units this reader has finished processing.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.IdentityReader.read(queue, name=None) {#IdentityReader.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

		key: A string scalar Tensor.

		value: A string scalar Tensor.

tf.IdentityReader.read_up_to(queue, num_records, name=None) {#IdentityReader.read_up_to}

Returns up to num_records (key, value pairs) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g., when the
Reader needs to start reading from a new file since it has
finished with the previous file).
It may return less than num_records even before the last batch.

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		num_records: Number of records to read.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (keys, values).

		keys: A 1-D string Tensor.

		values: A 1-D string Tensor.

tf.IdentityReader.reader_ref {#IdentityReader.reader_ref}

Op that implements the reader.

tf.IdentityReader.reset(name=None) {#IdentityReader.reset}

Restore a reader to its initial clean state.

Args:

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.IdentityReader.restore_state(state, name=None) {#IdentityReader.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

		state: A string Tensor.
Result of a SerializeState of a Reader with matching type.

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.IdentityReader.serialize_state(name=None) {#IdentityReader.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

		name: A name for the operation (optional).

Returns:

A string Tensor.

tf.IdentityReader.supports_serialize {#IdentityReader.supports_serialize}

Whether the Reader implementation can serialize its state.

class tf.TFRecordReader {#TFRecordReader}

A Reader that outputs the records from a TFRecords file.

See ReaderBase for supported methods.

tf.TFRecordReader.__init__(name=None, options=None) {#TFRecordReader.init}

Create a TFRecordReader.

Args:

		name: A name for the operation (optional).

		options: A TFRecordOptions object (optional).

tf.TFRecordReader.num_records_produced(name=None) {#TFRecordReader.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.TFRecordReader.num_work_units_completed(name=None) {#TFRecordReader.num_work_units_completed}

Returns the number of work units this reader has finished processing.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.TFRecordReader.read(queue, name=None) {#TFRecordReader.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

		key: A string scalar Tensor.

		value: A string scalar Tensor.

tf.TFRecordReader.read_up_to(queue, num_records, name=None) {#TFRecordReader.read_up_to}

Returns up to num_records (key, value pairs) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g., when the
Reader needs to start reading from a new file since it has
finished with the previous file).
It may return less than num_records even before the last batch.

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		num_records: Number of records to read.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (keys, values).

		keys: A 1-D string Tensor.

		values: A 1-D string Tensor.

tf.TFRecordReader.reader_ref {#TFRecordReader.reader_ref}

Op that implements the reader.

tf.TFRecordReader.reset(name=None) {#TFRecordReader.reset}

Restore a reader to its initial clean state.

Args:

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.TFRecordReader.restore_state(state, name=None) {#TFRecordReader.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

		state: A string Tensor.
Result of a SerializeState of a Reader with matching type.

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.TFRecordReader.serialize_state(name=None) {#TFRecordReader.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

		name: A name for the operation (optional).

Returns:

A string Tensor.

tf.TFRecordReader.supports_serialize {#TFRecordReader.supports_serialize}

Whether the Reader implementation can serialize its state.

class tf.FixedLengthRecordReader {#FixedLengthRecordReader}

A Reader that outputs fixed-length records from a file.

See ReaderBase for supported methods.

tf.FixedLengthRecordReader.__init__(record_bytes, header_bytes=None, footer_bytes=None, name=None) {#FixedLengthRecordReader.init}

Create a FixedLengthRecordReader.

Args:

		record_bytes: An int.

		header_bytes: An optional int. Defaults to 0.

		footer_bytes: An optional int. Defaults to 0.

		name: A name for the operation (optional).

tf.FixedLengthRecordReader.num_records_produced(name=None) {#FixedLengthRecordReader.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.FixedLengthRecordReader.num_work_units_completed(name=None) {#FixedLengthRecordReader.num_work_units_completed}

Returns the number of work units this reader has finished processing.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.FixedLengthRecordReader.read(queue, name=None) {#FixedLengthRecordReader.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

		key: A string scalar Tensor.

		value: A string scalar Tensor.

tf.FixedLengthRecordReader.read_up_to(queue, num_records, name=None) {#FixedLengthRecordReader.read_up_to}

Returns up to num_records (key, value pairs) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g., when the
Reader needs to start reading from a new file since it has
finished with the previous file).
It may return less than num_records even before the last batch.

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		num_records: Number of records to read.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (keys, values).

		keys: A 1-D string Tensor.

		values: A 1-D string Tensor.

tf.FixedLengthRecordReader.reader_ref {#FixedLengthRecordReader.reader_ref}

Op that implements the reader.

tf.FixedLengthRecordReader.reset(name=None) {#FixedLengthRecordReader.reset}

Restore a reader to its initial clean state.

Args:

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.FixedLengthRecordReader.restore_state(state, name=None) {#FixedLengthRecordReader.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

		state: A string Tensor.
Result of a SerializeState of a Reader with matching type.

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.FixedLengthRecordReader.serialize_state(name=None) {#FixedLengthRecordReader.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

		name: A name for the operation (optional).

Returns:

A string Tensor.

tf.FixedLengthRecordReader.supports_serialize {#FixedLengthRecordReader.supports_serialize}

Whether the Reader implementation can serialize its state.

Converting

TensorFlow provides several operations that you can use to convert various data
formats into tensors.

tf.decode_csv(records, record_defaults, field_delim=None, name=None) {#decode_csv}

Convert CSV records to tensors. Each column maps to one tensor.

RFC 4180 format is expected for the CSV records.
(https://tools.ietf.org/html/rfc4180)
Note that we allow leading and trailing spaces with int or float field.

Args:

		records: A Tensor of type string.
Each string is a record/row in the csv and all records should have
the same format.

		record_defaults: A list of Tensor objects with types from: float32, int32, int64, string.
One tensor per column of the input record, with either a
scalar default value for that column or empty if the column is required.

		field_delim: An optional string. Defaults to ",".
delimiter to separate fields in a record.

		name: A name for the operation (optional).

Returns:

A list of Tensor objects. Has the same type as record_defaults.
Each tensor will have the same shape as records.

tf.decode_raw(bytes, out_type, little_endian=None, name=None) {#decode_raw}

Reinterpret the bytes of a string as a vector of numbers.

Args:

		bytes: A Tensor of type string.
All the elements must have the same length.

		out_type: A tf.DType from: tf.float32, tf.float64, tf.int32, tf.uint8, tf.int16, tf.int8, tf.int64.

		little_endian: An optional bool. Defaults to True.
Whether the input bytes are in little-endian order.
Ignored for out_type values that are stored in a single byte like
uint8.

		name: A name for the operation (optional).

Returns:

A Tensor of type out_type.
A Tensor with one more dimension than the input bytes. The
added dimension will have size equal to the length of the elements
of bytes divided by the number of bytes to represent out_type.

Example protocol buffer

TensorFlow’s recommended format for training
examples
is serialized Example protocol buffers, described
here [https://www.tensorflow.org/code/tensorflow/core/example/example.proto].
They contain Features, described
here [https://www.tensorflow.org/code/tensorflow/core/example/feature.proto].

class tf.VarLenFeature {#VarLenFeature}

Configuration for parsing a variable-length input feature.

Fields:
dtype: Data type of input.

tf.VarLenFeature.__getnewargs__() {#VarLenFeature.getnewargs}

Return self as a plain tuple. Used by copy and pickle.

tf.VarLenFeature.__getstate__() {#VarLenFeature.getstate}

Exclude the OrderedDict from pickling

tf.VarLenFeature.__new__(_cls, dtype) {#VarLenFeature.new}

Create new instance of VarLenFeature(dtype,)

tf.VarLenFeature.__repr__() {#VarLenFeature.repr}

Return a nicely formatted representation string

tf.VarLenFeature.dtype {#VarLenFeature.dtype}

Alias for field number 0

class tf.FixedLenFeature {#FixedLenFeature}

Configuration for parsing a fixed-length input feature.

To treat sparse input as dense, provide a default_value; otherwise,
the parse functions will fail on any examples missing this feature.

Fields:
shape: Shape of input data.
dtype: Data type of input.
default_value: Value to be used if an example is missing this feature. It
must be compatible with dtype.

tf.FixedLenFeature.__getnewargs__() {#FixedLenFeature.getnewargs}

Return self as a plain tuple. Used by copy and pickle.

tf.FixedLenFeature.__getstate__() {#FixedLenFeature.getstate}

Exclude the OrderedDict from pickling

tf.FixedLenFeature.__new__(_cls, shape, dtype, default_value=None) {#FixedLenFeature.new}

Create new instance of FixedLenFeature(shape, dtype, default_value)

tf.FixedLenFeature.__repr__() {#FixedLenFeature.repr}

Return a nicely formatted representation string

tf.FixedLenFeature.default_value {#FixedLenFeature.default_value}

Alias for field number 2

tf.FixedLenFeature.dtype {#FixedLenFeature.dtype}

Alias for field number 1

tf.FixedLenFeature.shape {#FixedLenFeature.shape}

Alias for field number 0

class tf.FixedLenSequenceFeature {#FixedLenSequenceFeature}

Configuration for a dense input feature in a sequence item.

To treat a sparse input as dense, provide allow_missing=True; otherwise,
the parse functions will fail on any examples missing this feature.

Fields:
shape: Shape of input data.
dtype: Data type of input.
allow_missing: Whether to allow this feature to be missing from a feature
list item.

tf.FixedLenSequenceFeature.__getnewargs__() {#FixedLenSequenceFeature.getnewargs}

Return self as a plain tuple. Used by copy and pickle.

tf.FixedLenSequenceFeature.__getstate__() {#FixedLenSequenceFeature.getstate}

Exclude the OrderedDict from pickling

tf.FixedLenSequenceFeature.__new__(_cls, shape, dtype, allow_missing=False) {#FixedLenSequenceFeature.new}

Create new instance of FixedLenSequenceFeature(shape, dtype, allow_missing)

tf.FixedLenSequenceFeature.__repr__() {#FixedLenSequenceFeature.repr}

Return a nicely formatted representation string

tf.FixedLenSequenceFeature.allow_missing {#FixedLenSequenceFeature.allow_missing}

Alias for field number 2

tf.FixedLenSequenceFeature.dtype {#FixedLenSequenceFeature.dtype}

Alias for field number 1

tf.FixedLenSequenceFeature.shape {#FixedLenSequenceFeature.shape}

Alias for field number 0

tf.parse_example(serialized, features, name=None, example_names=None) {#parse_example}

Parses Example protos into a dict of tensors.

Parses a number of serialized [Example]
(https://www.tensorflow.org/code/tensorflow/core/example/example.proto)
protos given in serialized.

example_names may contain descriptive names for the corresponding serialized
protos. These may be useful for debugging purposes, but they have no effect on
the output. If not None, example_names must be the same length as serialized.

This op parses serialized examples into a dictionary mapping keys to Tensor
and SparseTensor objects. features is a dict from keys to VarLenFeature
and FixedLenFeature objects. Each VarLenFeature is mapped to a
SparseTensor, and each FixedLenFeature is mapped to a Tensor.

Each VarLenFeature maps to a SparseTensor of the specified type
representing a ragged matrix. Its indices are [batch, index] where batch
is the batch entry the value is from in serialized, and index is the
value’s index in the list of values associated with that feature and example.

Each FixedLenFeature df maps to a Tensor of the specified type (or
tf.float32 if not specified) and shape (serialized.size(),) + df.shape.

FixedLenFeature entries with a default_value are optional. With no default
value, we will fail if that Feature is missing from any example in
serialized.

Examples:

For example, if one expects a tf.float32 sparse feature ft and three
serialized Examples are provided:

serialized = [
 features
 { feature { key: "ft" value { float_list { value: [1.0, 2.0] } } } },
 features
 { feature []},
 features
 { feature { key: "ft" value { float_list { value: [3.0] } } }
]

then the output will look like:

{"ft": SparseTensor(indices=[[0, 0], [0, 1], [2, 0]],
 values=[1.0, 2.0, 3.0],
 shape=(3, 2)) }

Given two Example input protos in serialized:

[
 features {
 feature { key: "kw" value { bytes_list { value: ["knit", "big"] } } }
 feature { key: "gps" value { float_list { value: [] } } }
 },
 features {
 feature { key: "kw" value { bytes_list { value: ["emmy"] } } }
 feature { key: "dank" value { int64_list { value: [42] } } }
 feature { key: "gps" value { } }
 }
]

And arguments

example_names: ["input0", "input1"],
features: {
 "kw": VarLenFeature(tf.string),
 "dank": VarLenFeature(tf.int64),
 "gps": VarLenFeature(tf.float32),
}

Then the output is a dictionary:

{
 "kw": SparseTensor(
 indices=[[0, 0], [0, 1], [1, 0]],
 values=["knit", "big", "emmy"]
 shape=[2, 2]),
 "dank": SparseTensor(
 indices=[[1, 0]],
 values=[42],
 shape=[2, 1]),
 "gps": SparseTensor(
 indices=[],
 values=[],
 shape=[2, 0]),
}

For dense results in two serialized Examples:

[
 features {
 feature { key: "age" value { int64_list { value: [0] } } }
 feature { key: "gender" value { bytes_list { value: ["f"] } } }
 },
 features {
 feature { key: "age" value { int64_list { value: [] } } }
 feature { key: "gender" value { bytes_list { value: ["f"] } } }
 }
]

We can use arguments:

example_names: ["input0", "input1"],
features: {
 "age": FixedLenFeature([], dtype=tf.int64, default_value=-1),
 "gender": FixedLenFeature([], dtype=tf.string),
}

And the expected output is:

{
 "age": [[0], [-1]],
 "gender": [["f"], ["f"]],
}

Args:

		serialized: A vector (1-D Tensor) of strings, a batch of binary
serialized Example protos.

		features: A dict mapping feature keys to FixedLenFeature or
VarLenFeature values.

		name: A name for this operation (optional).

		example_names: A vector (1-D Tensor) of strings (optional), the names of
the serialized protos in the batch.

Returns:

A dict mapping feature keys to Tensor and SparseTensor values.

Raises:

		ValueError: if any feature is invalid.

tf.parse_single_example(serialized, features, name=None, example_names=None) {#parse_single_example}

Parses a single Example proto.

Similar to parse_example, except:

For dense tensors, the returned Tensor is identical to the output of
parse_example, except there is no batch dimension, the output shape is the
same as the shape given in dense_shape.

For SparseTensors, the first (batch) column of the indices matrix is removed
(the indices matrix is a column vector), the values vector is unchanged, and
the first (batch_size) entry of the shape vector is removed (it is now a
single element vector).

Args:

		serialized: A scalar string Tensor, a single serialized Example.
See _parse_single_example_raw documentation for more details.

		features: A dict mapping feature keys to FixedLenFeature or
VarLenFeature values.

		name: A name for this operation (optional).

		example_names: (Optional) A scalar string Tensor, the associated name.
See _parse_single_example_raw documentation for more details.

Returns:

A dict mapping feature keys to Tensor and SparseTensor values.

Raises:

		ValueError: if any feature is invalid.

tf.parse_tensor(serialized, out_type, name=None) {#parse_tensor}

Transforms a serialized tensorflow.TensorProto proto into a Tensor.

Args:

		serialized: A Tensor of type string.
A scalar string containing a serialized TensorProto proto.

		out_type: A tf.DType.
The type of the serialized tensor. The provided type must match the
type of the serialized tensor and no implicit conversion will take place.

		name: A name for the operation (optional).

Returns:

A Tensor of type out_type. A Tensor of type out_type.

tf.decode_json_example(json_examples, name=None) {#decode_json_example}

Convert JSON-encoded Example records to binary protocol buffer strings.

This op translates a tensor containing Example records, encoded using
the standard JSON
mapping [https://developers.google.com/protocol-buffers/docs/proto3#json],
into a tensor containing the same records encoded as binary protocol
buffers. The resulting tensor can then be fed to any of the other
Example-parsing ops.

Args:

		json_examples: A Tensor of type string.
Each string is a JSON object serialized according to the JSON
mapping of the Example proto.

		name: A name for the operation (optional).

Returns:

A Tensor of type string.
Each string is a binary Example protocol buffer corresponding
to the respective element of json_examples.

Queues

TensorFlow provides several implementations of ‘Queues’, which are
structures within the TensorFlow computation graph to stage pipelines
of tensors together. The following describe the basic Queue interface
and some implementations. To see an example use, see Threading and
Queues.

class tf.QueueBase {#QueueBase}

Base class for queue implementations.

A queue is a TensorFlow data structure that stores tensors across
multiple steps, and exposes operations that enqueue and dequeue
tensors.

Each queue element is a tuple of one or more tensors, where each
tuple component has a static dtype, and may have a static shape. The
queue implementations support versions of enqueue and dequeue that
handle single elements, versions that support enqueuing and
dequeuing a batch of elements at once.

See tf.FIFOQueue and
tf.RandomShuffleQueue for concrete
implementations of this class, and instructions on how to create
them.

tf.QueueBase.enqueue(vals, name=None) {#QueueBase.enqueue}

Enqueues one element to this queue.

If the queue is full when this operation executes, it will block
until the element has been enqueued.

At runtime, this operation may raise an error if the queue is
closed before or during its execution. If the
queue is closed before this operation runs,
tf.errors.CancelledError will be raised. If this operation is
blocked, and either (i) the queue is closed by a close operation
with cancel_pending_enqueues=True, or (ii) the session is
closed,
tf.errors.CancelledError will be raised.

Args:

		vals: A tensor, a list or tuple of tensors, or a dictionary containing
the values to enqueue.

		name: A name for the operation (optional).

Returns:

The operation that enqueues a new tuple of tensors to the queue.

tf.QueueBase.enqueue_many(vals, name=None) {#QueueBase.enqueue_many}

Enqueues zero or more elements to this queue.

This operation slices each component tensor along the 0th dimension to
make multiple queue elements. All of the tensors in vals must have the
same size in the 0th dimension.

If the queue is full when this operation executes, it will block
until all of the elements have been enqueued.

At runtime, this operation may raise an error if the queue is
closed before or during its execution. If the
queue is closed before this operation runs,
tf.errors.CancelledError will be raised. If this operation is
blocked, and either (i) the queue is closed by a close operation
with cancel_pending_enqueues=True, or (ii) the session is
closed,
tf.errors.CancelledError will be raised.

Args:

		vals: A tensor, a list or tuple of tensors, or a dictionary
from which the queue elements are taken.

		name: A name for the operation (optional).

Returns:

The operation that enqueues a batch of tuples of tensors to the queue.

tf.QueueBase.dequeue(name=None) {#QueueBase.dequeue}

Dequeues one element from this queue.

If the queue is empty when this operation executes, it will block
until there is an element to dequeue.

At runtime, this operation may raise an error if the queue is
closed before or during its execution. If the
queue is closed, the queue is empty, and there are no pending
enqueue operations that can fulfil this request,
tf.errors.OutOfRangeError will be raised. If the session is
closed,
tf.errors.CancelledError will be raised.

Args:

		name: A name for the operation (optional).

Returns:

The tuple of tensors that was dequeued.

tf.QueueBase.dequeue_many(n, name=None) {#QueueBase.dequeue_many}

Dequeues and concatenates n elements from this queue.

This operation concatenates queue-element component tensors along
the 0th dimension to make a single component tensor. All of the
components in the dequeued tuple will have size n in the 0th dimension.

If the queue is closed and there are less than n elements left, then an
OutOfRange exception is raised.

At runtime, this operation may raise an error if the queue is
closed before or during its execution. If the
queue is closed, the queue contains fewer than n elements, and
there are no pending enqueue operations that can fulfil this
request, tf.errors.OutOfRangeError will be raised. If the
session is closed,
tf.errors.CancelledError will be raised.

Args:

		n: A scalar Tensor containing the number of elements to dequeue.

		name: A name for the operation (optional).

Returns:

The tuple of concatenated tensors that was dequeued.

tf.QueueBase.size(name=None) {#QueueBase.size}

Compute the number of elements in this queue.

Args:

		name: A name for the operation (optional).

Returns:

A scalar tensor containing the number of elements in this queue.

tf.QueueBase.close(cancel_pending_enqueues=False, name=None) {#QueueBase.close}

Closes this queue.

This operation signals that no more elements will be enqueued in
the given queue. Subsequent enqueue and enqueue_many
operations will fail. Subsequent dequeue and dequeue_many
operations will continue to succeed if sufficient elements remain
in the queue. Subsequent dequeue and dequeue_many operations
that would block will fail immediately.

If cancel_pending_enqueues is True, all pending requests will also
be cancelled.

Args:

		cancel_pending_enqueues: (Optional.) A boolean, defaulting to
False (described above).

		name: A name for the operation (optional).

Returns:

The operation that closes the queue.

Other Methods

tf.QueueBase.__init__(dtypes, shapes, names, queue_ref) {#QueueBase.init}

Constructs a queue object from a queue reference.

The two optional lists, shapes and names, must be of the same length
as dtypes if provided. The values at a given index i indicate the
shape and name to use for the corresponding queue component in dtypes.

Args:

		dtypes: A list of types. The length of dtypes must equal the number
of tensors in each element.

		shapes: Constraints on the shapes of tensors in an element:
A list of shape tuples or None. This list is the same length
as dtypes. If the shape of any tensors in the element are constrained,
all must be; shapes can be None if the shapes should not be constrained.

		names: Optional list of names. If provided, the enqueue() and
dequeue() methods will use dictionaries with these names as keys.
Must be None or a list or tuple of the same length as dtypes.

		queue_ref: The queue reference, i.e. the output of the queue op.

Raises:

		ValueError: If one of the arguments is invalid.

tf.QueueBase.dequeue_up_to(n, name=None) {#QueueBase.dequeue_up_to}

Dequeues and concatenates n elements from this queue.

Note This operation is not supported by all queues. If a queue does not
support DequeueUpTo, then a tf.errors.UnimplementedError is raised.

This operation concatenates queue-element component tensors along
the 0th dimension to make a single component tensor. If the queue
has not been closed, all of the components in the dequeued tuple
will have size n in the 0th dimension.

If the queue is closed and there are more than 0 but fewer than
n elements remaining, then instead of raising a
tf.errors.OutOfRangeError like dequeue_many,
less than n elements are returned immediately. If the queue is
closed and there are 0 elements left in the queue, then a
tf.errors.OutOfRangeError is raised just like in dequeue_many.
Otherwise the behavior is identical to dequeue_many.

Args:

		n: A scalar Tensor containing the number of elements to dequeue.

		name: A name for the operation (optional).

Returns:

The tuple of concatenated tensors that was dequeued.

tf.QueueBase.dtypes {#QueueBase.dtypes}

The list of dtypes for each component of a queue element.

tf.QueueBase.from_list(index, queues) {#QueueBase.from_list}

Create a queue using the queue reference from queues[index].

Args:

		index: An integer scalar tensor that determines the input that gets
selected.

		queues: A list of QueueBase objects.

Returns:

A QueueBase object.

Raises:

		TypeError: When queues is not a list of QueueBase objects,
or when the data types of queues are not all the same.

tf.QueueBase.name {#QueueBase.name}

The name of the underlying queue.

tf.QueueBase.names {#QueueBase.names}

The list of names for each component of a queue element.

tf.QueueBase.queue_ref {#QueueBase.queue_ref}

The underlying queue reference.

tf.QueueBase.shapes {#QueueBase.shapes}

The list of shapes for each component of a queue element.

class tf.FIFOQueue {#FIFOQueue}

A queue implementation that dequeues elements in first-in first-out order.

See tf.QueueBase for a description of the methods on
this class.

tf.FIFOQueue.__init__(capacity, dtypes, shapes=None, names=None, shared_name=None, name='fifo_queue') {#FIFOQueue.init}

Creates a queue that dequeues elements in a first-in first-out order.

A FIFOQueue has bounded capacity; supports multiple concurrent
producers and consumers; and provides exactly-once delivery.

A FIFOQueue holds a list of up to capacity elements. Each
element is a fixed-length tuple of tensors whose dtypes are
described by dtypes, and whose shapes are optionally described
by the shapes argument.

If the shapes argument is specified, each component of a queue
element must have the respective fixed shape. If it is
unspecified, different queue elements may have different shapes,
but the use of dequeue_many is disallowed.

Args:

		capacity: An integer. The upper bound on the number of elements
that may be stored in this queue.

		dtypes: A list of DType objects. The length of dtypes must equal
the number of tensors in each queue element.

		shapes: (Optional.) A list of fully-defined TensorShape objects
with the same length as dtypes, or None.

		names: (Optional.) A list of string naming the components in the queue
with the same length as dtypes, or None. If specified the dequeue
methods return a dictionary with the names as keys.

		shared_name: (Optional.) If non-empty, this queue will be shared under
the given name across multiple sessions.

		name: Optional name for the queue operation.

class tf.PaddingFIFOQueue {#PaddingFIFOQueue}

A FIFOQueue that supports batching variable-sized tensors by padding.

A PaddingFIFOQueue may contain components with dynamic shape, while also
supporting dequeue_many. See the constructor for more details.

See tf.QueueBase for a description of the methods on
this class.

tf.PaddingFIFOQueue.__init__(capacity, dtypes, shapes, names=None, shared_name=None, name='padding_fifo_queue') {#PaddingFIFOQueue.init}

Creates a queue that dequeues elements in a first-in first-out order.

A PaddingFIFOQueue has bounded capacity; supports multiple concurrent
producers and consumers; and provides exactly-once delivery.

A PaddingFIFOQueue holds a list of up to capacity elements. Each
element is a fixed-length tuple of tensors whose dtypes are
described by dtypes, and whose shapes are described by the shapes
argument.

The shapes argument must be specified; each component of a queue
element must have the respective shape. Shapes of fixed
rank but variable size are allowed by setting any shape dimension to None.
In this case, the inputs’ shape may vary along the given dimension, and
dequeue_many will pad the given dimension with zeros up to the maximum
shape of all elements in the given batch.

Args:

		capacity: An integer. The upper bound on the number of elements
that may be stored in this queue.

		dtypes: A list of DType objects. The length of dtypes must equal
the number of tensors in each queue element.

		shapes: A list of TensorShape objects, with the same length as
dtypes. Any dimension in the TensorShape containing value
None is dynamic and allows values to be enqueued with
variable size in that dimension.

		names: (Optional.) A list of string naming the components in the queue
with the same length as dtypes, or None. If specified the dequeue
methods return a dictionary with the names as keys.

		shared_name: (Optional.) If non-empty, this queue will be shared under
the given name across multiple sessions.

		name: Optional name for the queue operation.

Raises:

		ValueError: If shapes is not a list of shapes, or the lengths of dtypes
and shapes do not match, or if names is specified and the lengths of
dtypes and names do not match.

class tf.RandomShuffleQueue {#RandomShuffleQueue}

A queue implementation that dequeues elements in a random order.

See tf.QueueBase for a description of the methods on
this class.

tf.RandomShuffleQueue.__init__(capacity, min_after_dequeue, dtypes, shapes=None, names=None, seed=None, shared_name=None, name='random_shuffle_queue') {#RandomShuffleQueue.init}

Create a queue that dequeues elements in a random order.

A RandomShuffleQueue has bounded capacity; supports multiple
concurrent producers and consumers; and provides exactly-once
delivery.

A RandomShuffleQueue holds a list of up to capacity
elements. Each element is a fixed-length tuple of tensors whose
dtypes are described by dtypes, and whose shapes are optionally
described by the shapes argument.

If the shapes argument is specified, each component of a queue
element must have the respective fixed shape. If it is
unspecified, different queue elements may have different shapes,
but the use of dequeue_many is disallowed.

The min_after_dequeue argument allows the caller to specify a
minimum number of elements that will remain in the queue after a
dequeue or dequeue_many operation completes, to ensure a
minimum level of mixing of elements. This invariant is maintained
by blocking those operations until sufficient elements have been
enqueued. The min_after_dequeue argument is ignored after the
queue has been closed.

Args:

		capacity: An integer. The upper bound on the number of elements
that may be stored in this queue.

		min_after_dequeue: An integer (described above).

		dtypes: A list of DType objects. The length of dtypes must equal
the number of tensors in each queue element.

		shapes: (Optional.) A list of fully-defined TensorShape objects
with the same length as dtypes, or None.

		names: (Optional.) A list of string naming the components in the queue
with the same length as dtypes, or None. If specified the dequeue
methods return a dictionary with the names as keys.

		seed: A Python integer. Used to create a random seed. See
set_random_seed
for behavior.

		shared_name: (Optional.) If non-empty, this queue will be shared under
the given name across multiple sessions.

		name: Optional name for the queue operation.

class tf.PriorityQueue {#PriorityQueue}

A queue implementation that dequeues elements in prioritized order.

See tf.QueueBase for a description of the methods on
this class.

tf.PriorityQueue.__init__(capacity, types, shapes=None, names=None, shared_name=None, name='priority_queue') {#PriorityQueue.init}

Creates a queue that dequeues elements in a first-in first-out order.

A PriorityQueue has bounded capacity; supports multiple concurrent
producers and consumers; and provides exactly-once delivery.

A PriorityQueue holds a list of up to capacity elements. Each
element is a fixed-length tuple of tensors whose dtypes are
described by types, and whose shapes are optionally described
by the shapes argument.

If the shapes argument is specified, each component of a queue
element must have the respective fixed shape. If it is
unspecified, different queue elements may have different shapes,
but the use of dequeue_many is disallowed.

Enqueues and Dequeues to the PriorityQueue must include an additional
tuple entry at the beginning: the priority. The priority must be
an int64 scalar (for enqueue) or an int64 vector (for enqueue_many).

Args:

		capacity: An integer. The upper bound on the number of elements
that may be stored in this queue.

		types: A list of DType objects. The length of types must equal
the number of tensors in each queue element, except the first priority
element. The first tensor in each element is the priority,
which must be type int64.

		shapes: (Optional.) A list of fully-defined TensorShape objects,
with the same length as types, or None.

		names: (Optional.) A list of strings naming the components in the queue
with the same length as dtypes, or None. If specified, the dequeue
methods return a dictionary with the names as keys.

		shared_name: (Optional.) If non-empty, this queue will be shared under
the given name across multiple sessions.

		name: Optional name for the queue operation.

Dealing with the filesystem

tf.matching_files(pattern, name=None) {#matching_files}

Returns the set of files matching a pattern.

Note that this routine only supports wildcard characters in the
basename portion of the pattern, not in the directory portion.

Args:

		pattern: A Tensor of type string. A (scalar) shell wildcard pattern.

		name: A name for the operation (optional).

Returns:

A Tensor of type string. A vector of matching filenames.

tf.read_file(filename, name=None) {#read_file}

Reads and outputs the entire contents of the input filename.

Args:

		filename: A Tensor of type string.

		name: A name for the operation (optional).

Returns:

A Tensor of type string.

Input pipeline

TensorFlow functions for setting up an input-prefetching pipeline.
Please see the reading data how-to
for context.

Beginning of an input pipeline

The “producer” functions add a queue to the graph and a corresponding
QueueRunner for running the subgraph that fills that queue.

tf.train.match_filenames_once(pattern, name=None) {#match_filenames_once}

Save the list of files matching pattern, so it is only computed once.

Args:

		pattern: A file pattern (glob).

		name: A name for the operations (optional).

Returns:

A variable that is initialized to the list of files matching pattern.

tf.train.limit_epochs(tensor, num_epochs=None, name=None) {#limit_epochs}

Returns tensor num_epochs times and then raises an OutOfRange error.

Args:

		tensor: Any Tensor.

		num_epochs: A positive integer (optional). If specified, limits the number
of steps the output tensor may be evaluated.

		name: A name for the operations (optional).

Returns:

tensor or OutOfRange.

Raises:

		ValueError: if num_epochs is invalid.

tf.train.input_producer(input_tensor, element_shape=None, num_epochs=None, shuffle=True, seed=None, capacity=32, shared_name=None, summary_name=None, name=None) {#input_producer}

Output the rows of input_tensor to a queue for an input pipeline.

Args:

		input_tensor: A tensor with the rows to produce. Must be at least
one-dimensional. Must either have a fully-defined shape, or
element_shape must be defined.

		element_shape: (Optional.) A TensorShape representing the shape of a
row of input_tensor, if it cannot be inferred.

		num_epochs: (Optional.) An integer. If specified input_producer produces
each row of input_tensor num_epochs times before generating an
OutOfRange error. If not specified, input_producer can cycle through
the rows of input_tensor an unlimited number of times.

		shuffle: (Optional.) A boolean. If true, the rows are randomly shuffled
within each epoch.

		seed: (Optional.) An integer. The seed to use if shuffle is true.

		capacity: (Optional.) The capacity of the queue to be used for buffering
the input.

		shared_name: (Optional.) If set, this queue will be shared under the given
name across multiple sessions.

		summary_name: (Optional.) If set, a scalar summary for the current queue
size will be generated, using this name as part of the tag.

		name: (Optional.) A name for queue.

Returns:

A queue with the output rows. A QueueRunner for the queue is
added to the current QUEUE_RUNNER collection of the current
graph.

Raises:

		ValueError: If the shape of the input cannot be inferred from the arguments.

tf.train.range_input_producer(limit, num_epochs=None, shuffle=True, seed=None, capacity=32, shared_name=None, name=None) {#range_input_producer}

Produces the integers from 0 to limit-1 in a queue.

Args:

		limit: An int32 scalar tensor.

		num_epochs: An integer (optional). If specified, range_input_producer
produces each integer num_epochs times before generating an
OutOfRange error. If not specified, range_input_producer can cycle
through the integers an unlimited number of times.

		shuffle: Boolean. If true, the integers are randomly shuffled within each
epoch.

		seed: An integer (optional). Seed used if shuffle == True.

		capacity: An integer. Sets the queue capacity.

		shared_name: (optional). If set, this queue will be shared under the given
name across multiple sessions.

		name: A name for the operations (optional).

Returns:

A Queue with the output integers. A QueueRunner for the Queue
is added to the current Graph‘s QUEUE_RUNNER collection.

tf.train.slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None, capacity=32, shared_name=None, name=None) {#slice_input_producer}

Produces a slice of each Tensor in tensor_list.

Implemented using a Queue – a QueueRunner for the Queue
is added to the current Graph‘s QUEUE_RUNNER collection.

Args:

		tensor_list: A list of Tensor objects. Every Tensor in
tensor_list must have the same size in the first dimension.

		num_epochs: An integer (optional). If specified, slice_input_producer
produces each slice num_epochs times before generating
an OutOfRange error. If not specified, slice_input_producer can cycle
through the slices an unlimited number of times.

		shuffle: Boolean. If true, the integers are randomly shuffled within each
epoch.

		seed: An integer (optional). Seed used if shuffle == True.

		capacity: An integer. Sets the queue capacity.

		shared_name: (optional). If set, this queue will be shared under the given
name across multiple sessions.

		name: A name for the operations (optional).

Returns:

A list of tensors, one for each element of tensor_list. If the tensor
in tensor_list has shape [N, a, b, .., z], then the corresponding output
tensor will have shape [a, b, ..., z].

Raises:

		ValueError: if slice_input_producer produces nothing from tensor_list.

tf.train.string_input_producer(string_tensor, num_epochs=None, shuffle=True, seed=None, capacity=32, shared_name=None, name=None) {#string_input_producer}

Output strings (e.g. filenames) to a queue for an input pipeline.

Args:

		string_tensor: A 1-D string tensor with the strings to produce.

		num_epochs: An integer (optional). If specified, string_input_producer
produces each string from string_tensor num_epochs times before
generating an OutOfRange error. If not specified,
string_input_producer can cycle through the strings in string_tensor
an unlimited number of times.

		shuffle: Boolean. If true, the strings are randomly shuffled within each
epoch.

		seed: An integer (optional). Seed used if shuffle == True.

		capacity: An integer. Sets the queue capacity.

		shared_name: (optional). If set, this queue will be shared under the given
name across multiple sessions.

		name: A name for the operations (optional).

Returns:

A queue with the output strings. A QueueRunner for the Queue
is added to the current Graph‘s QUEUE_RUNNER collection.

Raises:

		ValueError: If the string_tensor is a null Python list. At runtime,
will fail with an assertion if string_tensor becomes a null tensor.

Batching at the end of an input pipeline

These functions add a queue to the graph to assemble a batch of
examples, with possible shuffling. They also add a QueueRunner for
running the subgraph that fills that queue.

Use batch or batch_join for batching
examples that have already been well shuffled. Use
shuffle_batch or
shuffle_batch_join for examples that would
benefit from additional shuffling.

Use batch or shuffle_batch if you want a
single thread producing examples to batch, or if you have a
single subgraph producing examples but you want to run it in N threads
(where you increase N until it can keep the queue full). Use
batch_join or shuffle_batch_join
if you have N different subgraphs producing examples to batch and you
want them run by N threads.

tf.train.batch(tensors, batch_size, num_threads=1, capacity=32, enqueue_many=False, shapes=None, dynamic_pad=False, allow_smaller_final_batch=False, shared_name=None, name=None) {#batch}

Creates batches of tensors in tensors.

The argument tensors can be a list or a dictionary of tensors.
The value returned by the function will be of the same type
as tensors.

This function is implemented using a queue. A QueueRunner for the
queue is added to the current Graph‘s QUEUE_RUNNER collection.

If enqueue_many is False, tensors is assumed to represent a single
example. An input tensor with shape [x, y, z] will be output as a tensor
with shape [batch_size, x, y, z].

If enqueue_many is True, tensors is assumed to represent a batch of
examples, where the first dimension is indexed by example, and all members of
tensors should have the same size in the first dimension. If an input
tensor has shape [*, x, y, z], the output will have shape [batch_size, x, y, z]. The capacity argument controls the how long the prefetching is
allowed to grow the queues.

The returned operation is a dequeue operation and will throw
tf.errors.OutOfRangeError if the input queue is exhausted. If this
operation is feeding another input queue, its queue runner will catch
this exception, however, if this operation is used in your main thread
you are responsible for catching this yourself.

N.B.: If dynamic_pad is False, you must ensure that either
(i) the shapes argument is passed, or (ii) all of the tensors in
tensors must have fully-defined shapes. ValueError will be
raised if neither of these conditions holds.

If dynamic_pad is True, it is sufficient that the rank of the
tensors is known, but individual dimensions may have shape None.
In this case, for each enqueue the dimensions with value None
may have a variable length; upon dequeue, the output tensors will be padded
on the right to the maximum shape of the tensors in the current minibatch.
For numbers, this padding takes value 0. For strings, this padding is
the empty string. See PaddingFIFOQueue for more info.

If allow_smaller_final_batch is True, a smaller batch value than
batch_size is returned when the queue is closed and there are not enough
elements to fill the batch, otherwise the pending elements are discarded.
In addition, all output tensors’ static shapes, as accessed via the
get_shape method will have a first Dimension value of None, and
operations that depend on fixed batch_size would fail.

Args:

		tensors: The list or dictionary of tensors to enqueue.

		batch_size: The new batch size pulled from the queue.

		num_threads: The number of threads enqueuing tensors.

		capacity: An integer. The maximum number of elements in the queue.

		enqueue_many: Whether each tensor in tensors is a single example.

		shapes: (Optional) The shapes for each example. Defaults to the
inferred shapes for tensors.

		dynamic_pad: Boolean. Allow variable dimensions in input shapes.
The given dimensions are padded upon dequeue so that tensors within a
batch have the same shapes.

		allow_smaller_final_batch: (Optional) Boolean. If True, allow the final
batch to be smaller if there are insufficient items left in the queue.

		shared_name: (Optional). If set, this queue will be shared under the given
name across multiple sessions.

		name: (Optional) A name for the operations.

Returns:

A list or dictionary of tensors with the same types as tensors.

Raises:

		ValueError: If the shapes are not specified, and cannot be
inferred from the elements of tensors.

tf.train.batch_join(tensors_list, batch_size, capacity=32, enqueue_many=False, shapes=None, dynamic_pad=False, allow_smaller_final_batch=False, shared_name=None, name=None) {#batch_join}

Runs a list of tensors to fill a queue to create batches of examples.

The tensors_list argument is a list of tuples of tensors, or a list of
dictionaries of tensors. Each element in the list is treated similarly
to the tensors argument of tf.train.batch().

Enqueues a different list of tensors in different threads.
Implemented using a queue – a QueueRunner for the queue
is added to the current Graph‘s QUEUE_RUNNER collection.

len(tensors_list) threads will be started,
with thread i enqueuing the tensors from
tensors_list[i]. tensors_list[i1][j] must match
tensors_list[i2][j] in type and shape, except in the first
dimension if enqueue_many is true.

If enqueue_many is False, each tensors_list[i] is assumed
to represent a single example. An input tensor x will be output as a
tensor with shape [batch_size] + x.shape.

If enqueue_many is True, tensors_list[i] is assumed to
represent a batch of examples, where the first dimension is indexed
by example, and all members of tensors_list[i] should have the
same size in the first dimension. The slices of any input tensor
x are treated as examples, and the output tensors will have shape
[batch_size] + x.shape[1:].

The capacity argument controls the how long the prefetching is allowed to
grow the queues.

The returned operation is a dequeue operation and will throw
tf.errors.OutOfRangeError if the input queue is exhausted. If this
operation is feeding another input queue, its queue runner will catch
this exception, however, if this operation is used in your main thread
you are responsible for catching this yourself.

N.B.: If dynamic_pad is False, you must ensure that either
(i) the shapes argument is passed, or (ii) all of the tensors in
tensors_list must have fully-defined shapes. ValueError will be
raised if neither of these conditions holds.

If dynamic_pad is True, it is sufficient that the rank of the
tensors is known, but individual dimensions may have value None.
In this case, for each enqueue the dimensions with value None
may have a variable length; upon dequeue, the output tensors will be padded
on the right to the maximum shape of the tensors in the current minibatch.
For numbers, this padding takes value 0. For strings, this padding is
the empty string. See PaddingFIFOQueue for more info.

If allow_smaller_final_batch is True, a smaller batch value than
batch_size is returned when the queue is closed and there are not enough
elements to fill the batch, otherwise the pending elements are discarded.
In addition, all output tensors’ static shapes, as accessed via the
get_shape method will have a first Dimension value of None, and
operations that depend on fixed batch_size would fail.

Args:

		tensors_list: A list of tuples or dictionaries of tensors to enqueue.

		batch_size: An integer. The new batch size pulled from the queue.

		capacity: An integer. The maximum number of elements in the queue.

		enqueue_many: Whether each tensor in tensor_list_list is a single
example.

		shapes: (Optional) The shapes for each example. Defaults to the
inferred shapes for tensor_list_list[i].

		dynamic_pad: Boolean. Allow variable dimensions in input shapes.
The given dimensions are padded upon dequeue so that tensors within a
batch have the same shapes.

		allow_smaller_final_batch: (Optional) Boolean. If True, allow the final
batch to be smaller if there are insufficient items left in the queue.

		shared_name: (Optional) If set, this queue will be shared under the given
name across multiple sessions.

		name: (Optional) A name for the operations.

Returns:

A list or dictionary of tensors with the same number and types as
tensors_list[i].

Raises:

		ValueError: If the shapes are not specified, and cannot be
inferred from the elements of tensor_list_list.

tf.train.shuffle_batch(tensors, batch_size, capacity, min_after_dequeue, num_threads=1, seed=None, enqueue_many=False, shapes=None, allow_smaller_final_batch=False, shared_name=None, name=None) {#shuffle_batch}

Creates batches by randomly shuffling tensors.

This function adds the following to the current Graph:

		A shuffling queue into which tensors from tensors are enqueued.

		A dequeue_many operation to create batches from the queue.

		A QueueRunner to QUEUE_RUNNER collection, to enqueue the tensors
from tensors.

If enqueue_many is False, tensors is assumed to represent a
single example. An input tensor with shape [x, y, z] will be output
as a tensor with shape [batch_size, x, y, z].

If enqueue_many is True, tensors is assumed to represent a
batch of examples, where the first dimension is indexed by example,
and all members of tensors should have the same size in the
first dimension. If an input tensor has shape [*, x, y, z], the
output will have shape [batch_size, x, y, z].

The capacity argument controls the how long the prefetching is allowed to
grow the queues.

The returned operation is a dequeue operation and will throw
tf.errors.OutOfRangeError if the input queue is exhausted. If this
operation is feeding another input queue, its queue runner will catch
this exception, however, if this operation is used in your main thread
you are responsible for catching this yourself.

For example:

Creates batches of 32 images and 32 labels.
image_batch, label_batch = tf.train.shuffle_batch(
 [single_image, single_label],
 batch_size=32,
 num_threads=4,
 capacity=50000,
 min_after_dequeue=10000)

N.B.: You must ensure that either (i) the shapes argument is
passed, or (ii) all of the tensors in tensors must have
fully-defined shapes. ValueError will be raised if neither of
these conditions holds.

If allow_smaller_final_batch is True, a smaller batch value than
batch_size is returned when the queue is closed and there are not enough
elements to fill the batch, otherwise the pending elements are discarded.
In addition, all output tensors’ static shapes, as accessed via the
get_shape method will have a first Dimension value of None, and
operations that depend on fixed batch_size would fail.

Args:

		tensors: The list or dictionary of tensors to enqueue.

		batch_size: The new batch size pulled from the queue.

		capacity: An integer. The maximum number of elements in the queue.

		min_after_dequeue: Minimum number elements in the queue after a
dequeue, used to ensure a level of mixing of elements.

		num_threads: The number of threads enqueuing tensor_list.

		seed: Seed for the random shuffling within the queue.

		enqueue_many: Whether each tensor in tensor_list is a single example.

		shapes: (Optional) The shapes for each example. Defaults to the
inferred shapes for tensor_list.

		allow_smaller_final_batch: (Optional) Boolean. If True, allow the final
batch to be smaller if there are insufficient items left in the queue.

		shared_name: (Optional) If set, this queue will be shared under the given
name across multiple sessions.

		name: (Optional) A name for the operations.

Returns:

A list or dictionary of tensors with the types as tensors.

Raises:

		ValueError: If the shapes are not specified, and cannot be
inferred from the elements of tensors.

tf.train.shuffle_batch_join(tensors_list, batch_size, capacity, min_after_dequeue, seed=None, enqueue_many=False, shapes=None, allow_smaller_final_batch=False, shared_name=None, name=None) {#shuffle_batch_join}

Create batches by randomly shuffling tensors.

The tensors_list argument is a list of tuples of tensors, or a list of
dictionaries of tensors. Each element in the list is treated similarly
to the tensors argument of tf.train.shuffle_batch().

This version enqueues a different list of tensors in different threads.
It adds the following to the current Graph:

		A shuffling queue into which tensors from tensors_list are enqueued.

		A dequeue_many operation to create batches from the queue.

		A QueueRunner to QUEUE_RUNNER collection, to enqueue the tensors
from tensors_list.

len(tensors_list) threads will be started, with thread i enqueuing
the tensors from tensors_list[i]. tensors_list[i1][j] must match
tensors_list[i2][j] in type and shape, except in the first dimension if
enqueue_many is true.

If enqueue_many is False, each tensors_list[i] is assumed
to represent a single example. An input tensor with shape [x, y, z]
will be output as a tensor with shape [batch_size, x, y, z].

If enqueue_many is True, tensors_list[i] is assumed to
represent a batch of examples, where the first dimension is indexed
by example, and all members of tensors_list[i] should have the
same size in the first dimension. If an input tensor has shape [*, x, y, z], the output will have shape [batch_size, x, y, z].

The capacity argument controls the how long the prefetching is allowed to
grow the queues.

The returned operation is a dequeue operation and will throw
tf.errors.OutOfRangeError if the input queue is exhausted. If this
operation is feeding another input queue, its queue runner will catch
this exception, however, if this operation is used in your main thread
you are responsible for catching this yourself.

If allow_smaller_final_batch is True, a smaller batch value than
batch_size is returned when the queue is closed and there are not enough
elements to fill the batch, otherwise the pending elements are discarded.
In addition, all output tensors’ static shapes, as accessed via the
get_shape method will have a first Dimension value of None, and
operations that depend on fixed batch_size would fail.

Args:

		tensors_list: A list of tuples or dictionaries of tensors to enqueue.

		batch_size: An integer. The new batch size pulled from the queue.

		capacity: An integer. The maximum number of elements in the queue.

		min_after_dequeue: Minimum number elements in the queue after a
dequeue, used to ensure a level of mixing of elements.

		seed: Seed for the random shuffling within the queue.

		enqueue_many: Whether each tensor in tensor_list_list is a single
example.

		shapes: (Optional) The shapes for each example. Defaults to the
inferred shapes for tensors_list[i].

		allow_smaller_final_batch: (Optional) Boolean. If True, allow the final
batch to be smaller if there are insufficient items left in the queue.

		shared_name: (optional). If set, this queue will be shared under the given
name across multiple sessions.

		name: (Optional) A name for the operations.

Returns:

A list or dictionary of tensors with the same number and types as
tensors_list[i].

Raises:

		ValueError: If the shapes are not specified, and cannot be
inferred from the elements of tensors_list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.nn.compute_accidental_hits.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.compute_accidental_hits(true_classes, sampled_candidates, num_true, seed=None, name=None) {#compute_accidental_hits}

Compute the position ids in sampled_candidates matching true_classes.

In Candidate Sampling, this operation facilitates virtually removing
sampled classes which happen to match target classes. This is done
in Sampled Softmax and Sampled Logistic.

See our Candidate Sampling Algorithms
Reference [http://www.tensorflow.org/extras/candidate_sampling.pdf].

We presuppose that the sampled_candidates are unique.

We call it an ‘accidental hit’ when one of the target classes
matches one of the sampled classes. This operation reports
accidental hits as triples (index, id, weight), where index
represents the row number in true_classes, id represents the
position in sampled_candidates, and weight is -FLOAT_MAX.

The result of this op should be passed through a sparse_to_dense
operation, then added to the logits of the sampled classes. This
removes the contradictory effect of accidentally sampling the true
target classes as noise classes for the same example.

Args:

		true_classes: A Tensor of type int64 and shape [batch_size, num_true]. The target classes.

		sampled_candidates: A tensor of type int64 and shape [num_sampled].
The sampled_candidates output of CandidateSampler.

		num_true: An int. The number of target classes per training example.

		seed: An int. An operation-specific seed. Default is 0.

		name: A name for the operation (optional).

Returns:

		indices: A Tensor of type int32 and shape [num_accidental_hits].
Values indicate rows in true_classes.

		ids: A Tensor of type int64 and shape [num_accidental_hits].
Values indicate positions in sampled_candidates.

		weights: A Tensor of type float and shape [num_accidental_hits].
Each value is -FLOAT_MAX.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.delete_session_tensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.delete_session_tensor(handle, name=None) {#delete_session_tensor}

Delete the tensor for the given tensor handle.

This is EXPERIMENTAL and subject to change.

Delete the tensor of a given tensor handle. The tensor is produced
in a previous run() and stored in the state of the session.

Args:

		handle: The string representation of a persistent tensor handle.

		name: Optional name prefix for the return tensor.

Returns:

A pair of graph elements. The first is a placeholder for feeding a
tensor handle and the second is a deletion operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/contrib.layers.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Layers (contrib)

[TOC]

Ops for building neural network layers, regularizers, summaries, etc.

Higher level ops for building neural network layers.

This package provides several ops that take care of creating variables that are
used internally in a consistent way and provide the building blocks for many
common machine learning algorithms.

tf.contrib.layers.avg_pool2d(*args, **kwargs) {#avg_pool2d}

Adds a 2D average pooling op.

It is assumed that the pooling is done per image but not in batch or channels.

Args:

		inputs: A Tensor of size [batch_size, height, width, channels].

		kernel_size: A list of length 2: [kernel_height, kernel_width] of the
pooling kernel over which the op is computed. Can be an int if both
values are the same.

		stride: A list of length 2: [stride_height, stride_width].
Can be an int if both strides are the same. Note that presently
both strides must have the same value.

		padding: The padding method, either ‘VALID’ or ‘SAME’.

		outputs_collections: The collections to which the outputs are added.

		scope: Optional scope for name_scope.

Returns:

A Tensor representing the results of the pooling operation.

tf.contrib.layers.batch_norm(*args, **kwargs) {#batch_norm}

Adds a Batch Normalization layer from http://arxiv.org/abs/1502.03167.

“Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift”

Sergey Ioffe, Christian Szegedy

Can be used as a normalizer function for conv2d and fully_connected.

Note: When is_training is True the moving_mean and moving_variance need to be
updated, by default the update_ops are placed in tf.GraphKeys.UPDATE_OPS so
they need to be added as a dependency to the train_op, example:

update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
if update_ops:
updates = tf.group(*update_ops)
total_loss = control_flow_ops.with_dependencies([updates], total_loss)

One can set update_collections=None to force the updates in place, but that
can have speed penalty, specially in distributed settings.

Args:

		inputs: a tensor with 2 or more dimensions, where the first dimension has
batch_size. The normalization is over all but the last dimension.

		decay: decay for the moving average.

		center: If True, subtract beta. If False, beta is ignored.

		scale: If True, multiply by gamma. If False, gamma is
not used. When the next layer is linear (also e.g. nn.relu), this can be
disabled since the scaling can be done by the next layer.

		epsilon: small float added to variance to avoid dividing by zero.

		activation_fn: activation function, default set to None to skip it and
maintain a linear activation.

		updates_collections: collections to collect the update ops for computation.
The updates_ops need to be excuted with the train_op.
If None, a control dependency would be added to make sure the updates are
computed in place.

		is_training: whether or not the layer is in training mode. In training mode
it would accumulate the statistics of the moments into moving_mean and
moving_variance using an exponential moving average with the given
decay. When it is not in training mode then it would use the values of
the moving_mean and the moving_variance.

		reuse: whether or not the layer and its variables should be reused. To be
able to reuse the layer scope must be given.

		variables_collections: optional collections for the variables.

		outputs_collections: collections to add the outputs.

		trainable: If True also add variables to the graph collection
GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

		scope: Optional scope for variable_scope.

Returns:

A Tensor representing the output of the operation.

Raises:

		ValueError: if rank or last dimension of inputs is undefined.

tf.contrib.layers.convolution2d(*args, **kwargs) {#convolution2d}

Adds a 2D convolution followed by an optional batch_norm layer.

convolution2d creates a variable called weights, representing the
convolutional kernel, that is convolved with the inputs to produce a
Tensor of activations. If a normalizer_fn is provided (such as
batch_norm), it is then applied. Otherwise, if normalizer_fn is
None and a biases_initializer is provided then a biases variable would be
created and added the activations. Finally, if activation_fn is not None,
it is applied to the activations as well.

Performs a’trous convolution with input stride equal to rate if rate is
greater than one.

Args:

		inputs: a 4-D tensor [batch_size, height, width, channels].

		num_outputs: integer, the number of output filters.

		kernel_size: a list of length 2 [kernel_height, kernel_width] of
of the filters. Can be an int if both values are the same.

		stride: a list of length 2 [stride_height, stride_width].
Can be an int if both strides are the same. Note that presently
both strides must have the same value.

		padding: one of VALID or SAME.

		rate: integer. If less than or equal to 1, a standard convolution is used.
If greater than 1, than the a’trous convolution is applied and stride
must be set to 1.

		activation_fn: activation function, set to None to skip it and maintain
a linear activation.

		normalizer_fn: normalization function to use instead of biases. If
normalizer_fn is provided then biases_initializer and
biases_regularizer are ignored and biases are not created nor added.
default set to None for no normalizer function

		normalizer_params: normalization function parameters.

		weights_initializer: An initializer for the weights.

		weights_regularizer: Optional regularizer for the weights.

		biases_initializer: An initializer for the biases. If None skip biases.

		biases_regularizer: Optional regularizer for the biases.

		reuse: whether or not the layer and its variables should be reused. To be
able to reuse the layer scope must be given.

		variables_collections: optional list of collections for all the variables or
a dictionay containing a different list of collection per variable.

		outputs_collections: collection to add the outputs.

		trainable: If True also add variables to the graph collection
GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

		scope: Optional scope for variable_scope.

Returns:

a tensor representing the output of the operation.

Raises:

		ValueError: if both ‘rate’ and stride are larger than one.

tf.contrib.layers.convolution2d_in_plane(*args, **kwargs) {#convolution2d_in_plane}

Performs the same in-plane convolution to each channel independently.

This is useful for performing various simple channel-independent convolution
operations such as image gradients:

image = tf.constant(..., shape=(16, 240, 320, 3))
vert_gradients = layers.conv2d_in_plane(image,
kernel=[1, -1],
kernel_size=[2, 1])
horz_gradients = layers.conv2d_in_plane(image,
kernel=[1, -1],
kernel_size=[1, 2])

Args:

		inputs: a 4-D tensor with dimensions [batch_size, height, width, channels].

		kernel_size: a list of length 2 holding the [kernel_height, kernel_width] of
of the pooling. Can be an int if both values are the same.

		stride: a list of length 2 [stride_height, stride_width].
Can be an int if both strides are the same. Note that presently
both strides must have the same value.

		padding: the padding type to use, either ‘SAME’ or ‘VALID’.

		activation_fn: activation function, set to None to skip it and maintain
a linear activation.

		normalizer_fn: normalization function to use instead of biases. If
normalizer_fn is provided then biases_initializer and
biases_regularizer are ignored and biases are not created nor added.
default set to None for no normalizer function

		normalizer_params: normalization function parameters.

		weights_initializer: An initializer for the weights.

		weights_regularizer: Optional regularizer for the weights.

		biases_initializer: An initializer for the biases. If None skip biases.

		biases_regularizer: Optional regularizer for the biases.

		reuse: whether or not the layer and its variables should be reused. To be
able to reuse the layer scope must be given.

		variables_collections: optional list of collections for all the variables or
a dictionay containing a different list of collection per variable.

		outputs_collections: collection to add the outputs.

		trainable: If True also add variables to the graph collection
GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

		scope: Optional scope for variable_scope.

Returns:

A Tensor representing the output of the operation.

tf.contrib.layers.convolution2d_transpose(*args, **kwargs) {#convolution2d_transpose}

Adds a convolution2d_transpose with an optional batch normalization layer.

The function creates a variable called weights, representing the
kernel, that is convolved with the input. If batch_norm_params is None, a
second variable called ‘biases’ is added to the result of the operation.

Args:

		inputs: a tensor of size [batch_size, height, width, channels].

		num_outputs: integer, the number of output filters.

		kernel_size: a list of length 2 holding the [kernel_height, kernel_width] of
of the filters. Can be an int if both values are the same.

		stride: a list of length 2: [stride_height, stride_width].
Can be an int if both strides are the same. Note that presently
both strides must have the same value.

		padding: one of ‘VALID’ or ‘SAME’.

		activation_fn: activation function, set to None to skip it and maintain
a linear activation.

		normalizer_fn: normalization function to use instead of biases. If
normalizer_fn is provided then biases_initializer and
biases_regularizer are ignored and biases are not created nor added.
default set to None for no normalizer function

		normalizer_params: normalization function parameters.

		weights_initializer: An initializer for the weights.

		weights_regularizer: Optional regularizer for the weights.

		biases_initializer: An initializer for the biases. If None skip biases.

		biases_regularizer: Optional regularizer for the biases.

		reuse: whether or not the layer and its variables should be reused. To be
able to reuse the layer scope must be given.

		variables_collections: optional list of collections for all the variables or
a dictionay containing a different list of collection per variable.

		outputs_collections: collection to add the outputs.

		trainable: whether or not the variables should be trainable or not.

		scope: Optional scope for variable_scope.

Returns:

a tensor representing the output of the operation.

Raises:

		ValueError: if ‘kernel_size’ is not a list of length 2.

tf.contrib.layers.flatten(*args, **kwargs) {#flatten}

Flattens the input while maintaining the batch_size.

Assumes that the first dimension represents the batch.

Args:

		inputs: a tensor of size [batch_size, ...].

		outputs_collections: collection to add the outputs.

		scope: Optional scope for name_scope.

Returns:

a flattened tensor with shape [batch_size, k].

Raises:

		ValueError: if inputs.shape is wrong.

tf.contrib.layers.fully_connected(*args, **kwargs) {#fully_connected}

Adds a fully connected layer.

fully_connected creates a variable called weights, representing a fully
connected weight matrix, which is multiplied by the inputs to produce a
Tensor of hidden units. If a normalizer_fn is provided (such as
batch_norm), it is then applied. Otherwise, if normalizer_fn is
None and a biases_initializer is provided then a biases variable would be
created and added the hidden units. Finally, if activation_fn is not None,
it is applied to the hidden units as well.

Note: that if inputs have a rank greater than 2, then inputs is flattened
prior to the initial matrix multiply by weights.

Args:

		inputs: A tensor of with at least rank 2 and value for the last dimension,
i.e. [batch_size, depth], [None, None, None, channels].

		num_outputs: Integer or long, the number of output units in the layer.

		activation_fn: activation function, set to None to skip it and maintain
a linear activation.

		normalizer_fn: normalization function to use instead of biases. If
normalizer_fn is provided then biases_initializer and
biases_regularizer are ignored and biases are not created nor added.
default set to None for no normalizer function

		normalizer_params: normalization function parameters.

		weights_initializer: An initializer for the weights.

		weights_regularizer: Optional regularizer for the weights.

		biases_initializer: An initializer for the biases. If None skip biases.

		biases_regularizer: Optional regularizer for the biases.

		reuse: whether or not the layer and its variables should be reused. To be
able to reuse the layer scope must be given.

		variables_collections: Optional list of collections for all the variables or
a dictionary containing a different list of collections per variable.

		outputs_collections: collection to add the outputs.

		trainable: If True also add variables to the graph collection
GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

		scope: Optional scope for variable_scope.

Returns:

the tensor variable representing the result of the series of operations.

Raises:

		ValueError: if x has rank less than 2 or if its last dimension is not set.

tf.contrib.layers.layer_norm(*args, **kwargs) {#layer_norm}

Adds a Layer Normalization layer from https://arxiv.org/abs/1607.06450.

“Layer Normalization”

Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton

Can be used as a normalizer function for conv2d and fully_connected.

Args:

		inputs: a tensor with 2 or more dimensions. The normalization
occurs over all but the first dimension.

		center: If True, subtract beta. If False, beta is ignored.

		scale: If True, multiply by gamma. If False, gamma is
not used. When the next layer is linear (also e.g. nn.relu), this can be
disabled since the scaling can be done by the next layer.

		activation_fn: activation function, default set to None to skip it and
maintain a linear activation.

		reuse: whether or not the layer and its variables should be reused. To be
able to reuse the layer scope must be given.

		variables_collections: optional collections for the variables.

		outputs_collections: collections to add the outputs.

		trainable: If True also add variables to the graph collection
GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

		scope: Optional scope for variable_op_scope.

Returns:

A Tensor representing the output of the operation.

Raises:

		ValueError: if rank or last dimension of inputs is undefined.

tf.contrib.layers.max_pool2d(*args, **kwargs) {#max_pool2d}

Adds a 2D Max Pooling op.

It is assumed that the pooling is done per image but not in batch or channels.

Args:

		inputs: A Tensor of size [batch_size, height, width, channels].

		kernel_size: A list of length 2: [kernel_height, kernel_width] of the
pooling kernel over which the op is computed. Can be an int if both
values are the same.

		stride: A list of length 2: [stride_height, stride_width].
Can be an int if both strides are the same. Note that presently
both strides must have the same value.

		padding: The padding method, either ‘VALID’ or ‘SAME’.

		outputs_collections: The collections to which the outputs are added.

		scope: Optional scope for name_scope.

Returns:

A Tensor representing the results of the pooling operation.

Raises:

		ValueError: If ‘kernel_size’ is not a 2-D list

tf.contrib.layers.one_hot_encoding(*args, **kwargs) {#one_hot_encoding}

Transform numeric labels into onehot_labels using tf.one_hot.

Args:

		labels: [batch_size] target labels.

		num_classes: total number of classes.

		on_value: A scalar defining the on-value.

		off_value: A scalar defining the off-value.

		outputs_collections: collection to add the outputs.

		scope: Optional scope for name_scope.

Returns:

one hot encoding of the labels.

tf.contrib.layers.repeat(inputs, repetitions, layer, *args, **kwargs) {#repeat}

Applies the same layer with the same arguments repeatedly.

 y = repeat(x, 3, conv2d, 64, [3, 3], scope='conv1')
 # It is equivalent to:

 x = conv2d(x, 64, [3, 3], scope='conv1/conv1_1')
 x = conv2d(x, 64, [3, 3], scope='conv1/conv1_2')
 y = conv2d(x, 64, [3, 3], scope='conv1/conv1_3')

If the scope argument is not given in kwargs, it is set to
layer.__name__, or layer.func.__name__ (for functools.partial
objects). If neither __name__ nor func.__name__ is available, the
layers are called with scope='stack'.

Args:

		inputs: A Tensor suitable for layer.

		repetitions: Int, number of repetitions.

		layer: A layer with arguments (inputs, *args, **kwargs)

		*args: Extra args for the layer.

		**kwargs: Extra kwargs for the layer.

Returns:

a tensor result of applying the layer, repetitions times.

Raises:

		ValueError: if the op is unknown or wrong.

tf.contrib.layers.safe_embedding_lookup_sparse(embedding_weights, sparse_ids, sparse_weights=None, combiner=None, default_id=None, name=None, partition_strategy='div') {#safe_embedding_lookup_sparse}

Lookup embedding results, accounting for invalid IDs and empty features.

The partitioned embedding in embedding_weights must all be the same shape
except for the first dimension. The first dimension is allowed to vary as the
vocabulary size is not necessarily a multiple of P.

Invalid IDs (< 0) are pruned from input IDs and weights, as well as any IDs
with non-positive weight. For an entry with no features, the embedding vector
for default_id is returned, or the 0-vector if default_id is not supplied.

The ids and weights may be multi-dimensional. Embeddings are always aggregated
along the last dimension.

Args:

		embedding_weights: A list of P float tensors or values representing
partitioned embedding tensors. The total unpartitioned shape should be
[e_0, e_1, ..., e_m], where e_0 represents the vocab size and
e_1, ..., e_m are the embedding dimensions.

		sparse_ids: SparseTensor of shape [d_0, d_1, ..., d_n] containing the
ids. d_0 is typically batch size.

		sparse_weights: SparseTensor of same shape as sparse_ids, containing
float weights corresponding to sparse_ids, or None if all weights
are be assumed to be 1.0.

		combiner: A string specifying how to combine embedding results for each
entry. Currently “mean”, “sqrtn” and “sum” are supported, with “mean”
the default.

		default_id: The id to use for an entry with no features.

		name: A name for this operation (optional).

		partition_strategy: A string specifying the partitioning strategy.
Currently "div" and "mod" are supported. Default is "div".

Returns:

Dense tensor of shape [d_0, d_1, ..., d_{n-1}, e_1, ..., e_m].

Raises:

		ValueError: if embedding_weights is empty.

tf.contrib.layers.separable_convolution2d(*args, **kwargs) {#separable_convolution2d}

Adds a depth-separable 2D convolution with optional batch_norm layer.

This op first performs a depthwise convolution that acts separately on
channels, creating a variable called depthwise_weights. If num_outputs
is not None, it adds a pointwise convolution that mixes channels, creating a
variable called pointwise_weights. Then, if batch_norm_params is None,
it adds bias to the result, creating a variable called ‘biases’, otherwise
it adds a batch normalization layer. It finally applies an activation function
to produce the end result.

Args:

		inputs: a tensor of size [batch_size, height, width, channels].

		num_outputs: the number of pointwise convolution output filters. If is
None, then we skip the pointwise convolution stage.

		kernel_size: a list of length 2: [kernel_height, kernel_width] of
of the filters. Can be an int if both values are the same.

		depth_multiplier: the number of depthwise convolution output channels for
each input channel. The total number of depthwise convolution output
channels will be equal to num_filters_in * depth_multiplier.

		stride: a list of length 2: [stride_height, stride_width], specifying the
depthwise convolution stride. Can be an int if both strides are the same.

		padding: one of ‘VALID’ or ‘SAME’.

		activation_fn: activation function, set to None to skip it and maintain
a linear activation.

		normalizer_fn: normalization function to use instead of biases. If
normalizer_fn is provided then biases_initializer and
biases_regularizer are ignored and biases are not created nor added.
default set to None for no normalizer function

		normalizer_params: normalization function parameters.

		weights_initializer: An initializer for the weights.

		weights_regularizer: Optional regularizer for the weights.

		biases_initializer: An initializer for the biases. If None skip biases.

		biases_regularizer: Optional regularizer for the biases.

		reuse: whether or not the layer and its variables should be reused. To be
able to reuse the layer scope must be given.

		variables_collections: optional list of collections for all the variables or
a dictionay containing a different list of collection per variable.

		outputs_collections: collection to add the outputs.

		trainable: whether or not the variables should be trainable or not.

		scope: Optional scope for variable_scope.

Returns:

A Tensor representing the output of the operation.

tf.contrib.layers.stack(inputs, layer, stack_args, **kwargs) {#stack}

Builds a stack of layers by applying layer repeatedly using stack_args.

stack allows you to repeatedly apply the same operation with different
arguments stack_args[i]. For each application of the layer, stack creates
a new scope appended with an increasing number. For example:

 y = stack(x, fully_connected, [32, 64, 128], scope='fc')
 # It is equivalent to:

 x = fully_connected(x, 32, scope='fc/fc_1')
 x = fully_connected(x, 64, scope='fc/fc_2')
 y = fully_connected(x, 128, scope='fc/fc_3')

If the scope argument is not given in kwargs, it is set to
layer.__name__, or layer.func.__name__ (for functools.partial
objects). If neither __name__ nor func.__name__ is available, the
layers are called with scope='stack'.

Args:

		inputs: A Tensor suitable for layer.

		layer: A layer with arguments (inputs, *args, **kwargs)

		stack_args: A list/tuple of parameters for each call of layer.

		**kwargs: Extra kwargs for the layer.

Returns:

a Tensor result of applying the stacked layers.

Raises:

		ValueError: if the op is unknown or wrong.

tf.contrib.layers.unit_norm(*args, **kwargs) {#unit_norm}

Normalizes the given input across the specified dimension to unit length.

Note that the rank of input must be known.

Args:

		inputs: A Tensor of arbitrary size.

		dim: The dimension along which the input is normalized.

		epsilon: A small value to add to the inputs to avoid dividing by zero.

		scope: Optional scope for variable_scope.

Returns:

The normalized Tensor.

Raises:

		ValueError: If dim is smaller than the number of dimensions in ‘inputs’.

Aliases for fully_connected which set a default activation function are
available: relu, relu6 and linear.

Regularizers

Regularization can help prevent overfitting. These have the signature
fn(weights). The loss is typically added to tf.GraphKeys.REGULARIZATION_LOSS

tf.contrib.layers.apply_regularization(regularizer, weights_list=None) {#apply_regularization}

Returns the summed penalty by applying regularizer to the weights_list.

Adding a regularization penalty over the layer weights and embedding weights
can help prevent overfitting the training data. Regularization over layer
biases is less common/useful, but assuming proper data preprocessing/mean
subtraction, it usually shouldn’t hurt much either.

Args:

		regularizer: A function that takes a single Tensor argument and returns
a scalar Tensor output.

		weights_list: List of weights Tensors or Variables to apply
regularizer over. Defaults to the GraphKeys.WEIGHTS collection if
None.

Returns:

A scalar representing the overall regularization penalty.

Raises:

		ValueError: If regularizer does not return a scalar output, or if we find
no weights.

tf.contrib.layers.l1_regularizer(scale, scope=None) {#l1_regularizer}

Returns a function that can be used to apply L1 regularization to weights.

L1 regularization encourages sparsity.

Args:

		scale: A scalar multiplier Tensor. 0.0 disables the regularizer.

		scope: An optional scope name.

Returns:

A function with signature l1(weights) that apply L1 regularization.

Raises:

		ValueError: If scale is negative or if scale is not a float.

tf.contrib.layers.l2_regularizer(scale, scope=None) {#l2_regularizer}

Returns a function that can be used to apply L2 regularization to weights.

Small values of L2 can help prevent overfitting the training data.

Args:

		scale: A scalar multiplier Tensor. 0.0 disables the regularizer.

		scope: An optional scope name.

Returns:

A function with signature l2(weights) that applies L2 regularization.

Raises:

		ValueError: If scale is negative or if scale is not a float.

tf.contrib.layers.sum_regularizer(regularizer_list, scope=None) {#sum_regularizer}

Returns a function that applies the sum of multiple regularizers.

Args:

		regularizer_list: A list of regularizers to apply.

		scope: An optional scope name

Returns:

A function with signature sum_reg(weights) that applies the
sum of all the input regularizers.

Initializers

Initializers are used to initialize variables with sensible values given their
size, data type, and purpose.

tf.contrib.layers.xavier_initializer(uniform=True, seed=None, dtype=tf.float32) {#xavier_initializer}

Returns an initializer performing “Xavier” initialization for weights.

This function implements the weight initialization from:

Xavier Glorot and Yoshua Bengio (2010):
Understanding the difficulty of training deep feedforward neural
networks. International conference on artificial intelligence and
statistics.

This initializer is designed to keep the scale of the gradients roughly the
same in all layers. In uniform distribution this ends up being the range:
x = sqrt(6. / (in + out)); [-x, x] and for normal distribution a standard
deviation of sqrt(3. / (in + out)) is used.

Args:

		uniform: Whether to use uniform or normal distributed random initialization.

		seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

		dtype: The data type. Only floating point types are supported.

Returns:

An initializer for a weight matrix.

tf.contrib.layers.xavier_initializer_conv2d(uniform=True, seed=None, dtype=tf.float32) {#xavier_initializer_conv2d}

Returns an initializer performing “Xavier” initialization for weights.

This function implements the weight initialization from:

Xavier Glorot and Yoshua Bengio (2010):
Understanding the difficulty of training deep feedforward neural
networks. International conference on artificial intelligence and
statistics.

This initializer is designed to keep the scale of the gradients roughly the
same in all layers. In uniform distribution this ends up being the range:
x = sqrt(6. / (in + out)); [-x, x] and for normal distribution a standard
deviation of sqrt(3. / (in + out)) is used.

Args:

		uniform: Whether to use uniform or normal distributed random initialization.

		seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

		dtype: The data type. Only floating point types are supported.

Returns:

An initializer for a weight matrix.

tf.contrib.layers.variance_scaling_initializer(factor=2.0, mode='FAN_IN', uniform=False, seed=None, dtype=tf.float32) {#variance_scaling_initializer}

Returns an initializer that generates tensors without scaling variance.

When initializing a deep network, it is in principle advantageous to keep
the scale of the input variance constant, so it does not explode or diminish
by reaching the final layer. This initializer use the following formula:
if mode=’FAN_IN’: # Count only number of input connections.
n = fan_in
elif mode=’FAN_OUT’: # Count only number of output connections.
n = fan_out
elif mode=’FAN_AVG’: # Average number of inputs and output connections.
n = (fan_in + fan_out)/2.0

truncated_normal(shape, 0.0, stddev=sqrt(factor / n))

To get http://arxiv.org/pdf/1502.01852v1.pdf use (Default):

		factor=2.0 mode=’FAN_IN’ uniform=False
To get http://arxiv.org/abs/1408.5093 use:

		factor=1.0 mode=’FAN_IN’ uniform=True
To get http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf use:

		factor=1.0 mode=’FAN_AVG’ uniform=True.
To get xavier_initializer use either:

		factor=1.0 mode=’FAN_AVG’ uniform=True.

		factor=1.0 mode=’FAN_AVG’ uniform=False.

Args:

		factor: Float. A multiplicative factor.

		mode: String. ‘FAN_IN’, ‘FAN_OUT’, ‘FAN_AVG’.

		uniform: Whether to use uniform or normal distributed random initialization.

		seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

		dtype: The data type. Only floating point types are supported.

Returns:

An initializer that generates tensors with unit variance.

Raises:

		ValueError: if dtype is not a floating point type.

		TypeError: if mode is not in [‘FAN_IN’, ‘FAN_OUT’, ‘FAN_AVG’].

Optimization

Optimize weights given a loss.

tf.contrib.layers.optimize_loss(loss, global_step, learning_rate, optimizer, gradient_noise_scale=None, gradient_multipliers=None, clip_gradients=None, learning_rate_decay_fn=None, update_ops=None, variables=None, name=None, summaries=None) {#optimize_loss}

Given loss and parameters for optimizer, returns a training op.

Various ways of passing optimizers, include:

		string, name of the optimizer like ‘SGD’, ‘Adam’, see OPTIMIZER_CLS_NAMES
for full list. E.g. optimize_loss(..., optimizer='Adam').

		function, takes learning rate Tensor as argument and must return
Optimizer instance. E.g. optimize_loss(..., optimizer=lambda lr: tf.train.MomentumOptimizer(lr, momentum=0.5)).
Alternatively, if learning_rate is None, the function takes no
arguments. E.g. optimize_loss(..., learning_rate=None, optimizer=lambda: tf.train.MomentumOptimizer(0.5, momentum=0.5)).

		class, subclass of Optimizer that takes only one required argument -
learning rate, such as AdamOptimizer, AdagradOptimizer.
E.g. optimize_loss(..., optimizer=tf.train.AdagradOptimizer).

		object, instance of subclass of Optimizer.
E.g., optimizer_loss(..., optimizer=tf.train.AdagradOptimizer(0.5)).

Args:

		loss: Tensor, 0 dimensional.

		global_step: Tensor, step counter for each update.

		learning_rate: float or Tensor, magnitude of update per each training step.

		optimizer: string, class or optimizer instance, used as trainer.
string should be name of optimizer, like ‘SGD’,
‘Adam’, ‘Adagrad’. Full list in OPTIMIZER_CLS_NAMES constant.
class should be sub-class of tf.Optimizer that implements
compute_gradients and apply_gradients functions.
optimizer instance should be instantion of tf.Optimizer
sub-class and have compute_gradients and apply_gradients
functions.

		gradient_noise_scale: float or None, adds 0-mean normal noise scaled by this
value.

		gradient_multipliers: dict of variables or variable names to floats.
If present, gradients for specified
variables will be multiplied by given constant.

		clip_gradients: float or None, clips gradients by this value.

		learning_rate_decay_fn: function, takes learning_rate and global_step
Tensors, returns Tensor.
Can be used to implement any learning rate decay
functions.
For example: tf.train.exponential_decay.

		update_ops: list of update Operations to execute at each step. If None,
uses elements of UPDATE_OPS collection. The order of execution
between update_ops and loss is non-deterministic.

		variables: list of variables to optimize or
None to use all trainable variables.

		name: The name for this operation is used to scope operations and summaries.

		summaries: List of internal quantities to visualize on tensorboard. If not
set only the loss and the learning rate will be reported. The
complete list is in OPTIMIZER_SUMMARIES.

Returns:

Training op.

Raises:

		ValueError: if optimizer is wrong type.

Summaries

Helper functions to summarize specific variables or ops.

tf.contrib.layers.summarize_activation(op) {#summarize_activation}

Summarize an activation.

This applies the given activation and adds useful summaries specific to the
activation.

Args:

		op: The tensor to summarize (assumed to be a layer activation).

Returns:

The summary op created to summarize op.

tf.contrib.layers.summarize_tensor(tensor, tag=None) {#summarize_tensor}

Summarize a tensor using a suitable summary type.

This function adds a summary op for tensor. The type of summary depends on
the shape of tensor. For scalars, a scalar_summary is created, for all
other tensors, histogram_summary is used.

Args:

		tensor: The tensor to summarize

		tag: The tag to use, if None then use tensor’s op’s name.

Returns:

The summary op created or None for string tensors.

tf.contrib.layers.summarize_tensors(tensors, summarizer=summarize_tensor) {#summarize_tensors}

Summarize a set of tensors.

tf.contrib.layers.summarize_collection(collection, name_filter=None, summarizer=summarize_tensor) {#summarize_collection}

Summarize a graph collection of tensors, possibly filtered by name.

The layers module defines convenience functions summarize_variables,
summarize_weights and summarize_biases, which set the collection argument
of summarize_collection to VARIABLES, WEIGHTS and BIASES, respectively.

tf.contrib.layers.summarize_activations(name_filter=None, summarizer=summarize_activation) {#summarize_activations}

Summarize activations, using summarize_activation to summarize.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.read_file.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.read_file(filename, name=None) {#read_file}

Reads and outputs the entire contents of the input filename.

Args:

		filename: A Tensor of type string.

		name: A name for the operation (optional).

Returns:

A Tensor of type string.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.image.rgb_to_grayscale.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.rgb_to_grayscale(images, name=None) {#rgb_to_grayscale}

Converts one or more images from RGB to Grayscale.

Outputs a tensor of the same DType and rank as images. The size of the
last dimension of the output is 1, containing the Grayscale value of the
pixels.

Args:

		images: The RGB tensor to convert. Last dimension must have size 3 and
should contain RGB values.

		name: A name for the operation (optional).

Returns:

The converted grayscale image(s).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/contrib.util.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Utilities (contrib)

[TOC]

Utilities for dealing with Tensors.

Miscellaneous Utility Functions

tf.contrib.util.constant_value(tensor) {#constant_value}

Returns the constant value of the given tensor, if efficiently calculable.

This function attempts to partially evaluate the given tensor, and
returns its value as a numpy ndarray if this succeeds.

TODO(mrry): Consider whether this function should use a registration
mechanism like gradients and ShapeFunctions, so that it is easily
extensible.

NOTE: If constant_value(tensor) returns a non-None result, it will no
longer be possible to feed a different value for tensor. This allows the
result of this function to influence the graph that is constructed, and
permits static shape optimizations.

Args:

		tensor: The Tensor to be evaluated.

Returns:

A numpy ndarray containing the constant value of the given tensor,
or None if it cannot be calculated.

Raises:

		TypeError: if tensor is not an ops.Tensor.

tf.contrib.util.make_tensor_proto(values, dtype=None, shape=None) {#make_tensor_proto}

Create a TensorProto.

Args:

		values: Values to put in the TensorProto.

		dtype: Optional tensor_pb2 DataType value.

		shape: List of integers representing the dimensions of tensor.

Returns:

A TensorProto. Depending on the type, it may contain data in the
“tensor_content” attribute, which is not directly useful to Python programs.
To access the values you should convert the proto back to a numpy ndarray
with tensor_util.MakeNdarray(proto).

Raises:

		TypeError: if unsupported types are provided.

		ValueError: if arguments have inappropriate values.

make_tensor_proto accepts “values” of a python scalar, a python list, a
numpy ndarray, or a numpy scalar.

If “values” is a python scalar or a python list, make_tensor_proto
first convert it to numpy ndarray. If dtype is None, the
conversion tries its best to infer the right numpy data
type. Otherwise, the resulting numpy array has a compatible data
type with the given dtype.

In either case above, the numpy ndarray (either the caller provided
or the auto converted) must have the compatible type with dtype.

make_tensor_proto then converts the numpy array to a tensor proto.

If “shape” is None, the resulting tensor proto represents the numpy
array precisely.

Otherwise, “shape” specifies the tensor’s shape and the numpy array
can not have more elements than what “shape” specifies.

tf.contrib.util.make_ndarray(tensor) {#make_ndarray}

Create a numpy ndarray from a tensor.

Create a numpy ndarray with the same shape and data as the tensor.

Args:

		tensor: A TensorProto.

Returns:

A numpy array with the tensor contents.

Raises:

		TypeError: if tensor has unsupported type.

tf.contrib.util.ops_used_by_graph_def(graph_def) {#ops_used_by_graph_def}

Collect the list of ops used by a graph.

Does not validate that the ops are all registered.

Args:

		graph_def: A GraphDef proto, as from graph.as_graph_def().

Returns:

A list of strings, each naming an op used by the graph.

tf.contrib.util.stripped_op_list_for_graph(graph_def) {#stripped_op_list_for_graph}

Collect the stripped OpDefs for ops used by a graph.

This function computes the stripped_op_list field of MetaGraphDef and
similar protos. The result can be communicated from the producer to the
consumer, which can then use the C++ function
RemoveNewDefaultAttrsFromGraphDef to improve forwards compatibility.

Args:

		graph_def: A GraphDef proto, as from graph.as_graph_def().

Returns:

An OpList of ops used by the graph.

Raises:

		ValueError: If an unregistered op is used.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.test.get_temp_dir.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.test.get_temp_dir() {#get_temp_dir}

Returns a temporary directory for use during tests.

There is no need to delete the directory after the test.

Returns:

The temporary directory.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.cholesky.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.cholesky(input, name=None) {#cholesky}

Computes the Cholesky decomposition of one or more square matrices.

The input is a tensor of shape [..., M, M] whose inner-most 2 dimensions
form square matrices, with the same constraints as the single matrix Cholesky
decomposition above. The output is a tensor of the same shape as the input
containing the Cholesky decompositions for all input submatrices [..., :, :].

Args:

		input: A Tensor. Must be one of the following types: float64, float32.
Shape is [..., M, M].

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shape is [..., M, M].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/test.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Testing

[TOC]

Unit tests

TensorFlow provides a convenience class inheriting from unittest.TestCase
which adds methods relevant to TensorFlow tests. Here is an example:

import tensorflow as tf

class SquareTest(tf.test.TestCase):

 def testSquare(self):
 with self.test_session():
 x = tf.square([2, 3])
 self.assertAllEqual(x.eval(), [4, 9])

if __name__ == '__main__':
 tf.test.main()

tf.test.TestCase inherits from unittest.TestCase but adds a few additional
methods. We will document these methods soon.

tf.test.main() {#main}

Runs all unit tests.

Utilities

tf.test.assert_equal_graph_def(actual, expected) {#assert_equal_graph_def}

Asserts that two GraphDefs are (mostly) the same.

Compares two GraphDef protos for equality, ignoring versions and ordering of
nodes, attrs, and control inputs. Node names are used to match up nodes
between the graphs, so the naming of nodes must be consistent.

Args:

		actual: The GraphDef we have.

		expected: The GraphDef we expected.

Raises:

		AssertionError: If the GraphDefs do not match.

		TypeError: If either argument is not a GraphDef.

tf.test.get_temp_dir() {#get_temp_dir}

Returns a temporary directory for use during tests.

There is no need to delete the directory after the test.

Returns:

The temporary directory.

tf.test.is_built_with_cuda() {#is_built_with_cuda}

Returns whether TensorFlow was built with CUDA (GPU) support.

Gradient checking

compute_gradient and
compute_gradient_error perform numerical
differentiation of graphs for comparison against registered analytic gradients.

tf.test.compute_gradient(x, x_shape, y, y_shape, x_init_value=None, delta=0.001, init_targets=None) {#compute_gradient}

Computes and returns the theoretical and numerical Jacobian.

If x or y is complex, the Jacobian will still be real but the
corresponding Jacobian dimension(s) will be twice as large. This is required
even if both input and output is complex since TensorFlow graphs are not
necessarily holomorphic, and may have gradients not expressible as complex
numbers. For example, if x is complex with shape [m] and y is complex
with shape [n], each Jacobian J will have shape [m * 2, n * 2] with

J[:m, :n] = d(Re y)/d(Re x)
J[:m, n:] = d(Im y)/d(Re x)
J[m:, :n] = d(Re y)/d(Im x)
J[m:, n:] = d(Im y)/d(Im x)

Args:

		x: a tensor or list of tensors

		x_shape: the dimensions of x as a tuple or an array of ints. If x is a list,
then this is the list of shapes.

		y: a tensor

		y_shape: the dimensions of y as a tuple or an array of ints.

		x_init_value: (optional) a numpy array of the same shape as “x”
representing the initial value of x. If x is a list, this should be a list
of numpy arrays. If this is none, the function will pick a random tensor
as the initial value.

		delta: (optional) the amount of perturbation.

		init_targets: list of targets to run to initialize model params.
TODO(mrry): remove this argument.

Returns:

Two 2-d numpy arrays representing the theoretical and numerical
Jacobian for dy/dx. Each has “x_size” rows and “y_size” columns
where “x_size” is the number of elements in x and “y_size” is the
number of elements in y. If x is a list, returns a list of two numpy arrays.

tf.test.compute_gradient_error(x, x_shape, y, y_shape, x_init_value=None, delta=0.001, init_targets=None) {#compute_gradient_error}

Computes the gradient error.

Computes the maximum error for dy/dx between the computed Jacobian and the
numerically estimated Jacobian.

This function will modify the tensors passed in as it adds more operations
and hence changing the consumers of the operations of the input tensors.

This function adds operations to the current session. To compute the error
using a particular device, such as a GPU, use the standard methods for
setting a device (e.g. using with sess.graph.device() or setting a device
function in the session constructor).

Args:

		x: a tensor or list of tensors

		x_shape: the dimensions of x as a tuple or an array of ints. If x is a list,
then this is the list of shapes.

		y: a tensor

		y_shape: the dimensions of y as a tuple or an array of ints.

		x_init_value: (optional) a numpy array of the same shape as “x”
representing the initial value of x. If x is a list, this should be a list
of numpy arrays. If this is none, the function will pick a random tensor
as the initial value.

		delta: (optional) the amount of perturbation.

		init_targets: list of targets to run to initialize model params.
TODO(mrry): Remove this argument.

Returns:

The maximum error in between the two Jacobians.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.metrics.streaming_mean_squared_error.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.streaming_mean_squared_error(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None) {#streaming_mean_squared_error}

Computes the mean squared error between the labels and predictions.

The streaming_mean_squared_error function creates two local variables,
total and count that are used to compute the mean squared error.
This average is weighted by weights, and it is ultimately returned as
mean_squared_error: an idempotent operation that simply divides total by
count.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
mean_squared_error. Internally, a squared_error operation computes the
element-wise square of the difference between predictions and labels. Then
update_op increments total with the reduced sum of the product of
weights and squared_error, and it increments count with the reduced sum
of weights.

If weights is None, weights default to 1. Use weights of 0 to mask values.

Args:

		predictions: A Tensor of arbitrary shape.

		labels: A Tensor of the same shape as predictions.

		weights: An optional Tensor whose shape is broadcastable to predictions.

		metrics_collections: An optional list of collections that
mean_squared_error should be added to.

		updates_collections: An optional list of collections that update_op should
be added to.

		name: An optional variable_scope name.

Returns:

		mean_squared_error: A tensor representing the current mean, the value of
total divided by count.

		update_op: An operation that increments the total and count variables
appropriately and whose value matches mean_squared_error.

Raises:

		ValueError: If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn’t match predictions, or if
either metrics_collections or updates_collections are not a list or
tuple.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.round.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.round(x, name=None) {#round}

Rounds the values of a tensor to the nearest integer, element-wise.

For example:

'a' is [0.9, 2.5, 2.3, -4.4]
tf.round(a) ==> [1.0, 3.0, 2.0, -4.0]

Args:

		x: A Tensor of type float32 or float64.

		name: A name for the operation (optional).

Returns:

A Tensor of same shape and type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/script_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Wraps python functions

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Script Language Operators.

TensorFlow provides allows you to wrap python/numpy functions as
TensorFlow operators.

tf.py_func(func, inp, Tout, stateful=True, name=None) {#py_func}

Wraps a python function and uses it as a tensorflow op.

Given a python function func, which takes numpy arrays as its
inputs and returns numpy arrays as its outputs. E.g.,

def my_func(x):
 # x will be a numpy array with the contents of the placeholder below
 return np.sinh(x)
inp = tf.placeholder(tf.float32, [...])
y = py_func(my_func, [inp], [tf.float32])

The above snippet constructs a tf graph which invokes a numpy
sinh(x) as an op in the graph.

Args:

		func: A python function.

		inp: A list of Tensor.

		Tout: A list or tuple of tensorflow data types or a single tensorflow data
type if there is only one, indicating what func returns.

		stateful: A boolean indicating whether the function should be considered
stateful or stateless. I.e. whether it, given the same input, will
return the same output and at the same time does not change state
in an observable way. Optimizations such as common subexpression
elimination are only possible when operations are stateless.

		name: A name for the operation (optional).

Returns:

A list of Tensor or a single Tensor which func computes.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.random_uniform_initializer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.random_uniform_initializer(minval=0, maxval=None, seed=None, dtype=tf.float32) {#random_uniform_initializer}

Returns an initializer that generates tensors with a uniform distribution.

Args:

		minval: A python scalar or a scalar tensor. Lower bound of the range
of random values to generate.

		maxval: A python scalar or a scalar tensor. Upper bound of the range
of random values to generate. Defaults to 1 for float types.

		seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

		dtype: The data type.

Returns:

An initializer that generates tensors with a uniform distribution.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.graph_editor.swap.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.swap(sgv0, sgv1) {#swap}

Swap the inputs and outputs of sgv1 to sgv0 (see _reroute).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/sparse_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Sparse Tensors

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Sparse Tensor Representation

TensorFlow supports a SparseTensor representation for data that is sparse
in multiple dimensions. Contrast this representation with IndexedSlices,
which is efficient for representing tensors that are sparse in their first
dimension, and dense along all other dimensions.

class tf.SparseTensor {#SparseTensor}

Represents a sparse tensor.

TensorFlow represents a sparse tensor as three separate dense tensors:
indices, values, and shape. In Python, the three tensors are
collected into a SparseTensor class for ease of use. If you have separate
indices, values, and shape tensors, wrap them in a SparseTensor
object before passing to the ops below.

Concretely, the sparse tensor SparseTensor(indices, values, shape)
comprises the following components, where N and ndims are the number
of values and number of dimensions in the SparseTensor, respectively:

		indices: A 2-D int64 tensor of shape [N, ndims], which specifies
the indices of the elements in the sparse tensor that contain nonzero
values (elements are zero-indexed). For example, indices=[[1,3], [2,4]]
specifies that the elements with indexes of [1,3] and [2,4] have
nonzero values.

		values: A 1-D tensor of any type and shape [N], which supplies the
values for each element in indices. For example, given
indices=[[1,3], [2,4]], the parameter values=[18, 3.6] specifies
that element [1,3] of the sparse tensor has a value of 18, and element
[2,4] of the tensor has a value of 3.6.

		shape: A 1-D int64 tensor of shape [ndims], which specifies the shape
of the sparse tensor. Takes a list indicating the number of elements in
each dimension. For example, shape=[3,6] specifies a two-dimensional 3x6
tensor, shape=[2,3,4] specifies a three-dimensional 2x3x4 tensor, and
shape=[9] specifies a one-dimensional tensor with 9 elements.

The corresponding dense tensor satisfies:

dense.shape = shape
dense[tuple(indices[i])] = values[i]

By convention, indices should be sorted in row-major order (or equivalently
lexicographic order on the tuples indices[i]). This is not enforced when
SparseTensor objects are constructed, but most ops assume correct ordering.
If the ordering of sparse tensor st is wrong, a fixed version can be
obtained by calling tf.sparse_reorder(st).

Example: The sparse tensor

SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2], shape=[3, 4])

represents the dense tensor

[[1, 0, 0, 0]
 [0, 0, 2, 0]
 [0, 0, 0, 0]]

tf.SparseTensor.__init__(indices, values, shape) {#SparseTensor.init}

Creates a SparseTensor.

Args:

		indices: A 2-D int64 tensor of shape [N, ndims].

		values: A 1-D tensor of any type and shape [N].

		shape: A 1-D int64 tensor of shape [ndims].

Returns:

A SparseTensor

tf.SparseTensor.indices {#SparseTensor.indices}

The indices of non-zero values in the represented dense tensor.

Returns:

A 2-D Tensor of int64 with shape [N, ndims], where N is the
number of non-zero values in the tensor, and ndims is the rank.

tf.SparseTensor.values {#SparseTensor.values}

The non-zero values in the represented dense tensor.

Returns:

A 1-D Tensor of any data type.

tf.SparseTensor.shape {#SparseTensor.shape}

A 1-D Tensor of int64 representing the shape of the dense tensor.

tf.SparseTensor.dtype {#SparseTensor.dtype}

The DType of elements in this tensor.

tf.SparseTensor.op {#SparseTensor.op}

The Operation that produces values as an output.

tf.SparseTensor.graph {#SparseTensor.graph}

The Graph that contains the index, value, and shape tensors.

Other Methods

tf.SparseTensor.__div__(sp_x, y) {#SparseTensor.div}

Component-wise divides a SparseTensor by a dense Tensor.

Limitation: this Op only broadcasts the dense side to the sparse side, but not
the other direction.

Args:

		sp_indices: A Tensor of type int64.
2-D. N x R matrix with the indices of non-empty values in a
SparseTensor, possibly not in canonical ordering.

		sp_values: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
1-D. N non-empty values corresponding to sp_indices.

		sp_shape: A Tensor of type int64.
1-D. Shape of the input SparseTensor.

		dense: A Tensor. Must have the same type as sp_values.
R-D. The dense Tensor operand.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as sp_values.
1-D. The N values that are operated on.

tf.SparseTensor.__mul__(sp_x, y) {#SparseTensor.mul}

Component-wise multiplies a SparseTensor by a dense Tensor.

The output locations corresponding to the implicitly zero elements in the sparse
tensor will be zero (i.e., will not take up storage space), regardless of the
contents of the dense tensor (even if it’s +/-INF and that INF*0 == NaN).

Limitation: this Op only broadcasts the dense side to the sparse side, but not
the other direction.

Args:

		sp_indices: A Tensor of type int64.
2-D. N x R matrix with the indices of non-empty values in a
SparseTensor, possibly not in canonical ordering.

		sp_values: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
1-D. N non-empty values corresponding to sp_indices.

		sp_shape: A Tensor of type int64.
1-D. Shape of the input SparseTensor.

		dense: A Tensor. Must have the same type as sp_values.
R-D. The dense Tensor operand.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as sp_values.
1-D. The N values that are operated on.

tf.SparseTensor.__str__() {#SparseTensor.str}

tf.SparseTensor.__truediv__(sp_x, y) {#SparseTensor.truediv}

Internal helper function for ‘sp_t / dense_t’.

tf.SparseTensor.eval(feed_dict=None, session=None) {#SparseTensor.eval}

Evaluates this sparse tensor in a Session.

Calling this method will execute all preceding operations that
produce the inputs needed for the operation that produces this
tensor.

N.B. Before invoking SparseTensor.eval(), its graph must have been
launched in a session, and either a default session must be
available, or session must be specified explicitly.

Args:

		feed_dict: A dictionary that maps Tensor objects to feed values.
See Session.run() for a
description of the valid feed values.

		session: (Optional.) The Session to be used to evaluate this sparse
tensor. If none, the default session will be used.

Returns:

A SparseTensorValue object.

tf.SparseTensor.from_value(cls, sparse_tensor_value) {#SparseTensor.from_value}

class tf.SparseTensorValue {#SparseTensorValue}

SparseTensorValue(indices, values, shape)

tf.SparseTensorValue.__getnewargs__() {#SparseTensorValue.getnewargs}

Return self as a plain tuple. Used by copy and pickle.

tf.SparseTensorValue.__getstate__() {#SparseTensorValue.getstate}

Exclude the OrderedDict from pickling

tf.SparseTensorValue.__new__(_cls, indices, values, shape) {#SparseTensorValue.new}

Create new instance of SparseTensorValue(indices, values, shape)

tf.SparseTensorValue.__repr__() {#SparseTensorValue.repr}

Return a nicely formatted representation string

tf.SparseTensorValue.indices {#SparseTensorValue.indices}

Alias for field number 0

tf.SparseTensorValue.shape {#SparseTensorValue.shape}

Alias for field number 2

tf.SparseTensorValue.values {#SparseTensorValue.values}

Alias for field number 1

Conversion

tf.sparse_to_dense(sparse_indices, output_shape, sparse_values, default_value=0, validate_indices=True, name=None) {#sparse_to_dense}

Converts a sparse representation into a dense tensor.

Builds an array dense with shape output_shape such that

If sparse_indices is scalar
dense[i] = (i == sparse_indices ? sparse_values : default_value)

If sparse_indices is a vector, then for each i
dense[sparse_indices[i]] = sparse_values[i]

If sparse_indices is an n by d matrix, then for each i in [0, n)
dense[sparse_indices[i][0], ..., sparse_indices[i][d-1]] = sparse_values[i]

All other values in dense are set to default_value. If sparse_values
is a scalar, all sparse indices are set to this single value.

Indices should be sorted in lexicographic order, and indices must not
contain any repeats. If validate_indices is True, these properties
are checked during execution.

Args:

		sparse_indices: A 0-D, 1-D, or 2-D Tensor of type int32 or int64.
sparse_indices[i] contains the complete index where sparse_values[i]
will be placed.

		output_shape: A 1-D Tensor of the same type as sparse_indices. Shape
of the dense output tensor.

		sparse_values: A 0-D or 1-D Tensor. Values corresponding to each row of
sparse_indices, or a scalar value to be used for all sparse indices.

		default_value: A 0-D Tensor of the same type as sparse_values. Value
to set for indices not specified in sparse_indices. Defaults to zero.

		validate_indices: A boolean value. If True, indices are checked to make
sure they are sorted in lexicographic order and that there are no repeats.

		name: A name for the operation (optional).

Returns:

Dense Tensor of shape output_shape. Has the same type as
sparse_values.

tf.sparse_tensor_to_dense(sp_input, default_value=0, validate_indices=True, name=None) {#sparse_tensor_to_dense}

Converts a SparseTensor into a dense tensor.

This op is a convenience wrapper around sparse_to_dense for SparseTensors.

For example, if sp_input has shape [3, 5] and non-empty string values:

[0, 1]: a
[0, 3]: b
[2, 0]: c

and default_value is x, then the output will be a dense [3, 5]
string tensor with values:

[[x a x b x]
 [x x x x x]
 [c x x x x]]

Indices must be without repeats. This is only
tested if validate_indices is True.

Args:

		sp_input: The input SparseTensor.

		default_value: Scalar value to set for indices not specified in
sp_input. Defaults to zero.

		validate_indices: A boolean value. If True, indices are checked to make
sure they are sorted in lexicographic order and that there are no repeats.

		name: A name prefix for the returned tensors (optional).

Returns:

A dense tensor with shape sp_input.shape and values specified by
the non-empty values in sp_input. Indices not in sp_input are assigned
default_value.

Raises:

		TypeError: If sp_input is not a SparseTensor.

tf.sparse_to_indicator(sp_input, vocab_size, name=None) {#sparse_to_indicator}

Converts a SparseTensor of ids into a dense bool indicator tensor.

The last dimension of sp_input.indices is discarded and replaced with
the values of sp_input. If sp_input.shape = [D0, D1, ..., Dn, K], then
output.shape = [D0, D1, ..., Dn, vocab_size], where

output[d_0, d_1, ..., d_n, sp_input[d_0, d_1, ..., d_n, k]] = True

and False elsewhere in output.

For example, if sp_input.shape = [2, 3, 4] with non-empty values:

[0, 0, 0]: 0
[0, 1, 0]: 10
[1, 0, 3]: 103
[1, 1, 2]: 150
[1, 1, 3]: 149
[1, 1, 4]: 150
[1, 2, 1]: 121

and vocab_size = 200, then the output will be a [2, 3, 200] dense bool
tensor with False everywhere except at positions

(0, 0, 0), (0, 1, 10), (1, 0, 103), (1, 1, 149), (1, 1, 150),
(1, 2, 121).

Note that repeats are allowed in the input SparseTensor.
This op is useful for converting SparseTensors into dense formats for
compatibility with ops that expect dense tensors.

The input SparseTensor must be in row-major order.

Args:

		sp_input: A SparseTensor with values property of type int32 or
int64.

		vocab_size: A scalar int64 Tensor (or Python int) containing the new size
of the last dimension, all(0 <= sp_input.values < vocab_size).

		name: A name prefix for the returned tensors (optional)

Returns:

A dense bool indicator tensor representing the indices with specified value.

Raises:

		TypeError: If sp_input is not a SparseTensor.

tf.sparse_merge(sp_ids, sp_values, vocab_size, name=None, already_sorted=False) {#sparse_merge}

Combines a batch of feature ids and values into a single SparseTensor.

The most common use case for this function occurs when feature ids and
their corresponding values are stored in Example protos on disk.
parse_example will return a batch of ids and a batch of values, and this
function joins them into a single logical SparseTensor for use in
functions such as sparse_tensor_dense_matmul, sparse_to_dense, etc.

The SparseTensor returned by this function has the following properties:

		indices is equivalent to sp_ids.indices with the last
dimension discarded and replaced with sp_ids.values.

		values is simply sp_values.values.

		If sp_ids.shape = [D0, D1, ..., Dn, K], then
output.shape = [D0, D1, ..., Dn, vocab_size].

For example, consider the following feature vectors:

 vector1 = [-3, 0, 0, 0, 0, 0]
 vector2 = [0, 1, 0, 4, 1, 0]
 vector3 = [5, 0, 0, 9, 0, 0]

These might be stored sparsely in the following Example protos by storing
only the feature ids (column number if the vectors are treated as a matrix)
of the non-zero elements and the corresponding values:

 examples = [Example(features={
 "ids": Feature(int64_list=Int64List(value=[0])),
 "values": Feature(float_list=FloatList(value=[-3]))}),
 Example(features={
 "ids": Feature(int64_list=Int64List(value=[1, 4, 3])),
 "values": Feature(float_list=FloatList(value=[1, 1, 4]))}),
 Example(features={
 "ids": Feature(int64_list=Int64List(value=[0, 3])),
 "values": Feature(float_list=FloatList(value=[5, 9]))})]

The result of calling parse_example on these examples will produce a
dictionary with entries for “ids” and “values”. Passing those two objects
to this function along with vocab_size=6, will produce a SparseTensor that
sparsely represents all three instances. Namely, the indices property will
contain the coordinates of the non-zero entries in the feature matrix (the
first dimension is the row number in the matrix, i.e., the index within the
batch, and the second dimension is the column number, i.e., the feature id);
values will contain the actual values. shape will be the shape of the
original matrix, i.e., (3, 6). For our example above, the output will be
equal to:

 SparseTensor(indices=[[0, 0], [1, 1], [1, 3], [1, 4], [2, 0], [2, 3]],
 values=[-3, 1, 4, 1, 5, 9],
 shape=[3, 6])

Args:

		sp_ids: A SparseTensor with values property of type int32
or int64.

		sp_values: ASparseTensor of any type.

		vocab_size: A scalar int64 Tensor (or Python int) containing the new size
of the last dimension, all(0 <= sp_ids.values < vocab_size).

		name: A name prefix for the returned tensors (optional)

		already_sorted: A boolean to specify whether the per-batch values in
sp_values are already sorted. If so skip sorting, False by default
(optional).

Returns:

A SparseTensor compactly representing a batch of feature ids and values,
useful for passing to functions that expect such a SparseTensor.

Raises:

		TypeError: If sp_ids or sp_values are not a SparseTensor.

Manipulation

tf.sparse_concat(concat_dim, sp_inputs, name=None, expand_nonconcat_dim=False) {#sparse_concat}

Concatenates a list of SparseTensor along the specified dimension.

Concatenation is with respect to the dense versions of each sparse input.
It is assumed that each inputs is a SparseTensor whose elements are ordered
along increasing dimension number.

If expand_nonconcat_dim is False, all inputs’ shapes must match, except for
the concat dimension. If expand_nonconcat_dim is True, then inputs’ shapes are
allowd to vary among all inputs.

The indices, values, and shapes lists must have the same length.

If expand_nonconcat_dim is False, then the output shape is identical to the
inputs’, except along the concat dimension, where it is the sum of the inputs’
sizes along that dimension.

If expand_nonconcat_dim is True, then the output shape along the non-concat
dimensions will be expand to be the largest among all inputs, and it is the
sum of the inputs sizes along the concat dimension.

The output elements will be resorted to preserve the sort order along
increasing dimension number.

This op runs in O(M log M) time, where M is the total number of non-empty
values across all inputs. This is due to the need for an internal sort in
order to concatenate efficiently across an arbitrary dimension.

For example, if concat_dim = 1 and the inputs are

sp_inputs[0]: shape = [2, 3]
[0, 2]: "a"
[1, 0]: "b"
[1, 1]: "c"

sp_inputs[1]: shape = [2, 4]
[0, 1]: "d"
[0, 2]: "e"

then the output will be

shape = [2, 7]
[0, 2]: "a"
[0, 4]: "d"
[0, 5]: "e"
[1, 0]: "b"
[1, 1]: "c"

Graphically this is equivalent to doing

[a] concat [d e] = [a d e]
[b c] [] [b c]

Another example, if ‘concat_dim = 1’ and the inputs are

sp_inputs[0]: shape = [3, 3]
[0, 2]: "a"
[1, 0]: "b"
[2, 1]: "c"

sp_inputs[1]: shape = [2, 4]
[0, 1]: "d"
[0, 2]: "e"

if expand_nonconcat_dim = False, this will result in an error. But if
expand_nonconcat_dim = True, this will result in:

shape = [3, 7]
[0, 2]: "a"
[0, 4]: "d"
[0, 5]: "e"
[1, 0]: "b"
[2, 1]: "c"

Graphically this is equivalent to doing

[a] concat [d e] = [a d e]
[b] [] [b]
[c] [c]

Args:

		concat_dim: Dimension to concatenate along. Must be in range [-rank, rank),
where rank is the number of dimensions in each input SparseTensor.

		sp_inputs: List of SparseTensor to concatenate.

		name: A name prefix for the returned tensors (optional).

		expand_nonconcat_dim: Whether to allow the expansion in the non-concat
dimensions. Defaulted to False.

Returns:

A SparseTensor with the concatenated output.

Raises:

		TypeError: If sp_inputs is not a list of SparseTensor.

tf.sparse_reorder(sp_input, name=None) {#sparse_reorder}

Reorders a SparseTensor into the canonical, row-major ordering.

Note that by convention, all sparse ops preserve the canonical ordering
along increasing dimension number. The only time ordering can be violated
is during manual manipulation of the indices and values to add entries.

Reordering does not affect the shape of the SparseTensor.

For example, if sp_input has shape [4, 5] and indices / values:

[0, 3]: b
[0, 1]: a
[3, 1]: d
[2, 0]: c

then the output will be a SparseTensor of shape [4, 5] and
indices / values:

[0, 1]: a
[0, 3]: b
[2, 0]: c
[3, 1]: d

Args:

		sp_input: The input SparseTensor.

		name: A name prefix for the returned tensors (optional)

Returns:

A SparseTensor with the same shape and non-empty values, but in
canonical ordering.

Raises:

		TypeError: If sp_input is not a SparseTensor.

tf.sparse_reshape(sp_input, shape, name=None) {#sparse_reshape}

Reshapes a SparseTensor to represent values in a new dense shape.

This operation has the same semantics as reshape on the represented dense
tensor. The indices of non-empty values in sp_input are recomputed based
on the new dense shape, and a new SparseTensor is returned containing the
new indices and new shape. The order of non-empty values in sp_input is
unchanged.

If one component of shape is the special value -1, the size of that
dimension is computed so that the total dense size remains constant. At
most one component of shape can be -1. The number of dense elements
implied by shape must be the same as the number of dense elements
originally represented by sp_input.

For example, if sp_input has shape [2, 3, 6] and indices / values:

[0, 0, 0]: a
[0, 0, 1]: b
[0, 1, 0]: c
[1, 0, 0]: d
[1, 2, 3]: e

and shape is [9, -1], then the output will be a SparseTensor of
shape [9, 4] and indices / values:

[0, 0]: a
[0, 1]: b
[1, 2]: c
[4, 2]: d
[8, 1]: e

Args:

		sp_input: The input SparseTensor.

		shape: A 1-D (vector) int64 Tensor specifying the new dense shape of the
represented SparseTensor.

		name: A name prefix for the returned tensors (optional)

Returns:

A SparseTensor with the same non-empty values but with indices calculated
by the new dense shape.

Raises:

		TypeError: If sp_input is not a SparseTensor.

tf.sparse_split(split_dim, num_split, sp_input, name=None) {#sparse_split}

Split a SparseTensor into num_split tensors along split_dim.

If the sp_input.shape[split_dim] is not an integer multiple of num_split
each slice starting from 0:shape[split_dim] % num_split gets extra one
dimension. For example, if split_dim = 1 and num_split = 2 and the
input is:

input_tensor = shape = [2, 7]
[a d e]
[b c]

Graphically the output tensors are:

output_tensor[0] =
[a]
[b c]

output_tensor[1] =
[d e]
[]

Args:

		split_dim: A 0-D int32 Tensor. The dimension along which to split.

		num_split: A Python integer. The number of ways to split.

		sp_input: The SparseTensor to split.

		name: A name for the operation (optional).

Returns:

num_split SparseTensor objects resulting from splitting value.

Raises:

		TypeError: If sp_input is not a SparseTensor.

tf.sparse_retain(sp_input, to_retain) {#sparse_retain}

Retains specified non-empty values within a SparseTensor.

For example, if sp_input has shape [4, 5] and 4 non-empty string values:

[0, 1]: a
[0, 3]: b
[2, 0]: c
[3, 1]: d

and to_retain = [True, False, False, True], then the output will
be a SparseTensor of shape [4, 5] with 2 non-empty values:

[0, 1]: a
[3, 1]: d

Args:

		sp_input: The input SparseTensor with N non-empty elements.

		to_retain: A bool vector of length N with M true values.

Returns:

A SparseTensor with the same shape as the input and M non-empty
elements corresponding to the true positions in to_retain.

Raises:

		TypeError: If sp_input is not a SparseTensor.

tf.sparse_reset_shape(sp_input, new_shape=None) {#sparse_reset_shape}

Resets the shape of a SparseTensor with indices and values unchanged.

If new_shape is None, returns a copy of sp_input with its shape reset
to the tight bounding box of sp_input.

If new_shape is provided, then it must be larger or equal in all dimensions
compared to the shape of sp_input. When this condition is met, the returned
SparseTensor will have its shape reset to new_shape and its indices and
values unchanged from that of sp_input.

For example:

Consider a sp_input with shape [2, 3, 5]:

[0, 0, 1]: a
[0, 1, 0]: b
[0, 2, 2]: c
[1, 0, 3]: d

		It is an error to set new_shape as [3, 7] since this represents a
rank-2 tensor while sp_input is rank-3. This is either a ValueError
during graph construction (if both shapes are known) or an OpError during
run time.

		Setting new_shape as [2, 3, 6] will be fine as this shape is larger or
equal in every dimension compared to the original shape [2, 3, 5].

		On the other hand, setting new_shape as [2, 3, 4] is also an error: The
third dimension is smaller than the original shape [2, 3, 5] (and an
InvalidArgumentError will be raised).

		If new_shape is None, the returned SparseTensor will have a shape
[2, 3, 4], which is the tight bounding box of sp_input.

Args:

		sp_input: The input SparseTensor.

		new_shape: None or a vector representing the new shape for the returned
SparseTensor.

Returns:

A SparseTensor indices and values unchanged from input_sp. Its shape is
new_shape if that is set. Otherwise it is the tight bounding box of
input_sp

Raises:

		TypeError: If sp_input is not a SparseTensor.

		ValueError: If new_shape represents a tensor with a different rank from
that of sp_input (if shapes are known when graph is constructed).

		OpError:
		If new_shape has dimension sizes that are too small.

		If shapes are not known during graph construction time, and during run
time it is found out that the ranks do not match.

tf.sparse_fill_empty_rows(sp_input, default_value, name=None) {#sparse_fill_empty_rows}

Fills empty rows in the input 2-D SparseTensor with a default value.

This op adds entries with the specified default_value at index
[row, 0] for any row in the input that does not already have a value.

For example, suppose sp_input has shape [5, 6] and non-empty values:

[0, 1]: a
[0, 3]: b
[2, 0]: c
[3, 1]: d

Rows 1 and 4 are empty, so the output will be of shape [5, 6] with values:

[0, 1]: a
[0, 3]: b
[1, 0]: default_value
[2, 0]: c
[3, 1]: d
[4, 0]: default_value

Note that the input may have empty columns at the end, with no effect on
this op.

The output SparseTensor will be in row-major order and will have the
same shape as the input.

This op also returns an indicator vector such that

empty_row_indicator[i] = True iff row i was an empty row.

Args:

		sp_input: A SparseTensor with shape [N, M].

		default_value: The value to fill for empty rows, with the same type as
sp_input.

		name: A name prefix for the returned tensors (optional)

Returns:

		sp_ordered_output: A SparseTensor with shape [N, M], and with all empty
rows filled in with default_value.

		empty_row_indicator: A bool vector of length N indicating whether each
input row was empty.

Raises:

		TypeError: If sp_input is not a SparseTensor.

tf.sparse_transpose(sp_input, perm=None, name=None) {#sparse_transpose}

Transposes a SparseTensor

The returned tensor’s dimension i will correspond to the input dimension
perm[i]. If perm is not given, it is set to (n-1...0), where n is
the rank of the input tensor. Hence by default, this operation performs a
regular matrix transpose on 2-D input Tensors.

For example, if sp_input has shape [4, 5] and indices / values:

[0, 3]: b
[0, 1]: a
[3, 1]: d
[2, 0]: c

then the output will be a SparseTensor of shape [5, 4] and
indices / values:

[0, 2]: c
[1, 0]: a
[1, 3]: d
[3, 0]: b

Args:

		sp_input: The input SparseTensor.

		perm: A permutation of the dimensions of sp_input.

		name: A name prefix for the returned tensors (optional)

Returns:

A transposed SparseTensor.

Raises:

		TypeError: If sp_input is not a SparseTensor.

Reduction

tf.sparse_reduce_sum(sp_input, reduction_axes=None, keep_dims=False) {#sparse_reduce_sum}

Computes the sum of elements across dimensions of a SparseTensor.

This Op takes a SparseTensor and is the sparse counterpart to
tf.reduce_sum(). In particular, this Op also returns a dense Tensor
instead of a sparse one.

Reduces sp_input along the dimensions given in reduction_axes. Unless
keep_dims is true, the rank of the tensor is reduced by 1 for each entry in
reduction_axes. If keep_dims is true, the reduced dimensions are retained
with length 1.

If reduction_axes has no entries, all dimensions are reduced, and a tensor
with a single element is returned. Additionally, the axes can be negative,
similar to the indexing rules in Python.

For example:

'x' represents [[1, ?, 1]
[?, 1, ?]]
where ? is implicitly-zero.
tf.sparse_reduce_sum(x) ==> 3
tf.sparse_reduce_sum(x, 0) ==> [1, 1, 1]
tf.sparse_reduce_sum(x, 1) ==> [2, 1] # Can also use -1 as the axis.
tf.sparse_reduce_sum(x, 1, keep_dims=True) ==> [[2], [1]]
tf.sparse_reduce_sum(x, [0, 1]) ==> 3

Args:

		sp_input: The SparseTensor to reduce. Should have numeric type.

		reduction_axes: The dimensions to reduce; list or scalar. If None (the
default), reduces all dimensions.

		keep_dims: If true, retain reduced dimensions with length 1.

Returns:

The reduced Tensor.

tf.sparse_reduce_sum_sparse(sp_input, reduction_axes=None, keep_dims=False) {#sparse_reduce_sum_sparse}

Computes the sum of elements across dimensions of a SparseTensor.

This Op takes a SparseTensor and is the sparse counterpart to
tf.reduce_sum(). In contrast to SparseReduceSum, this Op returns a
SparseTensor.

Reduces sp_input along the dimensions given in reduction_axes. Unless
keep_dims is true, the rank of the tensor is reduced by 1 for each entry in
reduction_axes. If keep_dims is true, the reduced dimensions are retained
with length 1.

If reduction_axes has no entries, all dimensions are reduced, and a tensor
with a single element is returned. Additionally, the axes can be negative,
which are interpreted according to the indexing rules in Python.

Args:

		sp_input: The SparseTensor to reduce. Should have numeric type.

		reduction_axes: The dimensions to reduce; list or scalar. If None (the
default), reduces all dimensions.

		keep_dims: If true, retain reduced dimensions with length 1.

Returns:

The reduced SparseTensor.

Math Operations

tf.sparse_add(a, b, thresh=0) {#sparse_add}

Adds two tensors, at least one of each is a SparseTensor.

If one SparseTensor and one Tensor are passed in, returns a Tensor. If
both arguments are SparseTensors, this returns a SparseTensor. The order
of arguments does not matter. Use vanilla tf.add() for adding two dense
Tensors.

The indices of any input SparseTensor are assumed ordered in standard
lexicographic order. If this is not the case, before this step run
SparseReorder to restore index ordering.

If both arguments are sparse, we perform “clipping” as follows. By default,
if two values sum to zero at some index, the output SparseTensor would still
include that particular location in its index, storing a zero in the
corresponding value slot. To override this, callers can specify thresh,
indicating that if the sum has a magnitude strictly smaller than thresh, its
corresponding value and index would then not be included. In particular,
thresh == 0.0 (default) means everything is kept and actual thresholding
happens only for a positive value.

For example, suppose the logical sum of two sparse operands is (densified):

[2]
[.1 0]
[6 -.2]

Then,

- thresh == 0 (the default): all 5 index/value pairs will be returned.
- thresh == 0.11: only .1 and 0 will vanish, and the remaining three
 index/value pairs will be returned.
- thresh == 0.21: .1, 0, and -.2 will vanish.

Args:

		a: The first operand; SparseTensor or Tensor.

		b: The second operand; SparseTensor or Tensor. At least one operand
must be sparse.

		thresh: A 0-D Tensor. The magnitude threshold that determines if an
output value/index pair takes space. Its dtype should match that of the
values if they are real; if the latter are complex64/complex128, then the
dtype should be float32/float64, correspondingly.

Returns:

A SparseTensor or a Tensor, representing the sum.

Raises:

		TypeError: If both a and b are Tensors. Use tf.add() instead.

tf.sparse_softmax(sp_input, name=None) {#sparse_softmax}

Applies softmax to a batched N-D SparseTensor.

The inputs represent an N-D SparseTensor with logical shape [..., B, C]
(where N >= 2), and with indices sorted in the canonical lexicographic
order.

This op is equivalent to applying the normal tf.nn.softmax() to each
innermost logical submatrix with shape [B, C], but with the catch that the
implicitly zero elements do not participate. Specifically, the algorithm is
equivalent to:

(1) Applies tf.nn.softmax() to a densified view of each innermost
submatrix with shape [B, C], along the size-C dimension;
(2) Masks out the original implicitly-zero locations;
(3) Renormalizes the remaining elements.

Hence, the SparseTensor result has exactly the same non-zero indices and
shape.

Example:

First batch:
[? e.]
[1. ?]
Second batch:
[e ?]
[e e]
shape = [2, 2, 2] # 3-D SparseTensor
values = np.asarray([[[0., np.e], [1., 0.]], [[np.e, 0.], [np.e, np.e]]])
indices = np.vstack(np.where(values)).astype(np.int64).T

result = tf.sparse_softmax(tf.SparseTensor(indices, values, shape))
...returning a 3-D SparseTensor, equivalent to:
[? 1.] [1 ?]
[1. ?] and [.5 .5]
where ? means implicitly zero.

Args:

		sp_input: N-D SparseTensor, where N >= 2.

		name: optional name of the operation.

Returns:

		output: N-D SparseTensor representing the results.

tf.sparse_tensor_dense_matmul(sp_a, b, adjoint_a=False, adjoint_b=False, name=None) {#sparse_tensor_dense_matmul}

Multiply SparseTensor (of rank 2) “A” by dense matrix “B”.

No validity checking is performed on the indices of A. However, the following
input format is recommended for optimal behavior:

if adjoint_a == false:
A should be sorted in lexicographically increasing order. Use
sparse_reorder if you’re not sure.
if adjoint_a == true:
A should be sorted in order of increasing dimension 1 (i.e., “column major”
order instead of “row major” order).

Deciding when to use sparse_tensor_dense_matmul vs. matmul(sp_a=True):

There are a number of questions to ask in the decision process, including:

		Will the SparseTensor A fit in memory if densified?

		Is the column count of the product large (>> 1)?

		Is the density of A larger than approximately 15%?

If the answer to several of these questions is yes, consider
converting the SparseTensor to a dense one and using tf.matmul with sp_a=True.

This operation tends to perform well when A is more sparse, if the column size
of the product is small (e.g. matrix-vector multiplication), if sp_a.shape
takes on large values.

Below is a rough speed comparison between sparse_tensor_dense_matmul,
labelled ‘sparse’, and matmul(sp_a=True), labelled ‘dense’. For purposes of
the comparison, the time spent converting from a SparseTensor to a dense
Tensor is not included, so it is overly conservative with respect to
the time ratio.

Benchmark system:
CPU: Intel Ivybridge with HyperThreading (6 cores) dL1:32KB dL2:256KB dL3:12MB
GPU: NVidia Tesla k40c

Compiled with:
-c opt –config=cuda –copt=-mavx

A sparse [m, k] with % nonzero values between 1% and 80%
B dense [k, n]

% nnz n gpu m k dt(dense) dt(sparse) dt(sparse)/dt(dense)
0.01 1 True 100 100 0.000221166 0.00010154 0.459112
0.01 1 True 100 1000 0.00033858 0.000109275 0.322745
0.01 1 True 1000 100 0.000310557 9.85661e-05 0.317385
0.01 1 True 1000 1000 0.0008721 0.000100875 0.115669
0.01 1 False 100 100 0.000208085 0.000107603 0.51711
0.01 1 False 100 1000 0.000327112 9.51118e-05 0.290762
0.01 1 False 1000 100 0.000308222 0.00010345 0.335635
0.01 1 False 1000 1000 0.000865721 0.000101397 0.117124
0.01 10 True 100 100 0.000218522 0.000105537 0.482958
0.01 10 True 100 1000 0.000340882 0.000111641 0.327506
0.01 10 True 1000 100 0.000315472 0.000117376 0.372064
0.01 10 True 1000 1000 0.000905493 0.000123263 0.136128
0.01 10 False 100 100 0.000221529 9.82571e-05 0.44354
0.01 10 False 100 1000 0.000330552 0.000112615 0.340687
0.01 10 False 1000 100 0.000341277 0.000114097 0.334324
0.01 10 False 1000 1000 0.000819944 0.000120982 0.147549
0.01 25 True 100 100 0.000207806 0.000105977 0.509981
0.01 25 True 100 1000 0.000322879 0.00012921 0.400181
0.01 25 True 1000 100 0.00038262 0.000141583 0.370035
0.01 25 True 1000 1000 0.000865438 0.000202083 0.233504
0.01 25 False 100 100 0.000209401 0.000104696 0.499979
0.01 25 False 100 1000 0.000321161 0.000130737 0.407076
0.01 25 False 1000 100 0.000377012 0.000136801 0.362856
0.01 25 False 1000 1000 0.000861125 0.00020272 0.235413
0.2 1 True 100 100 0.000206952 9.69219e-05 0.46833
0.2 1 True 100 1000 0.000348674 0.000147475 0.422959
0.2 1 True 1000 100 0.000336908 0.00010122 0.300439
0.2 1 True 1000 1000 0.001022 0.000203274 0.198898
0.2 1 False 100 100 0.000207532 9.5412e-05 0.459746
0.2 1 False 100 1000 0.000356127 0.000146824 0.41228
0.2 1 False 1000 100 0.000322664 0.000100918 0.312764
0.2 1 False 1000 1000 0.000998987 0.000203442 0.203648
0.2 10 True 100 100 0.000211692 0.000109903 0.519165
0.2 10 True 100 1000 0.000372819 0.000164321 0.440753
0.2 10 True 1000 100 0.000338651 0.000144806 0.427596
0.2 10 True 1000 1000 0.00108312 0.000758876 0.70064
0.2 10 False 100 100 0.000215727 0.000110502 0.512231
0.2 10 False 100 1000 0.000375419 0.0001613 0.429653
0.2 10 False 1000 100 0.000336999 0.000145628 0.432132
0.2 10 False 1000 1000 0.00110502 0.000762043 0.689618
0.2 25 True 100 100 0.000218705 0.000129913 0.594009
0.2 25 True 100 1000 0.000394794 0.00029428 0.745402
0.2 25 True 1000 100 0.000404483 0.0002693 0.665788
0.2 25 True 1000 1000 0.0012002 0.00194494 1.62052
0.2 25 False 100 100 0.000221494 0.0001306 0.589632
0.2 25 False 100 1000 0.000396436 0.000297204 0.74969
0.2 25 False 1000 100 0.000409346 0.000270068 0.659754
0.2 25 False 1000 1000 0.00121051 0.00193737 1.60046
0.5 1 True 100 100 0.000214981 9.82111e-05 0.456836
0.5 1 True 100 1000 0.000415328 0.000223073 0.537101
0.5 1 True 1000 100 0.000358324 0.00011269 0.314492
0.5 1 True 1000 1000 0.00137612 0.000437401 0.317851
0.5 1 False 100 100 0.000224196 0.000101423 0.452386
0.5 1 False 100 1000 0.000400987 0.000223286 0.556841
0.5 1 False 1000 100 0.000368825 0.00011224 0.304318
0.5 1 False 1000 1000 0.00136036 0.000429369 0.31563
0.5 10 True 100 100 0.000222125 0.000112308 0.505608
0.5 10 True 100 1000 0.000461088 0.00032357 0.701753
0.5 10 True 1000 100 0.000394624 0.000225497 0.571422
0.5 10 True 1000 1000 0.00158027 0.00190898 1.20801
0.5 10 False 100 100 0.000232083 0.000114978 0.495418
0.5 10 False 100 1000 0.000454574 0.000324632 0.714146
0.5 10 False 1000 100 0.000379097 0.000227768 0.600817
0.5 10 False 1000 1000 0.00160292 0.00190168 1.18638
0.5 25 True 100 100 0.00023429 0.000151703 0.647501
0.5 25 True 100 1000 0.000497462 0.000598873 1.20386
0.5 25 True 1000 100 0.000460778 0.000557038 1.20891
0.5 25 True 1000 1000 0.00170036 0.00467336 2.74845
0.5 25 False 100 100 0.000228981 0.000155334 0.678371
0.5 25 False 100 1000 0.000496139 0.000620789 1.25124
0.5 25 False 1000 100 0.00045473 0.000551528 1.21287
0.5 25 False 1000 1000 0.00171793 0.00467152 2.71927
0.8 1 True 100 100 0.000222037 0.000105301 0.47425
0.8 1 True 100 1000 0.000410804 0.000329327 0.801664
0.8 1 True 1000 100 0.000349735 0.000131225 0.375212
0.8 1 True 1000 1000 0.00139219 0.000677065 0.48633
0.8 1 False 100 100 0.000214079 0.000107486 0.502085
0.8 1 False 100 1000 0.000413746 0.000323244 0.781261
0.8 1 False 1000 100 0.000348983 0.000131983 0.378193
0.8 1 False 1000 1000 0.00136296 0.000685325 0.50282
0.8 10 True 100 100 0.000229159 0.00011825 0.516017
0.8 10 True 100 1000 0.000498845 0.000532618 1.0677
0.8 10 True 1000 100 0.000383126 0.00029935 0.781336
0.8 10 True 1000 1000 0.00162866 0.00307312 1.88689
0.8 10 False 100 100 0.000230783 0.000124958 0.541452
0.8 10 False 100 1000 0.000493393 0.000550654 1.11606
0.8 10 False 1000 100 0.000377167 0.000298581 0.791642
0.8 10 False 1000 1000 0.00165795 0.00305103 1.84024
0.8 25 True 100 100 0.000233496 0.000175241 0.75051
0.8 25 True 100 1000 0.00055654 0.00102658 1.84458
0.8 25 True 1000 100 0.000463814 0.000783267 1.68875
0.8 25 True 1000 1000 0.00186905 0.00755344 4.04132
0.8 25 False 100 100 0.000240243 0.000175047 0.728625
0.8 25 False 100 1000 0.000578102 0.00104499 1.80763
0.8 25 False 1000 100 0.000485113 0.000776849 1.60138
0.8 25 False 1000 1000 0.00211448 0.00752736 3.55992

Args:

		sp_a: SparseTensor A, of rank 2.

		b: A dense Matrix with the same dtype as sp_a.

		adjoint_a: Use the adjoint of A in the matrix multiply. If A is complex,
this is transpose(conj(A)). Otherwise it’s transpose(A).

		adjoint_b: Use the adjoint of B in the matrix multiply. If B is complex,
this is transpose(conj(B)). Otherwise it’s transpose(B).

		name: A name prefix for the returned tensors (optional)

Returns:

A dense matrix (pseudo-code in dense np.matrix notation):
A = A.H if adjoint_a else A
B = B.H if adjoint_b else B
return A*B

tf.sparse_maximum(sp_a, sp_b, name=None) {#sparse_maximum}

Returns the element-wise max of two SparseTensors.

Assumes the two SparseTensors have the same shape, i.e., no broadcasting.
Example:

sp_zero = ops.SparseTensor([[0]], [0], [7])
sp_one = ops.SparseTensor([[1]], [1], [7])
res = tf.sparse_maximum(sp_zero, sp_one).eval()
"res" should be equal to SparseTensor([[0], [1]], [0, 1], [7]).

Args:

		sp_a: a SparseTensor operand whose dtype is real, and indices
lexicographically ordered.

		sp_b: the other SparseTensor operand with the same requirements (and the
same shape).

		name: optional name of the operation.

Returns:

		output: the output SparseTensor.

tf.sparse_minimum(sp_a, sp_b, name=None) {#sparse_minimum}

Returns the element-wise min of two SparseTensors.

Assumes the two SparseTensors have the same shape, i.e., no broadcasting.
Example:

sp_zero = ops.SparseTensor([[0]], [0], [7])
sp_one = ops.SparseTensor([[1]], [1], [7])
res = tf.sparse_minimum(sp_zero, sp_one).eval()
"res" should be equal to SparseTensor([[0], [1]], [0, 0], [7]).

Args:

		sp_a: a SparseTensor operand whose dtype is real, and indices
lexicographically ordered.

		sp_b: the other SparseTensor operand with the same requirements (and the
same shape).

		name: optional name of the operation.

Returns:

		output: the output SparseTensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.framework.get_variables_by_name.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.get_variables_by_name(given_name, scope=None) {#get_variables_by_name}

Gets the list of variables that were given that name.

Args:

		given_name: name given to the variable without any scope.

		scope: an optional scope for filtering the variables to return.

Returns:

a copied list of variables with the given name and scope.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/contrib.bayesflow.variational_inference.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

BayesFlow Variational Inference (contrib)

[TOC]

Variational inference.

tf.contrib.bayesflow.variational_inference.elbo(log_likelihood, variational_with_prior=None, keep_batch_dim=True, form=None, name='ELBO') {#elbo}

Evidence Lower BOund. log p(x) >= ELBO.

Optimization objective for inference of hidden variables by variational
inference.

This function is meant to be used in conjunction with DistributionTensor.
The user should build out the inference network, using DistributionTensors
as latent variables, and the generative network. elbo at minimum needs
p(x|Z) and assumes that all DistributionTensors upstream of p(x|Z) are
the variational distributions. Use register_prior to register Distribution
priors for each DistributionTensor. Alternatively, pass in
variational_with_prior specifying all variational distributions and their
priors.

Mathematical details:

log p(x) = log \int p(x, Z) dZ
 = log \int \frac {q(Z)p(x, Z)}{q(Z)} dZ
 = log E_q[\frac {p(x, Z)}{q(Z)}]
 >= E_q[log \frac {p(x, Z)}{q(Z)}] = L[q; p, x] # ELBO

L[q; p, x] = E_q[log p(x|Z)p(Z)] - E_q[log q(Z)]
 = E_q[log p(x|Z)p(Z)] + H[q] (1)
 = E_q[log p(x|Z)] - KL(q || p) (2)

H - Entropy
KL - Kullback-Leibler divergence

See section 2.2 of Stochastic Variational Inference by Hoffman et al. for
more, including the ELBO’s equivalence to minimizing KL(q(Z)||p(Z|x))
in the fully Bayesian setting. https://arxiv.org/pdf/1206.7051.pdf.

form specifies which form of the ELBO is used. form=ELBOForms.default
tries, in order of preference: analytic KL, analytic entropy, sampling.

Multiple entries in the variational_with_prior dict implies a factorization.
e.g. q(Z) = q(z1)q(z2)q(z3).

Args:

		log_likelihood: Tensor log p(x|Z).

		variational_with_prior: dict from DistributionTensor q(Z) to
Distribution p(Z). If None, defaults to all DistributionTensor
objects upstream of log_likelihood with priors registered with
register_prior.

		keep_batch_dim: bool. Whether to keep the batch dimension when summing
entropy/KL term. When the sample is per data point, this should be True;
otherwise (e.g. in a Bayesian NN), this should be False.

		form: ELBOForms constant. Controls how the ELBO is computed. Defaults to
ELBOForms.default.

		name: name to prefix ops with.

Returns:

Tensor ELBO of the same type and shape as log_likelihood.

Raises:

		TypeError: if variationals in variational_with_prior are not
DistributionTensors or if priors are not BaseDistributions.

		TypeError: if form is not a valid ELBOForms constant.

		ValueError: if variational_with_prior is None and there are no
DistributionTensors upstream of log_likelihood.

		ValueError: if any variational does not have a prior passed or registered.

tf.contrib.bayesflow.variational_inference.elbo_with_log_joint(log_joint, variational=None, keep_batch_dim=True, form=None, name='ELBO') {#elbo_with_log_joint}

Evidence Lower BOund. log p(x) >= ELBO.

This method is for models that have computed p(x,Z) instead of p(x|Z).
See elbo for further details.

Because only the joint is specified, analytic KL is not available.

Args:

		log_joint: Tensor log p(x, Z).

		variational: list of DistributionTensor q(Z). If None, defaults to all
DistributionTensor objects upstream of log_joint.

		keep_batch_dim: bool. Whether to keep the batch dimension when summing
entropy term. When the sample is per data point, this should be True;
otherwise (e.g. in a Bayesian NN), this should be False.

		form: ELBOForms constant. Controls how the ELBO is computed. Defaults to
ELBOForms.default.

		name: name to prefix ops with.

Returns:

Tensor ELBO of the same type and shape as log_joint.

Raises:

		TypeError: if variationals in variational are not DistributionTensors.

		TypeError: if form is not a valid ELBOForms constant.

		ValueError: if variational is None and there are no DistributionTensors
upstream of log_joint.

		ValueError: if form is ELBOForms.analytic_kl.

class tf.contrib.bayesflow.variational_inference.ELBOForms {#ELBOForms}

Constants to control the elbo calculation.

analytic_kl uses the analytic KL divergence between the
variational distribution(s) and the prior(s).

analytic_entropy uses the analytic entropy of the variational
distribution(s).

sample uses the sample KL or the sample entropy is the joint is provided.

See elbo for what is used with default.

tf.contrib.bayesflow.variational_inference.ELBOForms.check_form(form) {#ELBOForms.check_form}

Other Functions and Classes

tf.contrib.bayesflow.variational_inference.register_prior(variational, prior) {#register_prior}

Associate a variational DistributionTensor with a Distribution prior.

This is a helper function used in conjunction with elbo that allows users
to specify the mapping between variational distributions and their priors
without having to pass in variational_with_prior explicitly.

Args:

		variational: DistributionTensor q(Z). Approximating distribution.

		prior: Distribution p(Z). Prior distribution.

Returns:

None

Raises:

		ValueError: if variational is not a DistributionTensor or prior is not
a Distribution.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.igammac.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.igammac(a, x, name=None) {#igammac}

Compute the upper regularized incomplete Gamma function Q(a, x).

The upper regularized incomplete Gamma function is defined as:

Q(a, x) = Gamma(a, x) / Gamma(a) = 1 - P(a, x)

where

Gamma(a, x) = int_{x}^{\infty} t^{a-1} exp(-t) dt

is the upper incomplete Gama function.

Note, above P(a, x) (Igamma) is the lower regularized complete
Gamma function.

Args:

		a: A Tensor. Must be one of the following types: float32, float64.

		x: A Tensor. Must have the same type as a.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as a.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/contrib.framework.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Framework (contrib)

[TOC]

Framework utilities.

tf.contrib.framework.assert_same_float_dtype(tensors=None, dtype=None) {#assert_same_float_dtype}

Validate and return float type based on tensors and dtype.

For ops such as matrix multiplication, inputs and weights must be of the
same float type. This function validates that all tensors are the same type,
validates that type is dtype (if supplied), and returns the type. Type must
be dtypes.float32 or dtypes.float64. If neither tensors nor
dtype is supplied, default to dtypes.float32.

Args:

		tensors: Tensors of input values. Can include None elements, which will be
ignored.

		dtype: Expected type.

Returns:

Validated type.

Raises:

		ValueError: if neither tensors nor dtype is supplied, or result is not
float.

tf.contrib.framework.assert_scalar_int(tensor) {#assert_scalar_int}

Assert tensor is 0-D, of type tf.int32 or tf.int64.

Args:

		tensor: Tensor to test.

Returns:

tensor, for chaining.

Raises:

		ValueError: if tensor is not 0-D, of type tf.int32 or tf.int64.

tf.contrib.framework.convert_to_tensor_or_sparse_tensor(value, dtype=None, name=None, as_ref=False) {#convert_to_tensor_or_sparse_tensor}

Converts value to a SparseTensor or Tensor.

Args:

		value: A SparseTensor, SparseTensorValue, or an object whose type has a
registered Tensor conversion function.

		dtype: Optional element type for the returned tensor. If missing, the
type is inferred from the type of value.

		name: Optional name to use if a new Tensor is created.

		as_ref: True if we want the result as a ref tensor. Only used if a new
Tensor is created.

Returns:

A SparseTensor or Tensor based on value.

Raises:

		RuntimeError: If result type is incompatible with dtype.

tf.contrib.framework.get_graph_from_inputs(op_input_list, graph=None) {#get_graph_from_inputs}

Returns the appropriate graph to use for the given inputs.

		If graph is provided, we validate that all inputs in op_input_list are
from the same graph.

		Otherwise, we attempt to select a graph from the first Operation- or
Tensor-valued input in op_input_list, and validate that all other
such inputs are in the same graph.

		If the graph was not specified and it could not be inferred from
op_input_list, we attempt to use the default graph.

Args:

		op_input_list: A list of inputs to an operation, which may include Tensor,
Operation, and other objects that may be converted to a graph element.

		graph: (Optional) The explicit graph to use.

Raises:

		TypeError: If op_input_list is not a list or tuple, or if graph is not a
Graph.

		ValueError: If a graph is explicitly passed and not all inputs are from it,
or if the inputs are from multiple graphs, or we could not find a graph
and there was no default graph.

Returns:

The appropriate graph to use for the given inputs.

tf.is_numeric_tensor(tensor) {#is_numeric_tensor}

tf.is_non_decreasing(x, name=None) {#is_non_decreasing}

Returns True if x is non-decreasing.

Elements of x are compared in row-major order. The tensor [x[0],...]
is non-decreasing if for every adjacent pair we have x[i] <= x[i+1].
If x has less than two elements, it is trivially non-decreasing.

See also: is_strictly_increasing

Args:

		x: Numeric Tensor.

		name: A name for this operation (optional). Defaults to “is_non_decreasing”

Returns:

Boolean Tensor, equal to True iff x is non-decreasing.

Raises:

		TypeError: if x is not a numeric tensor.

tf.is_strictly_increasing(x, name=None) {#is_strictly_increasing}

Returns True if x is strictly increasing.

Elements of x are compared in row-major order. The tensor [x[0],...]
is strictly increasing if for every adjacent pair we have x[i] < x[i+1].
If x has less than two elements, it is trivially strictly increasing.

See also: is_non_decreasing

Args:

		x: Numeric Tensor.

		name: A name for this operation (optional).
Defaults to “is_strictly_increasing”

Returns:

Boolean Tensor, equal to True iff x is strictly increasing.

Raises:

		TypeError: if x is not a numeric tensor.

tf.contrib.framework.is_tensor(x) {#is_tensor}

Check for tensor types.
Check whether an object is a tensor. Equivalent to
isinstance(x, [tf.Tensor, tf.SparseTensor, tf.Variable]).

Args:

		x: An python object to check.

Returns:

True if x is a tensor, False if not.

tf.contrib.framework.reduce_sum_n(tensors, name=None) {#reduce_sum_n}

Reduce tensors to a scalar sum.

This reduces each tensor in tensors to a scalar via tf.reduce_sum, then
adds them via tf.add_n.

Args:

		tensors: List of tensors, all of the same numeric type.

		name: Tensor name, and scope for all other ops.

Returns:

Total loss tensor, or None if no losses have been configured.

Raises:

		ValueError: if losses is missing or empty.

tf.contrib.framework.with_shape(expected_shape, tensor) {#with_shape}

Asserts tensor has expected shape.

If tensor shape and expected_shape, are fully defined, assert they match.
Otherwise, add assert op that will validate the shape when tensor is
evaluated, and set shape on tensor.

Args:

		expected_shape: Expected shape to assert, as a 1D array of ints, or tensor
of same.

		tensor: Tensor whose shape we’re validating.

Returns:

tensor, perhaps with a dependent assert operation.

Raises:

		ValueError: if tensor has an invalid shape.

tf.contrib.framework.with_same_shape(expected_tensor, tensor) {#with_same_shape}

Assert tensors are the same shape, from the same graph.

Args:

		expected_tensor: Tensor with expected shape.

		tensor: Tensor of actual values.

Returns:

Tuple of (actual_tensor, label_tensor), possibly with assert ops added.

Deprecation

tf.contrib.framework.deprecated(date, instructions) {#deprecated}

Decorator for marking functions or methods deprecated.

This decorator logs a deprecation warning whenever the decorated function is
called. It has the following format:

 (from) is deprecated and will be removed after .
Instructions for updating:

 will include the class name if it is a method.

It also edits the docstring of the function: ‘ (deprecated)’ is appended
to the first line of the docstring and a deprecation notice is prepended
to the rest of the docstring.

Args:

		date: String. The date the function is scheduled to be removed. Must be
ISO 8601 (YYYY-MM-DD).

		instructions: String. Instructions on how to update code using the
deprecated function.

Returns:

Decorated function or method.

Raises:

		ValueError: If date is not in ISO 8601 format, or instructions are empty.

tf.contrib.framework.deprecated_args(date, instructions, *deprecated_arg_names) {#deprecated_args}

Decorator for marking specific function arguments as deprecated.

This decorator logs a deprecation warning whenever the decorated function is
called with the deprecated argument. It has the following format:

Calling (from) with is deprecated and will be
removed after . Instructions for updating:

 will include the class name if it is a method.

It also edits the docstring of the function: ‘ (deprecated arguments)’ is
appended to the first line of the docstring and a deprecation notice is
prepended to the rest of the docstring.

Args:

		date: String. The date the function is scheduled to be removed. Must be
ISO 8601 (YYYY-MM-DD).

		instructions: String. Instructions on how to update code using the
deprecated function.

		*deprecated_arg_names: String. The deprecated arguments.

Returns:

Decorated function or method.

Raises:

		ValueError: If date is not in ISO 8601 format, instructions are empty, or
the deprecated arguments are not present in the function signature.

tf.contrib.framework.deprecated_arg_values(date, instructions, **deprecated_kwargs) {#deprecated_arg_values}

Decorator for marking specific function argument values as deprecated.

This decorator logs a deprecation warning whenever the decorated function is
called with the deprecated argument values. It has the following format:

Calling (from) with = is deprecated and
will be removed after . Instructions for updating:

 will include the class name if it is a method.

It also edits the docstring of the function: ‘ (deprecated arguments)’ is
appended to the first line of the docstring and a deprecation notice is
prepended to the rest of the docstring.

Args:

		date: String. The date the function is scheduled to be removed. Must be
ISO 8601 (YYYY-MM-DD).

		instructions: String. Instructions on how to update code using the
deprecated function.

		**deprecated_kwargs: The deprecated argument values.

Returns:

Decorated function or method.

Raises:

		ValueError: If date is not in ISO 8601 format, or instructions are empty.

Arg_Scope

tf.contrib.framework.arg_scope(list_ops_or_scope, **kwargs) {#arg_scope}

Stores the default arguments for the given set of list_ops.

For usage, please see examples at top of the file.

Args:

		list_ops_or_scope: List or tuple of operations to set argument scope for or
a dictionary containg the current scope. When list_ops_or_scope is a dict,
kwargs must be empty. When list_ops_or_scope is a list or tuple, then
every op in it need to be decorated with @add_arg_scope to work.

		**kwargs: keyword=value that will define the defaults for each op in
list_ops. All the ops need to accept the given set of arguments.

Yields:

the current_scope, which is a dictionary of {op: {arg: value}}

Raises:

		TypeError: if list_ops is not a list or a tuple.

		ValueError: if any op in list_ops has not be decorated with @add_arg_scope.

tf.contrib.framework.add_arg_scope(func) {#add_arg_scope}

Decorates a function with args so it can be used within an arg_scope.

Args:

		func: function to decorate.

Returns:

A tuple with the decorated function func_with_args().

tf.contrib.framework.has_arg_scope(func) {#has_arg_scope}

Checks whether a func has been decorated with @add_arg_scope or not.

Args:

		func: function to check.

Returns:

a boolean.

tf.contrib.framework.arg_scoped_arguments(func) {#arg_scoped_arguments}

Returns the list kwargs that arg_scope can set for a func.

Args:

		func: function which has been decorated with @add_arg_scope.

Returns:

a list of kwargs names.

Variables

tf.contrib.framework.add_model_variable(var) {#add_model_variable}

Adds a variable to the GraphKeys.MODEL_VARIABLES collection.

Args:

		var: a variable.

tf.contrib.framework.assert_global_step(global_step_tensor) {#assert_global_step}

Asserts global_step_tensor is a scalar int Variable or Tensor.

Args:

		global_step_tensor: Tensor to test.

tf.contrib.framework.assert_or_get_global_step(graph=None, global_step_tensor=None) {#assert_or_get_global_step}

Verifies that a global step tensor is valid or gets one if None is given.

If global_step_tensor is not None, check that it is a valid global step
tensor (using assert_global_step). Otherwise find a global step tensor using
get_global_step and return it.

Args:

		graph: The graph to find the global step tensor for.

		global_step_tensor: The tensor to check for suitability as a global step.
If None is given (the default), find a global step tensor.

Returns:

A tensor suitable as a global step, or None if none was provided and none
was found.

tf.contrib.framework.assign_from_checkpoint(model_path, var_list) {#assign_from_checkpoint}

Creates an operation to assign specific variables from a checkpoint.

Args:

		model_path: The full path to the model checkpoint. To get latest checkpoint
use model_path = tf.train.latest_checkpoint(checkpoint_dir)

		var_list: A list of Variable objects or a dictionary mapping names in the
checkpoint to the correspoing variables to initialize. If empty or None,
it would return no_op(), None.

Returns:

the restore_op and the feed_dict that need to be run to restore var_list.

Raises:

		ValueError: If the checkpoint specified at model_path is missing one of
the variables in var_list.

tf.contrib.framework.assign_from_checkpoint_fn(model_path, var_list, ignore_missing_vars=False, reshape_variables=False) {#assign_from_checkpoint_fn}

Returns a function that assigns specific variables from a checkpoint.

Args:

		model_path: The full path to the model checkpoint. To get latest checkpoint
use model_path = tf.train.latest_checkpoint(checkpoint_dir)

		var_list: A list of Variable objects or a dictionary mapping names in the
checkpoint to the correspoing variables to initialize. If empty or None,
it would return no_op(), None.

		ignore_missing_vars: Boolean, if True it would ignore variables missing in
the checkpoint with a warning instead of failing.

		reshape_variables: Boolean, if True it would automatically reshape variables
which are of different shape then the ones stored in the checkpoint but
which have the same number of elements.

Returns:

A function that takes a single argument, a tf.Session, that applies the
assignment operation.

Raises:

		ValueError: If the checkpoint specified at model_path is missing one of
the variables in var_list.

tf.contrib.framework.assign_from_values(var_names_to_values) {#assign_from_values}

Creates an assignment operation from a given mapping.

This function provides a mechanism for performing assignment of variables
to values in a way that does not fill the graph with large assignment values.

Args:

		var_names_to_values: A map from variable names to values.

Returns:

		assign_op: An Operation that assigns each of the given variables to the
requested values.

		feed_dict: The feed dictionary to use when evaluating assign_op.

Raises:

		ValueError: if any of the given variable names were not found.

tf.contrib.framework.assign_from_values_fn(var_names_to_values) {#assign_from_values_fn}

Returns a function that assigns specific variables from the given values.

This function provides a mechanism for performing assignment of variables
to values in a way that does not fill the graph with large assignment values.

Args:

		var_names_to_values: A map from variable names to values.

Returns:

A function that takes a single argument, a tf.Session, that applies the
assignment operation.

Raises:

		ValueError: if any of the given variable names were not found.

tf.contrib.framework.create_global_step(graph=None) {#create_global_step}

Create global step tensor in graph.

Args:

		graph: The graph in which to create the global step. If missing, use default
graph.

Returns:

Global step tensor.

Raises:

		ValueError: if global step key is already defined.

tf.contrib.framework.get_global_step(graph=None) {#get_global_step}

Get the global step tensor.

The global step tensor must be an integer variable. We first try to find it
in the collection GLOBAL_STEP, or by name global_step:0.

Args:

		graph: The graph to find the global step in. If missing, use default graph.

Returns:

The global step variable, or None if none was found.

Raises:

		TypeError: If the global step tensor has a non-integer type, or if it is not
a Variable.

tf.contrib.framework.get_or_create_global_step(graph=None) {#get_or_create_global_step}

Returns and create (if necessary) the global step variable.

Args:

		graph: The graph in which to create the global step. If missing, use default
graph.

Returns:

the tensor representing the global step variable.

tf.contrib.framework.get_local_variables(scope=None, suffix=None) {#get_local_variables}

Gets the list of model variables, filtered by scope and/or suffix.

Args:

		scope: an optional scope for filtering the variables to return.

		suffix: an optional suffix for filtering the variables to return.

Returns:

a list of variables in collection with scope and suffix.

tf.contrib.framework.get_model_variables(scope=None, suffix=None) {#get_model_variables}

Gets the list of model variables, filtered by scope and/or suffix.

Args:

		scope: an optional scope for filtering the variables to return.

		suffix: an optional suffix for filtering the variables to return.

Returns:

a list of variables in collection with scope and suffix.

tf.contrib.framework.get_unique_variable(var_op_name) {#get_unique_variable}

Gets the variable uniquely identified by that var_op_name.

Args:

		var_op_name: the full name of the variable op, including the scope.

Returns:

a tensorflow variable.

Raises:

		ValueError: if no variable uniquely identified by the name exists.

tf.contrib.framework.get_variables_by_name(given_name, scope=None) {#get_variables_by_name}

Gets the list of variables that were given that name.

Args:

		given_name: name given to the variable without any scope.

		scope: an optional scope for filtering the variables to return.

Returns:

a copied list of variables with the given name and scope.

tf.contrib.framework.get_variables_by_suffix(suffix, scope=None) {#get_variables_by_suffix}

Gets the list of variables that end with the given suffix.

Args:

		suffix: suffix for filtering the variables to return.

		scope: an optional scope for filtering the variables to return.

Returns:

a copied list of variables with the given name and prefix.

tf.contrib.framework.get_variables_to_restore(include=None, exclude=None) {#get_variables_to_restore}

Gets the list of the variables to restore.

Args:

		include: an optional list/tuple of scope strings for filtering which
variables from the VARIABLES collection to include. None would include all
the variables.

		exclude: an optional list/tuple of scope strings for filtering which
variables from the VARIABLES collection to exclude. None it would not
exclude any.

Returns:

a list of variables to restore.

Raises:

		TypeError: include or exclude is provided but is not a list or a tuple.

tf.contrib.framework.get_variables(scope=None, suffix=None, collection='variables') {#get_variables}

Gets the list of variables, filtered by scope and/or suffix.

Args:

		scope: an optional scope for filtering the variables to return.

		suffix: an optional suffix for filtering the variables to return.

		collection: in which collection search for. Defaults to GraphKeys.VARIABLES.

Returns:

a list of variables in collection with scope and suffix.

tf.contrib.framework.local_variable(initial_value, validate_shape=True, name=None) {#local_variable}

Create variable and add it to GraphKeys.LOCAL_VARIABLES collection.

Args:

		initial_value: See variables.Variable.init.

		validate_shape: See variables.Variable.init.

		name: See variables.Variable.init.

Returns:

New variable.

tf.contrib.framework.model_variable(*args, **kwargs) {#model_variable}

Gets an existing model variable with these parameters or creates a new one.

Args:

		name: the name of the new or existing variable.

		shape: shape of the new or existing variable.

		dtype: type of the new or existing variable (defaults to DT_FLOAT).

		initializer: initializer for the variable if one is created.

		regularizer: a (Tensor -> Tensor or None) function; the result of
applying it on a newly created variable will be added to the collection
GraphKeys.REGULARIZATION_LOSSES and can be used for regularization.

		trainable: If True also add the variable to the graph collection
GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

		collections: A list of collection names to which the Variable will be added.
Note that the variable is always also added to the GraphKeys.VARIABLES
and GraphKeys.MODEL_VARIABLES collections.

		caching_device: Optional device string or function describing where the
Variable should be cached for reading. Defaults to the Variable’s
device.

		device: Optional device to place the variable. It can be an string or a
function that is called to get the device for the variable.

Returns:

The created or existing variable.

tf.contrib.framework.variable(*args, **kwargs) {#variable}

Gets an existing variable with these parameters or creates a new one.

Args:

		name: the name of the new or existing variable.

		shape: shape of the new or existing variable.

		dtype: type of the new or existing variable (defaults to DT_FLOAT).

		initializer: initializer for the variable if one is created.

		regularizer: a (Tensor -> Tensor or None) function; the result of
applying it on a newly created variable will be added to the collection
GraphKeys.REGULARIZATION_LOSSES and can be used for regularization.

		trainable: If True also add the variable to the graph collection
GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

		collections: A list of collection names to which the Variable will be added.
If None it would default to tf.GraphKeys.VARIABLES.

		caching_device: Optional device string or function describing where the
Variable should be cached for reading. Defaults to the Variable’s
device.

		device: Optional device to place the variable. It can be an string or a
function that is called to get the device for the variable.

Returns:

The created or existing variable.

class tf.contrib.framework.VariableDeviceChooser {#VariableDeviceChooser}

Device chooser for variables.

When using a parameter server it will assign them in a round-robin fashion.
When not using a parameter server it allows GPU or CPU placement.

tf.contrib.framework.VariableDeviceChooser.__call__(op) {#VariableDeviceChooser.call}

tf.contrib.framework.VariableDeviceChooser.__init__(num_tasks=0, job_name='ps', device_type='CPU', device_index=0) {#VariableDeviceChooser.init}

Initialize VariableDeviceChooser.

Usage:

To use with 2 parameter servers:
VariableDeviceChooser(2)

To use without parameter servers:
VariableDeviceChooser()
VariableDeviceChooser(device_type=’GPU’) # For GPU placement

Args:

		num_tasks: number of tasks.

		job_name: String, a name for the parameter server job.

		device_type: Optional device type string (e.g. “CPU” or “GPU”)

		device_index: int. Optional device index. If left
unspecified, device represents ‘any’ device_index.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/constant_op.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Constants, Sequences, and Random Values

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Constant Value Tensors

TensorFlow provides several operations that you can use to generate constants.

tf.zeros(shape, dtype=tf.float32, name=None) {#zeros}

Creates a tensor with all elements set to zero.

This operation returns a tensor of type dtype with shape shape and
all elements set to zero.

For example:

tf.zeros([3, 4], tf.int32) ==> [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

Args:

		shape: Either a list of integers, or a 1-D Tensor of type int32.

		dtype: The type of an element in the resulting Tensor.

		name: A name for the operation (optional).

Returns:

A Tensor with all elements set to zero.

tf.zeros_like(tensor, dtype=None, name=None, optimize=True) {#zeros_like}

Creates a tensor with all elements set to zero.

Given a single tensor (tensor), this operation returns a tensor of the
same type and shape as tensor with all elements set to zero. Optionally,
you can use dtype to specify a new type for the returned tensor.

For example:

'tensor' is [[1, 2, 3], [4, 5, 6]]
tf.zeros_like(tensor) ==> [[0, 0, 0], [0, 0, 0]]

Args:

		tensor: A Tensor.

		dtype: A type for the returned Tensor. Must be float32, float64,
int8, int16, int32, int64, uint8, complex64, or complex128.

		name: A name for the operation (optional).

		optimize: if true, attempt to statically determine the shape of ‘tensor’
and encode it as a constant.

Returns:

A Tensor with all elements set to zero.

tf.ones(shape, dtype=tf.float32, name=None) {#ones}

Creates a tensor with all elements set to 1.

This operation returns a tensor of type dtype with shape shape and all
elements set to 1.

For example:

tf.ones([2, 3], tf.int32) ==> [[1, 1, 1], [1, 1, 1]]

Args:

		shape: Either a list of integers, or a 1-D Tensor of type int32.

		dtype: The type of an element in the resulting Tensor.

		name: A name for the operation (optional).

Returns:

A Tensor with all elements set to 1.

tf.ones_like(tensor, dtype=None, name=None, optimize=True) {#ones_like}

Creates a tensor with all elements set to 1.

Given a single tensor (tensor), this operation returns a tensor of the same
type and shape as tensor with all elements set to 1. Optionally, you can
specify a new type (dtype) for the returned tensor.

For example:

'tensor' is [[1, 2, 3], [4, 5, 6]]
tf.ones_like(tensor) ==> [[1, 1, 1], [1, 1, 1]]

Args:

		tensor: A Tensor.

		dtype: A type for the returned Tensor. Must be float32, float64,
int8, int16, int32, int64, uint8, complex64, complex128 or
bool.

		name: A name for the operation (optional).

		optimize: if true, attempt to statically determine the shape of ‘tensor’
and encode it as a constant.

Returns:

A Tensor with all elements set to 1.

tf.fill(dims, value, name=None) {#fill}

Creates a tensor filled with a scalar value.

This operation creates a tensor of shape dims and fills it with value.

For example:

Output tensor has shape [2, 3].
fill([2, 3], 9) ==> [[9, 9, 9]
 [9, 9, 9]]

Args:

		dims: A Tensor of type int32.
1-D. Represents the shape of the output tensor.

		value: A Tensor. 0-D (scalar). Value to fill the returned tensor.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as value.

tf.constant(value, dtype=None, shape=None, name='Const') {#constant}

Creates a constant tensor.

The resulting tensor is populated with values of type dtype, as
specified by arguments value and (optionally) shape (see examples
below).

The argument value can be a constant value, or a list of values of type
dtype. If value is a list, then the length of the list must be less
than or equal to the number of elements implied by the shape argument (if
specified). In the case where the list length is less than the number of
elements specified by shape, the last element in the list will be used
to fill the remaining entries.

The argument shape is optional. If present, it specifies the dimensions of
the resulting tensor. If not present, the shape of value is used.

If the argument dtype is not specified, then the type is inferred from
the type of value.

For example:

Constant 1-D Tensor populated with value list.
tensor = tf.constant([1, 2, 3, 4, 5, 6, 7]) => [1 2 3 4 5 6 7]

Constant 2-D tensor populated with scalar value -1.
tensor = tf.constant(-1.0, shape=[2, 3]) => [[-1. -1. -1.]
 [-1. -1. -1.]]

Args:

		value: A constant value (or list) of output type dtype.

		dtype: The type of the elements of the resulting tensor.

		shape: Optional dimensions of resulting tensor.

		name: Optional name for the tensor.

Returns:

A Constant Tensor.

Sequences

tf.linspace(start, stop, num, name=None) {#linspace}

Generates values in an interval.

A sequence of num evenly-spaced values are generated beginning at start.
If num > 1, the values in the sequence increase by stop - start / num - 1,
so that the last one is exactly stop.

For example:

tf.linspace(10.0, 12.0, 3, name="linspace") => [10.0 11.0 12.0]

Args:

		start: A Tensor. Must be one of the following types: float32, float64.
First entry in the range.

		stop: A Tensor. Must have the same type as start.
Last entry in the range.

		num: A Tensor. Must be one of the following types: int32, int64.
Number of values to generate.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as start. 1-D. The generated values.

tf.range(start, limit=None, delta=1, name='range') {#range}

Creates a sequence of integers.

Creates a sequence of integers that begins at start and extends by
increments of delta up to but not including limit.

Like the Python builtin range, start defaults to 0, so that
range(n) = range(0, n).

For example:

'start' is 3
'limit' is 18
'delta' is 3
tf.range(start, limit, delta) ==> [3, 6, 9, 12, 15]

'limit' is 5
tf.range(limit) ==> [0, 1, 2, 3, 4]

Args:

		start: A 0-D (scalar) of type int32. Acts as first entry in the range if
limit is not None; otherwise, acts as range limit and first entry
defaults to 0.

		limit: A 0-D (scalar) of type int32. Upper limit of sequence,
exclusive. If None, defaults to the value of start while the first
entry of the range defaults to 0.

		delta: A 0-D Tensor (scalar) of type int32. Number that increments
start. Defaults to 1.

		name: A name for the operation. Defaults to “range”.

Returns:

An 1-D int32 Tensor.

Random Tensors

TensorFlow has several ops that create random tensors with different
distributions. The random ops are stateful, and create new random values each
time they are evaluated.

The seed keyword argument in these functions acts in conjunction with
the graph-level random seed. Changing either the graph-level seed using
set_random_seed or the
op-level seed will change the underlying seed of these operations. Setting
neither graph-level nor op-level seed, results in a random seed for all
operations.
See set_random_seed
for details on the interaction between operation-level and graph-level random
seeds.

Examples:

Create a tensor of shape [2, 3] consisting of random normal values, with mean
-1 and standard deviation 4.
norm = tf.random_normal([2, 3], mean=-1, stddev=4)

Shuffle the first dimension of a tensor
c = tf.constant([[1, 2], [3, 4], [5, 6]])
shuff = tf.random_shuffle(c)

Each time we run these ops, different results are generated
sess = tf.Session()
print(sess.run(norm))
print(sess.run(norm))

Set an op-level seed to generate repeatable sequences across sessions.
norm = tf.random_normal([2, 3], seed=1234)
sess = tf.Session()
print(sess.run(norm))
print(sess.run(norm))
sess = tf.Session()
print(sess.run(norm))
print(sess.run(norm))

Another common use of random values is the initialization of variables. Also see
the Variables How To.

Use random uniform values in [0, 1) as the initializer for a variable of shape
[2, 3]. The default type is float32.
var = tf.Variable(tf.random_uniform([2, 3]), name="var")
init = tf.initialize_all_variables()

sess = tf.Session()
sess.run(init)
print(sess.run(var))

tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None) {#random_normal}

Outputs random values from a normal distribution.

Args:

		shape: A 1-D integer Tensor or Python array. The shape of the output tensor.

		mean: A 0-D Tensor or Python value of type dtype. The mean of the normal
distribution.

		stddev: A 0-D Tensor or Python value of type dtype. The standard deviation
of the normal distribution.

		dtype: The type of the output.

		seed: A Python integer. Used to create a random seed for the distribution.
See
set_random_seed
for behavior.

		name: A name for the operation (optional).

Returns:

A tensor of the specified shape filled with random normal values.

tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None) {#truncated_normal}

Outputs random values from a truncated normal distribution.

The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.

Args:

		shape: A 1-D integer Tensor or Python array. The shape of the output tensor.

		mean: A 0-D Tensor or Python value of type dtype. The mean of the
truncated normal distribution.

		stddev: A 0-D Tensor or Python value of type dtype. The standard deviation
of the truncated normal distribution.

		dtype: The type of the output.

		seed: A Python integer. Used to create a random seed for the distribution.
See
set_random_seed
for behavior.

		name: A name for the operation (optional).

Returns:

A tensor of the specified shape filled with random truncated normal values.

tf.random_uniform(shape, minval=0, maxval=None, dtype=tf.float32, seed=None, name=None) {#random_uniform}

Outputs random values from a uniform distribution.

The generated values follow a uniform distribution in the range
[minval, maxval). The lower bound minval is included in the range, while
the upper bound maxval is excluded.

For floats, the default range is [0, 1). For ints, at least maxval must
be specified explicitly.

In the integer case, the random integers are slightly biased unless
maxval - minval is an exact power of two. The bias is small for values of
maxval - minval significantly smaller than the range of the output (either
2**32 or 2**64).

Args:

		shape: A 1-D integer Tensor or Python array. The shape of the output tensor.

		minval: A 0-D Tensor or Python value of type dtype. The lower bound on the
range of random values to generate. Defaults to 0.

		maxval: A 0-D Tensor or Python value of type dtype. The upper bound on
the range of random values to generate. Defaults to 1 if dtype is
floating point.

		dtype: The type of the output: float32, float64, int32, or int64.

		seed: A Python integer. Used to create a random seed for the distribution.
See
set_random_seed
for behavior.

		name: A name for the operation (optional).

Returns:

A tensor of the specified shape filled with random uniform values.

Raises:

		ValueError: If dtype is integral and maxval is not specified.

tf.random_shuffle(value, seed=None, name=None) {#random_shuffle}

Randomly shuffles a tensor along its first dimension.

The tensor is shuffled along dimension 0, such that each value[j] is mapped
to one and only one output[i]. For example, a mapping that might occur for a
3x2 tensor is:

[[1, 2], [[5, 6],
 [3, 4], ==> [1, 2],
 [5, 6]] [3, 4]]

Args:

		value: A Tensor to be shuffled.

		seed: A Python integer. Used to create a random seed for the distribution.
See
set_random_seed
for behavior.

		name: A name for the operation (optional).

Returns:

A tensor of same shape and type as value, shuffled along its first
dimension.

tf.random_crop(value, size, seed=None, name=None) {#random_crop}

Randomly crops a tensor to a given size.

Slices a shape size portion out of value at a uniformly chosen offset.
Requires value.shape >= size.

If a dimension should not be cropped, pass the full size of that dimension.
For example, RGB images can be cropped with
size = [crop_height, crop_width, 3].

Args:

		value: Input tensor to crop.

		size: 1-D tensor with size the rank of value.

		seed: Python integer. Used to create a random seed. See
set_random_seed
for behavior.

		name: A name for this operation (optional).

Returns:

A cropped tensor of the same rank as value and shape size.

tf.multinomial(logits, num_samples, seed=None, name=None) {#multinomial}

Draws samples from a multinomial distribution.

Example:

samples has shape [1, 5], where each value is either 0 or 1 with equal
probability.
samples = tf.multinomial(tf.log([[10., 10.]]), 5)

Args:

		logits: 2-D Tensor with shape [batch_size, num_classes]. Each slice
[i, :] represents the unnormalized log probabilities for all classes.

		num_samples: 0-D. Number of independent samples to draw for each row slice.

		seed: A Python integer. Used to create a random seed for the distribution.
See
set_random_seed
for behavior.

		name: Optional name for the operation.

Returns:

The drawn samples of shape [batch_size, num_samples].

tf.random_gamma(shape, alpha, beta=None, dtype=tf.float32, seed=None, name=None) {#random_gamma}

Draws shape samples from each of the given Gamma distribution(s).

alpha is the shape parameter describing the distribution(s), and beta is
the inverse scale parameter(s).

Example:

samples = tf.random_gamma([10], [0.5, 1.5])

samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents

the samples drawn from each distribution

samples = tf.random_gamma([7, 5], [0.5, 1.5])

samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1]

represents the 7x5 samples drawn from each of the two distributions

samples = tf.random_gamma([30], [[1.],[3.],[5.]], beta=[[3., 4.]])

samples has shape [30, 3, 2], with 30 samples each of 3x2 distributions.

Note that for small alpha values, there is a chance you will draw a value of
exactly 0, which gets worse for lower-precision dtypes, even though zero is
not in the support of the gamma distribution.

Relevant cdfs (~chance you will draw a exactly-0 value):

 stats.gamma(.01).cdf(np.finfo(np.float16).tiny)
 0.91269738769897879
 stats.gamma(.01).cdf(np.finfo(np.float32).tiny)
 0.41992668622045726
 stats.gamma(.01).cdf(np.finfo(np.float64).tiny)
 0.00084322740680686662
 stats.gamma(.35).cdf(np.finfo(np.float16).tiny)
 0.037583276135263931
 stats.gamma(.35).cdf(np.finfo(np.float32).tiny)
 5.9514895726818067e-14
 stats.gamma(.35).cdf(np.finfo(np.float64).tiny)
 2.3529843400647272e-108

Args:

		shape: A 1-D integer Tensor or Python array. The shape of the output samples
to be drawn per alpha/beta-parameterized distribution.

		alpha: A Tensor or Python value or N-D array of type dtype. alpha
provides the shape parameter(s) describing the gamma distribution(s) to
sample. Must be broadcastable with beta.

		beta: A Tensor or Python value or N-D array of type dtype. Defaults to 1.
beta provides the inverse scale parameter(s) of the gamma
distribution(s) to sample. Must be broadcastable with alpha.

		dtype: The type of alpha, beta, and the output: float16, float32, or
float64.

		seed: A Python integer. Used to create a random seed for the distributions.
See
set_random_seed
for behavior.

		name: Optional name for the operation.

Returns:

		samples: a Tensor of shape tf.concat(shape, tf.shape(alpha + beta)) with
values of type dtype.

tf.set_random_seed(seed) {#set_random_seed}

Sets the graph-level random seed.

Operations that rely on a random seed actually derive it from two seeds:
the graph-level and operation-level seeds. This sets the graph-level seed.

Its interactions with operation-level seeds is as follows:

		If neither the graph-level nor the operation seed is set:
A random seed is used for this op.

		If the graph-level seed is set, but the operation seed is not:
The system deterministically picks an operation seed in conjunction
with the graph-level seed so that it gets a unique random sequence.

		If the graph-level seed is not set, but the operation seed is set:
A default graph-level seed and the specified operation seed are used to
determine the random sequence.

		If both the graph-level and the operation seed are set:
Both seeds are used in conjunction to determine the random sequence.

To illustrate the user-visible effects, consider these examples:

To generate different sequences across sessions, set neither
graph-level nor op-level seeds:

a = tf.random_uniform([1])
b = tf.random_normal([1])

print("Session 1")
with tf.Session() as sess1:
 print(sess1.run(a)) # generates 'A1'
 print(sess1.run(a)) # generates 'A2'
 print(sess1.run(b)) # generates 'B1'
 print(sess1.run(b)) # generates 'B2'

print("Session 2")
with tf.Session() as sess2:
 print(sess2.run(a)) # generates 'A3'
 print(sess2.run(a)) # generates 'A4'
 print(sess2.run(b)) # generates 'B3'
 print(sess2.run(b)) # generates 'B4'

To generate the same repeatable sequence for an op across sessions, set the
seed for the op:

a = tf.random_uniform([1], seed=1)
b = tf.random_normal([1])

Repeatedly running this block with the same graph will generate the same
sequence of values for 'a', but different sequences of values for 'b'.
print("Session 1")
with tf.Session() as sess1:
 print(sess1.run(a)) # generates 'A1'
 print(sess1.run(a)) # generates 'A2'
 print(sess1.run(b)) # generates 'B1'
 print(sess1.run(b)) # generates 'B2'

print("Session 2")
with tf.Session() as sess2:
 print(sess2.run(a)) # generates 'A1'
 print(sess2.run(a)) # generates 'A2'
 print(sess2.run(b)) # generates 'B3'
 print(sess2.run(b)) # generates 'B4'

To make the random sequences generated by all ops be repeatable across
sessions, set a graph-level seed:

tf.set_random_seed(1234)
a = tf.random_uniform([1])
b = tf.random_normal([1])

Repeatedly running this block with the same graph will generate different
sequences of 'a' and 'b'.
print("Session 1")
with tf.Session() as sess1:
 print(sess1.run(a)) # generates 'A1'
 print(sess1.run(a)) # generates 'A2'
 print(sess1.run(b)) # generates 'B1'
 print(sess1.run(b)) # generates 'B2'

print("Session 2")
with tf.Session() as sess2:
 print(sess2.run(a)) # generates 'A1'
 print(sess2.run(a)) # generates 'A2'
 print(sess2.run(b)) # generates 'B1'
 print(sess2.run(b)) # generates 'B2'

Args:

		seed: integer.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

RELEASE.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Release 0.11.0

Major Features and Improvements

		CUDA 8 support.

		cuDNN 5 support.

		HDFS Support.

		Adds Fused LSTM support via cuDNN 5 in tensorflow/contrib/cudnn_rnn.

		Improved support for NumPy style basic slicing including non-1 strides,
ellipses, newaxis, and negative indices. For example complicated expressions
like foo[1, 2:4, tf.newaxis, ..., :-3:-1, :] are now supported. In addition
we have preliminary (non-broadcasting) support for sliced assignment to
variables. In particular one can write var[1:3].assign([1,11,111]).

		Deprecated tf.op_scope and tf.variable_op_scope in favor of a unified tf.name_scope and tf.variable_scope. The new argument order of tf.variable_scope is incompatible with previous versions.

		Introducing core/util/tensor_bundle module: a module to efficiently
serialize/deserialize tensors to disk. Will be used in TF’s new checkpoint
format.

		Added tf.svd for computing the singular value decomposition (SVD) of dense
matrices or batches of matrices (CPU only).

		Added gradients for eigenvalues and eigenvectors computed using
self_adjoint_eig or self_adjoint_eigvals.

		Eliminated batch_* methods for most linear algebra and FFT ops and promoted
the non-batch version of the ops to handle batches of matrices.

		Tracing/timeline support for distributed runtime (no GPU profiler yet).

		C API gives access to inferred shapes with TF_GraphGetTensorNumDims and
TF_GraphGetTensorShape.

		Shape functions for core ops have moved to C++ via
REGISTER_OP(...).SetShapeFn(...). Python shape inference RegisterShape calls
use the C++ shape functions with common_shapes.call_cpp_shape_fn. A future
release will remove RegisterShape from python.

Bug Fixes and Other Changes

		Documentation now includes operator overloads on Tensor and Variable.

		tensorflow.__git_version__ now allows users to identify the version of the
code that TensorFlow was compiled with. We also have
tensorflow.__git_compiler__ which identifies the compiler used to compile
TensorFlow’s core.

		Improved multi-threaded performance of batch_matmul.

		LSTMCell, BasicLSTMCell, and MultiRNNCell constructors now default to
state_is_tuple=True. For a quick fix while transitioning to the new
default, simply pass the argument state_is_tuple=False.

		DeviceFactory’s AddDevices and CreateDevices functions now return
a Status instead of void.

		Int32 elements of list(type) arguments are no longer placed in host memory by
default. If necessary, a list(type) argument to a kernel can be placed in host
memory using a HostMemory annotation.

		uniform_unit_scaling_initializer() no longer takes a full_shape arg,
instead relying on the partition info passed to the initializer function when
it’s called.

		The NodeDef protocol message is now defined in its own file node_def.proto
instead of graph.proto.

		ops.NoGradient was renamed ops.NotDifferentiable. ops.NoGradient will
be removed soon.

		dot.h / DotGraph was removed (it was an early analysis tool prior
to TensorBoard, no longer that useful). It remains in history
should someone find the code useful.

Thanks to our Contributors

This release contains contributions from many people at Google, as well as:

Abid K, @afshinrahimi, @AidanGG, Ajay Rao, Aki Sukegawa, Alex Rothberg,
Alexander Rosenberg Johansen, Andrew Gibiansky, Andrew Thomas, @Appleholic,
Bastiaan Quast, Ben Dilday, Bofu Chen, Brandon Amos, Bryon Gloden, Cissp®,
@chanis, Chenyang Liu, Corey Wharton, Daeyun Shin, Daniel Julius Lasiman, Daniel
Waterworth, Danijar Hafner, Darren Garvey, Denis Gorbachev, @DjangoPeng,
Egor-Krivov, Elia Palme, Eric Platon, Fabrizio Milo, Gaetan Semet,
Georg Nebehay, Gu Wang, Gustav Larsson, @haosdent, Harold Cooper, Hw-Zz,
@ichuang, Igor Babuschkin, Igor Macedo Quintanilha, Ilya Edrenkin, @ironhead,
Jakub Kolodziejczyk, Jennifer Guo, Jihun Choi, Jonas Rauber, Josh Bleecher
Snyder, @jpangburn, Jules Gagnon-Marchand, Karen Brems, @kborer, Kirill Bobyrev,
Laurent Mazare, Longqi Yang, Malith Yapa, Maniteja Nandana, Martin Englund,
Matthias Winkelmann, @mecab, Mu-Ik Jeon, Nand Dalal, Niels Ole Salscheider,
Nikhil Mishra, Park Jiin, Pieter De Rijk, @raix852, Ritwik Gupta, Sahil Sharma,
@Sangheum, @SergejsRk, Shinichiro Hamaji, Simon Denel, @Steve, @suiyuan2009,
Tiago Jorge, Tijmen Tieleman, @tvn, @tyfkda, Wang Yang, Wei-Ting Kuo, Wenjian
Huang, Yan Chen, @YenChenLin, Yuan (Terry) Tang, Yuncheng Li, Yunfeng Wang, Zack
Polizzi, @zhongzyd, Ziming Dong, @perhapszzy

We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.

Release 0.10.0

Major Features and Improvements

		Added support for C++ shape inference

		Added graph-construction C API

		Major revision to the graph-construction C++ API

		Support makefile build for iOS

		Added Mac GPU support

		Full version of TF-Slim available as tf.contrib.slim

		Added k-Means clustering and WALS matrix factorization

Bug Fixes and Other Changes

		Allow gradient computation for scalar values.

		Performance improvements for gRPC

		Improved support for fp16

		New high-level ops in tf.contrib.{layers,metrics}

		New features for TensorBoard, such as shape display, exponential smoothing

		Faster and more stable Google Cloud Storage (GCS) filesystem support

		Support for zlib compression and decompression for TFRecordReader and TFRecordWriter

		Support for reading (animated) GIFs

		Improved support for SparseTensor

		Added support for more probability distributions (Dirichlet, Beta, Bernoulli, etc.)

		Added Python interfaces to reset resource containers.

		Many bugfixes and performance improvements

		Many documentation fixes

Thanks to our Contributors

This release contains contributions from many people at Google, as well as:

Alex Rothberg, Andrew Royer, Austin Marshall, @BlackCoal, Bob Adolf, Brian Diesel, Charles-Emmanuel Dias, @chemelnucfin, Chris Lesniewski, Daeyun Shin, Daniel Rodriguez, Danijar Hafner, Darcy Liu, Kristinn R. Thórisson, Daniel Castro, Dmitry Savintsev, Kashif Rasul, Dylan Paiton, Emmanuel T. Odeke, Ernest Grzybowski, Gavin Sherry, Gideon Dresdner, Gregory King, Harold Cooper, @heinzbeinz, Henry Saputra, Huarong Huo, Huazuo Gao, Igor Babuschkin, Igor Macedo Quintanilha, Ivan Ukhov, James Fysh, Jan Wilken Dörrie, Jihun Choi, Johnny Lim, Jonathan Raiman, Justin Francis, @lilac, Li Yi, Marc Khoury, Marco Marchesi, Max Melnick, Micael Carvalho, @mikowals, Mostafa Gazar, Nico Galoppo, Nishant Agrawal, Petr Janda, Yuncheng Li, @raix852, Robert Rose, @Robin-des-Bois, Rohit Girdhar, Sam Abrahams, satok16, Sergey Kishchenko, Sharkd Tu, @shotat, Siddharth Agrawal, Simon Denel, @sono-bfio, SunYeop Lee, Thijs Vogels, @tobegit3hub, @Undo1, Wang Yang, Wenjian Huang, Yaroslav Bulatov, Yuan Tang, Yunfeng Wang, Ziming Dong

We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.

Release 0.9.0

Major Features and Improvements

		Python 3.5 support and binaries

		Added iOS support

		Added support for processing on GPUs on MacOS

		Added makefile for better cross-platform build support (C API only)

		fp16 support and improved complex128 support for many ops

		Higher level functionality in contrib.{layers,losses,metrics,learn}

		More features to Tensorboard

		Improved support for string embedding and sparse features

		The RNN api is finally “official” (see, e.g., tf.nn.dynamic_rnn,
tf.nn.rnn, and the classes in tf.nn.rnn_cell).

		TensorBoard now has an Audio Dashboard, with associated audio summaries.

Bug Fixes and Other Changes

		Turned on CuDNN Autotune.

		Added support for using third-party Python optimization algorithms (contrib.opt).

		Google Cloud Storage filesystem support.

		HDF5 support

		Add support for 3d convolutions and pooling.

		Update gRPC release to 0.14.

		Eigen version upgrade.

		Switch to eigen thread pool

		tf.nn.moments() now accepts a shift argument. Shifting by a good estimate
of the mean improves numerical stability. Also changes the behavior of the
shift argument to tf.nn.sufficient_statistics().

		Performance improvements

		Many bugfixes

		Many documentation fixes

		TensorBoard fixes: graphs with only one data point, Nan values,
reload button and auto-reload, tooltips in scalar charts, run
filtering, stable colors

		Tensorboard graph visualizer now supports run metadata. Clicking on nodes
while viewing a stats for a particular run will show runtime statistics, such
as memory or compute usage. Unused nodes will be faded out.

Thanks to our Contributors

This release contains contributions from many people at Google, as well as:

Aaron Schumacher, Aidan Dang, Akihiko ITOH, Aki Sukegawa, Arbit Chen, Aziz Alto, Danijar Hafner, Erik Erwitt, Fabrizio Milo, Felix Maximilian Möller, Henry Saputra, Sung Kim, Igor Babuschkin, Jan Zikes, Jeremy Barnes, Jesper Steen Møller, Johannes Mayer, Justin Harris, Kashif Rasul, Kevin Robinson, Loo Rong Jie, Lucas Moura, Łukasz Bieniasz-Krzywiec, Mario Cho, Maxim Grechkin, Michael Heilman, Mostafa Rahmani, Mourad Mourafiq, @ninotoshi, Orion Reblitz-Richardson, Yuncheng Li, @raoqiyu, Robert DiPietro, Sam Abrahams, Sebastian Raschka, Siddharth Agrawal, @snakecharmer1024, Stephen Roller, Sung Kim, SunYeop Lee, Thijs Vogels, Till Hoffmann, Victor Melo, Ville Kallioniemi, Waleed Abdulla, Wenjian Huang, Yaroslav Bulatov, Yeison Rodriguez, Yuan Tang, Yuxin Wu, @zhongzyd, Ziming Dong, Zohar Jackson

We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.

Release 0.8.0

Major Features and Improvements

		Added a distributed runtime using GRPC

		Move skflow to contrib/learn

		Better linear optimizer in contrib/linear_optimizer

		Random forest implementation in contrib/tensor_forest

		CTC loss and decoders in contrib/ctc

		Basic support for half data type

		Better support for loading user ops (see examples in contrib/)

		Allow use of (non-blocking) Eigen threadpool with TENSORFLOW_USE_EIGEN_THREADPOOL define

		Add an extension mechanism for adding network file system support

		TensorBoard displays metadata stats (running time, memory usage and device used) and tensor shapes

Bug Fixes and Other Changes

		Utility for inspecting checkpoints

		Basic tracing and timeline support

		Allow building against cuDNN 5 (not incl. RNN/LSTM support)

		Added instructions and binaries for ProtoBuf library with fast serialization and without 64MB limit

		Added special functions

		bool-strictness: Tensors have to be explicitly compared to None

		Shape strictness: all fed values must have a shape that is compatible with the tensor they are replacing

		Exposed tf.while_loop (deprecated control_flow_ops.While)

		run() now takes RunOptions and RunMetadata, which enable timing stats

		Fixed lots of potential overflow problems in op kernels

		Various performance improvements, especially for RNNs and convolutions

		Many bugfixes

		Nightly builds, tutorial tests, many test improvements

		New examples: transfer learning and deepdream ipython notebook

		Added tutorials, many documentation fixes.

Thanks to our Contributors

This release contains contributions from many people at Google, as well as:

Abhinav Upadhyay, Aggelos Avgerinos, Alan Wu, Alexander G. de G. Matthews, Aleksandr Yahnev, @amchercashin, Andy Kitchen, Aurelien Geron, Awni Hannun, @BanditCat, Bas Veeling, Cameron Chen, @cg31, Cheng-Lung Sung, Christopher Bonnett, Dan Becker, Dan Van Boxel, Daniel Golden, Danijar Hafner, Danny Goodman, Dave Decker, David Dao, David Kretch, Dongjoon Hyun, Dustin Dorroh, @e-lin, Eurico Doirado, Erik Erwitt, Fabrizio Milo, @gaohuazuo, Iblis Lin, Igor Babuschkin, Isaac Hodes, Isaac Turner, Iván Vallés, J Yegerlehner, Jack Zhang, James Wexler, Jan Zikes, Jay Young, Jeff Hodges, @jmtatsch, Johnny Lim, Jonas Meinertz Hansen, Kanit Wongsuphasawat, Kashif Rasul, Ken Shirriff, Kenneth Mitchner, Kenta Yonekura, Konrad Magnusson, Konstantin Lopuhin, @lahwran, @lekaha, @liyongsea, Lucas Adams, @makseq, Mandeep Singh, @manipopopo, Mark Amery, Memo Akten, Michael Heilman, Michael Peteuil, Nathan Daly, Nicolas Fauchereau, @ninotoshi, Olav Nymoen, @panmari, @papelita1234, Pedro Lopes, Pranav Sailesh Mani, RJ Ryan, Rob Culliton, Robert DiPietro, @ronrest, Sam Abrahams, Sarath Shekkizhar, Scott Graham, Sebastian Raschka, Sung Kim, Surya Bhupatiraju, Syed Ahmed, Till Hoffmann, @timsl, @urimend, @vesnica, Vlad Frolov, Vlad Zagorodniy, Wei-Ting Kuo, Wenjian Huang, William Dmitri Breaden Madden, Wladimir Schmidt, Yuan Tang, Yuwen Yan, Yuxin Wu, Yuya Kusakabe, @zhongzyd, @znah.

We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.

Release 0.7.1

Bug Fixes and Other Changes

		Added gfile.Open and gfile.Copy, used by input_data.py.

		Fixed Saver bug when MakeDirs tried to create empty directory.

		GPU Pip wheels are built with cuda 7.5 and cudnn-v4, making them
required for the binary releases. Lower versions of cuda/cudnn can
be supported by installing from sources and setting the options
during ./configure

		Fix dataset encoding example for Python3 (@danijar)

		Fix PIP installation by not packaging protobuf as part of wheel,
require protobuf 3.0.0b2.

		Fix Mac pip installation of numpy by requiring pip >= 1.10.1.

		Improvements and fixes to Docker image.

Release 0.7.0

Major Features and Improvements

		Allow using any installed Cuda >= 7.0 and cuDNN >= R2, and add support
for cuDNN R4

		Added a contrib/ directory for unsupported or experimental features,
including higher level layers module

		Added an easy way to add and dynamically load user-defined ops

		Built out a good suite of tests, things should break less!

		Added MetaGraphDef which makes it easier to save graphs with metadata

		Added assignments for “Deep Learning with TensorFlow” udacity course

Bug Fixes and Other Changes

		Added a versioning framework for GraphDefs to ensure compatibility

		Enforced Python 3 compatibility

		Internal changes now show up as sensibly separated commits

		Open-sourced the doc generator

		Un-fork Eigen

		Simplified the BUILD files and cleaned up C++ headers

		TensorFlow can now be used as a submodule in another bazel build

		New ops (e.g., *fft, *_matrix_solve)

		Support for more data types in many ops

		Performance improvements

		Various bugfixes

		Documentation fixes and improvements

Breaking Changes to the API

		AdjustContrast kernel deprecated, new kernel AdjustContrastv2 takes and
outputs float only. adjust_contrast now takes all data types.

		adjust_brightness‘s delta argument is now always assumed to be in [0,1]
(as is the norm for images in floating point formats), independent of the
data type of the input image.

		The image processing ops do not take min and max inputs any more, casting
safety is handled by saturate_cast, which makes sure over- and underflows
are handled before casting to data types with smaller ranges.

		For C++ API users: IsLegacyScalar and IsLegacyVector are now gone from
TensorShapeUtils since TensorFlow is scalar strict within Google (for
example, the shape argument to tf.reshape can’t be a scalar anymore). The
open source release was already scalar strict, so outside Google IsScalar
and IsVector are exact replacements.

		The following files are being removed from tensorflow/core/public/:
		env.h -> ../platform/env.h

		status.h -> ../lib/core/status.h

		tensor.h -> ../framework/tensor.h

		tensor_shape.h -> ../framework/tensor_shape.h

		partial_tensor_shape.h -> ../framework/partial_tensor_shape.h

		tensorflow_server.h deleted

		For C++ API users: TensorShape::ShortDebugString has been renamed to
DebugString, and the previous DebugString behavior is gone (it was
needlessly verbose and produced a confusing empty string for scalars).

		GraphOptions.skip_common_subexpression_elimination has been removed. All
graph optimizer options are now specified via
GraphOptions.OptimizerOptions.

		ASSERT_OK / EXPECT_OK macros conflicted with external projects, so they
were renamed TF_ASSERT_OK, TF_EXPECT_OK. The existing macros are
currently maintained for short-term compatibility but will be removed.

		The non-public nn.rnn and the various nn.seq2seq methods now return
just the final state instead of the list of all states.

		tf.scatter_update now no longer guarantees that lexicographically largest
index be used for update when duplicate entries exist.

		tf.image.random_crop(image, [height, width]) is now
tf.random_crop(image, [height, width, depth]), and tf.random_crop works
for any rank (not just 3-D images). The C++ RandomCrop op has been replaced
with pure Python.

		Renamed tf.test.GetTempDir and tf.test.IsBuiltWithCuda to
tf.test.get_temp_dir and tf.test.is_built_with_cuda for PEP-8
compatibility.

		parse_example‘s interface has changed, the old interface is accessible in
legacy_parse_example (same for related functions).

		New Variables are not added to the same collection several times even if
a list with duplicates is passed to the constructor.

		The Python API will now properly set the list member of AttrValue in
constructed GraphDef messages for empty lists. The serialization of some
graphs will change, but the change is both forwards and backwards compatible.
It will break tests that compare a generated GraphDef to a golden serialized
GraphDef (which is discouraged).

Thanks to our Contributors

This release contains contributions from many people at Google, as well as:

Akiomi Kamakura, Alex Vig, Alexander Rosenberg Johansen, Andre Cruz, Arun Ahuja,
Bart Coppens, Bernardo Pires, Carl Vondrick, Cesar Salgado, Chen Yu,
Christian Jauvin, Damien Aymeric, Dan Vanderkam, Denny Britz, Dongjoon Hyun,
Eren Güven, Erik Erwitt, Fabrizio Milo, G. Hussain Chinoy, Jim Fleming,
Joao Felipe Santos, Jonas Meinertz Hansen, Joshi Rekha, Julian Viereck,
Keiji Ariyama, Kenton Lee, Krishna Sankar, Kristina Chodorow, Linchao Zhu,
Lukas Krecan, Mark Borgerding, Mark Daoust, Moussa Taifi,
Nathan Howell, Naveen Sundar Govindarajulu, Nick Sweeting, Niklas Riekenbrauck,
Olivier Grisel, Patrick Christ, Povilas Liubauskas, Rainer Wasserfuhr,
Romain Thouvenin, Sagan Bolliger, Sam Abrahams, Taehoon Kim, Timothy J Laurent,
Vlad Zavidovych, Yangqing Jia, Yi-Lin Juang, Yuxin Wu, Zachary Lipton,
Zero Chen, Alan Wu, @brchiu, @emmjaykay, @jalammar, @Mandar-Shinde,
@nsipplswezey, @ninotoshi, @panmari, @prolearner and @rizzomichaelg.

We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.

Release 0.6.0

Major Features and Improvements

		Python 3.3+ support via changes to python codebase and ability
to specify python version via ./configure.

		Some improvements to GPU performance and memory usage:
convnet benchmarks [https://github.com/soumith/convnet-benchmarks/issues/66]
roughly equivalent with native cudnn v2 performance. Improvements mostly due
to moving to 32-bit indices, faster shuffling kernels. More improvements to
come in later releases.

Bug Fixes

		Lots of fixes to documentation and tutorials, many contributed
by the public.

		271 closed issues on github issues.

Backwards-Incompatible Changes

		tf.nn.fixed_unigram_candidate_sampler changed its default ‘distortion’
attribute from 0.0 to 1.0. This was a bug in the original release
that is now fixed.

Release 0.5.0

Initial release of TensorFlow.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/mod_newton.png
y=1l;wx=2.1; A=0.9; a=0.1;
Plot[-2yx - wx -A ((1+Tanh[x])/ (2y) -a), {x, -2, 0.5}]

2L

CONTRIBUTING.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Contributing guidelines

How to become a contributor and submit your own code

Contributor License Agreements

We’d love to accept your patches! Before we can take them, we have to jump a couple of legal hurdles.

Please fill out either the individual or corporate Contributor License Agreement (CLA).

		If you are an individual writing original source code and you’re sure you own the intellectual property, then you’ll need to sign an individual CLA [http://code.google.com/legal/individual-cla-v1.0.html].

		If you work for a company that wants to allow you to contribute your work, then you’ll need to sign a corporate CLA [http://code.google.com/legal/corporate-cla-v1.0.html].

Follow either of the two links above to access the appropriate CLA and instructions for how to sign and return it. Once we receive it, we’ll be able to accept your pull requests.

NOTE: Only original source code from you and other people that have signed the CLA can be accepted into the main repository.

Contributing code

If you have improvements to TensorFlow, send us your pull requests! For those
just getting started, Github has a howto [https://help.github.com/articles/using-pull-requests/].

If you want to contribute but you’re not sure where to start, take a look at the
issues with the “contributions welcome” label [https://github.com/tensorflow/tensorflow/labels/contributions%20welcome].
These are issues that we believe are particularly well suited for outside
contributions, often because we probably won’t get to them right now. If you
decide to start on an issue, leave a comment so that other people know that
you’re working on it. If you want to help out, but not alone, use the issue
comment thread to coordinate.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/newton.png
y=1l;wx=2.1; A=0.9; a=0;
Plot[{yLog[-1+1/(ys)]-wx-A(s-a), -5s-wx+2}, {s, -0.2, 1.2}]

5
i S \
-0.2 0.4 0.6 0.8 1.0 1.2
5
10l
15[

README.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 [image:]

-----------------| Linux CPU | Linux GPU PIP | Mac OS CPU | Android |
|——————-|———————-|——————|—————-|
| [image: Build Status] [https://ci.tensorflow.org/job/tensorflow-master-cpu] | [image: Build Status] [https://ci.tensorflow.org/job/tensorflow-master-gpu_pip] | [image: Build Status] [https://ci.tensorflow.org/job/tensorflow-master-mac] | [image: Build Status] [https://ci.tensorflow.org/job/tensorflow-master-android] |

TensorFlow is an open source software library for numerical computation using
data flow graphs. Nodes in the graph represent mathematical operations, while
the graph edges represent the multidimensional data arrays (tensors) that flow
between them. This flexible architecture lets you deploy computation to one
or more CPUs or GPUs in a desktop, server, or mobile device without rewriting
code. TensorFlow also includes TensorBoard, a data visualization toolkit.

TensorFlow was originally developed by researchers and engineers
working on the Google Brain team within Google’s Machine Intelligence research
organization for the purposes of conducting machine learning and deep neural
networks research. The system is general enough to be applicable in a wide
variety of other domains, as well.

If you’d like to contribute to TensorFlow, be sure to review the contribution
guidelines.

We use GitHub issues [https://github.com/tensorflow/tensorflow/issues] for
tracking requests and bugs, but please see
Community for general questions
and discussion.

Installation

See Download and Setup for instructions on how to install our release binaries or how to build from source.

People who are a little more adventurous can also try our nightly binaries:

		Linux CPU-only: Python 2 [https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=cpu-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-0.11.0-cp27-none-linux_x86_64.whl] (build history [https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=cpu-slave]) / Python 3.4 [https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=cpu-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-0.11.0-cp34-cp34m-linux_x86_64.whl] (build history [https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=cpu-slave/]) / Python 3.5 [https://ci.tensorflow.org/view/Nightly/job/nightly-python35-linux-cpu/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-0.11.0-cp35-cp35m-linux_x86_64.whl] (build history [https://ci.tensorflow.org/view/Nightly/job/nightly-python35-linux-cpu/])

		Linux GPU: Python 2 [https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-0.11.0-cp27-none-linux_x86_64.whl] (build history [https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-linux/]) / Python 3.4 [https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-0.11.0-cp34-cp34m-linux_x86_64.whl] (build history [https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-linux/]) / Python 3.5 [https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3.5,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-0.11.0-cp35-cp35m-linux_x86_64.whl] (build history [https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3.5,label=gpu-linux/])

		Mac CPU-only: Python 2 [https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=mac1-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-0.11.0-py2-none-any.whl] (build history [https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=mac1-slave/]) / Python 3 [https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=mac1-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-0.11.0-py3-none-any.whl] (build history [https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=mac1-slave/])

		Mac GPU: Python 2 [https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-mac-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-mac/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-0.11.0-py2-none-any.whl] (build history [https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-mac-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-mac/]) / Python 3 [https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-mac-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-mac/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-0.11.0-py3-none-any.whl] (build history [https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-mac-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-mac/])

		Android [https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-android/TF_BUILD_CONTAINER_TYPE=ANDROID,TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=NO_PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=android-slave/lastSuccessfulBuild/artifact/bazel-out/local_linux/bin/tensorflow/examples/android/tensorflow_demo.apk] (build history [https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-android/TF_BUILD_CONTAINER_TYPE=ANDROID,TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=NO_PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=android-slave/])

Try your first TensorFlow program

$ python

>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> sess.run(hello)
Hello, TensorFlow!
>>> a = tf.constant(10)
>>> b = tf.constant(32)
>>> sess.run(a+b)
42
>>>

##For more information

		TensorFlow website [http://tensorflow.org]

		TensorFlow whitepaper [http://download.tensorflow.org/paper/whitepaper2015.pdf]

		TensorFlow Model Zoo [https://github.com/tensorflow/models]

		[TensorFlow MOOC on Udacity] (https://www.udacity.com/course/deep-learning–ud730)

The TensorFlow community has created amazing things with TensorFlow, please see the resources section of tensorflow.org [https://www.tensorflow.org/versions/master/resources#community] for an incomplete list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

ISSUE_TEMPLATE.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 NOTE: Only file GitHub issues for bugs and feature requests. All other topics will be closed.

For general support from the community, see StackOverflow [https://stackoverflow.com/questions/tagged/tensorflow].
To make bugs and feature requests more easy to find and organize, we close issues that are deemed
out of scope for GitHub Issues and point people to StackOverflow.

For bugs or installation issues, please provide the following information.
The more information you provide, the more easily we will be able to offer
help and advice.

What related GitHub issues or StackOverflow threads have you found by searching the web for your problem?

Environment info

Operating System:

Installed version of CUDA and cuDNN:
(please attach the output of ls -l /path/to/cuda/lib/libcud*):

If installed from binary pip package, provide:

		A link to the pip package you installed:

		The output from python -c "import tensorflow; print(tensorflow.__version__)".

If installed from source, provide

		The commit hash (git rev-parse HEAD)

		The output of bazel version

If possible, provide a minimal reproducible example (We usually don’t have time to read hundreds of lines of your code)

What other attempted solutions have you tried?

Logs or other output that would be helpful

(If logs are large, please upload as attachment or provide link).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

ADOPTERS.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

TensorFlow Adopters

This page contains a list of people and organizations who are using TensorFlow. If you’d like to be included
here, please send a pull request which modifies this file.

We intend to use this list to contact you for surveys, and to find good candidates for invite-only events.
We will also point to this list if we are asked who uses TensorFlow.

We will not use any of the information here for promotions or to send other regular communications. You
should subscribe to discuss@tensorflow.org for such announcements.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.distributions.normal_congugates_known_sigma_predictive.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.distributions.normal_congugates_known_sigma_predictive(prior, sigma, s, n) {#normal_congugates_known_sigma_predictive}

Posterior predictive Normal distribution w. conjugate prior on the mean.

This model assumes that n observations (with sum s) come from a
Normal with unknown mean mu (described by the Normal prior)
and known variance sigma^2. The “known sigma predictive”
is the distribution of new observations, conditioned on the existing
observations and our prior.

Accepts a prior Normal distribution object, having parameters
mu0 and sigma0, as well as known sigma values of the predictive
distribution(s) (also assumed Normal),
and statistical estimates s (the sum(s) of the observations) and
n (the number(s) of observations).

Calculates the Normal distribution(s) p(x | sigma^2):

 p(x | sigma^2) = int N(x | mu, sigma^2) N(mu | prior.mu, prior.sigma^2) dmu
 = N(x | prior.mu, 1/(sigma^2 + prior.sigma^2))

Returns the predictive posterior distribution object, with parameters
(mu', sigma'^2), where:

sigma_n^2 = 1/(1/sigma0^2 + n/sigma^2),
mu' = (mu0/sigma0^2 + s/sigma^2) * sigma_n^2.
sigma'^2 = sigma_n^2 + sigma^2,

Distribution parameters from prior, as well as sigma, s, and n.
will broadcast in the case of multidimensional sets of parameters.

Args:

		prior: Normal object of type dtype:
the prior distribution having parameters (mu0, sigma0).

		sigma: tensor of type dtype, taking values sigma > 0.
The known stddev parameter(s).

		s: Tensor of type dtype. The sum(s) of observations.

		n: Tensor of type int. The number(s) of observations.

Returns:

A new Normal predictive distribution object.

Raises:

		TypeError: if dtype of s does not match dtype, or prior is not a
Normal object.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.graph_editor.reroute_b2a_outputs.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.reroute_b2a_outputs(sgv0, sgv1) {#reroute_b2a_outputs}

Re-route all the outputs of sgv1 to sgv0 (see _reroute_outputs).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.linspace.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.linspace(start, stop, num, name=None) {#linspace}

Generates values in an interval.

A sequence of num evenly-spaced values are generated beginning at start.
If num > 1, the values in the sequence increase by stop - start / num - 1,
so that the last one is exactly stop.

For example:

tf.linspace(10.0, 12.0, 3, name="linspace") => [10.0 11.0 12.0]

Args:

		start: A Tensor. Must be one of the following types: float32, float64.
First entry in the range.

		stop: A Tensor. Must have the same type as start.
Last entry in the range.

		num: A Tensor. Must be one of the following types: int32, int64.
Number of values to generate.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as start. 1-D. The generated values.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.ones_initializer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.ones_initializer(shape, dtype=tf.float32, partition_info=None) {#ones_initializer}

An adaptor for ones() to match the Initializer spec.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.NoGradient.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.NoGradient(op_type) {#NoGradient}

Specifies that ops of type op_type is not differentiable.

This function should not be used for operations that have a
well-defined gradient that is not yet implemented.

This function is only used when defining a new op type. It may be
used for ops such as tf.size() that are not differentiable. For
example:

tf.NotDifferentiable("Size")

The gradient computed for ‘op_type’ will then propagate zeros.

For ops that have a well-defined gradient but are not yet implemented,
no declaration should be made, and an error must be thrown if
an attempt to request its gradient is made.

Args:

		op_type: The string type of an operation. This corresponds to the
OpDef.name field for the proto that defines the operation.

Raises:

		TypeError: If op_type is not a string.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.layers.apply_regularization.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.apply_regularization(regularizer, weights_list=None) {#apply_regularization}

Returns the summed penalty by applying regularizer to the weights_list.

Adding a regularization penalty over the layer weights and embedding weights
can help prevent overfitting the training data. Regularization over layer
biases is less common/useful, but assuming proper data preprocessing/mean
subtraction, it usually shouldn’t hurt much either.

Args:

		regularizer: A function that takes a single Tensor argument and returns
a scalar Tensor output.

		weights_list: List of weights Tensors or Variables to apply
regularizer over. Defaults to the GraphKeys.WEIGHTS collection if
None.

Returns:

A scalar representing the overall regularization penalty.

Raises:

		ValueError: If regularizer does not return a scalar output, or if we find
no weights.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/framework.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Building Graphs

[TOC]

Classes and functions for building TensorFlow graphs.

Core graph data structures

class tf.Graph {#Graph}

A TensorFlow computation, represented as a dataflow graph.

A Graph contains a set of
Operation objects,
which represent units of computation; and
Tensor objects, which represent
the units of data that flow between operations.

A default Graph is always registered, and accessible by calling
tf.get_default_graph().
To add an operation to the default graph, simply call one of the functions
that defines a new Operation:

c = tf.constant(4.0)
assert c.graph is tf.get_default_graph()

Another typical usage involves the
Graph.as_default()
context manager, which overrides the current default graph for the
lifetime of the context:

g = tf.Graph()
with g.as_default():
 # Define operations and tensors in `g`.
 c = tf.constant(30.0)
 assert c.graph is g

Important note: This class is not thread-safe for graph construction. All
operations should be created from a single thread, or external
synchronization must be provided. Unless otherwise specified, all methods
are not thread-safe.

tf.Graph.__init__() {#Graph.init}

Creates a new, empty Graph.

tf.Graph.as_default() {#Graph.as_default}

Returns a context manager that makes this Graph the default graph.

This method should be used if you want to create multiple graphs
in the same process. For convenience, a global default graph is
provided, and all ops will be added to this graph if you do not
create a new graph explicitly. Use this method with the with keyword
to specify that ops created within the scope of a block should be
added to this graph.

The default graph is a property of the current thread. If you
create a new thread, and wish to use the default graph in that
thread, you must explicitly add a with g.as_default(): in that
thread’s function.

The following code examples are equivalent:

1. Using Graph.as_default():
g = tf.Graph()
with g.as_default():
 c = tf.constant(5.0)
 assert c.graph is g

2. Constructing and making default:
with tf.Graph().as_default() as g:
 c = tf.constant(5.0)
 assert c.graph is g

Returns:

A context manager for using this graph as the default graph.

tf.Graph.as_graph_def(from_version=None, add_shapes=False) {#Graph.as_graph_def}

Returns a serialized GraphDef representation of this graph.

The serialized GraphDef can be imported into another Graph
(using import_graph_def()) or used with the
C++ Session API.

This method is thread-safe.

Args:

		from_version: Optional. If this is set, returns a GraphDef
containing only the nodes that were added to this graph since
its version property had the given value.

		add_shapes: If true, adds an “_output_shapes” list attr to each
node with the inferred shapes of each of its outputs.

Returns:

A GraphDef [https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto]
protocol buffer.

Raises:

		ValueError: If the graph_def would be too large.

tf.Graph.finalize() {#Graph.finalize}

Finalizes this graph, making it read-only.

After calling g.finalize(), no new operations can be added to
g. This method is used to ensure that no operations are added
to a graph when it is shared between multiple threads, for example
when using a QueueRunner.

tf.Graph.finalized {#Graph.finalized}

True if this graph has been finalized.

tf.Graph.control_dependencies(control_inputs) {#Graph.control_dependencies}

Returns a context manager that specifies control dependencies.

Use with the with keyword to specify that all operations constructed
within the context should have control dependencies on
control_inputs. For example:

with g.control_dependencies([a, b, c]):
 # `d` and `e` will only run after `a`, `b`, and `c` have executed.
 d = ...
 e = ...

Multiple calls to control_dependencies() can be nested, and in
that case a new Operation will have control dependencies on the union
of control_inputs from all active contexts.

with g.control_dependencies([a, b]):
 # Ops constructed here run after `a` and `b`.
 with g.control_dependencies([c, d]):
 # Ops constructed here run after `a`, `b`, `c`, and `d`.

You can pass None to clear the control dependencies:

with g.control_dependencies([a, b]):
 # Ops constructed here run after `a` and `b`.
 with g.control_dependencies(None):
 # Ops constructed here run normally, not waiting for either `a` or `b`.
 with g.control_dependencies([c, d]):
 # Ops constructed here run after `c` and `d`, also not waiting
 # for either `a` or `b`.

N.B. The control dependencies context applies only to ops that
are constructed within the context. Merely using an op or tensor
in the context does not add a control dependency. The following
example illustrates this point:

WRONG
def my_func(pred, tensor):
 t = tf.matmul(tensor, tensor)
 with tf.control_dependencies([pred]):
 # The matmul op is created outside the context, so no control
 # dependency will be added.
 return t

RIGHT
def my_func(pred, tensor):
 with tf.control_dependencies([pred]):
 # The matmul op is created in the context, so a control dependency
 # will be added.
 return tf.matmul(tensor, tensor)

Args:

		control_inputs: A list of Operation or Tensor objects which
must be executed or computed before running the operations
defined in the context. Can also be None to clear the control
dependencies.

Returns:

A context manager that specifies control dependencies for all
operations constructed within the context.

Raises:

		TypeError: If control_inputs is not a list of Operation or
Tensor objects.

tf.Graph.device(device_name_or_function) {#Graph.device}

Returns a context manager that specifies the default device to use.

The device_name_or_function argument may either be a device name
string, a device function, or None:

		If it is a device name string, all operations constructed in
this context will be assigned to the device with that name, unless
overridden by a nested device() context.

		If it is a function, it will be treated as a function from
Operation objects to device name strings, and invoked each time
a new Operation is created. The Operation will be assigned to
the device with the returned name.

		If it is None, all device() invocations from the enclosing context
will be ignored.

For information about the valid syntax of device name strings, see
the documentation in
DeviceNameUtils [https://www.tensorflow.org/code/tensorflow/core/util/device_name_utils.h].

For example:

with g.device('/gpu:0'):
 # All operations constructed in this context will be placed
 # on GPU 0.
 with g.device(None):
 # All operations constructed in this context will have no
 # assigned device.

Defines a function from `Operation` to device string.
def matmul_on_gpu(n):
 if n.type == "MatMul":
 return "/gpu:0"
 else:
 return "/cpu:0"

with g.device(matmul_on_gpu):
 # All operations of type "MatMul" constructed in this context
 # will be placed on GPU 0; all other operations will be placed
 # on CPU 0.

N.B. The device scope may be overridden by op wrappers or
other library code. For example, a variable assignment op
v.assign() must be colocated with the tf.Variable v, and
incompatible device scopes will be ignored.

Args:

		device_name_or_function: The device name or function to use in
the context.

Returns:

A context manager that specifies the default device to use for newly
created ops.

tf.Graph.name_scope(name) {#Graph.name_scope}

Returns a context manager that creates hierarchical names for operations.

A graph maintains a stack of name scopes. A with name_scope(...):
statement pushes a new name onto the stack for the lifetime of the context.

The name argument will be interpreted as follows:

		A string (not ending with ‘/’) will create a new name scope, in which
name is appended to the prefix of all operations created in the
context. If name has been used before, it will be made unique by
calling self.unique_name(name).

		A scope previously captured from a with g.name_scope(...) as scope: statement will be treated as an “absolute” name scope, which
makes it possible to re-enter existing scopes.

		A value of None or the empty string will reset the current name scope
to the top-level (empty) name scope.

For example:

with tf.Graph().as_default() as g:
 c = tf.constant(5.0, name="c")
 assert c.op.name == "c"
 c_1 = tf.constant(6.0, name="c")
 assert c_1.op.name == "c_1"

 # Creates a scope called "nested"
 with g.name_scope("nested") as scope:
 nested_c = tf.constant(10.0, name="c")
 assert nested_c.op.name == "nested/c"

 # Creates a nested scope called "inner".
 with g.name_scope("inner"):
 nested_inner_c = tf.constant(20.0, name="c")
 assert nested_inner_c.op.name == "nested/inner/c"

 # Create a nested scope called "inner_1".
 with g.name_scope("inner"):
 nested_inner_1_c = tf.constant(30.0, name="c")
 assert nested_inner_1_c.op.name == "nested/inner_1/c"

 # Treats `scope` as an absolute name scope, and
 # switches to the "nested/" scope.
 with g.name_scope(scope):
 nested_d = tf.constant(40.0, name="d")
 assert nested_d.op.name == "nested/d"

 with g.name_scope(""):
 e = tf.constant(50.0, name="e")
 assert e.op.name == "e"

The name of the scope itself can be captured by with g.name_scope(...) as scope:, which stores the name of the scope
in the variable scope. This value can be used to name an
operation that represents the overall result of executing the ops
in a scope. For example:

inputs = tf.constant(...)
with g.name_scope('my_layer') as scope:
 weights = tf.Variable(..., name="weights")
 biases = tf.Variable(..., name="biases")
 affine = tf.matmul(inputs, weights) + biases
 output = tf.nn.relu(affine, name=scope)

NOTE: This constructor validates the given name. Valid scope
names match one of the following regular expressions:

[A-Za-z0-9.][A-Za-z0-9_.\\-/]* (for scopes at the root)
[A-Za-z0-9_.\\-/]* (for other scopes)

Args:

		name: A name for the scope.

Returns:

A context manager that installs name as a new name scope.

Raises:

		ValueError: If name is not a valid scope name. The rules are the

A Graph instance supports an arbitrary number of “collections”
that are identified by name. For convenience when building a large
graph, collections can store groups of related objects: for
example, the tf.Variable uses a collection (named
tf.GraphKeys.VARIABLES) for
all variables that are created during the construction of a graph. The caller
may define additional collections by specifying a new name.

tf.Graph.add_to_collection(name, value) {#Graph.add_to_collection}

Stores value in the collection with the given name.

Note that collections are not sets, so it is possible to add a value to
a collection several times.

Args:

		name: The key for the collection. The GraphKeys class
contains many standard names for collections.

		value: The value to add to the collection.

tf.Graph.add_to_collections(names, value) {#Graph.add_to_collections}

Stores value in the collections given by names.

Note that collections are not sets, so it is possible to add a value to
a collection several times. This function makes sure that duplicates in
names are ignored, but it will not check for pre-existing membership of
value in any of the collections in names.

names can be any iterable, but if names is a string, it is treated as a
single collection name.

Args:

		names: The keys for the collections to add to. The GraphKeys class
contains many standard names for collections.

		value: The value to add to the collections.

tf.Graph.get_collection(name, scope=None) {#Graph.get_collection}

Returns a list of values in the collection with the given name.

This is different from get_collection_ref() which always returns the
actual collection list if it exists in that it returns a new list each time
it is called.

Args:

		name: The key for the collection. For example, the GraphKeys class
contains many standard names for collections.

		scope: (Optional.) If supplied, the resulting list is filtered to include
only items whose name attribute matches using re.match. Items
without a name attribute are never returned if a scope is supplied and
the choice or re.match means that a scope without special tokens
filters by prefix.

Returns:

The list of values in the collection with the given name, or
an empty list if no value has been added to that collection. The
list contains the values in the order under which they were
collected.

tf.Graph.get_collection_ref(name) {#Graph.get_collection_ref}

Returns a list of values in the collection with the given name.

If the collection exists, this returns the list itself, which can
be modified in place to change the collection. If the collection does
not exist, it is created as an empty list and the list is returned.

This is different from get_collection() which always returns a copy of
the collection list if it exists and never creates an empty collection.

Args:

		name: The key for the collection. For example, the GraphKeys class
contains many standard names for collections.

Returns:

The list of values in the collection with the given name, or an empty
list if no value has been added to that collection.

tf.Graph.as_graph_element(obj, allow_tensor=True, allow_operation=True) {#Graph.as_graph_element}

Returns the object referred to by obj, as an Operation or Tensor.

This function validates that obj represents an element of this
graph, and gives an informative error message if it is not.

This function is the canonical way to get/validate an object of
one of the allowed types from an external argument reference in the
Session API.

This method may be called concurrently from multiple threads.

Args:

		obj: A Tensor, an Operation, or the name of a tensor or operation.
Can also be any object with an _as_graph_element() method that returns
a value of one of these types.

		allow_tensor: If true, obj may refer to a Tensor.

		allow_operation: If true, obj may refer to an Operation.

Returns:

The Tensor or Operation in the Graph corresponding to obj.

Raises:

		TypeError: If obj is not a type we support attempting to convert
to types.

		ValueError: If obj is of an appropriate type but invalid. For
example, an invalid string.

		KeyError: If obj is not an object in the graph.

tf.Graph.get_operation_by_name(name) {#Graph.get_operation_by_name}

Returns the Operation with the given name.

This method may be called concurrently from multiple threads.

Args:

		name: The name of the Operation to return.

Returns:

The Operation with the given name.

Raises:

		TypeError: If name is not a string.

		KeyError: If name does not correspond to an operation in this graph.

tf.Graph.get_tensor_by_name(name) {#Graph.get_tensor_by_name}

Returns the Tensor with the given name.

This method may be called concurrently from multiple threads.

Args:

		name: The name of the Tensor to return.

Returns:

The Tensor with the given name.

Raises:

		TypeError: If name is not a string.

		KeyError: If name does not correspond to a tensor in this graph.

tf.Graph.get_operations() {#Graph.get_operations}

Return the list of operations in the graph.

You can modify the operations in place, but modifications
to the list such as inserts/delete have no effect on the
list of operations known to the graph.

This method may be called concurrently from multiple threads.

Returns:

A list of Operations.

tf.Graph.seed {#Graph.seed}

The graph-level random seed of this graph.

tf.Graph.unique_name(name, mark_as_used=True) {#Graph.unique_name}

Return a unique operation name for name.

Note: You rarely need to call unique_name() directly. Most of
the time you just need to create with g.name_scope() blocks to
generate structured names.

unique_name is used to generate structured names, separated by
"/", to help identify operations when debugging a graph.
Operation names are displayed in error messages reported by the
TensorFlow runtime, and in various visualization tools such as
TensorBoard.

If mark_as_used is set to True, which is the default, a new
unique name is created and marked as in use. If it’s set to False,
the unique name is returned without actually being marked as used.
This is useful when the caller simply wants to know what the name
to be created will be.

Args:

		name: The name for an operation.

		mark_as_used: Whether to mark this name as being used.

Returns:

A string to be passed to create_op() that will be used
to name the operation being created.

tf.Graph.version {#Graph.version}

Returns a version number that increases as ops are added to the graph.

Note that this is unrelated to the
GraphDef version.

tf.Graph.graph_def_versions {#Graph.graph_def_versions}

The GraphDef version information of this graph.

For details on the meaning of each version, see [GraphDef]
(https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto).

Returns:

A VersionDef.

tf.Graph.create_op(op_type, inputs, dtypes, input_types=None, name=None, attrs=None, op_def=None, compute_shapes=True, compute_device=True) {#Graph.create_op}

Creates an Operation in this graph.

This is a low-level interface for creating an Operation. Most
programs will not call this method directly, and instead use the
Python op constructors, such as tf.constant(), which add ops to
the default graph.

Args:

		op_type: The Operation type to create. This corresponds to the
OpDef.name field for the proto that defines the operation.

		inputs: A list of Tensor objects that will be inputs to the Operation.

		dtypes: A list of DType objects that will be the types of the tensors
that the operation produces.

		input_types: (Optional.) A list of DTypes that will be the types of
the tensors that the operation consumes. By default, uses the base
DType of each input in inputs. Operations that expect
reference-typed inputs must specify input_types explicitly.

		name: (Optional.) A string name for the operation. If not specified, a
name is generated based on op_type.

		attrs: (Optional.) A dictionary where the key is the attribute name (a
string) and the value is the respective attr attribute of the
NodeDef proto that will represent the operation (an AttrValue
proto).

		op_def: (Optional.) The OpDef proto that describes the op_type that
the operation will have.

		compute_shapes: (Optional.) If True, shape inference will be performed
to compute the shapes of the outputs.

		compute_device: (Optional.) If True, device functions will be executed
to compute the device property of the Operation.

Raises:

		TypeError: if any of the inputs is not a Tensor.

		ValueError: if colocation conflicts with existing device assignment.

Returns:

An Operation object.

tf.Graph.gradient_override_map(op_type_map) {#Graph.gradient_override_map}

EXPERIMENTAL: A context manager for overriding gradient functions.

This context manager can be used to override the gradient function
that will be used for ops within the scope of the context.

For example:

@tf.RegisterGradient("CustomSquare")
def _custom_square_grad(op, grad):
 # ...

with tf.Graph().as_default() as g:
 c = tf.constant(5.0)
 s_1 = tf.square(c) # Uses the default gradient for tf.square.
 with g.gradient_override_map({"Square": "CustomSquare"}):
 s_2 = tf.square(s_2) # Uses _custom_square_grad to compute the
 # gradient of s_2.

Args:

		op_type_map: A dictionary mapping op type strings to alternative op
type strings.

Returns:

A context manager that sets the alternative op type to be used for one
or more ops created in that context.

Raises:

		TypeError: If op_type_map is not a dictionary mapping strings to
strings.

Other Methods

tf.Graph.colocate_with(op, ignore_existing=False) {#Graph.colocate_with}

Returns a context manager that specifies an op to colocate with.

Note: this function is not for public use, only for internal libraries.

For example:

a = tf.Variable([1.0])
with g.colocate_with(a):
 b = tf.constant(1.0)
 c = tf.add(a, b)

b and c will always be colocated with a, no matter where a
is eventually placed.

Args:

		op: The op to colocate all created ops with.

		ignore_existing: If true, only applies colocation of this op within
the context, rather than applying all colocation properties
on the stack.

Raises:

		ValueError: if op is None.

Yields:

A context manager that specifies the op with which to colocate
newly created ops.

tf.Graph.container(container_name) {#Graph.container}

Returns a context manager that specifies the resource container to use.

Stateful operations, such as variables and queues, can maintain their
states on devices so that they can be shared by multiple processes.
A resource container is a string name under which these stateful
operations are tracked. These resources can be released or cleared
with tf.Session.reset().

For example:

with g.container('experiment0'):
 # All stateful Operations constructed in this context will be placed
 # in resource container "experiment0".
 v1 = tf.Variable([1.0])
 v2 = tf.Variable([2.0])
 with g.container("experiment1"):
 # All stateful Operations constructed in this context will be
 # placed in resource container "experiment1".
 v3 = tf.Variable([3.0])
 q1 = tf.FIFOQueue(10, tf.float32)
 # All stateful Operations constructed in this context will be
 # be created in the "experiment0".
 v4 = tf.Variable([4.0])
 q1 = tf.FIFOQueue(20, tf.float32)
 with g.container(""):
 # All stateful Operations constructed in this context will be
 # be placed in the default resource container.
 v5 = tf.Variable([5.0])
 q3 = tf.FIFOQueue(30, tf.float32)

Resets container "experiment0", after which the state of v1, v2, v4, q1
will become undefined (such as uninitialized).
tf.Session.reset(target, ["experiment0"])

Args:

		container_name: container name string.

Returns:

A context manager for defining resource containers for stateful ops,
yields the container name.

tf.Graph.get_all_collection_keys() {#Graph.get_all_collection_keys}

Returns a list of collections used in this graph.

tf.Graph.is_feedable(tensor) {#Graph.is_feedable}

Returns True if and only if tensor is feedable.

tf.Graph.is_fetchable(tensor_or_op) {#Graph.is_fetchable}

Returns True if and only if tensor_or_op is fetchable.

tf.Graph.prevent_feeding(tensor) {#Graph.prevent_feeding}

Marks the given tensor as unfeedable in this graph.

tf.Graph.prevent_fetching(op) {#Graph.prevent_fetching}

Marks the given op as unfetchable in this graph.

class tf.Operation {#Operation}

Represents a graph node that performs computation on tensors.

An Operation is a node in a TensorFlow Graph that takes zero or
more Tensor objects as input, and produces zero or more Tensor
objects as output. Objects of type Operation are created by
calling a Python op constructor (such as
tf.matmul())
or Graph.create_op().

For example c = tf.matmul(a, b) creates an Operation of type
“MatMul” that takes tensors a and b as input, and produces c
as output.

After the graph has been launched in a session, an Operation can
be executed by passing it to
Session.run().
op.run() is a shortcut for calling tf.get_default_session().run(op).

tf.Operation.name {#Operation.name}

The full name of this operation.

tf.Operation.type {#Operation.type}

The type of the op (e.g. "MatMul").

tf.Operation.inputs {#Operation.inputs}

The list of Tensor objects representing the data inputs of this op.

tf.Operation.control_inputs {#Operation.control_inputs}

The Operation objects on which this op has a control dependency.

Before this op is executed, TensorFlow will ensure that the
operations in self.control_inputs have finished executing. This
mechanism can be used to run ops sequentially for performance
reasons, or to ensure that the side effects of an op are observed
in the correct order.

Returns:

A list of Operation objects.

tf.Operation.outputs {#Operation.outputs}

The list of Tensor objects representing the outputs of this op.

tf.Operation.device {#Operation.device}

The name of the device to which this op has been assigned, if any.

Returns:

The string name of the device to which this op has been
assigned, or an empty string if it has not been assigned to a
device.

tf.Operation.graph {#Operation.graph}

The Graph that contains this operation.

tf.Operation.run(feed_dict=None, session=None) {#Operation.run}

Runs this operation in a Session.

Calling this method will execute all preceding operations that
produce the inputs needed for this operation.

N.B. Before invoking Operation.run(), its graph must have been
launched in a session, and either a default session must be
available, or session must be specified explicitly.

Args:

		feed_dict: A dictionary that maps Tensor objects to feed values.
See Session.run()
for a description of the valid feed values.

		session: (Optional.) The Session to be used to run to this operation. If
none, the default session will be used.

tf.Operation.get_attr(name) {#Operation.get_attr}

Returns the value of the attr of this op with the given name.

Args:

		name: The name of the attr to fetch.

Returns:

The value of the attr, as a Python object.

Raises:

		ValueError: If this op does not have an attr with the given name.

tf.Operation.traceback {#Operation.traceback}

Returns the call stack from when this operation was constructed.

Other Methods

tf.Operation.__init__(node_def, g, inputs=None, output_types=None, control_inputs=None, input_types=None, original_op=None, op_def=None) {#Operation.init}

Creates an Operation.

NOTE: This constructor validates the name of the Operation (passed
as node_def.name). Valid Operation names match the following
regular expression:

[A-Za-z0-9.][A-Za-z0-9_.\-/]*

Args:

		node_def: node_def_pb2.NodeDef. NodeDef for the Operation.
Used for attributes of node_def_pb2.NodeDef, typically name,
op, and device. The input attribute is irrelevant here
as it will be computed when generating the model.

		g: Graph. The parent graph.

		inputs: list of Tensor objects. The inputs to this Operation.

		output_types: list of DType objects. List of the types of the
Tensors computed by this operation. The length of this list indicates
the number of output endpoints of the Operation.

		control_inputs: list of operations or tensors from which to have a
control dependency.

		input_types: List of DType objects representing the
types of the tensors accepted by the Operation. By default
uses [x.dtype.base_dtype for x in inputs]. Operations that expect
reference-typed inputs must specify these explicitly.

		original_op: Optional. Used to associate the new Operation with an
existing Operation (for example, a replica with the op that was
replicated).

		op_def: Optional. The op_def_pb2.OpDef proto that describes the
op type that this Operation represents.

Raises:

		TypeError: if control inputs are not Operations or Tensors,
or if node_def is not a NodeDef,
or if g is not a Graph,
or if inputs are not tensors,
or if inputs and input_types are incompatible.

		ValueError: if the node_def name is not valid.

tf.Operation.__str__() {#Operation.str}

tf.Operation.colocation_groups() {#Operation.colocation_groups}

Returns the list of colocation groups of the op.

tf.Operation.node_def {#Operation.node_def}

Returns a serialized NodeDef representation of this operation.

Returns:

A
NodeDef [https://www.tensorflow.org/code/tensorflow/core/framework/node_def.proto]
protocol buffer.

tf.Operation.op_def {#Operation.op_def}

Returns the OpDef proto that represents the type of this op.

Returns:

An
OpDef [https://www.tensorflow.org/code/tensorflow/core/framework/op_def.proto]
protocol buffer.

tf.Operation.values() {#Operation.values}

DEPRECATED: Use outputs.

class tf.Tensor {#Tensor}

Represents one of the outputs of an Operation.

Note: the Tensor class will be replaced by Output in the future.
Currently these two are aliases for each other.

A Tensor is a symbolic handle to one of the outputs of an
Operation. It does not hold the values of that operation’s output,
but instead provides a means of computing those values in a
TensorFlow Session.

This class has two primary purposes:

		A Tensor can be passed as an input to another Operation.
This builds a dataflow connection between operations, which
enables TensorFlow to execute an entire Graph that represents a
large, multi-step computation.

		After the graph has been launched in a session, the value of the
Tensor can be computed by passing it to
Session.run().
t.eval() is a shortcut for calling
tf.get_default_session().run(t).

In the following example, c, d, and e are symbolic Tensor
objects, whereas result is a numpy array that stores a concrete
value:

Build a dataflow graph.
c = tf.constant([[1.0, 2.0], [3.0, 4.0]])
d = tf.constant([[1.0, 1.0], [0.0, 1.0]])
e = tf.matmul(c, d)

Construct a `Session` to execute the graph.
sess = tf.Session()

Execute the graph and store the value that `e` represents in `result`.
result = sess.run(e)

tf.Tensor.dtype {#Tensor.dtype}

The DType of elements in this tensor.

tf.Tensor.name {#Tensor.name}

The string name of this tensor.

tf.Tensor.value_index {#Tensor.value_index}

The index of this tensor in the outputs of its Operation.

tf.Tensor.graph {#Tensor.graph}

The Graph that contains this tensor.

tf.Tensor.op {#Tensor.op}

The Operation that produces this tensor as an output.

tf.Tensor.consumers() {#Tensor.consumers}

Returns a list of Operations that consume this tensor.

Returns:

A list of Operations.

tf.Tensor.eval(feed_dict=None, session=None) {#Tensor.eval}

Evaluates this tensor in a Session.

Calling this method will execute all preceding operations that
produce the inputs needed for the operation that produces this
tensor.

N.B. Before invoking Tensor.eval(), its graph must have been
launched in a session, and either a default session must be
available, or session must be specified explicitly.

Args:

		feed_dict: A dictionary that maps Tensor objects to feed values.
See Session.run() for a
description of the valid feed values.

		session: (Optional.) The Session to be used to evaluate this tensor. If
none, the default session will be used.

Returns:

A numpy array corresponding to the value of this tensor.

tf.Tensor.get_shape() {#Tensor.get_shape}

Returns the TensorShape that represents the shape of this tensor.

The shape is computed using shape inference functions that are
registered for each Operation type using tf.RegisterShape.
See TensorShape for more
details of what a shape represents.

The inferred shape of a tensor is used to provide shape
information without having to launch the graph in a session. This
can be used for debugging, and providing early error messages. For
example:

c = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])

print(c.get_shape())
==> TensorShape([Dimension(2), Dimension(3)])

d = tf.constant([[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0]])

print(d.get_shape())
==> TensorShape([Dimension(4), Dimension(2)])

Raises a ValueError, because `c` and `d` do not have compatible
inner dimensions.
e = tf.matmul(c, d)

f = tf.matmul(c, d, transpose_a=True, transpose_b=True)

print(f.get_shape())
==> TensorShape([Dimension(3), Dimension(4)])

In some cases, the inferred shape may have unknown dimensions. If
the caller has additional information about the values of these
dimensions, Tensor.set_shape() can be used to augment the
inferred shape.

Returns:

A TensorShape representing the shape of this tensor.

tf.Tensor.set_shape(shape) {#Tensor.set_shape}

Updates the shape of this tensor.

This method can be called multiple times, and will merge the given
shape with the current shape of this tensor. It can be used to
provide additional information about the shape of this tensor that
cannot be inferred from the graph alone. For example, this can be used
to provide additional information about the shapes of images:

_, image_data = tf.TFRecordReader(...).read(...)
image = tf.image.decode_png(image_data, channels=3)

The height and width dimensions of `image` are data dependent, and
cannot be computed without executing the op.
print(image.get_shape())
==> TensorShape([Dimension(None), Dimension(None), Dimension(3)])

We know that each image in this dataset is 28 x 28 pixels.
image.set_shape([28, 28, 3])
print(image.get_shape())
==> TensorShape([Dimension(28), Dimension(28), Dimension(3)])

Args:

		shape: A TensorShape representing the shape of this tensor.

Raises:

		ValueError: If shape is not compatible with the current shape of
this tensor.

Other Methods

tf.Tensor.__abs__(x, name=None) {#Tensor.abs}

Computes the absolute value of a tensor.

Given a tensor of real numbers x, this operation returns a tensor
containing the absolute value of each element in x. For example, if x is
an input element and y is an output element, this operation computes
\(y = |x|\).

See tf.complex_abs() to compute the absolute value of a complex
number.

Args:

		x: A Tensor or SparseTensor of type float32, float64, int32, or
int64.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor the same size and type as x with absolute
values.

tf.Tensor.__add__(x, y) {#Tensor.add}

Returns x + y element-wise.

NOTE: Add supports broadcasting. AddN does not. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, int16, int32, int64, complex64, complex128, string.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Tensor.__and__(x, y) {#Tensor.and}

Returns the truth value of x AND y element-wise.

NOTE: LogicalAnd supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor of type bool.

		y: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Tensor.__bool__() {#Tensor.bool}

Dummy method to prevent a tensor from being used as a Python bool.

This overload raises a TypeError when the user inadvertently
treats a Tensor as a boolean (e.g. in an if statement). For
example:

if tf.constant(True): # Will raise.
 # ...

if tf.constant(5) < tf.constant(7): # Will raise.
 # ...

Raises:

TypeError.

tf.Tensor.__div__(x, y) {#Tensor.div}

Returns x / y element-wise.

NOTE: Div supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Tensor.__eq__(other) {#Tensor.eq}

tf.Tensor.__floordiv__(x, y) {#Tensor.floordiv}

Divides x / y elementwise, rounding down for floating point.

The same as tf.div(x,y) for integers, but uses tf.floor(tf.div(x,y)) for
floating point arguments so that the result is always an integer (though
possibly an integer represented as floating point). This op is generated by
x // y floor division in Python 3 and in Python 2.7 with
from __future__ import division.

Note that for efficiency, floordiv uses C semantics for negative numbers
(unlike Python and Numpy).

x and y must have the same type, and the result will have the same type
as well.

Args:

		x: Tensor numerator of real numeric type.

		y: Tensor denominator of real numeric type.

		name: A name for the operation (optional).

Returns:

x / y rounded down (except possibly towards zero for negative integers).

Raises:

		TypeError: If the inputs are complex.

tf.Tensor.__ge__(x, y, name=None) {#Tensor.ge}

Returns the truth value of (x >= y) element-wise.

NOTE: GreaterEqual supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Tensor.__getitem__(tensor, slice_spec, var=None) {#Tensor.getitem}

Overload for Tensor.getitem.

This operation extracts the specified region from the tensor.
The notation is similar to NumPy with the restriction that
currently only support basic indexing. That means that
using a tensor as input is not currently allowed

Some useful examples:

strip leading and trailing 2 elements
foo = tf.constant([1,2,3,4,5,6])
print(foo[2:-2].eval()) # => [3,4]

skip every row and reverse every column
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
print(foo[::2,::-1].eval()) # => [[3,2,1], [9,8,7]]

Insert another dimension
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
print(foo[tf.newaxis, :, :].eval()) # => [[[3,2,1], [9,8,7]]]
print(foo[:, tf.newaxis, :].eval()) # => [[[3,2,1]], [[9,8,7]]]
print(foo[:, :, tf.newaxis].eval()) # => [[[3],[2],[1]], [[9],[8],[7]]]

Ellipses (3 equivalent operations)
print(foo[tf.newaxis, :, :].eval()) # => [[[3,2,1], [9,8,7]]]
print(foo[tf.newaxis, ...].eval()) # => [[[3,2,1], [9,8,7]]]
print(foo[tf.newaxis].eval()) # => [[[3,2,1], [9,8,7]]]

Notes:

		tf.newaxis is None as in NumPy.

		An implicit ellipsis is placed at the end of the slice_spec

		NumPy advanced indexing is currently not supported.

Args:

		tensor: An ops.Tensor object.

		slice_spec: The arguments to Tensor.getitem.

		var: In the case of variable slice assignment, the Variable
object to slice (i.e. tensor is the read-only view of this
variable).

Returns:

The appropriate slice of “tensor”, based on “slice_spec”.

Raises:

		ValueError: If a slice range is negative size.

		TypeError: If the slice indices aren’t int, slice, or Ellipsis.

tf.Tensor.__gt__(x, y, name=None) {#Tensor.gt}

Returns the truth value of (x > y) element-wise.

NOTE: Greater supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Tensor.__hash__() {#Tensor.hash}

tf.Tensor.__init__(op, value_index, dtype) {#Tensor.init}

Creates a new Tensor.

Args:

		op: An Operation. Operation that computes this tensor.

		value_index: An int. Index of the operation’s endpoint that produces
this tensor.

		dtype: A DType. Type of elements stored in this tensor.

Raises:

		TypeError: If the op is not an Operation.

tf.Tensor.__invert__(x, name=None) {#Tensor.invert}

Returns the truth value of NOT x element-wise.

Args:

		x: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Tensor.__iter__() {#Tensor.iter}

Dummy method to prevent iteration. Do not call.

NOTE(mrry): If we register getitem as an overloaded operator,
Python will valiantly attempt to iterate over the Tensor from 0 to
infinity. Declaring this method prevents this unintended
behavior.

Raises:

		TypeError: when invoked.

tf.Tensor.__le__(x, y, name=None) {#Tensor.le}

Returns the truth value of (x <= y) element-wise.

NOTE: LessEqual supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Tensor.__lt__(x, y, name=None) {#Tensor.lt}

Returns the truth value of (x < y) element-wise.

NOTE: Less supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Tensor.__mod__(x, y) {#Tensor.mod}

Returns element-wise remainder of division.

NOTE: Mod supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: int32, int64, float32, float64.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Tensor.__mul__(x, y) {#Tensor.mul}

Dispatches cwise mul for “DenseDense” and “DenseSparse”.

tf.Tensor.__neg__(x, name=None) {#Tensor.neg}

Computes numerical negative value element-wise.

I.e., \(y = -x\).

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Tensor.__nonzero__() {#Tensor.nonzero}

Dummy method to prevent a tensor from being used as a Python bool.

This is the Python 2.x counterpart to __bool__() above.

Raises:

TypeError.

tf.Tensor.__or__(x, y) {#Tensor.or}

Returns the truth value of x OR y element-wise.

NOTE: LogicalOr supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor of type bool.

		y: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Tensor.__pow__(x, y) {#Tensor.pow}

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for
corresponding elements in x and y. For example:

tensor 'x' is [[2, 2], [3, 3]]
tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]

Args:

		x: A Tensor of type float32, float64, int32, int64, complex64,
or complex128.

		y: A Tensor of type float32, float64, int32, int64, complex64,
or complex128.

		name: A name for the operation (optional).

Returns:

A Tensor.

tf.Tensor.__radd__(y, x) {#Tensor.radd}

Returns x + y element-wise.

NOTE: Add supports broadcasting. AddN does not. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, int16, int32, int64, complex64, complex128, string.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Tensor.__rand__(y, x) {#Tensor.rand}

Returns the truth value of x AND y element-wise.

NOTE: LogicalAnd supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor of type bool.

		y: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Tensor.__rdiv__(y, x) {#Tensor.rdiv}

Returns x / y element-wise.

NOTE: Div supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Tensor.__repr__() {#Tensor.repr}

tf.Tensor.__rfloordiv__(y, x) {#Tensor.rfloordiv}

Divides x / y elementwise, rounding down for floating point.

The same as tf.div(x,y) for integers, but uses tf.floor(tf.div(x,y)) for
floating point arguments so that the result is always an integer (though
possibly an integer represented as floating point). This op is generated by
x // y floor division in Python 3 and in Python 2.7 with
from __future__ import division.

Note that for efficiency, floordiv uses C semantics for negative numbers
(unlike Python and Numpy).

x and y must have the same type, and the result will have the same type
as well.

Args:

		x: Tensor numerator of real numeric type.

		y: Tensor denominator of real numeric type.

		name: A name for the operation (optional).

Returns:

x / y rounded down (except possibly towards zero for negative integers).

Raises:

		TypeError: If the inputs are complex.

tf.Tensor.__rmod__(y, x) {#Tensor.rmod}

Returns element-wise remainder of division.

NOTE: Mod supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: int32, int64, float32, float64.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Tensor.__rmul__(y, x) {#Tensor.rmul}

Dispatches cwise mul for “DenseDense” and “DenseSparse”.

tf.Tensor.__ror__(y, x) {#Tensor.ror}

Returns the truth value of x OR y element-wise.

NOTE: LogicalOr supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor of type bool.

		y: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Tensor.__rpow__(y, x) {#Tensor.rpow}

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for
corresponding elements in x and y. For example:

tensor 'x' is [[2, 2], [3, 3]]
tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]

Args:

		x: A Tensor of type float32, float64, int32, int64, complex64,
or complex128.

		y: A Tensor of type float32, float64, int32, int64, complex64,
or complex128.

		name: A name for the operation (optional).

Returns:

A Tensor.

tf.Tensor.__rsub__(y, x) {#Tensor.rsub}

Returns x - y element-wise.

NOTE: Sub supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Tensor.__rtruediv__(y, x) {#Tensor.rtruediv}

Divides x / y elementwise, always producing floating point results.

The same as tf.div for floating point arguments, but casts integer arguments
to floating point before dividing so that the result is always floating point.
This op is generated by normal x / y division in Python 3 and in Python 2.7
with from __future__ import division. If you want integer division that
rounds down, use x // y or tf.floordiv.

x and y must have the same numeric type. If the inputs are floating
point, the output will have the same type. If the inputs are integral, the
inputs are cast to float32 for int8 and int16 and float64 for int32
and int64 (matching the behavior of Numpy).

Args:

		x: Tensor numerator of numeric type.

		y: Tensor denominator of numeric type.

		name: A name for the operation (optional).

Returns:

x / y evaluated in floating point.

Raises:

		TypeError: If x and y have different dtypes.

tf.Tensor.__rxor__(y, x) {#Tensor.rxor}

x ^ y = (x | y) & ~(x & y).

tf.Tensor.__str__() {#Tensor.str}

tf.Tensor.__sub__(x, y) {#Tensor.sub}

Returns x - y element-wise.

NOTE: Sub supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Tensor.__truediv__(x, y) {#Tensor.truediv}

Divides x / y elementwise, always producing floating point results.

The same as tf.div for floating point arguments, but casts integer arguments
to floating point before dividing so that the result is always floating point.
This op is generated by normal x / y division in Python 3 and in Python 2.7
with from __future__ import division. If you want integer division that
rounds down, use x // y or tf.floordiv.

x and y must have the same numeric type. If the inputs are floating
point, the output will have the same type. If the inputs are integral, the
inputs are cast to float32 for int8 and int16 and float64 for int32
and int64 (matching the behavior of Numpy).

Args:

		x: Tensor numerator of numeric type.

		y: Tensor denominator of numeric type.

		name: A name for the operation (optional).

Returns:

x / y evaluated in floating point.

Raises:

		TypeError: If x and y have different dtypes.

tf.Tensor.__xor__(x, y) {#Tensor.xor}

x ^ y = (x | y) & ~(x & y).

tf.Tensor.device {#Tensor.device}

The name of the device on which this tensor will be produced, or None.

Tensor types

class tf.DType {#DType}

Represents the type of the elements in a Tensor.

The following DType objects are defined:

		tf.float16: 16-bit half-precision floating-point.

		tf.float32: 32-bit single-precision floating-point.

		tf.float64: 64-bit double-precision floating-point.

		tf.bfloat16: 16-bit truncated floating-point.

		tf.complex64: 64-bit single-precision complex.

		tf.complex128: 128-bit double-precision complex.

		tf.int8: 8-bit signed integer.

		tf.uint8: 8-bit unsigned integer.

		tf.uint16: 16-bit unsigned integer.

		tf.int16: 16-bit signed integer.

		tf.int32: 32-bit signed integer.

		tf.int64: 64-bit signed integer.

		tf.bool: Boolean.

		tf.string: String.

		tf.qint8: Quantized 8-bit signed integer.

		tf.quint8: Quantized 8-bit unsigned integer.

		tf.qint16: Quantized 16-bit signed integer.

		tf.quint16: Quantized 16-bit unsigned integer.

		tf.qint32: Quantized 32-bit signed integer.

In addition, variants of these types with the _ref suffix are
defined for reference-typed tensors.

The tf.as_dtype() function converts numpy types and string type
names to a DType object.

tf.DType.is_compatible_with(other) {#DType.is_compatible_with}

Returns True if the other DType will be converted to this DType.

The conversion rules are as follows:

DType(T) .is_compatible_with(DType(T)) == True
DType(T) .is_compatible_with(DType(T).as_ref) == True
DType(T).as_ref.is_compatible_with(DType(T)) == False
DType(T).as_ref.is_compatible_with(DType(T).as_ref) == True

Args:

		other: A DType (or object that may be converted to a DType).

Returns:

True if a Tensor of the other DType will be implicitly converted to
this DType.

tf.DType.name {#DType.name}

Returns the string name for this DType.

tf.DType.base_dtype {#DType.base_dtype}

Returns a non-reference DType based on this DType.

tf.DType.real_dtype {#DType.real_dtype}

Returns the dtype correspond to this dtype’s real part.

tf.DType.is_ref_dtype {#DType.is_ref_dtype}

Returns True if this DType represents a reference type.

tf.DType.as_ref {#DType.as_ref}

Returns a reference DType based on this DType.

tf.DType.is_floating {#DType.is_floating}

Returns whether this is a (real) floating point type.

tf.DType.is_complex {#DType.is_complex}

Returns whether this is a complex floating point type.

tf.DType.is_integer {#DType.is_integer}

Returns whether this is a (non-quantized) integer type.

tf.DType.is_quantized {#DType.is_quantized}

Returns whether this is a quantized data type.

tf.DType.is_unsigned {#DType.is_unsigned}

Returns whether this type is unsigned.

Non-numeric, unordered, and quantized types are not considered unsigned, and
this function returns False.

Returns:

Whether a DType is unsigned.

tf.DType.as_numpy_dtype {#DType.as_numpy_dtype}

Returns a numpy.dtype based on this DType.

tf.DType.as_datatype_enum {#DType.as_datatype_enum}

Returns a types_pb2.DataType enum value based on this DType.

Other Methods

tf.DType.__eq__(other) {#DType.eq}

Returns True iff this DType refers to the same type as other.

tf.DType.__hash__() {#DType.hash}

tf.DType.__init__(type_enum) {#DType.init}

Creates a new DataType.

NOTE(mrry): In normal circumstances, you should not need to
construct a DataType object directly. Instead, use the
tf.as_dtype() function.

Args:

		type_enum: A types_pb2.DataType enum value.

Raises:

		TypeError: If type_enum is not a value types_pb2.DataType.

tf.DType.__ne__(other) {#DType.ne}

Returns True iff self != other.

tf.DType.__repr__() {#DType.repr}

tf.DType.__str__() {#DType.str}

tf.DType.max {#DType.max}

Returns the maximum representable value in this data type.

Raises:

		TypeError: if this is a non-numeric, unordered, or quantized type.

tf.DType.min {#DType.min}

Returns the minimum representable value in this data type.

Raises:

		TypeError: if this is a non-numeric, unordered, or quantized type.

tf.DType.size {#DType.size}

tf.as_dtype(type_value) {#as_dtype}

Converts the given type_value to a DType.

Args:

		type_value: A value that can be converted to a tf.DType
object. This may currently be a tf.DType object, a
DataType enum [https://www.tensorflow.org/code/tensorflow/core/framework/types.proto],
a string type name, or a numpy.dtype.

Returns:

A DType corresponding to type_value.

Raises:

		TypeError: If type_value cannot be converted to a DType.

Utility functions

tf.device(device_name_or_function) {#device}

Wrapper for Graph.device() using the default graph.

See
Graph.device()
for more details.

Args:

		device_name_or_function: The device name or function to use in
the context.

Returns:

A context manager that specifies the default device to use for newly
created ops.

tf.container(container_name) {#container}

Wrapper for Graph.container() using the default graph.

Args:

		container_name: The container string to use in the context.

Returns:

A context manager that specifies the default container to use for newly
created stateful ops.

tf.name_scope(name, default_name=None, values=None) {#name_scope}

Returns a context manager for use when defining a Python op.

This context manager validates that the given values are from the
same graph, makes that graph the default graph, and pushes a
name scope in that graph (see
Graph.name_scope()
for more details on that).

For example, to define a new Python op called my_op:

def my_op(a, b, c, name=None):
 with tf.name_scope(name, "MyOp", [a, b, c]) as scope:
 a = tf.convert_to_tensor(a, name="a")
 b = tf.convert_to_tensor(b, name="b")
 c = tf.convert_to_tensor(c, name="c")
 # Define some computation that uses `a`, `b`, and `c`.
 return foo_op(..., name=scope)

Args:

		name: The name argument that is passed to the op function.

		default_name: The default name to use if the name argument is None.

		values: The list of Tensor arguments that are passed to the op function.

Returns:

A context manager for use in defining Python ops. Yields the name scope.

Raises:

		ValueError: if neither name nor default_name is provided
but values are.

tf.control_dependencies(control_inputs) {#control_dependencies}

Wrapper for Graph.control_dependencies() using the default graph.

See Graph.control_dependencies()
for more details.

Args:

		control_inputs: A list of Operation or Tensor objects which
must be executed or computed before running the operations
defined in the context. Can also be None to clear the control
dependencies.

Returns:

A context manager that specifies control dependencies for all
operations constructed within the context.

tf.convert_to_tensor(value, dtype=None, name=None, as_ref=False, preferred_dtype=None) {#convert_to_tensor}

Converts the given value to a Tensor.

This function converts Python objects of various types to Tensor
objects. It accepts Tensor objects, numpy arrays, Python lists,
and Python scalars. For example:

import numpy as np

def my_func(arg):
 arg = tf.convert_to_tensor(arg, dtype=tf.float32)
 return tf.matmul(arg, arg) + arg

The following calls are equivalent.
value_1 = my_func(tf.constant([[1.0, 2.0], [3.0, 4.0]]))
value_2 = my_func([[1.0, 2.0], [3.0, 4.0]])
value_3 = my_func(np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32))

This function can be useful when composing a new operation in Python
(such as my_func in the example above). All standard Python op
constructors apply this function to each of their Tensor-valued
inputs, which allows those ops to accept numpy arrays, Python lists,
and scalars in addition to Tensor objects.

Args:

		value: An object whose type has a registered Tensor conversion function.

		dtype: Optional element type for the returned tensor. If missing, the
type is inferred from the type of value.

		name: Optional name to use if a new Tensor is created.

		as_ref: True if we want the result as a ref tensor. Only used if a new
Tensor is created.

		preferred_dtype: Optional element type for the returned tensor,
used when dtype is None. In some cases, a caller may not have a
dtype in mind when converting to a tensor, so preferred_dtype
can be used as a soft preference. If the conversion to
preferred_dtype is not possible, this argument has no effect.

Returns:

A Tensor based on value.

Raises:

		TypeError: If no conversion function is registered for value.

		RuntimeError: If a registered conversion function returns an invalid value.

tf.convert_to_tensor_or_indexed_slices(value, dtype=None, name=None, as_ref=False) {#convert_to_tensor_or_indexed_slices}

Converts the given object to a Tensor or an IndexedSlices.

If value is an IndexedSlices or SparseTensor it is returned
unmodified. Otherwise, it is converted to a Tensor using
convert_to_tensor().

Args:

		value: An IndexedSlices, SparseTensor, or an object that can be consumed
by convert_to_tensor().

		dtype: (Optional.) The required DType of the returned Tensor or
IndexedSlices.

		name: (Optional.) A name to use if a new Tensor is created.

		as_ref: True if the caller wants the results as ref tensors.

Returns:

An Tensor, IndexedSlices, or SparseTensor based on value.

Raises:

		ValueError: If dtype does not match the element type of value.

tf.get_default_graph() {#get_default_graph}

Returns the default graph for the current thread.

The returned graph will be the innermost graph on which a
Graph.as_default() context has been entered, or a global default
graph if none has been explicitly created.

NOTE: The default graph is a property of the current thread. If you
create a new thread, and wish to use the default graph in that
thread, you must explicitly add a with g.as_default(): in that
thread’s function.

Returns:

The default Graph being used in the current thread.

tf.reset_default_graph() {#reset_default_graph}

Clears the default graph stack and resets the global default graph.

NOTE: The default graph is a property of the current thread. This
function applies only to the current thread. Calling this function while
a tf.Session or tf.InteractiveSession is active will result in undefined
behavior. Using any previously created tf.Operation or tf.Tensor objects
after calling this function will result in undefined behavior.

tf.import_graph_def(graph_def, input_map=None, return_elements=None, name=None, op_dict=None, producer_op_list=None) {#import_graph_def}

Imports the TensorFlow graph in graph_def into the Python Graph.

This function provides a way to import a serialized TensorFlow
GraphDef [https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto]
protocol buffer, and extract individual objects in the GraphDef as
Tensor and Operation objects. See
Graph.as_graph_def() for a way to create a
GraphDef proto.

Args:

		graph_def: A GraphDef proto containing operations to be imported into
the default graph.

		input_map: A dictionary mapping input names (as strings) in graph_def
to Tensor objects. The values of the named input tensors in the
imported graph will be re-mapped to the respective Tensor values.

		return_elements: A list of strings containing operation names in
graph_def that will be returned as Operation objects; and/or
tensor names in graph_def that will be returned as Tensor objects.

		name: (Optional.) A prefix that will be prepended to the names in
graph_def. Defaults to "import".

		op_dict: (Optional.) A dictionary mapping op type names to OpDef protos.
Must contain an OpDef proto for each op type named in graph_def.
If omitted, uses the OpDef protos registered in the global registry.

		producer_op_list: (Optional.) An OpList proto with the (possibly stripped)
list of OpDefs used by the producer of the graph. If provided, attrs
for ops in graph_def that are not in op_dict that have their default
value according to producer_op_list will be removed. This will allow
some more GraphDefs produced by later binaries to be accepted by
earlier binaries.

Returns:

A list of Operation and/or Tensor objects from the imported graph,
corresponding to the names in return_elements.

Raises:

		TypeError: If graph_def is not a GraphDef proto,
input_map is not a dictionary mapping strings to Tensor objects,
or return_elements is not a list of strings.

		ValueError: If input_map, or return_elements contains names that
do not appear in graph_def, or graph_def is not well-formed (e.g.
it refers to an unknown tensor).

tf.load_file_system_library(library_filename) {#load_file_system_library}

Loads a TensorFlow plugin, containing file system implementation.

Pass library_filename to a platform-specific mechanism for dynamically
loading a library. The rules for determining the exact location of the
library are platform-specific and are not documented here.

Args:

		library_filename: Path to the plugin.
Relative or absolute filesystem path to a dynamic library file.

Returns:

None.

Raises:

		RuntimeError: when unable to load the library.

tf.load_op_library(library_filename) {#load_op_library}

Loads a TensorFlow plugin, containing custom ops and kernels.

Pass “library_filename” to a platform-specific mechanism for dynamically
loading a library. The rules for determining the exact location of the
library are platform-specific and are not documented here. When the
library is loaded, ops and kernels registered in the library via the
REGISTER_* macros are made available in the TensorFlow process. Note
that ops with the same name as an existing op are rejected and not
registered with the process.

Args:

		library_filename: Path to the plugin.
Relative or absolute filesystem path to a dynamic library file.

Returns:

A python module containing the Python wrappers for Ops defined in
the plugin.

Raises:

		RuntimeError: when unable to load the library or get the python wrappers.

Graph collections

tf.add_to_collection(name, value) {#add_to_collection}

Wrapper for Graph.add_to_collection() using the default graph.

See Graph.add_to_collection()
for more details.

Args:

		name: The key for the collection. For example, the GraphKeys class
contains many standard names for collections.

		value: The value to add to the collection.

tf.get_collection(key, scope=None) {#get_collection}

Wrapper for Graph.get_collection() using the default graph.

See Graph.get_collection()
for more details.

Args:

		key: The key for the collection. For example, the GraphKeys class
contains many standard names for collections.

		scope: (Optional.) If supplied, the resulting list is filtered to include
only items whose name attribute matches using re.match. Items
without a name attribute are never returned if a scope is supplied and
the choice or re.match means that a scope without special tokens
filters by prefix.

Returns:

The list of values in the collection with the given name, or
an empty list if no value has been added to that collection. The
list contains the values in the order under which they were
collected.

tf.get_collection_ref(key) {#get_collection_ref}

Wrapper for Graph.get_collection_ref() using the default graph.

See Graph.get_collection_ref()
for more details.

Args:

		key: The key for the collection. For example, the GraphKeys class
contains many standard names for collections.

Returns:

The list of values in the collection with the given name, or an empty
list if no value has been added to that collection. Note that this returns
the collection list itself, which can be modified in place to change the
collection.

class tf.GraphKeys {#GraphKeys}

Standard names to use for graph collections.

The standard library uses various well-known names to collect and
retrieve values associated with a graph. For example, the
tf.Optimizer subclasses default to optimizing the variables
collected under tf.GraphKeys.TRAINABLE_VARIABLES if none is
specified, but it is also possible to pass an explicit list of
variables.

The following standard keys are defined:

		VARIABLES: the Variable objects that comprise a model, and
must be saved and restored together. See
tf.all_variables()
for more details.

		TRAINABLE_VARIABLES: the subset of Variable objects that will
be trained by an optimizer. See
tf.trainable_variables()
for more details.

		SUMMARIES: the summary Tensor objects that have been created in the
graph. See
tf.merge_all_summaries()
for more details.

		QUEUE_RUNNERS: the QueueRunner objects that are used to
produce input for a computation. See
tf.start_queue_runners()
for more details.

		MOVING_AVERAGE_VARIABLES: the subset of Variable objects that will also
keep moving averages. See
tf.moving_average_variables()
for more details.

		REGULARIZATION_LOSSES: regularization losses collected during graph
construction.

		WEIGHTS: weights inside neural network layers

		BIASES: biases inside neural network layers

		ACTIVATIONS: activations of neural network layers

Defining new operations

class tf.RegisterGradient {#RegisterGradient}

A decorator for registering the gradient function for an op type.

This decorator is only used when defining a new op type. For an op
with m inputs and n outputs, the gradient function is a function
that takes the original Operation and n Tensor objects
(representing the gradients with respect to each output of the op),
and returns m Tensor objects (representing the partial gradients
with respect to each input of the op).

For example, assuming that operations of type "Sub" take two
inputs x and y, and return a single output x - y, the
following gradient function would be registered:

@tf.RegisterGradient("Sub")
def _sub_grad(unused_op, grad):
 return grad, tf.neg(grad)

The decorator argument op_type is the string type of an
operation. This corresponds to the OpDef.name field for the proto
that defines the operation.

tf.RegisterGradient.__init__(op_type) {#RegisterGradient.init}

Creates a new decorator with op_type as the Operation type.

Args:

		op_type: The string type of an operation. This corresponds to the
OpDef.name field for the proto that defines the operation.

Other Methods

tf.RegisterGradient.__call__(f) {#RegisterGradient.call}

Registers the function f as gradient function for op_type.

tf.NotDifferentiable(op_type) {#NotDifferentiable}

Specifies that ops of type op_type is not differentiable.

This function should not be used for operations that have a
well-defined gradient that is not yet implemented.

This function is only used when defining a new op type. It may be
used for ops such as tf.size() that are not differentiable. For
example:

tf.NotDifferentiable("Size")

The gradient computed for ‘op_type’ will then propagate zeros.

For ops that have a well-defined gradient but are not yet implemented,
no declaration should be made, and an error must be thrown if
an attempt to request its gradient is made.

Args:

		op_type: The string type of an operation. This corresponds to the
OpDef.name field for the proto that defines the operation.

Raises:

		TypeError: If op_type is not a string.

tf.NoGradient(op_type) {#NoGradient}

Specifies that ops of type op_type is not differentiable.

This function should not be used for operations that have a
well-defined gradient that is not yet implemented.

This function is only used when defining a new op type. It may be
used for ops such as tf.size() that are not differentiable. For
example:

tf.NotDifferentiable("Size")

The gradient computed for ‘op_type’ will then propagate zeros.

For ops that have a well-defined gradient but are not yet implemented,
no declaration should be made, and an error must be thrown if
an attempt to request its gradient is made.

Args:

		op_type: The string type of an operation. This corresponds to the
OpDef.name field for the proto that defines the operation.

Raises:

		TypeError: If op_type is not a string.

class tf.RegisterShape {#RegisterShape}

A decorator for registering the shape function for an op type.

This decorator is only used when defining a new op type. A shape
function is a function from an Operation object to a list of
TensorShape objects, with one TensorShape for each output of the
operation.

For example, assuming that operations of type "Sub" take two
inputs x and y, and return a single output x - y, all with the
same shape, the following shape function would be registered:

@tf.RegisterShape("Sub")
def _sub_shape(op):
 return [op.inputs[0].get_shape().merge_with(op.inputs[1].get_shape())]

The decorator argument op_type is the string type of an
operation. This corresponds to the OpDef.name field for the proto
that defines the operation.

tf.RegisterShape.__call__(f) {#RegisterShape.call}

Registers “f” as the shape function for “op_type”.

tf.RegisterShape.__init__(op_type) {#RegisterShape.init}

Saves the op_type as the Operation type.

class tf.TensorShape {#TensorShape}

Represents the shape of a Tensor.

A TensorShape represents a possibly-partial shape specification for a
Tensor. It may be one of the following:

		Fully-known shape: has a known number of dimensions and a known size
for each dimension.

		Partially-known shape: has a known number of dimensions, and an unknown
size for one or more dimension.

		Unknown shape: has an unknown number of dimensions, and an unknown
size in all dimensions.

If a tensor is produced by an operation of type "Foo", its shape
may be inferred if there is a registered shape function for
"Foo". See tf.RegisterShape()
for details of shape
functions and how to register them. Alternatively, the shape may be set
explicitly using Tensor.set_shape().

tf.TensorShape.merge_with(other) {#TensorShape.merge_with}

Returns a TensorShape combining the information in self and other.

The dimensions in self and other are merged elementwise,
according to the rules defined for Dimension.merge_with().

Args:

		other: Another TensorShape.

Returns:

A TensorShape containing the combined information of self and
other.

Raises:

		ValueError: If self and other are not compatible.

tf.TensorShape.concatenate(other) {#TensorShape.concatenate}

Returns the concatenation of the dimension in self and other.

N.B. If either self or other is completely unknown,
concatenation will discard information about the other shape. In
future, we might support concatenation that preserves this
information for use with slicing.

Args:

		other: Another TensorShape.

Returns:

A TensorShape whose dimensions are the concatenation of the
dimensions in self and other.

tf.TensorShape.ndims {#TensorShape.ndims}

Returns the rank of this shape, or None if it is unspecified.

tf.TensorShape.dims {#TensorShape.dims}

Returns a list of Dimensions, or None if the shape is unspecified.

tf.TensorShape.as_list() {#TensorShape.as_list}

Returns a list of integers or None for each dimension.

Returns:

A list of integers or None for each dimension.

Raises:

		ValueError: If self is an unknown shape with an unknown rank.

tf.TensorShape.as_proto() {#TensorShape.as_proto}

Returns this shape as a TensorShapeProto.

tf.TensorShape.is_compatible_with(other) {#TensorShape.is_compatible_with}

Returns True iff self is compatible with other.

Two possibly-partially-defined shapes are compatible if there
exists a fully-defined shape that both shapes can represent. Thus,
compatibility allows the shape inference code to reason about
partially-defined shapes. For example:

		TensorShape(None) is compatible with all shapes.

		TensorShape([None, None]) is compatible with all two-dimensional
shapes, such as TensorShape([32, 784]), and also TensorShape(None). It is
not compatible with, for example, TensorShape([None]) or
TensorShape([None, None, None]).

		TensorShape([32, None]) is compatible with all two-dimensional shapes
with size 32 in the 0th dimension, and also TensorShape([None, None])
and TensorShape(None). It is not compatible with, for example,
TensorShape([32]), TensorShape([32, None, 1]) or TensorShape([64, None]).

		TensorShape([32, 784]) is compatible with itself, and also
TensorShape([32, None]), TensorShape([None, 784]), TensorShape([None,
None]) and TensorShape(None). It is not compatible with, for example,
TensorShape([32, 1, 784]) or TensorShape([None]).

The compatibility relation is reflexive and symmetric, but not
transitive. For example, TensorShape([32, 784]) is compatible with
TensorShape(None), and TensorShape(None) is compatible with
TensorShape([4, 4]), but TensorShape([32, 784]) is not compatible with
TensorShape([4, 4]).

Args:

		other: Another TensorShape.

Returns:

True iff self is compatible with other.

tf.TensorShape.is_fully_defined() {#TensorShape.is_fully_defined}

Returns True iff self is fully defined in every dimension.

tf.TensorShape.with_rank(rank) {#TensorShape.with_rank}

Returns a shape based on self with the given rank.

This method promotes a completely unknown shape to one with a
known rank.

Args:

		rank: An integer.

Returns:

A shape that is at least as specific as self with the given rank.

Raises:

		ValueError: If self does not represent a shape with the given rank.

tf.TensorShape.with_rank_at_least(rank) {#TensorShape.with_rank_at_least}

Returns a shape based on self with at least the given rank.

Args:

		rank: An integer.

Returns:

A shape that is at least as specific as self with at least the given
rank.

Raises:

		ValueError: If self does not represent a shape with at least the given
rank.

tf.TensorShape.with_rank_at_most(rank) {#TensorShape.with_rank_at_most}

Returns a shape based on self with at most the given rank.

Args:

		rank: An integer.

Returns:

A shape that is at least as specific as self with at most the given
rank.

Raises:

		ValueError: If self does not represent a shape with at most the given
rank.

tf.TensorShape.assert_has_rank(rank) {#TensorShape.assert_has_rank}

Raises an exception if self is not compatible with the given rank.

Args:

		rank: An integer.

Raises:

		ValueError: If self does not represent a shape with the given rank.

tf.TensorShape.assert_same_rank(other) {#TensorShape.assert_same_rank}

Raises an exception if self and other do not have compatible ranks.

Args:

		other: Another TensorShape.

Raises:

		ValueError: If self and other do not represent shapes with the
same rank.

tf.TensorShape.assert_is_compatible_with(other) {#TensorShape.assert_is_compatible_with}

Raises exception if self and other do not represent the same shape.

This method can be used to assert that there exists a shape that both
self and other represent.

Args:

		other: Another TensorShape.

Raises:

		ValueError: If self and other do not represent the same shape.

tf.TensorShape.assert_is_fully_defined() {#TensorShape.assert_is_fully_defined}

Raises an exception if self is not fully defined in every dimension.

Raises:

		ValueError: If self does not have a known value for every dimension.

Other Methods

tf.TensorShape.__bool__() {#TensorShape.bool}

Returns True if this shape contains non-zero information.

tf.TensorShape.__eq__(other) {#TensorShape.eq}

Returns True if self is equivalent to other.

tf.TensorShape.__getitem__(key) {#TensorShape.getitem}

Returns the value of a dimension or a shape, depending on the key.

Args:

		key: If key is an integer, returns the dimension at that index;
otherwise if key is a slice, returns a TensorShape whose
dimensions are those selected by the slice from self.

Returns:

A dimension if key is an integer, or a TensorShape if key is a
slice.

Raises:

		ValueError: If key is a slice, and any of its elements are negative, or
if self is completely unknown and the step is set.

tf.TensorShape.__init__(dims) {#TensorShape.init}

Creates a new TensorShape with the given dimensions.

Args:

		dims: A list of Dimensions, or None if the shape is unspecified.

		DEPRECATED: A single integer is treated as a singleton list.

Raises:

		TypeError: If dims cannot be converted to a list of dimensions.

tf.TensorShape.__iter__() {#TensorShape.iter}

Returns self.dims if the rank is known, otherwise raises ValueError.

tf.TensorShape.__len__() {#TensorShape.len}

Returns the rank of this shape, or raises ValueError if unspecified.

tf.TensorShape.__ne__(other) {#TensorShape.ne}

Returns True if self is known to be different from other.

tf.TensorShape.__nonzero__() {#TensorShape.nonzero}

Returns True if this shape contains non-zero information.

tf.TensorShape.__repr__() {#TensorShape.repr}

tf.TensorShape.__str__() {#TensorShape.str}

tf.TensorShape.num_elements() {#TensorShape.num_elements}

Returns the total number of elements, or none for incomplete shapes.

class tf.Dimension {#Dimension}

Represents the value of one dimension in a TensorShape.

tf.Dimension.__add__(other) {#Dimension.add}

Returns the sum of self and other.

Dimensions are summed as follows:

Dimension(m) + Dimension(n) == Dimension(m + n)
Dimension(m) + Dimension(None) == Dimension(None)
Dimension(None) + Dimension(n) == Dimension(None)
Dimension(None) + Dimension(None) == Dimension(None)

Args:

		other: Another Dimension.

Returns:

A Dimension whose value is the sum of self and other.

tf.Dimension.__div__(other) {#Dimension.div}

DEPRECATED: Use __floordiv__ via x // y instead.

This function exists only for backwards compatibility purposes; new code
should use __floordiv__ via the syntax x // y. Using x // y
communicates clearly that the result rounds down, and is forward compatible
to Python 3.

Args:

		other: Another Dimension.

Returns:

A Dimension whose value is the integer quotient of self and other.

tf.Dimension.__eq__(other) {#Dimension.eq}

Returns true if other has the same known value as this Dimension.

tf.Dimension.__floordiv__(other) {#Dimension.floordiv}

Returns the quotient of self and other rounded down.

Dimensions are divided as follows:

Dimension(m) // Dimension(n) == Dimension(m // n)
Dimension(m) // Dimension(None) == Dimension(None)
Dimension(None) // Dimension(n) == Dimension(None)
Dimension(None) // Dimension(None) == Dimension(None)

Args:

		other: Another Dimension.

Returns:

A Dimension whose value is the integer quotient of self and other.

tf.Dimension.__ge__(other) {#Dimension.ge}

Returns True if self is known to be greater than or equal to other.

Dimensions are compared as follows:

Dimension(m) >= Dimension(n) == m >= n
Dimension(m) >= Dimension(None) == None
Dimension(None) >= Dimension(n) == None
Dimension(None) >= Dimension(None) == None

Args:

		other: Another Dimension.

Returns:

The value of self.value >= other.value if both are known, otherwise
None.

tf.Dimension.__gt__(other) {#Dimension.gt}

Returns True if self is known to be greater than other.

Dimensions are compared as follows:

Dimension(m) > Dimension(n) == m > n
Dimension(m) > Dimension(None) == None
Dimension(None) > Dimension(n) == None
Dimension(None) > Dimension(None) == None

Args:

		other: Another Dimension.

Returns:

The value of self.value > other.value if both are known, otherwise
None.

tf.Dimension.__index__() {#Dimension.index}

tf.Dimension.__init__(value) {#Dimension.init}

Creates a new Dimension with the given value.

tf.Dimension.__int__() {#Dimension.int}

tf.Dimension.__le__(other) {#Dimension.le}

Returns True if self is known to be less than or equal to other.

Dimensions are compared as follows:

Dimension(m) <= Dimension(n) == m <= n
Dimension(m) <= Dimension(None) == None
Dimension(None) <= Dimension(n) == None
Dimension(None) <= Dimension(None) == None

Args:

		other: Another Dimension.

Returns:

The value of self.value <= other.value if both are known, otherwise
None.

tf.Dimension.__lt__(other) {#Dimension.lt}

Returns True if self is known to be less than other.

Dimensions are compared as follows:

Dimension(m) < Dimension(n) == m < n
Dimension(m) < Dimension(None) == None
Dimension(None) < Dimension(n) == None
Dimension(None) < Dimension(None) == None

Args:

		other: Another Dimension.

Returns:

The value of self.value < other.value if both are known, otherwise
None.

tf.Dimension.__mod__(other) {#Dimension.mod}

Returns self modulo `other.

Dimension moduli are computed as follows:

Dimension(m) % Dimension(n) == Dimension(m % n)
Dimension(m) % Dimension(None) == Dimension(None)
Dimension(None) % Dimension(n) == Dimension(None)
Dimension(None) % Dimension(None) == Dimension(None)

Args:

		other: Another Dimension.

Returns:

A Dimension whose value is self modulo other.

tf.Dimension.__mul__(other) {#Dimension.mul}

Returns the product of self and other.

Dimensions are summed as follows:

Dimension(m) * Dimension(n) == Dimension(m * n)
Dimension(m) * Dimension(None) == Dimension(None)
Dimension(None) * Dimension(n) == Dimension(None)
Dimension(None) * Dimension(None) == Dimension(None)

Args:

		other: Another Dimension.

Returns:

A Dimension whose value is the product of self and other.

tf.Dimension.__ne__(other) {#Dimension.ne}

Returns true if other has a different known value from self.

tf.Dimension.__repr__() {#Dimension.repr}

tf.Dimension.__str__() {#Dimension.str}

tf.Dimension.__sub__(other) {#Dimension.sub}

Returns the subtraction of other from self.

Dimensions are subtracted as follows:

Dimension(m) - Dimension(n) == Dimension(m - n)
Dimension(m) - Dimension(None) == Dimension(None)
Dimension(None) - Dimension(n) == Dimension(None)
Dimension(None) - Dimension(None) == Dimension(None)

Args:

		other: Another Dimension.

Returns:

A Dimension whose value is the subtraction of sum of other from self.

tf.Dimension.assert_is_compatible_with(other) {#Dimension.assert_is_compatible_with}

Raises an exception if other is not compatible with this Dimension.

Args:

		other: Another Dimension.

Raises:

		ValueError: If self and other are not compatible (see
is_compatible_with).

tf.Dimension.is_compatible_with(other) {#Dimension.is_compatible_with}

Returns true if other is compatible with this Dimension.

Two known Dimensions are compatible if they have the same value.
An unknown Dimension is compatible with all other Dimensions.

Args:

		other: Another Dimension.

Returns:

True if this Dimension and other are compatible.

tf.Dimension.merge_with(other) {#Dimension.merge_with}

Returns a Dimension that combines the information in self and other.

Dimensions are combined as follows:

Dimension(n) .merge_with(Dimension(n)) == Dimension(n)
Dimension(n) .merge_with(Dimension(None)) == Dimension(n)
Dimension(None).merge_with(Dimension(n)) == Dimension(n)
Dimension(None).merge_with(Dimension(None)) == Dimension(None)
Dimension(n) .merge_with(Dimension(m)) raises ValueError for n != m

Args:

		other: Another Dimension.

Returns:

A Dimension containing the combined information of self and
other.

Raises:

		ValueError: If self and other are not compatible (see
is_compatible_with).

tf.Dimension.value {#Dimension.value}

The value of this dimension, or None if it is unknown.

tf.op_scope(values, name, default_name=None) {#op_scope}

DEPRECATED. Same as name_scope above, just different argument order.

tf.get_seed(op_seed) {#get_seed}

Returns the local seeds an operation should use given an op-specific seed.

Given operation-specific seed, op_seed, this helper function returns two
seeds derived from graph-level and op-level seeds. Many random operations
internally use the two seeds to allow user to change the seed globally for a
graph, or for only specific operations.

For details on how the graph-level seed interacts with op seeds, see
set_random_seed.

Args:

		op_seed: integer.

Returns:

A tuple of two integers that should be used for the local seed of this
operation.

For libraries building on TensorFlow

tf.register_tensor_conversion_function(base_type, conversion_func, priority=100) {#register_tensor_conversion_function}

Registers a function for converting objects of base_type to Tensor.

The conversion function must have the following signature:

def conversion_func(value, dtype=None, name=None, as_ref=False):
 # ...

It must return a Tensor with the given dtype if specified. If the
conversion function creates a new Tensor, it should use the given
name if specified. All exceptions will be propagated to the caller.

The conversion function may return NotImplemented for some
inputs. In this case, the conversion process will continue to try
subsequent conversion functions.

If as_ref is true, the function must return a Tensor reference,
such as a Variable.

NOTE: The conversion functions will execute in order of priority,
followed by order of registration. To ensure that a conversion function
F runs before another conversion function G, ensure that F is
registered with a smaller priority than G.

Args:

		base_type: The base type or tuple of base types for all objects that
conversion_func accepts.

		conversion_func: A function that converts instances of base_type to
Tensor.

		priority: Optional integer that indicates the priority for applying this
conversion function. Conversion functions with smaller priority values
run earlier than conversion functions with larger priority values.
Defaults to 100.

Raises:

		TypeError: If the arguments do not have the appropriate type.

Other Functions and Classes

class tf.DeviceSpec {#DeviceSpec}

Represents a (possibly partial) specification for a TensorFlow device.

DeviceSpecs are used throughout TensorFlow to describe where state is stored
and computations occur. Using DeviceSpec allows you to parse device spec
strings to verify their validity, merge them or compose them programmatically.

Example:

Place the operations on device "GPU:0" in the "ps" job.
device_spec = DeviceSpec(job="ps", device_type="GPU", device_index=0)
with tf.device(device_spec):
 # Both my_var and squared_var will be placed on /job:ps/device:GPU:0.
 my_var = tf.Variable(..., name="my_variable")
 squared_var = tf.square(my_var)

If a DeviceSpec is partially specified, it will be merged with other
DeviceSpecs according to the scope in which it is defined. DeviceSpec
components defined in inner scopes take precedence over those defined in
outer scopes.

with tf.device(DeviceSpec(job="train",)):
 with tf.device(DeviceSpec(job="ps", device_type="GPU", device_index=0):
 # Nodes created here will be assigned to /job:ps/device:GPU:0.
 with tf.device(DeviceSpec(device_type="GPU", device_index=1):
 # Nodes created here will be assigned to /job:train/device:GPU:1.

A DeviceSpec consists of 5 components – each of
which is optionally specified:

		Job: The job name.

		Replica: The replica index.

		Task: The task index.

		Device type: The device type string (e.g. “CPU” or “GPU”).

		Device index: The device index.

tf.DeviceSpec.__init__(job=None, replica=None, task=None, device_type=None, device_index=None) {#DeviceSpec.init}

Create a new DeviceSpec object.

Args:

		job: string. Optional job name.

		replica: int. Optional replica index.

		task: int. Optional task index.

		device_type: Optional device type string (e.g. “CPU” or “GPU”)

		device_index: int. Optional device index. If left
unspecified, device represents ‘any’ device_index.

tf.DeviceSpec.from_string(spec) {#DeviceSpec.from_string}

Construct a DeviceSpec from a string.

Args:

		spec: a string of the form
/job:/replica:/task:/device:CPU:
or
/job:/replica:/task:/device:GPU:
as cpu and gpu are mutually exclusive.
All entries are optional.

Returns:

A DeviceSpec.

tf.DeviceSpec.job {#DeviceSpec.job}

tf.DeviceSpec.merge_from(dev) {#DeviceSpec.merge_from}

Merge the properties of “dev” into this DeviceSpec.

Args:

		dev: a DeviceSpec.

tf.DeviceSpec.parse_from_string(spec) {#DeviceSpec.parse_from_string}

Parse a DeviceSpec name into its components.

Args:

		spec: a string of the form
/job:/replica:/task:/device:CPU:
or
/job:/replica:/task:/device:GPU:
as cpu and gpu are mutually exclusive.
All entries are optional.

Returns:

The DeviceSpec.

Raises:

		ValueError: if the spec was not valid.

tf.DeviceSpec.replica {#DeviceSpec.replica}

tf.DeviceSpec.task {#DeviceSpec.task}

tf.DeviceSpec.to_string() {#DeviceSpec.to_string}

Return a string representation of this DeviceSpec.

Returns:

a string of the form
/job:/replica:/task:/device:<device_type>:.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.assign.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.assign(ref, value, validate_shape=None, use_locking=None, name=None) {#assign}

Update ‘ref’ by assigning ‘value’ to it.

This operation outputs “ref” after the assignment is done.
This makes it easier to chain operations that need to use the reset value.

Args:

		ref: A mutable Tensor.
Should be from a Variable node. May be uninitialized.

		value: A Tensor. Must have the same type as ref.
The value to be assigned to the variable.

		validate_shape: An optional bool. Defaults to True.
If true, the operation will validate that the shape
of ‘value’ matches the shape of the Tensor being assigned to. If false,
‘ref’ will take on the shape of ‘value’.

		use_locking: An optional bool. Defaults to True.
If True, the assignment will be protected by a lock;
otherwise the behavior is undefined, but may exhibit less contention.

		name: A name for the operation (optional).

Returns:

Same as “ref”. Returned as a convenience for operations that want
to use the new value after the variable has been reset.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.lbeta.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.lbeta(x, name='lbeta') {#lbeta}

Computes ln(|Beta(x)|), reducing along the last dimension.

Given one-dimensional z = [z_0,...,z_{K-1}], we define

Beta(z) = \prod_j Gamma(z_j) / Gamma(\sum_j z_j)

And for n + 1 dimensional x with shape [N1, ..., Nn, K], we define
lbeta(x)[i1, ..., in] = Log(|Beta(x[i1, ..., in, :])|). In other words,
the last dimension is treated as the z vector.

Note that if z = [u, v], then
Beta(z) = int_0^1 t^{u-1} (1 - t)^{v-1} dt, which defines the traditional
bivariate beta function.

Args:

		x: A rank n + 1 Tensor with type float, or double.

		name: A name for the operation (optional).

Returns:

The logarithm of |Beta(x)| reducing along the last dimension.

Raises:

		ValueError: If x is empty with rank one or less.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/string_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Strings

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Hashing

String hashing ops take a string input tensor and map each element to an
integer.

tf.string_to_hash_bucket_fast(input, num_buckets, name=None) {#string_to_hash_bucket_fast}

Converts each string in the input Tensor to its hash mod by a number of buckets.

The hash function is deterministic on the content of the string within the
process and will never change. However, it is not suitable for cryptography.
This function may be used when CPU time is scarce and inputs are trusted or
unimportant. There is a risk of adversaries constructing inputs that all hash
to the same bucket. To prevent this problem, use a strong hash function with
tf.string_to_hash_bucket_strong.

Args:

		input: A Tensor of type string. The strings to assign a hash bucket.

		num_buckets: An int that is >= 1. The number of buckets.

		name: A name for the operation (optional).

Returns:

A Tensor of type int64.
A Tensor of the same shape as the input string_tensor.

tf.string_to_hash_bucket_strong(input, num_buckets, key, name=None) {#string_to_hash_bucket_strong}

Converts each string in the input Tensor to its hash mod by a number of buckets.

The hash function is deterministic on the content of the string within the
process. The hash function is a keyed hash function, where attribute key
defines the key of the hash function. key is an array of 2 elements.

A strong hash is important when inputs may be malicious, e.g. URLs with
additional components. Adversaries could try to make their inputs hash to the
same bucket for a denial-of-service attack or to skew the results. A strong
hash prevents this by making it dificult, if not infeasible, to compute inputs
that hash to the same bucket. This comes at a cost of roughly 4x higher compute
time than tf.string_to_hash_bucket_fast.

Args:

		input: A Tensor of type string. The strings to assign a hash bucket.

		num_buckets: An int that is >= 1. The number of buckets.

		key: A list of ints.
The key for the keyed hash function passed as a list of two uint64
elements.

		name: A name for the operation (optional).

Returns:

A Tensor of type int64.
A Tensor of the same shape as the input string_tensor.

tf.string_to_hash_bucket(string_tensor, num_buckets, name=None) {#string_to_hash_bucket}

Converts each string in the input Tensor to its hash mod by a number of buckets.

The hash function is deterministic on the content of the string within the
process.

Note that the hash function may change from time to time.
This functionality will be deprecated and it’s recommended to use
tf.string_to_hash_bucket_fast() or tf.string_to_hash_bucket_strong().

Args:

		string_tensor: A Tensor of type string.

		num_buckets: An int that is >= 1. The number of buckets.

		name: A name for the operation (optional).

Returns:

A Tensor of type int64.
A Tensor of the same shape as the input string_tensor.

Joining

String joining ops concatenate elements of input string tensors to produce a new
string tensor.

tf.reduce_join(inputs, reduction_indices, keep_dims=None, separator=None, name=None) {#reduce_join}

Joins a string Tensor across the given dimensions.

Computes the string join across dimensions in the given string Tensor of shape
[d_0, d_1, ..., d_n-1]. Returns a new Tensor created by joining the input
strings with the given separator (default: empty string). Negative indices are
counted backwards from the end, with -1 being equivalent to n - 1. Passing
an empty reduction_indices joins all strings in linear index order and outputs
a scalar string.

For example:

tensor `a` is [["a", "b"], ["c", "d"]]
tf.reduce_join(a, 0) ==> ["ac", "bd"]
tf.reduce_join(a, 1) ==> ["ab", "cd"]
tf.reduce_join(a, -2) = tf.reduce_join(a, 0) ==> ["ac", "bd"]
tf.reduce_join(a, -1) = tf.reduce_join(a, 1) ==> ["ab", "cd"]
tf.reduce_join(a, 0, keep_dims=True) ==> [["ac", "bd"]]
tf.reduce_join(a, 1, keep_dims=True) ==> [["ab"], ["cd"]]
tf.reduce_join(a, 0, separator=".") ==> ["a.c", "b.d"]
tf.reduce_join(a, [0, 1]) ==> ["acbd"]
tf.reduce_join(a, [1, 0]) ==> ["abcd"]
tf.reduce_join(a, []) ==> ["abcd"]

Args:

		inputs: A Tensor of type string.
The input to be joined. All reduced indices must have non-zero size.

		reduction_indices: A Tensor of type int32.
The dimensions to reduce over. Dimensions are reduced in the
order specified. Omitting reduction_indices is equivalent to passing
[n-1, n-2, ..., 0]. Negative indices from -n to -1 are supported.

		keep_dims: An optional bool. Defaults to False.
If True, retain reduced dimensions with length 1.

		separator: An optional string. Defaults to "".
The separator to use when joining.

		name: A name for the operation (optional).

Returns:

A Tensor of type string.
Has shape equal to that of the input with reduced dimensions removed or
set to 1 depending on keep_dims.

tf.string_join(inputs, separator=None, name=None) {#string_join}

Joins the strings in the given list of string tensors into one tensor;

with the given separator (default is an empty separator).

Args:

		inputs: A list of at least 1 Tensor objects of type string.
A list of string tensors. The tensors must all have the same shape,
or be scalars. Scalars may be mixed in; these will be broadcast to the shape
of non-scalar inputs.

		separator: An optional string. Defaults to "".
string, an optional join separator.

		name: A name for the operation (optional).

Returns:

A Tensor of type string.

Splitting

tf.string_split(source, delimiter=' ') {#string_split}

Split elements of source based on delimiter into a SparseTensor.

Let N be the size of source (typically N will be the batch size). Split each
element of source based on delimiter and return a SparseTensor
containing the splitted tokens. Empty tokens are ignored.

If delimiter is an empty string, each element of the source is split
into individual 1 character strings.

For example:
N = 2, source[0] is ‘hello world’ and source[1] is ‘a b c’, then the output
will be

st.indices = [0, 0;
0, 1;
1, 0;
1, 1;
1, 2]
st.shape = [2, 3]
st.values = [‘hello’, ‘world’, ‘a’, ‘b’, ‘c’]

Args:

		source: 1-D string Tensor, the strings to split.

		delimiter: 0-D string Tensor, the delimiter character, the string should
be length 0 or 1.

Returns:

A SparseTensor of rank 2, the strings split according to the delimiter.
The first column of the indices corresponds to the row in source and the
second column corresponds to the index of the split component in this row.

Raises:

		ValueError: If delimiter is not a character.

Conversion

tf.as_string(input, precision=None, scientific=None, shortest=None, width=None, fill=None, name=None) {#as_string}

Converts each entry in the given tensor to strings. Supports many numeric

types and boolean.

Args:

		input: A Tensor. Must be one of the following types: int32, int64, complex64, float32, float64, bool, int8.

		precision: An optional int. Defaults to -1.
The post-decimal precision to use for floating point numbers.
Only used if precision > -1.

		scientific: An optional bool. Defaults to False.
Use scientific notation for floating point numbers.

		shortest: An optional bool. Defaults to False.
Use shortest representation (either scientific or standard) for
floating point numbers.

		width: An optional int. Defaults to -1.
Pad pre-decimal numbers to this width.
Applies to both floating point and integer numbers.
Only used if width > -1.

		fill: An optional string. Defaults to "".
The value to pad if width > -1. If empty, pads with spaces.
Another typical value is ‘0’. String cannot be longer than 1 character.

		name: A name for the operation (optional).

Returns:

A Tensor of type string.

tf.encode_base64(input, pad=None, name=None) {#encode_base64}

Encode strings into web-safe base64 format.

Refer to the following article for more information on base64 format:
en.wikipedia.org/wiki/Base64. Base64 strings may have padding with ‘=’ at the
end so that the encoded has length multiple of 4. See Padding section of the
link above.

Web-safe means that the encoder uses - and _ instead of + and /.

Args:

		input: A Tensor of type string. Strings to be encoded.

		pad: An optional bool. Defaults to False.
Bool whether padding is applied at the ends.

		name: A name for the operation (optional).

Returns:

A Tensor of type string. Input strings encoded in base64.

tf.decode_base64(input, name=None) {#decode_base64}

Decode web-safe base64-encoded strings.

Input may or may not have padding at the end. See EncodeBase64 for padding.
Web-safe means that input must use - and _ instead of + and /.

Args:

		input: A Tensor of type string. Base64 strings to decode.

		name: A name for the operation (optional).

Returns:

A Tensor of type string. Decoded strings.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.image.resize_bicubic.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.resize_bicubic(images, size, align_corners=None, name=None) {#resize_bicubic}

Resize images to size using bicubic interpolation.

Input images can be of different types but output images are always float.

Args:

		images: A Tensor. Must be one of the following types: uint8, int8, int16, int32, int64, half, float32, float64.
4-D with shape [batch, height, width, channels].

		size: A 1-D int32 Tensor of 2 elements: new_height, new_width. The
new size for the images.

		align_corners: An optional bool. Defaults to False.
If true, rescale input by (new_height - 1) / (height - 1), which
exactly aligns the 4 corners of images and resized images. If false, rescale
by new_height / height. Treat similarly the width dimension.

		name: A name for the operation (optional).

Returns:

A Tensor of type float32. 4-D with shape
[batch, new_height, new_width, channels].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.strided_slice.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.strided_slice(input_, begin, end, strides, begin_mask=0, end_mask=0, ellipsis_mask=0, new_axis_mask=0, shrink_axis_mask=0, var=None, name=None) {#strided_slice}

Extracts a strided slice from a tensor.

To a first order, this operation extracts a slice of size end - begin
from a tensor input
starting at the location specified by begin. The slice continues by adding
stride to the begin index until all dimensions are not less than end.
Note that components of stride can be negative, which causes a reverse
slice.

This operation can be thought of an encoding of a numpy style sliced
range. Given a python slice input[, , ...,]
this function will be called as follows.

begin, end, and strides will be all length n. n is in general
not the same dimensionality as input.

For the ith spec,
begin_mask, end_mask, ellipsis_mask, new_axis_mask,
and shrink_axis_mask will have the ith bit corresponding to
the ith spec.

If the ith bit of begin_mask is non-zero, begin[i] is ignored and
the fullest possible range in that dimension is used instead.
end_mask works analogously, except with the end range.

foo[5:,:,:3] on a 7x8x9 tensor is equivalent to foo[5:7,0:8,0:3].
foo[::-1] reverses a tensor with shape 8.

If the ith bit of ellipsis_mask, as many unspecified dimensions
as needed will be inserted between other dimensions. Only one
non-zero bit is allowed in ellipsis_mask.

For example foo[3:5,...,4:5] on a shape 10x3x3x10 tensor is
equivalent to foo[3:5,:,:,4:5] and
foo[3:5,...] is equivalent to foo[3:5,:,:,:].

If the ith bit of new_axis_mask is one, then a begin,
end, and stride are ignored and a new length 1 dimension is
added at this point in the output tensor.

For example foo[3:5,4] on a 10x8 tensor produces a shape 2 tensor
whereas foo[3:5,4:5] produces a shape 2x1 tensor with shrink_mask
being 1<<1 == 2.

If the ith bit of shrink_axis_mask is one, then begin,
end[i], and stride[i] are used to do a slice in the appropriate
dimension, but the output tensor will be reduced in dimensionality
by one. This is only valid if the ith entry of slice[i]==1.

NOTE: begin and end are zero-indexed.strides` entries must be non-zero.

'input' is [[[1, 1, 1], [2, 2, 2]],
[[3, 3, 3], [4, 4, 4]],
[[5, 5, 5], [6, 6, 6]]]
tf.slice(input, [1, 0, 0], [2, 1, 3], [1, 1, 1]) ==> [[[3, 3, 3]]]
tf.slice(input, [1, 0, 0], [2, 2, 3], [1, 1, 1]) ==> [[[3, 3, 3],
 [4, 4, 4]]]
tf.slice(input, [1, 1, 0], [2, -1, 3], [1, -1, 1]) ==>[[[4, 4, 4],
 [3, 3, 3]]]

Args:

		input_: A Tensor.

		begin: An int32 or int64 Tensor.

		end: An int32 or int64 Tensor.

		strides: An int32 or int64 Tensor.

		begin_mask: An int32 mask.

		end_mask: An int32 mask.

		ellipsis_mask: An int32 mask.

		new_axis_mask: An int32 mask.

		shrink_axis_mask: An int32 mask.

		var: The variable coresponding to input_ or None

		name: A name for the operation (optional).

Returns:

A Tensor the same type as input.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/train.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Training

[TOC]

This library provides a set of classes and functions that helps train models.

Optimizers

The Optimizer base class provides methods to compute gradients for a loss and
apply gradients to variables. A collection of subclasses implement classic
optimization algorithms such as GradientDescent and Adagrad.

You never instantiate the Optimizer class itself, but instead instantiate one
of the subclasses.

class tf.train.Optimizer {#Optimizer}

Base class for optimizers.

This class defines the API to add Ops to train a model. You never use this
class directly, but instead instantiate one of its subclasses such as
GradientDescentOptimizer, AdagradOptimizer, or MomentumOptimizer.

Usage

Create an optimizer with the desired parameters.
opt = GradientDescentOptimizer(learning_rate=0.1)
Add Ops to the graph to minimize a cost by updating a list of variables.
"cost" is a Tensor, and the list of variables contains tf.Variable
objects.
opt_op = opt.minimize(cost, var_list=<list of variables>)

In the training program you will just have to run the returned Op.

Execute opt_op to do one step of training:
opt_op.run()

Processing gradients before applying them.

Calling minimize() takes care of both computing the gradients and
applying them to the variables. If you want to process the gradients
before applying them you can instead use the optimizer in three steps:

		Compute the gradients with compute_gradients().

		Process the gradients as you wish.

		Apply the processed gradients with apply_gradients().

Example:

Create an optimizer.
opt = GradientDescentOptimizer(learning_rate=0.1)

Compute the gradients for a list of variables.
grads_and_vars = opt.compute_gradients(loss, <list of variables>)

grads_and_vars is a list of tuples (gradient, variable). Do whatever you
need to the 'gradient' part, for example cap them, etc.
capped_grads_and_vars = [(MyCapper(gv[0]), gv[1]) for gv in grads_and_vars]

Ask the optimizer to apply the capped gradients.
opt.apply_gradients(capped_grads_and_vars)

tf.train.Optimizer.__init__(use_locking, name) {#Optimizer.init}

Create a new Optimizer.

This must be called by the constructors of subclasses.

Args:

		use_locking: Bool. If True apply use locks to prevent concurrent updates
to variables.

		name: A non-empty string. The name to use for accumulators created
for the optimizer.

Raises:

		ValueError: If name is malformed.

tf.train.Optimizer.minimize(loss, global_step=None, var_list=None, gate_gradients=1, aggregation_method=None, colocate_gradients_with_ops=False, name=None, grad_loss=None) {#Optimizer.minimize}

Add operations to minimize loss by updating var_list.

This method simply combines calls compute_gradients() and
apply_gradients(). If you want to process the gradient before applying
them call compute_gradients() and apply_gradients() explicitly instead
of using this function.

Args:

		loss: A Tensor containing the value to minimize.

		global_step: Optional Variable to increment by one after the
variables have been updated.

		var_list: Optional list of Variable objects to update to minimize
loss. Defaults to the list of variables collected in the graph
under the key GraphKeys.TRAINABLE_VARIABLES.

		gate_gradients: How to gate the computation of gradients. Can be
GATE_NONE, GATE_OP, or GATE_GRAPH.

		aggregation_method: Specifies the method used to combine gradient terms.
Valid values are defined in the class AggregationMethod.

		colocate_gradients_with_ops: If True, try colocating gradients with
the corresponding op.

		name: Optional name for the returned operation.

		grad_loss: Optional. A Tensor holding the gradient computed for loss.

Returns:

An Operation that updates the variables in var_list. If global_step
was not None, that operation also increments global_step.

Raises:

		ValueError: If some of the variables are not Variable objects.

tf.train.Optimizer.compute_gradients(loss, var_list=None, gate_gradients=1, aggregation_method=None, colocate_gradients_with_ops=False, grad_loss=None) {#Optimizer.compute_gradients}

Compute gradients of loss for the variables in var_list.

This is the first part of minimize(). It returns a list
of (gradient, variable) pairs where “gradient” is the gradient
for “variable”. Note that “gradient” can be a Tensor, an
IndexedSlices, or None if there is no gradient for the
given variable.

Args:

		loss: A Tensor containing the value to minimize.

		var_list: Optional list of tf.Variable to update to minimize
loss. Defaults to the list of variables collected in the graph
under the key GraphKey.TRAINABLE_VARIABLES.

		gate_gradients: How to gate the computation of gradients. Can be
GATE_NONE, GATE_OP, or GATE_GRAPH.

		aggregation_method: Specifies the method used to combine gradient terms.
Valid values are defined in the class AggregationMethod.

		colocate_gradients_with_ops: If True, try colocating gradients with
the corresponding op.

		grad_loss: Optional. A Tensor holding the gradient computed for loss.

Returns:

A list of (gradient, variable) pairs.

Raises:

		TypeError: If var_list contains anything else than Variable objects.

		ValueError: If some arguments are invalid.

tf.train.Optimizer.apply_gradients(grads_and_vars, global_step=None, name=None) {#Optimizer.apply_gradients}

Apply gradients to variables.

This is the second part of minimize(). It returns an Operation that
applies gradients.

Args:

		grads_and_vars: List of (gradient, variable) pairs as returned by
compute_gradients().

		global_step: Optional Variable to increment by one after the
variables have been updated.

		name: Optional name for the returned operation. Default to the
name passed to the Optimizer constructor.

Returns:

An Operation that applies the specified gradients. If global_step
was not None, that operation also increments global_step.

Raises:

		TypeError: If grads_and_vars is malformed.

		ValueError: If none of the variables have gradients.

Gating Gradients

Both minimize() and compute_gradients() accept a gate_gradients
argument that controls the degree of parallelism during the application of
the gradients.

The possible values are: GATE_NONE, GATE_OP, and GATE_GRAPH.

GATE_NONE: Compute and apply gradients in parallel. This provides
the maximum parallelism in execution, at the cost of some non-reproducibility
in the results. For example the two gradients of matmul depend on the input
values: With GATE_NONE one of the gradients could be applied to one of the
inputs before the other gradient is computed resulting in non-reproducible
results.

GATE_OP: For each Op, make sure all gradients are computed before
they are used. This prevents race conditions for Ops that generate gradients
for multiple inputs where the gradients depend on the inputs.

GATE_GRAPH: Make sure all gradients for all variables are computed
before any one of them is used. This provides the least parallelism but can
be useful if you want to process all gradients before applying any of them.

Slots

Some optimizer subclasses, such as MomentumOptimizer and AdagradOptimizer
allocate and manage additional variables associated with the variables to
train. These are called Slots. Slots have names and you can ask the
optimizer for the names of the slots that it uses. Once you have a slot name
you can ask the optimizer for the variable it created to hold the slot value.

This can be useful if you want to log debug a training algorithm, report stats
about the slots, etc.

tf.train.Optimizer.get_slot_names() {#Optimizer.get_slot_names}

Return a list of the names of slots created by the Optimizer.

See get_slot().

Returns:

A list of strings.

tf.train.Optimizer.get_slot(var, name) {#Optimizer.get_slot}

Return a slot named name created for var by the Optimizer.

Some Optimizer subclasses use additional variables. For example
Momentum and Adagrad use variables to accumulate updates. This method
gives access to these Variable objects if for some reason you need them.

Use get_slot_names() to get the list of slot names created by the
Optimizer.

Args:

		var: A variable passed to minimize() or apply_gradients().

		name: A string.

Returns:

The Variable for the slot if it was created, None otherwise.

Other Methods

tf.train.Optimizer.get_name() {#Optimizer.get_name}

class tf.train.GradientDescentOptimizer {#GradientDescentOptimizer}

Optimizer that implements the gradient descent algorithm.

tf.train.GradientDescentOptimizer.__init__(learning_rate, use_locking=False, name='GradientDescent') {#GradientDescentOptimizer.init}

Construct a new gradient descent optimizer.

Args:

		learning_rate: A Tensor or a floating point value. The learning
rate to use.

		use_locking: If True use locks for update operations.

		name: Optional name prefix for the operations created when applying
gradients. Defaults to “GradientDescent”.

class tf.train.AdadeltaOptimizer {#AdadeltaOptimizer}

Optimizer that implements the Adadelta algorithm.

See M. D. Zeiler [http://arxiv.org/abs/1212.5701]
(pdf [http://arxiv.org/pdf/1212.5701v1.pdf])

tf.train.AdadeltaOptimizer.__init__(learning_rate=0.001, rho=0.95, epsilon=1e-08, use_locking=False, name='Adadelta') {#AdadeltaOptimizer.init}

Construct a new Adadelta optimizer.

Args:

		learning_rate: A Tensor or a floating point value. The learning rate.

		rho: A Tensor or a floating point value. The decay rate.

		epsilon: A Tensor or a floating point value. A constant epsilon used
to better conditioning the grad update.

		use_locking: If True use locks for update operations.

		name: Optional name prefix for the operations created when applying
gradients. Defaults to “Adadelta”.

class tf.train.AdagradOptimizer {#AdagradOptimizer}

Optimizer that implements the Adagrad algorithm.

See this paper [http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf].

tf.train.AdagradOptimizer.__init__(learning_rate, initial_accumulator_value=0.1, use_locking=False, name='Adagrad') {#AdagradOptimizer.init}

Construct a new Adagrad optimizer.

Args:

		learning_rate: A Tensor or a floating point value. The learning rate.

		initial_accumulator_value: A floating point value.
Starting value for the accumulators, must be positive.

		use_locking: If True use locks for update operations.

		name: Optional name prefix for the operations created when applying
gradients. Defaults to “Adagrad”.

Raises:

		ValueError: If the initial_accumulator_value is invalid.

class tf.train.AdagradDAOptimizer {#AdagradDAOptimizer}

Adagrad Dual Averaging algorithm for sparse linear models.

See this paper [http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf].

This optimizer takes care of regularization of unseen features in a mini batch
by updating them when they are seen with a closed form update rule that is
equivalent to having updated them on every mini-batch.

AdagradDA is typically used when there is a need for large sparsity in the
trained model. This optimizer only guarantees sparsity for linear models. Be
careful when using AdagradDA for deep networks as it will require careful
initialization of the gradient accumulators for it to train.

tf.train.AdagradDAOptimizer.__init__(learning_rate, global_step, initial_gradient_squared_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0, use_locking=False, name='AdagradDA') {#AdagradDAOptimizer.init}

Construct a new AdagradDA optimizer.

Args:

		learning_rate: A Tensor or a floating point value. The learning rate.

		global_step: A Tensor containing the current training step number.

		initial_gradient_squared_accumulator_value: A floating point value.
Starting value for the accumulators, must be positive.

		l1_regularization_strength: A float value, must be greater than or
equal to zero.

		l2_regularization_strength: A float value, must be greater than or
equal to zero.

		use_locking: If True use locks for update operations.

		name: Optional name prefix for the operations created when applying
gradients. Defaults to “AdagradDA”.

Raises:

		ValueError: If the initial_gradient_squared_accumulator_value is
invalid.

class tf.train.MomentumOptimizer {#MomentumOptimizer}

Optimizer that implements the Momentum algorithm.

tf.train.MomentumOptimizer.__init__(learning_rate, momentum, use_locking=False, name='Momentum', use_nesterov=False) {#MomentumOptimizer.init}

Construct a new Momentum optimizer.

Args:

		learning_rate: A Tensor or a floating point value. The learning rate.

		momentum: A Tensor or a floating point value. The momentum.

		use_locking: If True use locks for update operations.

		name: Optional name prefix for the operations created when applying
gradients. Defaults to “Momentum”.

class tf.train.AdamOptimizer {#AdamOptimizer}

Optimizer that implements the Adam algorithm.

See Kingma et. al., 2014 [http://arxiv.org/abs/1412.6980]
(pdf [http://arxiv.org/pdf/1412.6980.pdf]).

tf.train.AdamOptimizer.__init__(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, use_locking=False, name='Adam') {#AdamOptimizer.init}

Construct a new Adam optimizer.

Initialization:

m_0 <- 0 (Initialize initial 1st moment vector)
v_0 <- 0 (Initialize initial 2nd moment vector)
t <- 0 (Initialize timestep)

The update rule for variable with gradient g uses an optimization
described at the end of section2 of the paper:

t <- t + 1
lr_t <- learning_rate * sqrt(1 - beta2^t) / (1 - beta1^t)

m_t <- beta1 * m_{t-1} + (1 - beta1) * g
v_t <- beta2 * v_{t-1} + (1 - beta2) * g * g
variable <- variable - lr_t * m_t / (sqrt(v_t) + epsilon)

The default value of 1e-8 for epsilon might not be a good default in
general. For example, when training an Inception network on ImageNet a
current good choice is 1.0 or 0.1.

Note that in dense implement of this algorithm, m_t, v_t and variable will
update even if g is zero, but in sparse implement, m_t, v_t and variable
will not update in iterations g is zero.

Args:

		learning_rate: A Tensor or a floating point value. The learning rate.

		beta1: A float value or a constant float tensor.
The exponential decay rate for the 1st moment estimates.

		beta2: A float value or a constant float tensor.
The exponential decay rate for the 2nd moment estimates.

		epsilon: A small constant for numerical stability.

		use_locking: If True use locks for update operations.

		name: Optional name for the operations created when applying gradients.
Defaults to “Adam”.

class tf.train.FtrlOptimizer {#FtrlOptimizer}

Optimizer that implements the FTRL algorithm.

See this paper [https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf].

tf.train.FtrlOptimizer.__init__(learning_rate, learning_rate_power=-0.5, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0, use_locking=False, name='Ftrl') {#FtrlOptimizer.init}

Construct a new FTRL optimizer.

Args:

		learning_rate: A float value or a constant float Tensor.

		learning_rate_power: A float value, must be less or equal to zero.

		initial_accumulator_value: The starting value for accumulators.
Only positive values are allowed.

		l1_regularization_strength: A float value, must be greater than or
equal to zero.

		l2_regularization_strength: A float value, must be greater than or
equal to zero.

		use_locking: If True use locks for update operations.

		name: Optional name prefix for the operations created when applying
gradients. Defaults to “Ftrl”.

Raises:

		ValueError: If one of the arguments is invalid.

class tf.train.RMSPropOptimizer {#RMSPropOptimizer}

Optimizer that implements the RMSProp algorithm.

See the [paper]
(http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf).

tf.train.RMSPropOptimizer.__init__(learning_rate, decay=0.9, momentum=0.0, epsilon=1e-10, use_locking=False, name='RMSProp') {#RMSPropOptimizer.init}

Construct a new RMSProp optimizer.

Note that in dense implement of this algorithm, m_t and v_t will
update even if g is zero, but in sparse implement, m_t and v_t
will not update in iterations g is zero.

Args:

		learning_rate: A Tensor or a floating point value. The learning rate.

		decay: Discounting factor for the history/coming gradient

		momentum: A scalar tensor.

		epsilon: Small value to avoid zero denominator.

		use_locking: If True use locks for update operation.

		name: Optional name prefix for the operations created when applying
gradients. Defaults to “RMSProp”.

Gradient Computation

TensorFlow provides functions to compute the derivatives for a given
TensorFlow computation graph, adding operations to the graph. The
optimizer classes automatically compute derivatives on your graph, but
creators of new Optimizers or expert users can call the lower-level
functions below.

tf.gradients(ys, xs, grad_ys=None, name='gradients', colocate_gradients_with_ops=False, gate_gradients=False, aggregation_method=None) {#gradients}

Constructs symbolic partial derivatives of sum of ys w.r.t. x in xs.

ys and xs are each a Tensor or a list of tensors. grad_ys
is a list of Tensor, holding the gradients received by the
ys. The list must be the same length as ys.

gradients() adds ops to the graph to output the partial
derivatives of ys with respect to xs. It returns a list of
Tensor of length len(xs) where each tensor is the sum(dy/dx)
for y in ys.

grad_ys is a list of tensors of the same length as ys that holds
the initial gradients for each y in ys. When grad_ys is None,
we fill in a tensor of ‘1’s of the shape of y for each y in ys. A
user can provide their own initial grad_ys to compute the
derivatives using a different initial gradient for each y (e.g., if
one wanted to weight the gradient differently for each value in
each y).

Args:

		ys: A Tensor or list of tensors to be differentiated.

		xs: A Tensor or list of tensors to be used for differentiation.

		grad_ys: Optional. A Tensor or list of tensors the same size as
ys and holding the gradients computed for each y in ys.

		name: Optional name to use for grouping all the gradient ops together.
defaults to ‘gradients’.

		colocate_gradients_with_ops: If True, try colocating gradients with
the corresponding op.

		gate_gradients: If True, add a tuple around the gradients returned
for an operations. This avoids some race conditions.

		aggregation_method: Specifies the method used to combine gradient terms.
Accepted values are constants defined in the class AggregationMethod.

Returns:

A list of sum(dy/dx) for each x in xs.

Raises:

		LookupError: if one of the operations between x and y does not
have a registered gradient function.

		ValueError: if the arguments are invalid.

class tf.AggregationMethod {#AggregationMethod}

A class listing aggregation methods used to combine gradients.

Computing partial derivatives can require aggregating gradient
contributions. This class lists the various methods that can
be used to combine gradients in the graph:

		ADD_N: All of the gradient terms are summed as part of one
operation using the “AddN” op. It has the property that all
gradients must be ready before any aggregation is performed.

		DEFAULT: The system-chosen default aggregation method.

tf.stop_gradient(input, name=None) {#stop_gradient}

Stops gradient computation.

When executed in a graph, this op outputs its input tensor as-is.

When building ops to compute gradients, this op prevents the contribution of
its inputs to be taken into account. Normally, the gradient generator adds ops
to a graph to compute the derivatives of a specified ‘loss’ by recursively
finding out inputs that contributed to its computation. If you insert this op
in the graph it inputs are masked from the gradient generator. They are not
taken into account for computing gradients.

This is useful any time you want to compute a value with TensorFlow but need
to pretend that the value was a constant. Some examples include:

		The EM algorithm where the M-step should not involve backpropagation
through the output of the E-step.

		Contrastive divergence training of Boltzmann machines where, when
differentiating the energy function, the training must not backpropagate
through the graph that generated the samples from the model.

		Adversarial training, where no backprop should happen through the adversarial
example generation process.

Args:

		input: A Tensor.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

Gradient Clipping

TensorFlow provides several operations that you can use to add clipping
functions to your graph. You can use these functions to perform general data
clipping, but they’re particularly useful for handling exploding or vanishing
gradients.

tf.clip_by_value(t, clip_value_min, clip_value_max, name=None) {#clip_by_value}

Clips tensor values to a specified min and max.

Given a tensor t, this operation returns a tensor of the same type and
shape as t with its values clipped to clip_value_min and clip_value_max.
Any values less than clip_value_min are set to clip_value_min. Any values
greater than clip_value_max are set to clip_value_max.

Args:

		t: A Tensor.

		clip_value_min: A 0-D (scalar) Tensor. The minimum value to clip by.

		clip_value_max: A 0-D (scalar) Tensor. The maximum value to clip by.

		name: A name for the operation (optional).

Returns:

A clipped Tensor.

tf.clip_by_norm(t, clip_norm, axes=None, name=None) {#clip_by_norm}

Clips tensor values to a maximum L2-norm.

Given a tensor t, and a maximum clip value clip_norm, this operation
normalizes t so that its L2-norm is less than or equal to clip_norm,
along the dimensions given in axes. Specifically, in the default case
where all dimensions are used for calculation, if the L2-norm of t is
already less than or equal to clip_norm, then t is not modified. If
the L2-norm is greater than clip_norm, then this operation returns a
tensor of the same type and shape as t with its values set to:

t * clip_norm / l2norm(t)

In this case, the L2-norm of the output tensor is clip_norm.

As another example, if t is a matrix and axes == [1], then each row
of the output will have L2-norm equal to clip_norm. If axes == [0]
instead, each column of the output will be clipped.

This operation is typically used to clip gradients before applying them with
an optimizer.

Args:

		t: A Tensor.

		clip_norm: A 0-D (scalar) Tensor > 0. A maximum clipping value.

		axes: A 1-D (vector) Tensor of type int32 containing the dimensions
to use for computing the L2-norm. If None (the default), uses all
dimensions.

		name: A name for the operation (optional).

Returns:

A clipped Tensor.

tf.clip_by_average_norm(t, clip_norm, name=None) {#clip_by_average_norm}

Clips tensor values to a maximum average L2-norm.

Given a tensor t, and a maximum clip value clip_norm, this operation
normalizes t so that its average L2-norm is less than or equal to
clip_norm. Specifically, if the average L2-norm is already less than or
equal to clip_norm, then t is not modified. If the average L2-norm is
greater than clip_norm, then this operation returns a tensor of the same
type and shape as t with its values set to:

t * clip_norm / l2norm_avg(t)

In this case, the average L2-norm of the output tensor is clip_norm.

This operation is typically used to clip gradients before applying them with
an optimizer.

Args:

		t: A Tensor.

		clip_norm: A 0-D (scalar) Tensor > 0. A maximum clipping value.

		name: A name for the operation (optional).

Returns:

A clipped Tensor.

tf.clip_by_global_norm(t_list, clip_norm, use_norm=None, name=None) {#clip_by_global_norm}

Clips values of multiple tensors by the ratio of the sum of their norms.

Given a tuple or list of tensors t_list, and a clipping ratio clip_norm,
this operation returns a list of clipped tensors list_clipped
and the global norm (global_norm) of all tensors in t_list. Optionally,
if you’ve already computed the global norm for t_list, you can specify
the global norm with use_norm.

To perform the clipping, the values t_list[i] are set to:

t_list[i] * clip_norm / max(global_norm, clip_norm)

where:

global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))

If clip_norm > global_norm then the entries in t_list remain as they are,
otherwise they’re all shrunk by the global ratio.

Any of the entries of t_list that are of type None are ignored.

This is the correct way to perform gradient clipping (for example, see
Pascanu et al., 2012 [http://arxiv.org/abs/1211.5063]
(pdf [http://arxiv.org/pdf/1211.5063.pdf])).

However, it is slower than clip_by_norm() because all the parameters must be
ready before the clipping operation can be performed.

Args:

		t_list: A tuple or list of mixed Tensors, IndexedSlices, or None.

		clip_norm: A 0-D (scalar) Tensor > 0. The clipping ratio.

		use_norm: A 0-D (scalar) Tensor of type float (optional). The global
norm to use. If not provided, global_norm() is used to compute the norm.

		name: A name for the operation (optional).

Returns:

		list_clipped: A list of Tensors of the same type as list_t.

		global_norm: A 0-D (scalar) Tensor representing the global norm.

Raises:

		TypeError: If t_list is not a sequence.

tf.global_norm(t_list, name=None) {#global_norm}

Computes the global norm of multiple tensors.

Given a tuple or list of tensors t_list, this operation returns the
global norm of the elements in all tensors in t_list. The global norm is
computed as:

global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))

Any entries in t_list that are of type None are ignored.

Args:

		t_list: A tuple or list of mixed Tensors, IndexedSlices, or None.

		name: A name for the operation (optional).

Returns:

A 0-D (scalar) Tensor of type float.

Raises:

		TypeError: If t_list is not a sequence.

Decaying the learning rate

tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None) {#exponential_decay}

Applies exponential decay to the learning rate.

When training a model, it is often recommended to lower the learning rate as
the training progresses. This function applies an exponential decay function
to a provided initial learning rate. It requires a global_step value to
compute the decayed learning rate. You can just pass a TensorFlow variable
that you increment at each training step.

The function returns the decayed learning rate. It is computed as:

decayed_learning_rate = learning_rate *
 decay_rate ^ (global_step / decay_steps)

If the argument staircase is True, then global_step / decay_steps is an
integer division and the decayed learning rate follows a staircase function.

Example: decay every 100000 steps with a base of 0.96:

...
global_step = tf.Variable(0, trainable=False)
starter_learning_rate = 0.1
learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step,
 100000, 0.96, staircase=True)
Passing global_step to minimize() will increment it at each step.
learning_step = (
 tf.train.GradientDescentOptimizer(learning_rate)
 .minimize(...my loss..., global_step=global_step)
)

Args:

		learning_rate: A scalar float32 or float64 Tensor or a
Python number. The initial learning rate.

		global_step: A scalar int32 or int64 Tensor or a Python number.
Global step to use for the decay computation. Must not be negative.

		decay_steps: A scalar int32 or int64 Tensor or a Python number.
Must be positive. See the decay computation above.

		decay_rate: A scalar float32 or float64 Tensor or a
Python number. The decay rate.

		staircase: Boolean. It True decay the learning rate at discrete intervals

		name: String. Optional name of the operation. Defaults to
‘ExponentialDecay’

Returns:

A scalar Tensor of the same type as learning_rate. The decayed
learning rate.

Moving Averages

Some training algorithms, such as GradientDescent and Momentum often benefit
from maintaining a moving average of variables during optimization. Using the
moving averages for evaluations often improve results significantly.

class tf.train.ExponentialMovingAverage {#ExponentialMovingAverage}

Maintains moving averages of variables by employing an exponential decay.

When training a model, it is often beneficial to maintain moving averages of
the trained parameters. Evaluations that use averaged parameters sometimes
produce significantly better results than the final trained values.

The apply() method adds shadow copies of trained variables and add ops that
maintain a moving average of the trained variables in their shadow copies.
It is used when building the training model. The ops that maintain moving
averages are typically run after each training step.
The average() and average_name() methods give access to the shadow
variables and their names. They are useful when building an evaluation
model, or when restoring a model from a checkpoint file. They help use the
moving averages in place of the last trained values for evaluations.

The moving averages are computed using exponential decay. You specify the
decay value when creating the ExponentialMovingAverage object. The shadow
variables are initialized with the same initial values as the trained
variables. When you run the ops to maintain the moving averages, each
shadow variable is updated with the formula:

shadow_variable -= (1 - decay) * (shadow_variable - variable)

This is mathematically equivalent to the classic formula below, but the use
of an assign_sub op (the "-=" in the formula) allows concurrent lockless
updates to the variables:

shadow_variable = decay * shadow_variable + (1 - decay) * variable

Reasonable values for decay are close to 1.0, typically in the
multiple-nines range: 0.999, 0.9999, etc.

Example usage when creating a training model:

Create variables.
var0 = tf.Variable(...)
var1 = tf.Variable(...)
... use the variables to build a training model...
...
Create an op that applies the optimizer. This is what we usually
would use as a training op.
opt_op = opt.minimize(my_loss, [var0, var1])

Create an ExponentialMovingAverage object
ema = tf.train.ExponentialMovingAverage(decay=0.9999)

Create the shadow variables, and add ops to maintain moving averages
of var0 and var1.
maintain_averages_op = ema.apply([var0, var1])

Create an op that will update the moving averages after each training
step. This is what we will use in place of the usual training op.
with tf.control_dependencies([opt_op]):
 training_op = tf.group(maintain_averages_op)

...train the model by running training_op...

There are two ways to use the moving averages for evaluations:

		Build a model that uses the shadow variables instead of the variables.
For this, use the average() method which returns the shadow variable
for a given variable.

		Build a model normally but load the checkpoint files to evaluate by using
the shadow variable names. For this use the average_name() method. See
the Saver class for more
information on restoring saved variables.

Example of restoring the shadow variable values:

Create a Saver that loads variables from their saved shadow values.
shadow_var0_name = ema.average_name(var0)
shadow_var1_name = ema.average_name(var1)
saver = tf.train.Saver({shadow_var0_name: var0, shadow_var1_name: var1})
saver.restore(...checkpoint filename...)
var0 and var1 now hold the moving average values

tf.train.ExponentialMovingAverage.__init__(decay, num_updates=None, name='ExponentialMovingAverage') {#ExponentialMovingAverage.init}

Creates a new ExponentialMovingAverage object.

The apply() method has to be called to create shadow variables and add
ops to maintain moving averages.

The optional num_updates parameter allows one to tweak the decay rate
dynamically. . It is typical to pass the count of training steps, usually
kept in a variable that is incremented at each step, in which case the
decay rate is lower at the start of training. This makes moving averages
move faster. If passed, the actual decay rate used is:

min(decay, (1 + num_updates) / (10 + num_updates))

Args:

		decay: Float. The decay to use.

		num_updates: Optional count of number of updates applied to variables.

		name: String. Optional prefix name to use for the name of ops added in
apply().

tf.train.ExponentialMovingAverage.apply(var_list=None) {#ExponentialMovingAverage.apply}

Maintains moving averages of variables.

var_list must be a list of Variable or Tensor objects. This method
creates shadow variables for all elements of var_list. Shadow variables
for Variable objects are initialized to the variable’s initial value.
They will be added to the GraphKeys.MOVING_AVERAGE_VARIABLES collection.
For Tensor objects, the shadow variables are initialized to 0.

shadow variables are created with trainable=False and added to the
GraphKeys.ALL_VARIABLES collection. They will be returned by calls to
tf.all_variables().

Returns an op that updates all shadow variables as described above.

Note that apply() can be called multiple times with different lists of
variables.

Args:

		var_list: A list of Variable or Tensor objects. The variables
and Tensors must be of types float16, float32, or float64.

Returns:

An Operation that updates the moving averages.

Raises:

		TypeError: If the arguments are not all float16, float32, or float64.

		ValueError: If the moving average of one of the variables is already
being computed.

tf.train.ExponentialMovingAverage.average_name(var) {#ExponentialMovingAverage.average_name}

Returns the name of the Variable holding the average for var.

The typical scenario for ExponentialMovingAverage is to compute moving
averages of variables during training, and restore the variables from the
computed moving averages during evaluations.

To restore variables, you have to know the name of the shadow variables.
That name and the original variable can then be passed to a Saver() object
to restore the variable from the moving average value with:
saver = tf.train.Saver({ema.average_name(var): var})

average_name() can be called whether or not apply() has been called.

Args:

		var: A Variable object.

Returns:

A string: The name of the variable that will be used or was used
by the ExponentialMovingAverage class to hold the moving average of
var.

tf.train.ExponentialMovingAverage.average(var) {#ExponentialMovingAverage.average}

Returns the Variable holding the average of var.

Args:

		var: A Variable object.

Returns:

A Variable object or None if the moving average of var
is not maintained..

tf.train.ExponentialMovingAverage.variables_to_restore(moving_avg_variables=None) {#ExponentialMovingAverage.variables_to_restore}

Returns a map of names to Variables to restore.

If a variable has a moving average, use the moving average variable name as
the restore name; otherwise, use the variable name.

For example,

 variables_to_restore = ema.variables_to_restore()
 saver = tf.train.Saver(variables_to_restore)

Below is an example of such mapping:

 conv/batchnorm/gamma/ExponentialMovingAverage: conv/batchnorm/gamma,
 conv_4/conv2d_params/ExponentialMovingAverage: conv_4/conv2d_params,
 global_step: global_step

Args:

		moving_avg_variables: a list of variables that require to use of the
moving variable name to be restored. If None, it will default to
variables.moving_average_variables() + variables.trainable_variables()

Returns:

A map from restore_names to variables. The restore_name can be the
moving_average version of the variable name if it exist, or the original
variable name.

Coordinator and QueueRunner

See Threading and Queues
for how to use threads and queues. For documentation on the Queue API,
see Queues.

class tf.train.Coordinator {#Coordinator}

A coordinator for threads.

This class implements a simple mechanism to coordinate the termination of a
set of threads.

Usage:

Create a coordinator.
coord = Coordinator()
Start a number of threads, passing the coordinator to each of them.
...start thread 1...(coord, ...)
...start thread N...(coord, ...)
Wait for all the threads to terminate.
coord.join(threads)

Any of the threads can call coord.request_stop() to ask for all the threads
to stop. To cooperate with the requests, each thread must check for
coord.should_stop() on a regular basis. coord.should_stop() returns
True as soon as coord.request_stop() has been called.

A typical thread running with a coordinator will do something like:

while not coord.should_stop():
 ...do some work...

Exception handling:

A thread can report an exception to the coordinator as part of the
should_stop() call. The exception will be re-raised from the
coord.join() call.

Thread code:

try:
 while not coord.should_stop():
 ...do some work...
except Exception as e:
 coord.request_stop(e)

Main code:

try:
 ...
 coord = Coordinator()
 # Start a number of threads, passing the coordinator to each of them.
 ...start thread 1...(coord, ...)
 ...start thread N...(coord, ...)
 # Wait for all the threads to terminate.
 coord.join(threads)
except Exception as e:
 ...exception that was passed to coord.request_stop()

To simplify the thread implementation, the Coordinator provides a
context handler stop_on_exception() that automatically requests a stop if
an exception is raised. Using the context handler the thread code above
can be written as:

with coord.stop_on_exception():
 while not coord.should_stop():
 ...do some work...

Grace period for stopping:

After a thread has called coord.request_stop() the other threads have a
fixed time to stop, this is called the ‘stop grace period’ and defaults to 2
minutes. If any of the threads is still alive after the grace period expires
coord.join() raises a RuntimeException reporting the laggards.

try:
 ...
 coord = Coordinator()
 # Start a number of threads, passing the coordinator to each of them.
 ...start thread 1...(coord, ...)
 ...start thread N...(coord, ...)
 # Wait for all the threads to terminate, give them 10s grace period
 coord.join(threads, stop_grace_period_secs=10)
except RuntimeException:
 ...one of the threads took more than 10s to stop after request_stop()
 ...was called.
except Exception:
 ...exception that was passed to coord.request_stop()

tf.train.Coordinator.__init__(clean_stop_exception_types=None) {#Coordinator.init}

Create a new Coordinator.

Args:

		clean_stop_exception_types: Optional tuple of Exception types that should
cause a clean stop of the coordinator. If an exception of one of these
types is reported to request_stop(ex) the coordinator will behave as
if request_stop(None) was called. Defaults to
(tf.errors.OutOfRangeError,) which is used by input queues to signal
the end of input. When feeding training data from a Python iterator it
is common to add StopIteration to this list.

tf.train.Coordinator.clear_stop() {#Coordinator.clear_stop}

Clears the stop flag.

After this is called, calls to should_stop() will return False.

tf.train.Coordinator.join(threads=None, stop_grace_period_secs=120) {#Coordinator.join}

Wait for threads to terminate.

This call blocks until a set of threads have terminated. The set of thread
is the union of the threads passed in the threads argument and the list
of threads that registered with the coordinator by calling
Coordinator.register_thread().

After the threads stop, if an exc_info was passed to request_stop, that
exception is re-raised.

Grace period handling: When request_stop() is called, threads are given
‘stop_grace_period_secs’ seconds to terminate. If any of them is still
alive after that period expires, a RuntimeError is raised. Note that if
an exc_info was passed to request_stop() then it is raised instead of
that RuntimeError.

Args:

		threads: List of threading.Threads. The started threads to join in
addition to the registered threads.

		stop_grace_period_secs: Number of seconds given to threads to stop after
request_stop() has been called.

Raises:

		RuntimeError: If any thread is still alive after request_stop()
is called and the grace period expires.

tf.train.Coordinator.joined {#Coordinator.joined}

tf.train.Coordinator.register_thread(thread) {#Coordinator.register_thread}

Register a thread to join.

Args:

		thread: A Python thread to join.

tf.train.Coordinator.request_stop(ex=None) {#Coordinator.request_stop}

Request that the threads stop.

After this is called, calls to should_stop() will return True.

Note: If an exception is being passed in, in must be in the context of
handling the exception (i.e. try: ... except Exception as ex: ...) and not
a newly created one.

Args:

		ex: Optional Exception, or Python exc_info tuple as returned by
sys.exc_info(). If this is the first call to request_stop() the
corresponding exception is recorded and re-raised from join().

tf.train.Coordinator.should_stop() {#Coordinator.should_stop}

Check if stop was requested.

Returns:

True if a stop was requested.

tf.train.Coordinator.stop_on_exception() {#Coordinator.stop_on_exception}

Context manager to request stop when an Exception is raised.

Code that uses a coordinator must catch exceptions and pass
them to the request_stop() method to stop the other threads
managed by the coordinator.

This context handler simplifies the exception handling.
Use it as follows:

with coord.stop_on_exception():
 # Any exception raised in the body of the with
 # clause is reported to the coordinator before terminating
 # the execution of the body.
 ...body...

This is completely equivalent to the slightly longer code:

try:
 ...body...
exception Exception as ex:
 coord.request_stop(ex)

Yields:

nothing.

tf.train.Coordinator.wait_for_stop(timeout=None) {#Coordinator.wait_for_stop}

Wait till the Coordinator is told to stop.

Args:

		timeout: Float. Sleep for up to that many seconds waiting for
should_stop() to become True.

Returns:

True if the Coordinator is told stop, False if the timeout expired.

class tf.train.QueueRunner {#QueueRunner}

Holds a list of enqueue operations for a queue, each to be run in a thread.

Queues are a convenient TensorFlow mechanism to compute tensors
asynchronously using multiple threads. For example in the canonical ‘Input
Reader’ setup one set of threads generates filenames in a queue; a second set
of threads read records from the files, processes them, and enqueues tensors
on a second queue; a third set of threads dequeues these input records to
construct batches and runs them through training operations.

There are several delicate issues when running multiple threads that way:
closing the queues in sequence as the input is exhausted, correctly catching
and reporting exceptions, etc.

The QueueRunner, combined with the Coordinator, helps handle these issues.

tf.train.QueueRunner.__init__(queue=None, enqueue_ops=None, close_op=None, cancel_op=None, queue_closed_exception_types=None, queue_runner_def=None) {#QueueRunner.init}

Create a QueueRunner.

On construction the QueueRunner adds an op to close the queue. That op
will be run if the enqueue ops raise exceptions.

When you later call the create_threads() method, the QueueRunner will
create one thread for each op in enqueue_ops. Each thread will run its
enqueue op in parallel with the other threads. The enqueue ops do not have
to all be the same op, but it is expected that they all enqueue tensors in
queue.

Args:

		queue: A Queue.

		enqueue_ops: List of enqueue ops to run in threads later.

		close_op: Op to close the queue. Pending enqueue ops are preserved.

		cancel_op: Op to close the queue and cancel pending enqueue ops.

		queue_closed_exception_types: Optional tuple of Exception types that
indicate that the queue has been closed when raised during an enqueue
operation. Defaults to (tf.errors.OutOfRangeError,). Another common
case includes (tf.errors.OutOfRangeError, tf.errors.CancelledError),
when some of the enqueue ops may dequeue from other Queues.

		queue_runner_def: Optional QueueRunnerDef protocol buffer. If specified,
recreates the QueueRunner from its contents. queue_runner_def and the
other arguments are mutually exclusive.

Raises:

		ValueError: If both queue_runner_def and queue are both specified.

		ValueError: If queue or enqueue_ops are not provided when not
restoring from queue_runner_def.

tf.train.QueueRunner.cancel_op {#QueueRunner.cancel_op}

tf.train.QueueRunner.close_op {#QueueRunner.close_op}

tf.train.QueueRunner.create_threads(sess, coord=None, daemon=False, start=False) {#QueueRunner.create_threads}

Create threads to run the enqueue ops.

This method requires a session in which the graph was launched. It creates
a list of threads, optionally starting them. There is one thread for each
op passed in enqueue_ops.

The coord argument is an optional coordinator, that the threads will use
to terminate together and report exceptions. If a coordinator is given,
this method starts an additional thread to close the queue when the
coordinator requests a stop.

This method may be called again as long as all threads from a previous call
have stopped.

Args:

		sess: A Session.

		coord: Optional Coordinator object for reporting errors and checking
stop conditions.

		daemon: Boolean. If True make the threads daemon threads.

		start: Boolean. If True starts the threads. If False the
caller must call the start() method of the returned threads.

Returns:

A list of threads.

Raises:

		RuntimeError: If threads from a previous call to create_threads() are
still running.

tf.train.QueueRunner.enqueue_ops {#QueueRunner.enqueue_ops}

tf.train.QueueRunner.exceptions_raised {#QueueRunner.exceptions_raised}

Exceptions raised but not handled by the QueueRunner threads.

Exceptions raised in queue runner threads are handled in one of two ways
depending on whether or not a Coordinator was passed to
create_threads():

		With a Coordinator, exceptions are reported to the coordinator and
forgotten by the QueueRunner.

		Without a Coordinator, exceptions are captured by the QueueRunner and
made available in this exceptions_raised property.

Returns:

A list of Python Exception objects. The list is empty if no exception
was captured. (No exceptions are captured when using a Coordinator.)

tf.train.QueueRunner.from_proto(queue_runner_def) {#QueueRunner.from_proto}

Returns a QueueRunner object created from queue_runner_def.

tf.train.QueueRunner.name {#QueueRunner.name}

The string name of the underlying Queue.

tf.train.QueueRunner.queue {#QueueRunner.queue}

tf.train.QueueRunner.queue_closed_exception_types {#QueueRunner.queue_closed_exception_types}

tf.train.QueueRunner.to_proto() {#QueueRunner.to_proto}

Converts this QueueRunner to a QueueRunnerDef protocol buffer.

Returns:

A QueueRunnerDef protocol buffer.

tf.train.add_queue_runner(qr, collection='queue_runners') {#add_queue_runner}

Adds a QueueRunner to a collection in the graph.

When building a complex model that uses many queues it is often difficult to
gather all the queue runners that need to be run. This convenience function
allows you to add a queue runner to a well known collection in the graph.

The companion method start_queue_runners() can be used to start threads for
all the collected queue runners.

Args:

		qr: A QueueRunner.

		collection: A GraphKey specifying the graph collection to add
the queue runner to. Defaults to GraphKeys.QUEUE_RUNNERS.

tf.train.start_queue_runners(sess=None, coord=None, daemon=True, start=True, collection='queue_runners') {#start_queue_runners}

Starts all queue runners collected in the graph.

This is a companion method to add_queue_runner(). It just starts
threads for all queue runners collected in the graph. It returns
the list of all threads.

Args:

		sess: Session used to run the queue ops. Defaults to the
default session.

		coord: Optional Coordinator for coordinating the started threads.

		daemon: Whether the threads should be marked as daemons, meaning
they don’t block program exit.

		start: Set to False to only create the threads, not start them.

		collection: A GraphKey specifying the graph collection to
get the queue runners from. Defaults to GraphKeys.QUEUE_RUNNERS.

Returns:

A list of threads.

Distributed execution

See Distributed TensorFlow for
more information about how to configure a distributed TensorFlow program.

class tf.train.Server {#Server}

An in-process TensorFlow server, for use in distributed training.

A tf.train.Server instance encapsulates a set of devices and a
tf.Session target that
can participate in distributed training. A server belongs to a
cluster (specified by a tf.train.ClusterSpec), and
corresponds to a particular task in a named job. The server can
communicate with any other server in the same cluster.

tf.train.Server.__init__(server_or_cluster_def, job_name=None, task_index=None, protocol=None, config=None, start=True) {#Server.init}

Creates a new server with the given definition.

The job_name, task_index, and protocol arguments are optional, and
override any information provided in server_or_cluster_def.

Args:

		server_or_cluster_def: A tf.train.ServerDef or
tf.train.ClusterDef protocol buffer, or a
tf.train.ClusterSpec object, describing the server to be
created and/or the cluster of which it is a member.

		job_name: (Optional.) Specifies the name of the job of which the server
is a member. Defaults to the value in server_or_cluster_def, if
specified.

		task_index: (Optional.) Specifies the task index of the server in its
job. Defaults to the value in server_or_cluster_def, if specified.
Otherwise defaults to 0 if the server’s job has only one task.

		protocol: (Optional.) Specifies the protocol to be used by the server.
Acceptable values include "grpc". Defaults to the value in
server_or_cluster_def, if specified. Otherwise defaults to "grpc".

		config: (Options.) A tf.ConfigProto that specifies default
configuration options for all sessions that run on this server.

		start: (Optional.) Boolean, indicating whether to start the server
after creating it. Defaults to True.

Raises:

tf.errors.OpError: Or one of its subclasses if an error occurs while
creating the TensorFlow server.

tf.train.Server.create_local_server(config=None, start=True) {#Server.create_local_server}

Creates a new single-process cluster running on the local host.

This method is a convenience wrapper for creating a
tf.train.Server with a tf.train.ServerDef that specifies a
single-process cluster containing a single task in a job called
"local".

Args:

		config: (Options.) A tf.ConfigProto that specifies default
configuration options for all sessions that run on this server.

		start: (Optional.) Boolean, indicating whether to start the server after
creating it. Defaults to True.

Returns:

A local tf.train.Server.

tf.train.Server.target {#Server.target}

Returns the target for a tf.Session to connect to this server.

To create a
tf.Session that
connects to this server, use the following snippet:

server = tf.train.Server(...)
with tf.Session(server.target):
 # ...

Returns:

A string containing a session target for this server.

tf.train.Server.server_def {#Server.server_def}

Returns the tf.train.ServerDef for this server.

Returns:

A tf.train.ServerDef protocol buffer that describes the configuration
of this server.

tf.train.Server.start() {#Server.start}

Starts this server.

Raises:

tf.errors.OpError: Or one of its subclasses if an error occurs while
starting the TensorFlow server.

tf.train.Server.join() {#Server.join}

Blocks until the server has shut down.

This method currently blocks forever.

Raises:

tf.errors.OpError: Or one of its subclasses if an error occurs while
joining the TensorFlow server.

class tf.train.Supervisor {#Supervisor}

A training helper that checkpoints models and computes summaries.

The Supervisor is a small wrapper around a Coordinator, a Saver,
and a SessionManager that takes care of common needs of TensorFlow
training programs.

Use for a single program

with tf.Graph().as_default():
 ...add operations to the graph...
 # Create a Supervisor that will checkpoint the model in '/tmp/mydir'.
 sv = Supervisor(logdir='/tmp/mydir')
 # Get a TensorFlow session managed by the supervisor.
 with sv.managed_session(FLAGS.master) as sess:
 # Use the session to train the graph.
 while not sv.should_stop():
 sess.run(<my_train_op>)

Within the with sv.managed_session() block all variables in the graph have
been initialized. In addition, a few services have been started to
checkpoint the model and add summaries to the event log.

If the program crashes and is restarted, the managed session automatically
reinitialize variables from the most recent checkpoint.

The supervisor is notified of any exception raised by one of the services.
After an exception is raised, should_stop() returns True. In that case
the training loop should also stop. This is why the training loop has to
check for sv.should_stop().

Exceptions that indicate that the training inputs have been exhausted,
tf.errors.OutOfRangeError, also cause sv.should_stop() to return True
but are not re-raised from the with block: they indicate a normal
termination.

Use for multiple replicas

To train with replicas you deploy the same program in a Cluster.
One of the tasks must be identified as the chief: the task that handles
initialization, checkpoints, summaries, and recovery. The other tasks
depend on the chief for these services.

The only change you have to do to the single program code is to indicate
if the program is running as the chief.

Choose a task as the chief. This could be based on server_def.task_index,
or job_def.name, or job_def.tasks. It's entirely up to the end user.
But there can be only one *chief*.
is_chief = (server_def.task_index == 0)
server = tf.train.Server(server_def)

with tf.Graph().as_default():
 ...add operations to the graph...
 # Create a Supervisor that uses log directory on a shared file system.
 # Indicate if you are the 'chief'
 sv = Supervisor(logdir='/shared_directory/...', is_chief=is_chief)
 # Get a Session in a TensorFlow server on the cluster.
 with sv.managed_session(server.target) as sess:
 # Use the session to train the graph.
 while not sv.should_stop():
 sess.run(<my_train_op>)

In the chief task, the Supervisor works exactly as in the first example
above. In the other tasks sv.managed_session() waits for the Model to have
been initialized before returning a session to the training code. The
non-chief tasks depend on the chief task for initializing the model.

If one of the tasks crashes and restarts, managed_session()
checks if the Model is initialized. If yes, it just creates a session and
returns it to the training code that proceeds normally. If the model needs
to be initialized, the chief task takes care of reinitializing it; the other
tasks just wait for the model to have been initialized.

NOTE: This modified program still works fine as a single program.
The single program marks itself as the chief.

What master string to use

Whether you are running on your machine or in the cluster you can use the
following values for the –master flag:

		Specifying '' requests an in-process session that does not use RPC.

		Specifying 'local' requests a session that uses the RPC-based
“Master interface” to run TensorFlow programs. See
tf.train.Server.create_local_server() for
details.

		Specifying 'grpc://hostname:port' requests a session that uses
the RPC interface to a specific , and also allows the in-process
master to access remote tensorflow workers. Often, it is
appropriate to pass server.target (for some tf.train.Server
named `server).

Advanced use

Launching additional services

managed_session() launches the Checkpoint and Summary services (threads).
If you need more services to run you can simply launch them in the block
controlled by managed_session().

Example: Start a thread to print losses. We want this thread to run
every 60 seconds, so we launch it with sv.loop().

...
sv = Supervisor(logdir='/tmp/mydir')
with sv.managed_session(FLAGS.master) as sess:
 sv.loop(60, print_loss, (sess))
 while not sv.should_stop():
 sess.run(my_train_op)

Launching fewer services

managed_session() launches the “summary” and “checkpoint” threads which use
either the optionally summary_op and saver passed to the constructor, or
default ones created automatically by the supervisor. If you want to run
your own summary and checkpointing logic, disable these services by passing
None to the summary_op and saver parameters.

Example: Create summaries manually every 100 steps in the chief.

Create a Supervisor with no automatic summaries.
sv = Supervisor(logdir='/tmp/mydir', is_chief=is_chief, summary_op=None)
As summary_op was None, managed_session() does not start the
summary thread.
with sv.managed_session(FLAGS.master) as sess:
 for step in xrange(1000000):
 if sv.should_stop():
 break
 if is_chief and step % 100 == 0:
 # Create the summary every 100 chief steps.
 sv.summary_computed(sess, sess.run(my_summary_op))
 else:
 # Train normally
 sess.run(my_train_op)

Custom model initialization

managed_session() only supports initializing the model by running an
init_op or restoring from the latest checkpoint. If you have special
initialization needs, see how to specify a local_init_op when creating the
supervisor. You can also use the SessionManager directly to create a
session and check if it could be initialized automatically.

tf.train.Supervisor.__init__(graph=None, ready_op=0, ready_for_local_init_op=0, is_chief=True, init_op=0, init_feed_dict=None, local_init_op=0, logdir=None, summary_op=0, saver=0, global_step=0, save_summaries_secs=120, save_model_secs=600, recovery_wait_secs=30, stop_grace_secs=120, checkpoint_basename='model.ckpt', session_manager=None, summary_writer=0, init_fn=None) {#Supervisor.init}

Create a Supervisor.

Args:

		graph: A Graph. The graph that the model will use. Defaults to the
default Graph. The supervisor may add operations to the graph before
creating a session, but the graph should not be modified by the caller
after passing it to the supervisor.

		ready_op: 1-D string Tensor. This tensor is evaluated by supervisors in
prepare_or_wait_for_session() to check if the model is ready to use.
The model is considered ready if it returns an empty array. Defaults to
the tensor returned from tf.report_uninitialized_variables() If
None, the model is not checked for readiness.

		ready_for_local_init_op: 1-D string Tensor. This tensor is evaluated by
supervisors in prepare_or_wait_for_session() to check if the model is
ready to run the local_init_op.
The model is considered ready if it returns an empty array. Defaults to
the tensor returned from
tf.report_uninitialized_variables(tf.all_variables()). If None, the
model is not checked for readiness before running local_init_op.

		is_chief: If True, create a chief supervisor in charge of initializing
and restoring the model. If False, create a supervisor that relies
on a chief supervisor for inits and restore.

		init_op: Operation. Used by chief supervisors to initialize the model
when it can not be recovered. Defaults to an Operation that
initializes all variables. If None, no initialization is done
automatically unless you pass a value for init_fn, see below.

		init_feed_dict: A dictionary that maps Tensor objects to feed values.
This feed dictionary will be used when init_op is evaluated.

		local_init_op: Operation. Used by all supervisors to run initializations
that should run for every new supervisor instance. By default these
are table initializers and initializers for local variables.
If None, no further per supervisor-instance initialization is
done automatically.

		logdir: A string. Optional path to a directory where to checkpoint the
model and log events for the visualizer. Used by chief supervisors.
The directory will be created if it does not exist.

		summary_op: An Operation that returns a Summary for the event logs.
Used by chief supervisors if a logdir was specified. Defaults to the
operation returned from merge_all_summaries(). If None, summaries are
not computed automatically.

		saver: A Saver object. Used by chief supervisors if a logdir was
specified. Defaults to the saved returned by Saver().
If None, the model is not saved automatically.

		global_step: An integer Tensor of size 1 that counts steps. The value
from ‘global_step’ is used in summaries and checkpoint filenames.
Default to the op named ‘global_step’ in the graph if it exists, is of
rank 1, size 1, and of type tf.int32 ot tf.int64. If None the global
step is not recorded in summaries and checkpoint files. Used by chief
supervisors if a logdir was specified.

		save_summaries_secs: Number of seconds between the computation of
summaries for the event log. Defaults to 120 seconds. Pass 0 to
disable summaries.

		save_model_secs: Number of seconds between the creation of model
checkpoints. Defaults to 600 seconds. Pass 0 to disable checkpoints.

		recovery_wait_secs: Number of seconds between checks that the model
is ready. Used by supervisors when waiting for a chief supervisor
to initialize or restore the model. Defaults to 30 seconds.

		stop_grace_secs: Grace period, in seconds, given to running threads to
stop when stop() is called. Defaults to 120 seconds.

		checkpoint_basename: The basename for checkpoint saving.

		session_manager: SessionManager, which manages Session creation and
recovery. If it is None, a default SessionManager will be created
with the set of arguments passed in for backwards compatibility.

		summary_writer: SummaryWriter to use or USE_DEFAULT. Can be None
to indicate that no summaries should be written.

		init_fn: Optional callable used to initialize the model. Called
after the optional init_op is called. The callable must accept one
argument, the session being initialized.

Returns:

A Supervisor.

tf.train.Supervisor.managed_session(master='', config=None, start_standard_services=True, close_summary_writer=True) {#Supervisor.managed_session}

Returns a context manager for a managed session.

This context manager creates and automatically recovers a session. It
optionally starts the standard services that handle checkpoints and
summaries. It monitors exceptions raised from the with block or from the
services and stops the supervisor as needed.

The context manager is typically used as follows:

def train():
 sv = tf.train.Supervisor(...)
 with sv.managed_session(<master>) as sess:
 for step in xrange(..):
 if sv.should_stop():
 break
 sess.run(<my training op>)
 ...do other things needed at each training step...

An exception raised from the with block or one of the service threads is
raised again when the block exits. This is done after stopping all threads
and closing the session. For example, an AbortedError exception, raised
in case of preemption of one of the workers in a distributed model, is
raised again when the block exits.

If you want to retry the training loop in case of preemption you can do it
as follows:

def main(...):
 while True
 try:
 train()
 except tf.errors.Aborted:
 pass

As a special case, exceptions used for control flow, such as
OutOfRangeError which reports that input queues are exhausted, are not
raised again from the with block: they indicate a clean termination of
the training loop and are considered normal termination.

Args:

		master: name of the TensorFlow master to use. See the tf.Session
constructor for how this is interpreted.

		config: Optional ConfigProto proto used to configure the session.
Passed as-is to create the session.

		start_standard_services: Whether to start the standard services,
such as checkpoint, summary and step counter.

		close_summary_writer: Whether to close the summary writer when
closing the session. Defaults to True.

Returns:

A context manager that yields a Session restored from the latest
checkpoint or initialized from scratch if not checkpoint exists. The
session is closed when the with block exits.

tf.train.Supervisor.prepare_or_wait_for_session(master='', config=None, wait_for_checkpoint=False, max_wait_secs=7200, start_standard_services=True) {#Supervisor.prepare_or_wait_for_session}

Make sure the model is ready to be used.

Create a session on ‘master’, recovering or initializing the model as
needed, or wait for a session to be ready. If running as the chief
and start_standard_service is set to True, also call the session
manager to start the standard services.

Args:

		master: name of the TensorFlow master to use. See the tf.Session
constructor for how this is interpreted.

		config: Optional ConfigProto proto used to configure the session,
which is passed as-is to create the session.

		wait_for_checkpoint: Whether we should wait for the availability of a
checkpoint before creating Session. Defaults to False.

		max_wait_secs: Maximum time to wait for the session to become available.

		start_standard_services: Whether to start the standard services and the
queue runners.

Returns:

A Session object that can be used to drive the model.

tf.train.Supervisor.start_standard_services(sess) {#Supervisor.start_standard_services}

Start the standard services for ‘sess’.

This starts services in the background. The services started depend
on the parameters to the constructor and may include:

		A Summary thread computing summaries every save_summaries_secs.

		A Checkpoint thread saving the model every save_model_secs.

		A StepCounter thread measure step time.

Args:

		sess: A Session.

Returns:

A list of threads that are running the standard services. You can use
the Supervisor’s Coordinator to join these threads with:
sv.coord.Join()

Raises:

		RuntimeError: If called with a non-chief Supervisor.

		ValueError: If not logdir was passed to the constructor as the
services need a log directory.

tf.train.Supervisor.start_queue_runners(sess, queue_runners=None) {#Supervisor.start_queue_runners}

Start threads for QueueRunners.

Note that the queue runners collected in the graph key QUEUE_RUNNERS
are already started automatically when you create a session with the
supervisor, so unless you have non-collected queue runners to start
you do not need to call this explicitly.

Args:

		sess: A Session.

		queue_runners: A list of QueueRunners. If not specified, we’ll use the
list of queue runners gathered in the graph under the key
GraphKeys.QUEUE_RUNNERS.

Returns:

The list of threads started for the QueueRunners.

tf.train.Supervisor.summary_computed(sess, summary, global_step=None) {#Supervisor.summary_computed}

Indicate that a summary was computed.

Args:

		sess: A Session object.

		summary: A Summary proto, or a string holding a serialized summary proto.

		global_step: Int. global step this summary is associated with. If None,
it will try to fetch the current step.

Raises:

		TypeError: if ‘summary’ is not a Summary proto or a string.

		RuntimeError: if the Supervisor was created without a logdir.

tf.train.Supervisor.stop(threads=None, close_summary_writer=True) {#Supervisor.stop}

Stop the services and the coordinator.

This does not close the session.

Args:

		threads: Optional list of threads to join with the coordinator. If
None, defaults to the threads running the standard services, the
threads started for QueueRunners, and the threads started by the
loop() method. To wait on additional threads, pass the
list in this parameter.

		close_summary_writer: Whether to close the summary_writer. Defaults to
True if the summary writer was created by the supervisor, False
otherwise.

tf.train.Supervisor.request_stop(ex=None) {#Supervisor.request_stop}

Request that the coordinator stop the threads.

See Coordinator.request_stop().

Args:

		ex: Optional Exception, or Python exc_info tuple as returned by
sys.exc_info(). If this is the first call to request_stop() the
corresponding exception is recorded and re-raised from join().

tf.train.Supervisor.should_stop() {#Supervisor.should_stop}

Check if the coordinator was told to stop.

See Coordinator.should_stop().

Returns:

True if the coordinator was told to stop, False otherwise.

tf.train.Supervisor.stop_on_exception() {#Supervisor.stop_on_exception}

Context handler to stop the supervisor when an exception is raised.

See Coordinator.stop_on_exception().

Returns:

A context handler.

tf.train.Supervisor.wait_for_stop() {#Supervisor.wait_for_stop}

Block waiting for the coordinator to stop.

Other Methods

tf.train.Supervisor.Loop(timer_interval_secs, target, args=None, kwargs=None) {#Supervisor.Loop}

Start a LooperThread that calls a function periodically.

If timer_interval_secs is None the thread calls target(*args, **kwargs)
repeatedly. Otherwise it calls it every timer_interval_secs
seconds. The thread terminates when a stop is requested.

The started thread is added to the list of threads managed by the supervisor
so it does not need to be passed to the stop() method.

Args:

		timer_interval_secs: Number. Time boundaries at which to call target.

		target: A callable object.

		args: Optional arguments to pass to target when calling it.

		kwargs: Optional keyword arguments to pass to target when calling it.

Returns:

The started thread.

tf.train.Supervisor.PrepareSession(master='', config=None, wait_for_checkpoint=False, max_wait_secs=7200, start_standard_services=True) {#Supervisor.PrepareSession}

Make sure the model is ready to be used.

Create a session on ‘master’, recovering or initializing the model as
needed, or wait for a session to be ready. If running as the chief
and start_standard_service is set to True, also call the session
manager to start the standard services.

Args:

		master: name of the TensorFlow master to use. See the tf.Session
constructor for how this is interpreted.

		config: Optional ConfigProto proto used to configure the session,
which is passed as-is to create the session.

		wait_for_checkpoint: Whether we should wait for the availability of a
checkpoint before creating Session. Defaults to False.

		max_wait_secs: Maximum time to wait for the session to become available.

		start_standard_services: Whether to start the standard services and the
queue runners.

Returns:

A Session object that can be used to drive the model.

tf.train.Supervisor.RequestStop(ex=None) {#Supervisor.RequestStop}

Request that the coordinator stop the threads.

See Coordinator.request_stop().

Args:

		ex: Optional Exception, or Python exc_info tuple as returned by
sys.exc_info(). If this is the first call to request_stop() the
corresponding exception is recorded and re-raised from join().

tf.train.Supervisor.ShouldStop() {#Supervisor.ShouldStop}

Check if the coordinator was told to stop.

See Coordinator.should_stop().

Returns:

True if the coordinator was told to stop, False otherwise.

tf.train.Supervisor.StartQueueRunners(sess, queue_runners=None) {#Supervisor.StartQueueRunners}

Start threads for QueueRunners.

Note that the queue runners collected in the graph key QUEUE_RUNNERS
are already started automatically when you create a session with the
supervisor, so unless you have non-collected queue runners to start
you do not need to call this explicitly.

Args:

		sess: A Session.

		queue_runners: A list of QueueRunners. If not specified, we’ll use the
list of queue runners gathered in the graph under the key
GraphKeys.QUEUE_RUNNERS.

Returns:

The list of threads started for the QueueRunners.

tf.train.Supervisor.StartStandardServices(sess) {#Supervisor.StartStandardServices}

Start the standard services for ‘sess’.

This starts services in the background. The services started depend
on the parameters to the constructor and may include:

		A Summary thread computing summaries every save_summaries_secs.

		A Checkpoint thread saving the model every save_model_secs.

		A StepCounter thread measure step time.

Args:

		sess: A Session.

Returns:

A list of threads that are running the standard services. You can use
the Supervisor’s Coordinator to join these threads with:
sv.coord.Join()

Raises:

		RuntimeError: If called with a non-chief Supervisor.

		ValueError: If not logdir was passed to the constructor as the
services need a log directory.

tf.train.Supervisor.Stop(threads=None, close_summary_writer=True) {#Supervisor.Stop}

Stop the services and the coordinator.

This does not close the session.

Args:

		threads: Optional list of threads to join with the coordinator. If
None, defaults to the threads running the standard services, the
threads started for QueueRunners, and the threads started by the
loop() method. To wait on additional threads, pass the
list in this parameter.

		close_summary_writer: Whether to close the summary_writer. Defaults to
True if the summary writer was created by the supervisor, False
otherwise.

tf.train.Supervisor.StopOnException() {#Supervisor.StopOnException}

Context handler to stop the supervisor when an exception is raised.

See Coordinator.stop_on_exception().

Returns:

A context handler.

tf.train.Supervisor.SummaryComputed(sess, summary, global_step=None) {#Supervisor.SummaryComputed}

Indicate that a summary was computed.

Args:

		sess: A Session object.

		summary: A Summary proto, or a string holding a serialized summary proto.

		global_step: Int. global step this summary is associated with. If None,
it will try to fetch the current step.

Raises:

		TypeError: if ‘summary’ is not a Summary proto or a string.

		RuntimeError: if the Supervisor was created without a logdir.

tf.train.Supervisor.WaitForStop() {#Supervisor.WaitForStop}

Block waiting for the coordinator to stop.

tf.train.Supervisor.coord {#Supervisor.coord}

Return the Coordinator used by the Supervisor.

The Coordinator can be useful if you want to run multiple threads
during your training.

Returns:

A Coordinator object.

tf.train.Supervisor.global_step {#Supervisor.global_step}

Return the global_step Tensor used by the supervisor.

Returns:

An integer Tensor for the global_step.

tf.train.Supervisor.init_feed_dict {#Supervisor.init_feed_dict}

Return the feed dictionary used when evaluating the init_op.

Returns:

A feed dictionary or None.

tf.train.Supervisor.init_op {#Supervisor.init_op}

Return the Init Op used by the supervisor.

Returns:

An Op or None.

tf.train.Supervisor.is_chief {#Supervisor.is_chief}

Return True if this is a chief supervisor.

Returns:

A bool.

tf.train.Supervisor.loop(timer_interval_secs, target, args=None, kwargs=None) {#Supervisor.loop}

Start a LooperThread that calls a function periodically.

If timer_interval_secs is None the thread calls target(*args, **kwargs)
repeatedly. Otherwise it calls it every timer_interval_secs
seconds. The thread terminates when a stop is requested.

The started thread is added to the list of threads managed by the supervisor
so it does not need to be passed to the stop() method.

Args:

		timer_interval_secs: Number. Time boundaries at which to call target.

		target: A callable object.

		args: Optional arguments to pass to target when calling it.

		kwargs: Optional keyword arguments to pass to target when calling it.

Returns:

The started thread.

tf.train.Supervisor.ready_for_local_init_op {#Supervisor.ready_for_local_init_op}

tf.train.Supervisor.ready_op {#Supervisor.ready_op}

Return the Ready Op used by the supervisor.

Returns:

An Op or None.

tf.train.Supervisor.save_model_secs {#Supervisor.save_model_secs}

Return the delay between checkpoints.

Returns:

A timestamp.

tf.train.Supervisor.save_path {#Supervisor.save_path}

Return the save path used by the supervisor.

Returns:

A string.

tf.train.Supervisor.save_summaries_secs {#Supervisor.save_summaries_secs}

Return the delay between summary computations.

Returns:

A timestamp.

tf.train.Supervisor.saver {#Supervisor.saver}

Return the Saver used by the supervisor.

Returns:

A Saver object.

tf.train.Supervisor.session_manager {#Supervisor.session_manager}

Return the SessionManager used by the Supervisor.

Returns:

A SessionManager object.

tf.train.Supervisor.summary_op {#Supervisor.summary_op}

Return the Summary Tensor used by the chief supervisor.

Returns:

A string Tensor for the summary or None.

tf.train.Supervisor.summary_writer {#Supervisor.summary_writer}

Return the SummaryWriter used by the chief supervisor.

Returns:

A SummaryWriter.

class tf.train.SessionManager {#SessionManager}

Training helper that restores from checkpoint and creates session.

This class is a small wrapper that takes care of session creation and
checkpoint recovery. It also provides functions that to facilitate
coordination among multiple training threads or processes.

		Checkpointing trained variables as the training progresses.

		Initializing variables on startup, restoring them from the most recent
checkpoint after a crash, or wait for checkpoints to become available.

Usage:

with tf.Graph().as_default():
 ...add operations to the graph...
 # Create a SessionManager that will checkpoint the model in '/tmp/mydir'.
 sm = SessionManager()
 sess = sm.prepare_session(master, init_op, saver, checkpoint_dir)
 # Use the session to train the graph.
 while True:
 sess.run(<my_train_op>)

prepare_session() initializes or restores a model. It requires init_op
and saver as an argument.

A second process could wait for the model to be ready by doing the following:

with tf.Graph().as_default():
 ...add operations to the graph...
 # Create a SessionManager that will wait for the model to become ready.
 sm = SessionManager()
 sess = sm.wait_for_session(master)
 # Use the session to train the graph.
 while True:
 sess.run(<my_train_op>)

wait_for_session() waits for a model to be initialized by other processes.

tf.train.SessionManager.__init__(local_init_op=None, ready_op=None, ready_for_local_init_op=None, graph=None, recovery_wait_secs=30) {#SessionManager.init}

Creates a SessionManager.

The local_init_op is an Operation that is run always after a new session
was created. If None, this step is skipped.

The ready_op is an Operation used to check if the model is ready. The
model is considered ready if that operation returns an empty string tensor.
If the operation returns non empty string tensor, the elements are
concatenated and used to indicate to the user why the model is not ready.

The ready_for_local_init_op is an Operation used to check if the model
is ready to run local_init_op. The model is considered ready if that
operation returns an empty string tensor. If the operation returns non empty
string tensor, the elements are concatenated and used to indicate to the
user why the model is not ready.

If ready_op is None, the model is not checked for readiness.

recovery_wait_secs is the number of seconds between checks that
the model is ready. It is used by processes to wait for a model to
be initialized or restored. Defaults to 30 seconds.

Args:

		local_init_op: An Operation run immediately after session creation.
Usually used to initialize tables and local variables.

		ready_op: An Operation to check if the model is initialized.

		ready_for_local_init_op: An Operation to check if the model is ready
to run local_init_op.

		graph: The Graph that the model will use.

		recovery_wait_secs: Seconds between checks for the model to be ready.

Raises:

		ValueError: If ready_for_local_init_op is not None but local_init_op is
None

tf.train.SessionManager.prepare_session(master, init_op=None, saver=None, checkpoint_dir=None, wait_for_checkpoint=False, max_wait_secs=7200, config=None, init_feed_dict=None, init_fn=None) {#SessionManager.prepare_session}

Creates a Session. Makes sure the model is ready to be used.

Creates a Session on ‘master’. If a saver object is passed in, and
checkpoint_dir points to a directory containing valid checkpoint
files, then it will try to recover the model from checkpoint. If
no checkpoint files are available, and wait_for_checkpoint is
True, then the process would check every recovery_wait_secs,
up to max_wait_secs, for recovery to succeed.

If the model cannot be recovered successfully then it is initialized by
either running the provided init_op, or calling the provided init_fn.
The local_init_op is also run after init_op and init_fn, regardless of
whether the model was recovered successfully, but only if
ready_for_local_init_op passes.

It is an error if the model cannot be recovered and no init_op
or init_fn or local_init_op are passed.

Args:

		master: String representation of the TensorFlow master to use.

		init_op: Optional Operation used to initialize the model.

		saver: A Saver object used to restore a model.

		checkpoint_dir: Path to the checkpoint files.

		wait_for_checkpoint: Whether to wait for checkpoint to become available.

		max_wait_secs: Maximum time to wait for checkpoints to become available.

		config: Optional ConfigProto proto used to configure the session.

		init_feed_dict: Optional dictionary that maps Tensor objects to feed
values. This feed dictionary is passed to the session run() call when
running the init op.

		init_fn: Optional callable used to initialize the model. Called after the
optional init_op is called. The callable must accept one argument,
the session being initialized.

Returns:

A Session object that can be used to drive the model.

Raises:

		RuntimeError: If the model cannot be initialized or recovered.

tf.train.SessionManager.recover_session(master, saver=None, checkpoint_dir=None, wait_for_checkpoint=False, max_wait_secs=7200, config=None) {#SessionManager.recover_session}

Creates a Session, recovering if possible.

Creates a new session on ‘master’. If the session is not initialized
and can be recovered from a checkpoint, recover it.

Args:

		master: String representation of the TensorFlow master to use.

		saver: A Saver object used to restore a model.

		checkpoint_dir: Path to the checkpoint files.

		wait_for_checkpoint: Whether to wait for checkpoint to become available.

		max_wait_secs: Maximum time to wait for checkpoints to become available.

		config: Optional ConfigProto proto used to configure the session.

Returns:

A pair (sess, initialized) where ‘initialized’ is True if
the session could be recovered and initialized, False otherwise.

tf.train.SessionManager.wait_for_session(master, config=None, max_wait_secs=inf) {#SessionManager.wait_for_session}

Creates a new Session and waits for model to be ready.

Creates a new Session on ‘master’. Waits for the model to be
initialized or recovered from a checkpoint. It’s expected that
another thread or process will make the model ready, and that this
is intended to be used by threads/processes that participate in a
distributed training configuration where a different thread/process
is responsible for initializing or recovering the model being trained.

NB: The amount of time this method waits for the session is bounded
by max_wait_secs. By default, this function will wait indefinitely.

Args:

		master: String representation of the TensorFlow master to use.

		config: Optional ConfigProto proto used to configure the session.

		max_wait_secs: Maximum time to wait for the session to become available.

Returns:

A Session. May be None if the operation exceeds the timeout
specified by config.operation_timeout_in_ms.

Raises:

tf.DeadlineExceededError: if the session is not available after
max_wait_secs.

class tf.train.ClusterSpec {#ClusterSpec}

Represents a cluster as a set of “tasks”, organized into “jobs”.

A tf.train.ClusterSpec represents the set of processes that
participate in a distributed TensorFlow computation. Every
tf.train.Server is constructed in a particular cluster.

To create a cluster with two jobs and five tasks, you specify the
mapping from job names to lists of network addresses (typically
hostname-port pairs).

cluster = tf.train.ClusterSpec({"worker": ["worker0.example.com:2222",
 "worker1.example.com:2222",
 "worker2.example.com:2222"],
 "ps": ["ps0.example.com:2222",
 "ps1.example.com:2222"]})

Each job may also be specified as a sparse mapping from task indices
to network addresses. This enables a server to be configured without
needing to know the identity of (for example) all other worker
tasks:

cluster = tf.train.ClusterSpec({"worker": {1: "worker1.example.com:2222"},
 "ps": ["ps0.example.com:2222",
 "ps1.example.com:2222"]})

tf.train.ClusterSpec.as_cluster_def() {#ClusterSpec.as_cluster_def}

Returns a tf.train.ClusterDef protocol buffer based on this cluster.

tf.train.ClusterSpec.as_dict() {#ClusterSpec.as_dict}

Returns a dictionary from job names to their tasks.

For each job, if the task index space is dense, the corresponding
value will be a list of network addresses; otherwise it will be a
dictionary mapping (sparse) task indices to the corresponding
addresses.

Returns:

A dictionary mapping job names to lists or dictionaries
describing the tasks in those jobs.

Other Methods

tf.train.ClusterSpec.__bool__() {#ClusterSpec.bool}

tf.train.ClusterSpec.__eq__(other) {#ClusterSpec.eq}

tf.train.ClusterSpec.__init__(cluster) {#ClusterSpec.init}

Creates a ClusterSpec.

Args:

		cluster: A dictionary mapping one or more job names to (i) a
list of network addresses, or (ii) a dictionary mapping integer
task indices to network addresses; or a tf.train.ClusterDef
protocol buffer.

Raises:

		TypeError: If cluster is not a dictionary mapping strings to lists
of strings, and not a tf.train.ClusterDef protobuf.

tf.train.ClusterSpec.__ne__(other) {#ClusterSpec.ne}

tf.train.ClusterSpec.__nonzero__() {#ClusterSpec.nonzero}

tf.train.ClusterSpec.job_tasks(job_name) {#ClusterSpec.job_tasks}

Returns a mapping from task ID to address in the given job.

NOTE: For backwards compatibility, this method returns a list. If
the given job was defined with a sparse set of task indices, the
length of this list may not reflect the number of tasks defined in
this job. Use the num_tasks() method
to find the number of tasks defined in a particular job.

Args:

		job_name: The string name of a job in this cluster.

Returns:

A list of task addresses, where the index in the list
corresponds to the task index of each task. The list may contain
None if the job was defined with a sparse set of task indices.

Raises:

		ValueError: If job_name does not name a job in this cluster.

tf.train.ClusterSpec.jobs {#ClusterSpec.jobs}

Returns a list of job names in this cluster.

Returns:

A list of strings, corresponding to the names of jobs in this cluster.

tf.train.ClusterSpec.num_tasks(job_name) {#ClusterSpec.num_tasks}

Returns the number of tasks defined in the given job.

Args:

		job_name: The string name of a job in this cluster.

Returns:

The number of tasks defined in the given job.

Raises:

		ValueError: If job_name does not name a job in this cluster.

tf.train.ClusterSpec.task_address(job_name, task_index) {#ClusterSpec.task_address}

Returns the address of the given task in the given job.

Args:

		job_name: The string name of a job in this cluster.

		task_index: A non-negative integer.

Returns:

The address of the given task in the given job.

Raises:

		ValueError: If job_name does not name a job in this cluster,
or no task with index task_index is defined in that job.

tf.train.ClusterSpec.task_indices(job_name) {#ClusterSpec.task_indices}

Returns a list of valid task indices in the given job.

Args:

		job_name: The string name of a job in this cluster.

Returns:

A list of valid task indices in the given job.

Raises:

		ValueError: If job_name does not name a job in this cluster,
or no task with index task_index is defined in that job.

tf.train.replica_device_setter(ps_tasks=0, ps_device='/job:ps', worker_device='/job:worker', merge_devices=True, cluster=None, ps_ops=None) {#replica_device_setter}

Return a device function to use when building a Graph for replicas.

Device Functions are used in with tf.device(device_function): statement to
automatically assign devices to Operation objects as they are constructed,
Device constraints are added from the inner-most context first, working
outwards. The merging behavior adds constraints to fields that are yet unset
by a more inner context. Currently the fields are (job, task, cpu/gpu).

If cluster is None, and ps_tasks is 0, the returned function is a no-op.

For example,

To build a cluster with two ps jobs on hosts ps0 and ps1, and 3 worker
jobs on hosts worker0, worker1 and worker2.
cluster_spec = {
 "ps": ["ps0:2222", "ps1:2222"],
 "worker": ["worker0:2222", "worker1:2222", "worker2:2222"]}
with tf.device(tf.replica_device_setter(cluster=cluster_spec)):
 # Build your graph
 v1 = tf.Variable(...) # assigned to /job:ps/task:0
 v2 = tf.Variable(...) # assigned to /job:ps/task:1
 v3 = tf.Variable(...) # assigned to /job:ps/task:0
Run compute

Args:

		ps_tasks: Number of tasks in the ps job.

		ps_device: String. Device of the ps job. If empty no ps job is used.
Defaults to ps.

		worker_device: String. Device of the worker job. If empty no worker
job is used.

		merge_devices: Boolean. If True, merges or only sets a device if the
device constraint is completely unset. merges device specification rather
than overriding them.

		cluster: ClusterDef proto or ClusterSpec.

		ps_ops: List of Operation objects that need to be placed on ps devices.

Returns:

A function to pass to tf.device().

Raises:

TypeError if cluster is not a dictionary or ClusterDef protocol buffer.

Summary Operations

The following ops output
Summary [https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto]
protocol buffers as serialized string tensors.

You can fetch the output of a summary op in a session, and pass it to
a SummaryWriter to append it
to an event file. Event files contain
Event [https://www.tensorflow.org/code/tensorflow/core/util/event.proto]
protos that can contain Summary protos along with the timestamp and
step. You can then use TensorBoard to visualize the contents of the
event files. See TensorBoard and
Summaries for more
details.

tf.scalar_summary(tags, values, collections=None, name=None) {#scalar_summary}

Outputs a Summary protocol buffer with scalar values.

The input tags and values must have the same shape. The generated
summary has a summary value for each tag-value pair in tags and values.

Args:

		tags: A string Tensor. Tags for the summaries.

		values: A real numeric Tensor. Values for the summaries.

		collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to [GraphKeys.SUMMARIES].

		name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized Summary protocol
buffer.

tf.image_summary(tag, tensor, max_images=3, collections=None, name=None) {#image_summary}

Outputs a Summary protocol buffer with images.

The summary has up to max_images summary values containing images. The
images are built from tensor which must be 4-D with shape [batch_size, height, width, channels] and where channels can be:

		1: tensor is interpreted as Grayscale.

		3: tensor is interpreted as RGB.

		4: tensor is interpreted as RGBA.

The images have the same number of channels as the input tensor. For float
input, the values are normalized one image at a time to fit in the range
[0, 255]. uint8 values are unchanged. The op uses two different
normalization algorithms:

		If the input values are all positive, they are rescaled so the largest one
is 255.

		If any input value is negative, the values are shifted so input value 0.0
is at 127. They are then rescaled so that either the smallest value is 0,
or the largest one is 255.

The tag argument is a scalar Tensor of type string. It is used to
build the tag of the summary values:

		If max_images is 1, the summary value tag is ‘tag/image’.

		If max_images is greater than 1, the summary value tags are
generated sequentially as ‘tag/image/0’, ‘tag/image/1’, etc.

Args:

		tag: A scalar Tensor of type string. Used to build the tag
of the summary values.

		tensor: A 4-D uint8 or float32 Tensor of shape [batch_size, height, width, channels] where channels is 1, 3, or 4.

		max_images: Max number of batch elements to generate images for.

		collections: Optional list of ops.GraphKeys. The collections to add the
summary to. Defaults to [ops.GraphKeys.SUMMARIES]

		name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized Summary protocol
buffer.

tf.audio_summary(tag, tensor, sample_rate, max_outputs=3, collections=None, name=None) {#audio_summary}

Outputs a Summary protocol buffer with audio.

The summary has up to max_outputs summary values containing audio. The
audio is built from tensor which must be 3-D with shape [batch_size, frames, channels] or 2-D with shape [batch_size, frames]. The values are
assumed to be in the range of [-1.0, 1.0] with a sample rate of
sample_rate.

The tag argument is a scalar Tensor of type string. It is used to
build the tag of the summary values:

		If max_outputs is 1, the summary value tag is ‘tag/audio’.

		If max_outputs is greater than 1, the summary value tags are
generated sequentially as ‘tag/audio/0’, ‘tag/audio/1’, etc.

Args:

		tag: A scalar Tensor of type string. Used to build the tag
of the summary values.

		tensor: A 3-D float32 Tensor of shape [batch_size, frames, channels]
or a 2-D float32 Tensor of shape [batch_size, frames].

		sample_rate: The sample rate of the signal in hertz.

		max_outputs: Max number of batch elements to generate audio for.

		collections: Optional list of ops.GraphKeys. The collections to add the
summary to. Defaults to [ops.GraphKeys.SUMMARIES]

		name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized Summary protocol
buffer.

tf.histogram_summary(tag, values, collections=None, name=None) {#histogram_summary}

Outputs a Summary protocol buffer with a histogram.

The generated
Summary [https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto]
has one summary value containing a histogram for values.

This op reports an InvalidArgument error if any value is not finite.

Args:

		tag: A string Tensor. 0-D. Tag to use for the summary value.

		values: A real numeric Tensor. Any shape. Values to use to
build the histogram.

		collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to [GraphKeys.SUMMARIES].

		name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized Summary protocol
buffer.

tf.nn.zero_fraction(value, name=None) {#zero_fraction}

Returns the fraction of zeros in value.

If value is empty, the result is nan.

This is useful in summaries to measure and report sparsity. For example,

z = tf.Relu(...)
summ = tf.scalar_summary('sparsity', tf.nn.zero_fraction(z))

Args:

		value: A tensor of numeric type.

		name: A name for the operation (optional).

Returns:

The fraction of zeros in value, with type float32.

tf.merge_summary(inputs, collections=None, name=None) {#merge_summary}

Merges summaries.

This op creates a
Summary [https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto]
protocol buffer that contains the union of all the values in the input
summaries.

When the Op is run, it reports an InvalidArgument error if multiple values
in the summaries to merge use the same tag.

Args:

		inputs: A list of string Tensor objects containing serialized Summary
protocol buffers.

		collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to [GraphKeys.SUMMARIES].

		name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized Summary protocol
buffer resulting from the merging.

tf.merge_all_summaries(key='summaries') {#merge_all_summaries}

Merges all summaries collected in the default graph.

Args:

		key: GraphKey used to collect the summaries. Defaults to
GraphKeys.SUMMARIES.

Returns:

If no summaries were collected, returns None. Otherwise returns a scalar
Tensor of type string containing the serialized Summary protocol
buffer resulting from the merging.

Adding Summaries to Event Files

See Summaries and
TensorBoard for an
overview of summaries, event files, and visualization in TensorBoard.

class tf.train.SummaryWriter {#SummaryWriter}

Writes Summary protocol buffers to event files.

The SummaryWriter class provides a mechanism to create an event file in a
given directory and add summaries and events to it. The class updates the
file contents asynchronously. This allows a training program to call methods
to add data to the file directly from the training loop, without slowing down
training.

tf.train.SummaryWriter.__init__(logdir, graph=None, max_queue=10, flush_secs=120, graph_def=None) {#SummaryWriter.init}

Creates a SummaryWriter and an event file.

On construction the summary writer creates a new event file in logdir.
This event file will contain Event protocol buffers constructed when you
call one of the following functions: add_summary(), add_session_log(),
add_event(), or add_graph().

If you pass a Graph to the constructor it is added to
the event file. (This is equivalent to calling add_graph() later).

TensorBoard will pick the graph from the file and display it graphically so
you can interactively explore the graph you built. You will usually pass
the graph from the session in which you launched it:

...create a graph...
Launch the graph in a session.
sess = tf.Session()
Create a summary writer, add the 'graph' to the event file.
writer = tf.train.SummaryWriter(<some-directory>, sess.graph)

The other arguments to the constructor control the asynchronous writes to
the event file:

		flush_secs: How often, in seconds, to flush the added summaries
and events to disk.

		max_queue: Maximum number of summaries or events pending to be
written to disk before one of the ‘add’ calls block.

Args:

		logdir: A string. Directory where event file will be written.

		graph: A Graph object, such as sess.graph.

		max_queue: Integer. Size of the queue for pending events and summaries.

		flush_secs: Number. How often, in seconds, to flush the
pending events and summaries to disk.

		graph_def: DEPRECATED: Use the graph argument instead.

tf.train.SummaryWriter.add_summary(summary, global_step=None) {#SummaryWriter.add_summary}

Adds a Summary protocol buffer to the event file.

This method wraps the provided summary in an Event protocol buffer
and adds it to the event file.

You can pass the result of evaluating any summary op, using
Session.run() or
Tensor.eval(), to this
function. Alternatively, you can pass a tf.Summary protocol
buffer that you populate with your own data. The latter is
commonly done to report evaluation results in event files.

Args:

		summary: A Summary protocol buffer, optionally serialized as a string.

		global_step: Number. Optional global step value to record with the
summary.

tf.train.SummaryWriter.add_session_log(session_log, global_step=None) {#SummaryWriter.add_session_log}

Adds a SessionLog protocol buffer to the event file.

This method wraps the provided session in an Event procotol buffer
and adds it to the event file.

Args:

		session_log: A SessionLog protocol buffer.

		global_step: Number. Optional global step value to record with the
summary.

tf.train.SummaryWriter.add_event(event) {#SummaryWriter.add_event}

Adds an event to the event file.

Args:

		event: An Event protocol buffer.

tf.train.SummaryWriter.add_graph(graph, global_step=None, graph_def=None) {#SummaryWriter.add_graph}

Adds a Graph to the event file.

The graph described by the protocol buffer will be displayed by
TensorBoard. Most users pass a graph in the constructor instead.

Args:

		graph: A Graph object, such as sess.graph.

		global_step: Number. Optional global step counter to record with the
graph.

		graph_def: DEPRECATED. Use the graph parameter instead.

Raises:

		ValueError: If both graph and graph_def are passed to the method.

tf.train.SummaryWriter.add_run_metadata(run_metadata, tag, global_step=None) {#SummaryWriter.add_run_metadata}

Adds a metadata information for a single session.run() call.

Args:

		run_metadata: A RunMetadata protobuf object.

		tag: The tag name for this metadata.

		global_step: Number. Optional global step counter to record with the
StepStats.

Raises:

		ValueError: If the provided tag was already used for this type of event.

tf.train.SummaryWriter.get_logdir() {#SummaryWriter.get_logdir}

Returns the directory where event file will be written.

tf.train.SummaryWriter.flush() {#SummaryWriter.flush}

Flushes the event file to disk.

Call this method to make sure that all pending events have been written to
disk.

tf.train.SummaryWriter.close() {#SummaryWriter.close}

Flushes the event file to disk and close the file.

Call this method when you do not need the summary writer anymore.

Other Methods

tf.train.SummaryWriter.reopen() {#SummaryWriter.reopen}

Reopens the summary writer.

Can be called after close() to add more events in the same directory.
The events will go into a new events file.

Does nothing if the summary writer was not closed.

tf.train.summary_iterator(path) {#summary_iterator}

An iterator for reading Event protocol buffers from an event file.

You can use this function to read events written to an event file. It returns
a Python iterator that yields Event protocol buffers.

Example: Print the contents of an events file.

for e in tf.train.summary_iterator(path to events file):
 print(e)

Example: Print selected summary values.

This example supposes that the events file contains summaries with a
summary value tag 'loss'. These could have been added by calling
`add_summary()`, passing the output of a scalar summary op created with
with: `tf.scalar_summary(['loss'], loss_tensor)`.
for e in tf.train.summary_iterator(path to events file):
 for v in e.summary.value:
 if v.tag == 'loss':
 print(v.simple_value)

See the protocol buffer definitions of
Event [https://www.tensorflow.org/code/tensorflow/core/util/event.proto]
and
Summary [https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto]
for more information about their attributes.

Args:

		path: The path to an event file created by a SummaryWriter.

Yields:

Event protocol buffers.

Training utilities

tf.train.global_step(sess, global_step_tensor) {#global_step}

Small helper to get the global step.

Creates a variable to hold the global_step.
global_step_tensor = tf.Variable(10, trainable=False, name='global_step')
Creates a session.
sess = tf.Session()
Initializes the variable.
sess.run(global_step_tensor.initializer)
print('global_step: %s' % tf.train.global_step(sess, global_step_tensor))

global_step: 10

Args:

		sess: A TensorFlow Session object.

		global_step_tensor: Tensor or the name of the operation that contains
the global step.

Returns:

The global step value.

tf.train.write_graph(graph_def, logdir, name, as_text=True) {#write_graph}

Writes a graph proto to a file.

The graph is written as a binary proto unless as_text is True.

v = tf.Variable(0, name='my_variable')
sess = tf.Session()
tf.train.write_graph(sess.graph_def, '/tmp/my-model', 'train.pbtxt')

Args:

		graph_def: A GraphDef protocol buffer.

		logdir: Directory where to write the graph. This can refer to remote
filesystems, such as Google Cloud Storage (GCS).

		name: Filename for the graph.

		as_text: If True, writes the graph as an ASCII proto.

Other Functions and Classes

class tf.train.LooperThread {#LooperThread}

A thread that runs code repeatedly, optionally on a timer.

This thread class is intended to be used with a Coordinator. It repeatedly
runs code specified either as target and args or by the run_loop()
method.

Before each run the thread checks if the coordinator has requested stop. In
that case the looper thread terminates immediately.

If the code being run raises an exception, that exception is reported to the
coordinator and the thread terminates. The coordinator will then request all
the other threads it coordinates to stop.

You typically pass looper threads to the supervisor Join() method.

tf.train.LooperThread.__init__(coord, timer_interval_secs, target=None, args=None, kwargs=None) {#LooperThread.init}

Create a LooperThread.

Args:

		coord: A Coordinator.

		timer_interval_secs: Time boundaries at which to call Run(), or None
if it should be called back to back.

		target: Optional callable object that will be executed in the thread.

		args: Optional arguments to pass to target when calling it.

		kwargs: Optional keyword arguments to pass to target when calling it.

Raises:

		ValueError: If one of the arguments is invalid.

tf.train.LooperThread.__repr__() {#LooperThread.repr}

tf.train.LooperThread.daemon {#LooperThread.daemon}

A boolean value indicating whether this thread is a daemon thread (True) or not (False).

This must be set before start() is called, otherwise RuntimeError is
raised. Its initial value is inherited from the creating thread; the
main thread is not a daemon thread and therefore all threads created in
the main thread default to daemon = False.

The entire Python program exits when no alive non-daemon threads are
left.

tf.train.LooperThread.getName() {#LooperThread.getName}

tf.train.LooperThread.ident {#LooperThread.ident}

Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the thread.get_ident() function. Thread
identifiers may be recycled when a thread exits and another thread is
created. The identifier is available even after the thread has exited.

tf.train.LooperThread.isAlive() {#LooperThread.isAlive}

Return whether the thread is alive.

This method returns True just before the run() method starts until just
after the run() method terminates. The module function enumerate()
returns a list of all alive threads.

tf.train.LooperThread.isDaemon() {#LooperThread.isDaemon}

tf.train.LooperThread.is_alive() {#LooperThread.is_alive}

Return whether the thread is alive.

This method returns True just before the run() method starts until just
after the run() method terminates. The module function enumerate()
returns a list of all alive threads.

tf.train.LooperThread.join(timeout=None) {#LooperThread.join}

Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is
called terminates – either normally or through an unhandled exception
or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof). As join() always returns None, you must call
isAlive() after join() to decide whether a timeout happened – if the
thread is still alive, the join() call timed out.

When the timeout argument is not present or None, the operation will
block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current
thread as that would cause a deadlock. It is also an error to join() a
thread before it has been started and attempts to do so raises the same
exception.

tf.train.LooperThread.loop(coord, timer_interval_secs, target, args=None, kwargs=None) {#LooperThread.loop}

Start a LooperThread that calls a function periodically.

If timer_interval_secs is None the thread calls target(args)
repeatedly. Otherwise target(args) is called every timer_interval_secs
seconds. The thread terminates when a stop of the coordinator is
requested.

Args:

		coord: A Coordinator.

		timer_interval_secs: Number. Time boundaries at which to call target.

		target: A callable object.

		args: Optional arguments to pass to target when calling it.

		kwargs: Optional keyword arguments to pass to target when calling it.

Returns:

The started thread.

tf.train.LooperThread.name {#LooperThread.name}

A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name. The
initial name is set by the constructor.

tf.train.LooperThread.run() {#LooperThread.run}

tf.train.LooperThread.run_loop() {#LooperThread.run_loop}

Called at ‘timer_interval_secs’ boundaries.

tf.train.LooperThread.setDaemon(daemonic) {#LooperThread.setDaemon}

tf.train.LooperThread.setName(name) {#LooperThread.setName}

tf.train.LooperThread.start() {#LooperThread.start}

Start the thread’s activity.

It must be called at most once per thread object. It arranges for the
object’s run() method to be invoked in a separate thread of control.

This method will raise a RuntimeError if called more than once on the
same thread object.

tf.train.LooperThread.start_loop() {#LooperThread.start_loop}

Called when the thread starts.

tf.train.LooperThread.stop_loop() {#LooperThread.stop_loop}

Called when the thread stops.

tf.train.do_quantize_training_on_graphdef(input_graph, num_bits) {#do_quantize_training_on_graphdef}

tf.train.generate_checkpoint_state_proto(save_dir, model_checkpoint_path, all_model_checkpoint_paths=None) {#generate_checkpoint_state_proto}

Generates a checkpoint state proto.

Args:

		save_dir: Directory where the model was saved.

		model_checkpoint_path: The checkpoint file.

		all_model_checkpoint_paths: List of strings. Paths to all not-yet-deleted
checkpoints, sorted from oldest to newest. If this is a non-empty list,
the last element must be equal to model_checkpoint_path. These paths
are also saved in the CheckpointState proto.

Returns:

CheckpointState proto with model_checkpoint_path and
all_model_checkpoint_paths updated to either absolute paths or
relative paths to the current save_dir.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.image.adjust_hue.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.adjust_hue(image, delta, name=None) {#adjust_hue}

Adjust hue of an RGB image.

This is a convenience method that converts an RGB image to float
representation, converts it to HSV, add an offset to the hue channel, converts
back to RGB and then back to the original data type. If several adjustments
are chained it is advisable to minimize the number of redundant conversions.

image is an RGB image. The image hue is adjusted by converting the
image to HSV and rotating the hue channel (H) by
delta. The image is then converted back to RGB.

delta must be in the interval [-1, 1].

Args:

		image: RGB image or images. Size of the last dimension must be 3.

		delta: float. How much to add to the hue channel.

		name: A name for this operation (optional).

Returns:

Adjusted image(s), same shape and DType as image.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.sparse_reorder.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_reorder(sp_input, name=None) {#sparse_reorder}

Reorders a SparseTensor into the canonical, row-major ordering.

Note that by convention, all sparse ops preserve the canonical ordering
along increasing dimension number. The only time ordering can be violated
is during manual manipulation of the indices and values to add entries.

Reordering does not affect the shape of the SparseTensor.

For example, if sp_input has shape [4, 5] and indices / values:

[0, 3]: b
[0, 1]: a
[3, 1]: d
[2, 0]: c

then the output will be a SparseTensor of shape [4, 5] and
indices / values:

[0, 1]: a
[0, 3]: b
[2, 0]: c
[3, 1]: d

Args:

		sp_input: The input SparseTensor.

		name: A name prefix for the returned tensors (optional)

Returns:

A SparseTensor with the same shape and non-empty values, but in
canonical ordering.

Raises:

		TypeError: If sp_input is not a SparseTensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/nn.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Neural Network

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Activation Functions.

The activation ops provide different types of nonlinearities for use in neural
networks. These include smooth nonlinearities (sigmoid, tanh, elu,
softplus, and softsign), continuous but not everywhere differentiable
functions (relu, relu6, crelu and relu_x), and random regularization
(dropout).

All activation ops apply componentwise, and produce a tensor of the same
shape as the input tensor.

tf.nn.relu(features, name=None) {#relu}

Computes rectified linear: max(features, 0).

Args:

		features: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as features.

tf.nn.relu6(features, name=None) {#relu6}

Computes Rectified Linear 6: min(max(features, 0), 6).

Args:

		features: A Tensor with type float, double, int32, int64, uint8,
int16, or int8.

		name: A name for the operation (optional).

Returns:

A Tensor with the same type as features.

tf.nn.crelu(features, name=None) {#crelu}

Computes Concatenated ReLU.

Concatenates a ReLU which selects only the positive part of the activation
with a ReLU which selects only the negative part of the activation.
Note that as a result this non-linearity doubles the depth of the activations.
Source: https://arxiv.org/abs/1603.05201

Args:

		features: A Tensor with type float, double, int32, int64, uint8,
int16, or int8.

		name: A name for the operation (optional).

Returns:

A Tensor with the same type as features.

tf.nn.elu(features, name=None) {#elu}

Computes exponential linear: exp(features) - 1 if < 0, features otherwise.

See Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
 [http://arxiv.org/abs/1511.07289]

Args:

		features: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as features.

tf.nn.softplus(features, name=None) {#softplus}

Computes softplus: log(exp(features) + 1).

Args:

		features: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as features.

tf.nn.softsign(features, name=None) {#softsign}

Computes softsign: features / (abs(features) + 1).

Args:

		features: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as features.

tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None) {#dropout}

Computes dropout.

With probability keep_prob, outputs the input element scaled up by
1 / keep_prob, otherwise outputs 0. The scaling is so that the expected
sum is unchanged.

By default, each element is kept or dropped independently. If noise_shape
is specified, it must be
broadcastable [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]
to the shape of x, and only dimensions with noise_shape[i] == shape(x)[i]
will make independent decisions. For example, if shape(x) = [k, l, m, n]
and noise_shape = [k, 1, 1, n], each batch and channel component will be
kept independently and each row and column will be kept or not kept together.

Args:

		x: A tensor.

		keep_prob: A scalar Tensor with the same type as x. The probability
that each element is kept.

		noise_shape: A 1-D Tensor of type int32, representing the
shape for randomly generated keep/drop flags.

		seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

		name: A name for this operation (optional).

Returns:

A Tensor of the same shape of x.

Raises:

		ValueError: If keep_prob is not in (0, 1].

tf.nn.bias_add(value, bias, data_format=None, name=None) {#bias_add}

Adds bias to value.

This is (mostly) a special case of tf.add where bias is restricted to 1-D.
Broadcasting is supported, so value may have any number of dimensions.
Unlike tf.add, the type of bias is allowed to differ from value in the
case where both types are quantized.

Args:

		value: A Tensor with type float, double, int64, int32, uint8,
int16, int8, complex64, or complex128.

		bias: A 1-D Tensor with size matching the last dimension of value.
Must be the same type as value unless value is a quantized type,
in which case a different quantized type may be used.

		data_format: A string. ‘NHWC’ and ‘NCHW’ are supported.

		name: A name for the operation (optional).

Returns:

A Tensor with the same type as value.

tf.sigmoid(x, name=None) {#sigmoid}

Computes sigmoid of x element-wise.

Specifically, y = 1 / (1 + exp(-x)).

Args:

		x: A Tensor with type float32, float64, int32, complex64, int64,
or qint32.

		name: A name for the operation (optional).

Returns:

A Tensor with the same type as x if x.dtype != qint32
otherwise the return type is quint8.

tf.tanh(x, name=None) {#tanh}

Computes hyperbolic tangent of x element-wise.

Args:

		x: A Tensor or SparseTensor with type float, double, int32,
complex64, int64, or qint32.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor respectively with the same type as x if
x.dtype != qint32 otherwise the return type is quint8.

Convolution

The convolution ops sweep a 2-D filter over a batch of images, applying the
filter to each window of each image of the appropriate size. The different
ops trade off between generic vs. specific filters:

		conv2d: Arbitrary filters that can mix channels together.

		depthwise_conv2d: Filters that operate on each channel independently.

		separable_conv2d: A depthwise spatial filter followed by a pointwise filter.

Note that although these ops are called “convolution”, they are strictly
speaking “cross-correlation” since the filter is combined with an input window
without reversing the filter. For details, see the properties of
cross-correlation [https://en.wikipedia.org/wiki/Cross-correlation#Properties].

The filter is applied to image patches of the same size as the filter and
strided according to the strides argument. strides = [1, 1, 1, 1] applies
the filter to a patch at every offset, strides = [1, 2, 2, 1] applies the
filter to every other image patch in each dimension, etc.

Ignoring channels for the moment, and assume that the 4-D input has shape
[batch, in_height, in_width, ...] and the 4-D filter has shape
[filter_height, filter_width, ...], then the spatial semantics of the
convolution ops are as follows: first, according to the padding scheme chosen
as 'SAME' or 'VALID', the output size and the padding pixels are computed.
For the 'SAME' padding, the output height and width are computed as:

out_height = ceil(float(in_height) / float(strides[1]))
out_width = ceil(float(in_width) / float(strides[2]))

and the padding on the top and left are computed as:

pad_along_height = ((out_height - 1) * strides[1] +
 filter_height - in_height)
pad_along_width = ((out_width - 1) * strides[2] +
 filter_width - in_width)
pad_top = pad_along_height / 2
pad_left = pad_along_width / 2

Note that the division by 2 means that there might be cases when the padding on
both sides (top vs bottom, right vs left) are off by one. In this case, the
bottom and right sides always get the one additional padded pixel. For example,
when pad_along_height is 5, we pad 2 pixels at the top and 3 pixels at the
bottom. Note that this is different from existing libraries such as cuDNN and
Caffe, which explicitly specify the number of padded pixels and always pad the
same number of pixels on both sides.

For the 'VALID‘ padding, the output height and width are computed as:

out_height = ceil(float(in_height - filter_height + 1) / float(strides[1]))
out_width = ceil(float(in_width - filter_width + 1) / float(strides[2]))

and the padding values are always zero. The output is then computed as

output[b, i, j, :] =
 sum_{di, dj} input[b, strides[1] * i + di - pad_top,
 strides[2] * j + dj - pad_left, ...] *
 filter[di, dj, ...]

where any value outside the original input image region are considered zero (
i.e. we pad zero values around the border of the image).

Since input is 4-D, each input[b, i, j, :] is a vector. For conv2d, these
vectors are multiplied by the filter[di, dj, :, :] matrices to produce new
vectors. For depthwise_conv_2d, each scalar component input[b, i, j, k]
is multiplied by a vector filter[di, dj, k], and all the vectors are
concatenated.

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None) {#conv2d}

Computes a 2-D convolution given 4-D input and filter tensors.

Given an input tensor of shape [batch, in_height, in_width, in_channels]
and a filter / kernel tensor of shape
[filter_height, filter_width, in_channels, out_channels], this op
performs the following:

		Flattens the filter to a 2-D matrix with shape
[filter_height * filter_width * in_channels, output_channels].

		Extracts image patches from the input tensor to form a virtual
tensor of shape [batch, out_height, out_width, filter_height * filter_width * in_channels].

		For each patch, right-multiplies the filter matrix and the image patch
vector.

In detail, with the default NHWC format,

output[b, i, j, k] =
 sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
 filter[di, dj, q, k]

Must have strides[0] = strides[3] = 1. For the most common case of the same
horizontal and vertices strides, strides = [1, stride, stride, 1].

Args:

		input: A Tensor. Must be one of the following types: half, float32, float64.

		filter: A Tensor. Must have the same type as input.

		strides: A list of ints.
1-D of length 4. The stride of the sliding window for each dimension
of input. Must be in the same order as the dimension specified with format.

		padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.

		use_cudnn_on_gpu: An optional bool. Defaults to True.

		data_format: An optional string from: "NHWC", "NCHW". Defaults to "NHWC".
Specify the data format of the input and output data. With the
default format “NHWC”, the data is stored in the order of:
[batch, in_height, in_width, in_channels].
Alternatively, the format could be “NCHW”, the data storage order of:
[batch, in_channels, in_height, in_width].

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.nn.depthwise_conv2d(input, filter, strides, padding, name=None) {#depthwise_conv2d}

Depthwise 2-D convolution.

Given an input tensor of shape [batch, in_height, in_width, in_channels]
and a filter tensor of shape
[filter_height, filter_width, in_channels, channel_multiplier]
containing in_channels convolutional filters of depth 1, depthwise_conv2d
applies a different filter to each input channel (expanding from 1 channel
to channel_multiplier channels for each), then concatenates the results
together. The output has in_channels * channel_multiplier channels.

In detail,

output[b, i, j, k * channel_multiplier + q] =
 sum_{di, dj} input[b, strides[1] * i + di, strides[2] * j + dj, k] *
 filter[di, dj, k, q]

Must have strides[0] = strides[3] = 1. For the most common case of the
same horizontal and vertical strides, strides = [1, stride, stride, 1].

Args:

		input: 4-D with shape [batch, in_height, in_width, in_channels].

		filter: 4-D with shape
[filter_height, filter_width, in_channels, channel_multiplier].

		strides: 1-D of size 4. The stride of the sliding window for each
dimension of input.

		padding: A string, either 'VALID' or 'SAME'. The padding algorithm.
See the comment
here [https://www.tensorflow.org/api_docs/python/nn.html#convolution]

		name: A name for this operation (optional).

Returns:

A 4-D Tensor of shape
[batch, out_height, out_width, in_channels * channel_multiplier].

tf.nn.separable_conv2d(input, depthwise_filter, pointwise_filter, strides, padding, name=None) {#separable_conv2d}

2-D convolution with separable filters.

Performs a depthwise convolution that acts separately on channels followed by
a pointwise convolution that mixes channels. Note that this is separability
between dimensions [1, 2] and 3, not spatial separability between
dimensions 1 and 2.

In detail,

output[b, i, j, k] = sum_{di, dj, q, r]
 input[b, strides[1] * i + di, strides[2] * j + dj, q] *
 depthwise_filter[di, dj, q, r] *
 pointwise_filter[0, 0, q * channel_multiplier + r, k]

strides controls the strides for the depthwise convolution only, since
the pointwise convolution has implicit strides of [1, 1, 1, 1]. Must have
strides[0] = strides[3] = 1. For the most common case of the same
horizontal and vertical strides, strides = [1, stride, stride, 1].

Args:

		input: 4-D Tensor with shape [batch, in_height, in_width, in_channels].

		depthwise_filter: 4-D Tensor with shape
[filter_height, filter_width, in_channels, channel_multiplier].
Contains in_channels convolutional filters of depth 1.

		pointwise_filter: 4-D Tensor with shape
[1, 1, channel_multiplier * in_channels, out_channels]. Pointwise
filter to mix channels after depthwise_filter has convolved spatially.

		strides: 1-D of size 4. The strides for the depthwise convolution for
each dimension of input.

		padding: A string, either 'VALID' or 'SAME'. The padding algorithm.
See the comment
here [https://www.tensorflow.org/api_docs/python/nn.html#convolution]

		name: A name for this operation (optional).

Returns:

A 4-D Tensor of shape [batch, out_height, out_width, out_channels].

Raises:

		ValueError: If channel_multiplier * in_channels > out_channels,
which means that the separable convolution is overparameterized.

tf.nn.atrous_conv2d(value, filters, rate, padding, name=None) {#atrous_conv2d}

Atrous convolution (a.k.a. convolution with holes or dilated convolution).

Computes a 2-D atrous convolution, also known as convolution with holes or
dilated convolution, given 4-D value and filters tensors. If the rate
parameter is equal to one, it performs regular 2-D convolution. If the rate
parameter is greater than one, it performs convolution with holes, sampling
the input values every rate pixels in the height and width dimensions.
This is equivalent to convolving the input with a set of upsampled filters,
produced by inserting rate - 1 zeros between two consecutive values of the
filters along the height and width dimensions, hence the name atrous
convolution or convolution with holes (the French word trous means holes in
English).

More specifically:

output[b, i, j, k] = sum_{di, dj, q} filters[di, dj, q, k] *
 value[b, i + rate * di, j + rate * dj, q]

Atrous convolution allows us to explicitly control how densely to compute
feature responses in fully convolutional networks. Used in conjunction with
bilinear interpolation, it offers an alternative to conv2d_transpose in
dense prediction tasks such as semantic image segmentation, optical flow
computation, or depth estimation. It also allows us to effectively enlarge
the field of view of filters without increasing the number of parameters or
the amount of computation.

For a description of atrous convolution and how it can be used for dense
feature extraction, please see: Semantic Image Segmentation with Deep
Convolutional Nets and Fully Connected CRFs [http://arxiv.org/abs/1412.7062].
The same operation is investigated further in Multi-Scale Context Aggregation
by Dilated Convolutions [http://arxiv.org/abs/1511.07122]. Previous works
that effectively use atrous convolution in different ways are, among others,
OverFeat: Integrated Recognition, Localization and Detection using
Convolutional Networks [http://arxiv.org/abs/1312.6229] and [Fast Image
Scanning with Deep Max-Pooling Convolutional Neural Networks]
(http://arxiv.org/abs/1302.1700). Atrous convolution is also closely related
to the so-called noble identities in multi-rate signal processing.

There are many different ways to implement atrous convolution (see the refs
above). The implementation here reduces

atrous_conv2d(value, filters, rate, padding=padding)

to the following three operations:

paddings = ...
net = space_to_batch(value, paddings, block_size=rate)
net = conv2d(net, filters, strides=[1, 1, 1, 1], padding="VALID")
crops = ...
net = batch_to_space(net, crops, block_size=rate)

Advanced usage. Note the following optimization: A sequence of atrous_conv2d
operations with identical rate parameters, ‘SAME’ padding, and filters
with odd heights/ widths:

net = atrous_conv2d(net, filters1, rate, padding="SAME")
net = atrous_conv2d(net, filters2, rate, padding="SAME")
...
net = atrous_conv2d(net, filtersK, rate, padding="SAME")

can be equivalently performed cheaper in terms of computation and memory as:

pad = ... # padding so that the input dims are multiples of rate
net = space_to_batch(net, paddings=pad, block_size=rate)
net = conv2d(net, filters1, strides=[1, 1, 1, 1], padding="SAME")
net = conv2d(net, filters2, strides=[1, 1, 1, 1], padding="SAME")
...
net = conv2d(net, filtersK, strides=[1, 1, 1, 1], padding="SAME")
net = batch_to_space(net, crops=pad, block_size=rate)

because a pair of consecutive space_to_batch and batch_to_space ops with
the same block_size cancel out when their respective paddings and crops
inputs are identical.

Args:

		value: A 4-D Tensor of type float. It needs to be in the default “NHWC”
format. Its shape is [batch, in_height, in_width, in_channels].

		filters: A 4-D Tensor with the same type as value and shape
[filter_height, filter_width, in_channels, out_channels]. filters‘
in_channels dimension must match that of value. Atrous convolution is
equivalent to standard convolution with upsampled filters with effective
height filter_height + (filter_height - 1) * (rate - 1) and effective
width filter_width + (filter_width - 1) * (rate - 1), produced by
inserting rate - 1 zeros along consecutive elements across the
filters‘ spatial dimensions.

		rate: A positive int32. The stride with which we sample input values across
the height and width dimensions. Equivalently, the rate by which we
upsample the filter values by inserting zeros across the height and
width dimensions. In the literature, the same parameter is sometimes
called input stride or dilation.

		padding: A string, either 'VALID' or 'SAME'. The padding algorithm.

		name: Optional name for the returned tensor.

Returns:

A Tensor with the same type as value.

Raises:

		ValueError: If input/output depth does not match filters‘ shape, or if
padding is other than 'VALID' or 'SAME'.

tf.nn.conv2d_transpose(value, filter, output_shape, strides, padding='SAME', name=None) {#conv2d_transpose}

The transpose of conv2d.

This operation is sometimes called “deconvolution” after Deconvolutional
Networks [http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf], but is
actually the transpose (gradient) of conv2d rather than an actual
deconvolution.

Args:

		value: A 4-D Tensor of type float and shape
[batch, height, width, in_channels].

		filter: A 4-D Tensor with the same type as value and shape
[height, width, output_channels, in_channels]. filter‘s
in_channels dimension must match that of value.

		output_shape: A 1-D Tensor representing the output shape of the
deconvolution op.

		strides: A list of ints. The stride of the sliding window for each
dimension of the input tensor.

		padding: A string, either 'VALID' or 'SAME'. The padding algorithm.
See the comment here [https://www.tensorflow.org/api_docs/python/nn.html#convolution]

		name: Optional name for the returned tensor.

Returns:

A Tensor with the same type as value.

Raises:

		ValueError: If input/output depth does not match filter‘s shape, or if
padding is other than 'VALID' or 'SAME'.

tf.nn.conv1d(value, filters, stride, padding, use_cudnn_on_gpu=None, data_format=None, name=None) {#conv1d}

Computes a 1-D convolution given 3-D input and filter tensors.

Given an input tensor of shape [batch, in_width, in_channels]
and a filter / kernel tensor of shape
[filter_width, in_channels, out_channels], this op reshapes
the arguments to pass them to conv2d to perform the equivalent
convolution operation.

Internally, this op reshapes the input tensors and invokes
tf.nn.conv2d. A tensor of shape [batch, in_width, in_channels]
is reshaped to [batch, 1, in_width, in_channels], and the filter
is reshaped to [1, filter_width, in_channels, out_channels].
The result is then reshaped back to [batch, out_width, out_channels]
(where out_width is a function of the stride and padding as in
conv2d) and returned to the caller.

Args:

		value: A 3D Tensor. Must be of type float32 or float64.

		filters: A 3D Tensor. Must have the same type as input.

		stride: An integer. The number of entries by which
the filter is moved right at each step.

		padding: ‘SAME’ or ‘VALID’

		use_cudnn_on_gpu: An optional bool. Defaults to True.

		data_format: An optional string from "NHWC", "NCHW". Defaults
to "NHWC", the data is stored in the order of
[batch, in_width, in_channels]. The "NCHW" format stores
data as [batch, in_channels, in_width].

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.nn.conv3d(input, filter, strides, padding, name=None) {#conv3d}

Computes a 3-D convolution given 5-D input and filter tensors.

In signal processing, cross-correlation is a measure of similarity of
two waveforms as a function of a time-lag applied to one of them. This
is also known as a sliding dot product or sliding inner-product.

Our Conv3D implements a form of cross-correlation.

Args:

		input: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
Shape [batch, in_depth, in_height, in_width, in_channels].

		filter: A Tensor. Must have the same type as input.
Shape [filter_depth, filter_height, filter_width, in_channels, out_channels]. in_channels must match between input and filter.

		strides: A list of ints that has length >= 5.
1-D tensor of length 5. The stride of the sliding window for each
dimension of input. Must have strides[0] = strides[4] = 1.

		padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.nn.conv3d_transpose(value, filter, output_shape, strides, padding='SAME', name=None) {#conv3d_transpose}

The transpose of conv3d.

This operation is sometimes called “deconvolution” after Deconvolutional
Networks [http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf], but is
actually the transpose (gradient) of conv3d rather than an actual
deconvolution.

Args:

		value: A 5-D Tensor of type float and shape
[batch, depth, height, width, in_channels].

		filter: A 5-D Tensor with the same type as value and shape
[depth, height, width, output_channels, in_channels]. filter‘s
in_channels dimension must match that of value.

		output_shape: A 1-D Tensor representing the output shape of the
deconvolution op.

		strides: A list of ints. The stride of the sliding window for each
dimension of the input tensor.

		padding: A string, either 'VALID' or 'SAME'. The padding algorithm.
See the comment here [https://www.tensorflow.org/api_docs/python/nn.html#convolution]

		name: Optional name for the returned tensor.

Returns:

A Tensor with the same type as value.

Raises:

		ValueError: If input/output depth does not match filter‘s shape, or if
padding is other than 'VALID' or 'SAME'.

Pooling

The pooling ops sweep a rectangular window over the input tensor, computing a
reduction operation for each window (average, max, or max with argmax). Each
pooling op uses rectangular windows of size ksize separated by offset
strides. For example, if strides is all ones every window is used, if
strides is all twos every other window is used in each dimension, etc.

In detail, the output is

output[i] = reduce(value[strides * i:strides * i + ksize])

where the indices also take into consideration the padding values. Please refer
to the Convolution section for details about the padding calculation.

tf.nn.avg_pool(value, ksize, strides, padding, data_format='NHWC', name=None) {#avg_pool}

Performs the average pooling on the input.

Each entry in output is the mean of the corresponding size ksize
window in value.

Args:

		value: A 4-D Tensor of shape [batch, height, width, channels] and type
float32, float64, qint8, quint8, or qint32.

		ksize: A list of ints that has length >= 4.
The size of the window for each dimension of the input tensor.

		strides: A list of ints that has length >= 4.
The stride of the sliding window for each dimension of the
input tensor.

		padding: A string, either 'VALID' or 'SAME'. The padding algorithm.
See the comment here [https://www.tensorflow.org/api_docs/python/nn.html#convolution]

		data_format: A string. ‘NHWC’ and ‘NCHW’ are supported.

		name: Optional name for the operation.

Returns:

A Tensor with the same type as value. The average pooled output tensor.

tf.nn.max_pool(value, ksize, strides, padding, data_format='NHWC', name=None) {#max_pool}

Performs the max pooling on the input.

Args:

		value: A 4-D Tensor with shape [batch, height, width, channels] and
type tf.float32.

		ksize: A list of ints that has length >= 4. The size of the window for
each dimension of the input tensor.

		strides: A list of ints that has length >= 4. The stride of the sliding
window for each dimension of the input tensor.

		padding: A string, either 'VALID' or 'SAME'. The padding algorithm.
See the comment here [https://www.tensorflow.org/api_docs/python/nn.html#convolution]

		data_format: A string. ‘NHWC’ and ‘NCHW’ are supported.

		name: Optional name for the operation.

Returns:

A Tensor with type tf.float32. The max pooled output tensor.

tf.nn.max_pool_with_argmax(input, ksize, strides, padding, Targmax=None, name=None) {#max_pool_with_argmax}

Performs max pooling on the input and outputs both max values and indices.

The indices in argmax are flattened, so that a maximum value at position
[b, y, x, c] becomes flattened index
((b * height + y) * width + x) * channels + c.

Args:

		input: A Tensor. Must be one of the following types: float32, half.
4-D with shape [batch, height, width, channels]. Input to pool over.

		ksize: A list of ints that has length >= 4.
The size of the window for each dimension of the input tensor.

		strides: A list of ints that has length >= 4.
The stride of the sliding window for each dimension of the
input tensor.

		padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.

		Targmax: An optional tf.DType from: tf.int32, tf.int64. Defaults to tf.int64.

		name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (output, argmax).

		output: A Tensor. Has the same type as input. The max pooled output tensor.

		argmax: A Tensor of type Targmax. 4-D. The flattened indices of the max values chosen for each output.

tf.nn.avg_pool3d(input, ksize, strides, padding, name=None) {#avg_pool3d}

Performs 3D average pooling on the input.

Args:

		input: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
Shape [batch, depth, rows, cols, channels] tensor to pool over.

		ksize: A list of ints that has length >= 5.
1-D tensor of length 5. The size of the window for each dimension of
the input tensor. Must have ksize[0] = ksize[4] = 1.

		strides: A list of ints that has length >= 5.
1-D tensor of length 5. The stride of the sliding window for each
dimension of input. Must have strides[0] = strides[4] = 1.

		padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
The average pooled output tensor.

tf.nn.max_pool3d(input, ksize, strides, padding, name=None) {#max_pool3d}

Performs 3D max pooling on the input.

Args:

		input: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
Shape [batch, depth, rows, cols, channels] tensor to pool over.

		ksize: A list of ints that has length >= 5.
1-D tensor of length 5. The size of the window for each dimension of
the input tensor. Must have ksize[0] = ksize[4] = 1.

		strides: A list of ints that has length >= 5.
1-D tensor of length 5. The stride of the sliding window for each
dimension of input. Must have strides[0] = strides[4] = 1.

		padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. The max pooled output tensor.

tf.nn.fractional_avg_pool(value, pooling_ratio, pseudo_random=None, overlapping=None, deterministic=None, seed=None, seed2=None, name=None) {#fractional_avg_pool}

Performs fractional average pooling on the input.

Fractional average pooling is similar to Fractional max pooling in the pooling
region generation step. The only difference is that after pooling regions are
generated, a mean operation is performed instead of a max operation in each
pooling region.

Args:

		value: A Tensor. Must be one of the following types: float32, float64, int32, int64.
4-D with shape [batch, height, width, channels].

		pooling_ratio: A list of floats that has length >= 4.
Pooling ratio for each dimension of value, currently only
supports row and col dimension and should be >= 1.0. For example, a valid
pooling ratio looks like [1.0, 1.44, 1.73, 1.0]. The first and last elements
must be 1.0 because we don’t allow pooling on batch and channels
dimensions. 1.44 and 1.73 are pooling ratio on height and width dimensions
respectively.

		pseudo_random: An optional bool. Defaults to False.
When set to True, generates the pooling sequence in a
pseudorandom fashion, otherwise, in a random fashion. Check paper [Benjamin
Graham, Fractional Max-Pooling] (http://arxiv.org/abs/1412.6071) for
difference between pseudorandom and random.

		overlapping: An optional bool. Defaults to False.
When set to True, it means when pooling, the values at the boundary
of adjacent pooling cells are used by both cells. For example:

index 0 1 2 3 4

value 20 5 16 3 7

If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice.
The result would be [41/3, 26/3] for fractional avg pooling.

		deterministic: An optional bool. Defaults to False.
When set to True, a fixed pooling region will be used when
iterating over a FractionalAvgPool node in the computation graph. Mainly used
in unit test to make FractionalAvgPool deterministic.

		seed: An optional int. Defaults to 0.
If either seed or seed2 are set to be non-zero, the random number
generator is seeded by the given seed. Otherwise, it is seeded by a
random seed.

		seed2: An optional int. Defaults to 0.
An second seed to avoid seed collision.

		name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (output, row_pooling_sequence, col_pooling_sequence).

		output: A Tensor. Has the same type as value. output tensor after fractional avg pooling.

		row_pooling_sequence: A Tensor of type int64. row pooling sequence, needed to calculate gradient.

		col_pooling_sequence: A Tensor of type int64. column pooling sequence, needed to calculate gradient.

tf.nn.fractional_max_pool(value, pooling_ratio, pseudo_random=None, overlapping=None, deterministic=None, seed=None, seed2=None, name=None) {#fractional_max_pool}

Performs fractional max pooling on the input.

Fractional max pooling is slightly different than regular max pooling. In
regular max pooling, you downsize an input set by taking the maximum value of
smaller N x N subsections of the set (often 2x2), and try to reduce the set by
a factor of N, where N is an integer. Fractional max pooling, as you might
expect from the word “fractional”, means that the overall reduction ratio N
does not have to be an integer.

The sizes of the pooling regions are generated randomly but are fairly uniform.
For example, let’s look at the height dimension, and the constraints on the
list of rows that will be pool boundaries.

First we define the following:

		input_row_length : the number of rows from the input set

		output_row_length : which will be smaller than the input

		alpha = input_row_length / output_row_length : our reduction ratio

		K = floor(alpha)

		row_pooling_sequence : this is the result list of pool boundary rows

Then, row_pooling_sequence should satisfy:

		a[0] = 0 : the first value of the sequence is 0

		a[end] = input_row_length : the last value of the sequence is the size

		K <= (a[i+1] - a[i]) <= K+1 : all intervals are K or K+1 size

		length(row_pooling_sequence) = output_row_length+1

For more details on fractional max pooling, see this paper:
[Benjamin Graham, Fractional Max-Pooling]
(http://arxiv.org/abs/1412.6071)

Args:

		value: A Tensor. Must be one of the following types: float32, float64, int32, int64.
4-D with shape [batch, height, width, channels].

		pooling_ratio: A list of floats that has length >= 4.
Pooling ratio for each dimension of value, currently only
supports row and col dimension and should be >= 1.0. For example, a valid
pooling ratio looks like [1.0, 1.44, 1.73, 1.0]. The first and last elements
must be 1.0 because we don’t allow pooling on batch and channels
dimensions. 1.44 and 1.73 are pooling ratio on height and width dimensions
respectively.

		pseudo_random: An optional bool. Defaults to False.
When set to True, generates the pooling sequence in a
pseudorandom fashion, otherwise, in a random fashion. Check paper [Benjamin
Graham, Fractional Max-Pooling] (http://arxiv.org/abs/1412.6071) for
difference between pseudorandom and random.

		overlapping: An optional bool. Defaults to False.
When set to True, it means when pooling, the values at the boundary
of adjacent pooling cells are used by both cells. For example:

index 0 1 2 3 4

value 20 5 16 3 7

If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice.
The result would be [20, 16] for fractional max pooling.

		deterministic: An optional bool. Defaults to False.
When set to True, a fixed pooling region will be used when
iterating over a FractionalMaxPool node in the computation graph. Mainly used
in unit test to make FractionalMaxPool deterministic.

		seed: An optional int. Defaults to 0.
If either seed or seed2 are set to be non-zero, the random number
generator is seeded by the given seed. Otherwise, it is seeded by a
random seed.

		seed2: An optional int. Defaults to 0.
An second seed to avoid seed collision.

		name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (output, row_pooling_sequence, col_pooling_sequence).

		output: A Tensor. Has the same type as value. output tensor after fractional max pooling.

		row_pooling_sequence: A Tensor of type int64. row pooling sequence, needed to calculate gradient.

		col_pooling_sequence: A Tensor of type int64. column pooling sequence, needed to calculate gradient.

Morphological filtering

Morphological operators are non-linear filters used in image processing.

[Greyscale morphological dilation]
(https://en.wikipedia.org/wiki/Dilation_(morphology)) is the max-sum counterpart
of standard sum-product convolution:

output[b, y, x, c] =
 max_{dy, dx} input[b,
 strides[1] * y + rates[1] * dy,
 strides[2] * x + rates[2] * dx,
 c] +
 filter[dy, dx, c]

The filter is usually called structuring function. Max-pooling is a special
case of greyscale morphological dilation when the filter assumes all-zero
values (a.k.a. flat structuring function).

[Greyscale morphological erosion]
(https://en.wikipedia.org/wiki/Erosion_(morphology)) is the min-sum counterpart
of standard sum-product convolution:

output[b, y, x, c] =
 min_{dy, dx} input[b,
 strides[1] * y - rates[1] * dy,
 strides[2] * x - rates[2] * dx,
 c] -
 filter[dy, dx, c]

Dilation and erosion are dual to each other. The dilation of the input signal
f by the structuring signal g is equal to the negation of the erosion of
-f by the reflected g, and vice versa.

Striding and padding is carried out in exactly the same way as in standard
convolution. Please refer to the Convolution section for details.

tf.nn.dilation2d(input, filter, strides, rates, padding, name=None) {#dilation2d}

Computes the grayscale dilation of 4-D input and 3-D filter tensors.

The input tensor has shape [batch, in_height, in_width, depth] and the
filter tensor has shape [filter_height, filter_width, depth], i.e., each
input channel is processed independently of the others with its own structuring
function. The output tensor has shape
[batch, out_height, out_width, depth]. The spatial dimensions of the output
tensor depend on the padding algorithm. We currently only support the default
“NHWC” data_format.

In detail, the grayscale morphological 2-D dilation is the max-sum correlation
(for consistency with conv2d, we use unmirrored filters):

output[b, y, x, c] =
 max_{dy, dx} input[b,
 strides[1] * y + rates[1] * dy,
 strides[2] * x + rates[2] * dx,
 c] +
 filter[dy, dx, c]

Max-pooling is a special case when the filter has size equal to the pooling
kernel size and contains all zeros.

Note on duality: The dilation of input by the filter is equal to the
negation of the erosion of -input by the reflected filter.

Args:

		input: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.
4-D with shape [batch, in_height, in_width, depth].

		filter: A Tensor. Must have the same type as input.
3-D with shape [filter_height, filter_width, depth].

		strides: A list of ints that has length >= 4.
The stride of the sliding window for each dimension of the input
tensor. Must be: [1, stride_height, stride_width, 1].

		rates: A list of ints that has length >= 4.
The input stride for atrous morphological dilation. Must be:
[1, rate_height, rate_width, 1].

		padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
4-D with shape [batch, out_height, out_width, depth].

tf.nn.erosion2d(value, kernel, strides, rates, padding, name=None) {#erosion2d}

Computes the grayscale erosion of 4-D value and 3-D kernel tensors.

The value tensor has shape [batch, in_height, in_width, depth] and the
kernel tensor has shape [kernel_height, kernel_width, depth], i.e.,
each input channel is processed independently of the others with its own
structuring function. The output tensor has shape
[batch, out_height, out_width, depth]. The spatial dimensions of the
output tensor depend on the padding algorithm. We currently only support the
default “NHWC” data_format.

In detail, the grayscale morphological 2-D erosion is given by:

output[b, y, x, c] =
 min_{dy, dx} value[b,
 strides[1] * y - rates[1] * dy,
 strides[2] * x - rates[2] * dx,
 c] -
 kernel[dy, dx, c]

Duality: The erosion of value by the kernel is equal to the negation of
the dilation of -value by the reflected kernel.

Args:

		value: A Tensor. 4-D with shape [batch, in_height, in_width, depth].

		kernel: A Tensor. Must have the same type as value.
3-D with shape [kernel_height, kernel_width, depth].

		strides: A list of ints that has length >= 4.
1-D of length 4. The stride of the sliding window for each dimension of
the input tensor. Must be: [1, stride_height, stride_width, 1].

		rates: A list of ints that has length >= 4.
1-D of length 4. The input stride for atrous morphological dilation.
Must be: [1, rate_height, rate_width, 1].

		padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.

		name: A name for the operation (optional). If not specified “erosion2d”
is used.

Returns:

A Tensor. Has the same type as value.
4-D with shape [batch, out_height, out_width, depth].

Raises:

		ValueError: If the value depth does not match kernel‘ shape, or if
padding is other than 'VALID' or 'SAME'.

Normalization

Normalization is useful to prevent neurons from saturating when inputs may
have varying scale, and to aid generalization.

tf.nn.l2_normalize(x, dim, epsilon=1e-12, name=None) {#l2_normalize}

Normalizes along dimension dim using an L2 norm.

For a 1-D tensor with dim = 0, computes

output = x / sqrt(max(sum(x**2), epsilon))

For x with more dimensions, independently normalizes each 1-D slice along
dimension dim.

Args:

		x: A Tensor.

		dim: Dimension along which to normalize. A scalar or a vector of
integers.

		epsilon: A lower bound value for the norm. Will use sqrt(epsilon) as the
divisor if norm < sqrt(epsilon).

		name: A name for this operation (optional).

Returns:

A Tensor with the same shape as x.

tf.nn.local_response_normalization(input, depth_radius=None, bias=None, alpha=None, beta=None, name=None) {#local_response_normalization}

Local Response Normalization.

The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the last
dimension), and each vector is normalized independently. Within a given vector,
each component is divided by the weighted, squared sum of inputs within
depth_radius. In detail,

sqr_sum[a, b, c, d] =
 sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2)
output = input / (bias + alpha * sqr_sum) ** beta

For details, see [Krizhevsky et al., ImageNet classification with deep
convolutional neural networks (NIPS 2012)]
(http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks).

Args:

		input: A Tensor. Must be one of the following types: float32, half.
4-D.

		depth_radius: An optional int. Defaults to 5.
0-D. Half-width of the 1-D normalization window.

		bias: An optional float. Defaults to 1.
An offset (usually positive to avoid dividing by 0).

		alpha: An optional float. Defaults to 1.
A scale factor, usually positive.

		beta: An optional float. Defaults to 0.5. An exponent.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.nn.sufficient_statistics(x, axes, shift=None, keep_dims=False, name=None) {#sufficient_statistics}

Calculate the sufficient statistics for the mean and variance of x.

These sufficient statistics are computed using the one pass algorithm on
an input that’s optionally shifted. See:
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Computing_shifted_data

Args:

		x: A Tensor.

		axes: Array of ints. Axes along which to compute mean and variance.

		shift: A Tensor containing the value by which to shift the data for
numerical stability, or None if no shift is to be performed. A shift
close to the true mean provides the most numerically stable results.

		keep_dims: produce statistics with the same dimensionality as the input.

		name: Name used to scope the operations that compute the sufficient stats.

Returns:

Four Tensor objects of the same type as x:

		the count (number of elements to average over).

		the (possibly shifted) sum of the elements in the array.

		the (possibly shifted) sum of squares of the elements in the array.

		the shift by which the mean must be corrected or None if shift is None.

tf.nn.normalize_moments(counts, mean_ss, variance_ss, shift, name=None) {#normalize_moments}

Calculate the mean and variance of based on the sufficient statistics.

Args:

		counts: A Tensor containing a the total count of the data (one value).

		mean_ss: A Tensor containing the mean sufficient statistics: the (possibly
shifted) sum of the elements to average over.

		variance_ss: A Tensor containing the variance sufficient statistics: the
(possibly shifted) squared sum of the data to compute the variance over.

		shift: A Tensor containing the value by which the data is shifted for
numerical stability, or None if no shift was performed.

		name: Name used to scope the operations that compute the moments.

Returns:

Two Tensor objects: mean and variance.

tf.nn.moments(x, axes, shift=None, name=None, keep_dims=False) {#moments}

Calculate the mean and variance of x.

The mean and variance are calculated by aggregating the contents of x
across axes. If x is 1-D and axes = [0] this is just the mean
and variance of a vector.

When using these moments for batch normalization (see
tf.nn.batch_normalization):

		for so-called “global normalization”, used with convolutional filters with
shape [batch, height, width, depth], pass axes=[0, 1, 2].

		for simple batch normalization pass axes=[0] (batch only).

Args:

		x: A Tensor.

		axes: array of ints. Axes along which to compute mean and
variance.

		shift: A Tensor containing the value by which to shift the data for
numerical stability, or None if no shift is to be performed. A shift
close to the true mean provides the most numerically stable results.

		name: Name used to scope the operations that compute the moments.

		keep_dims: produce moments with the same dimensionality as the input.

Returns:

Two Tensor objects: mean and variance.

Losses

The loss ops measure error between two tensors, or between a tensor and zero.
These can be used for measuring accuracy of a network in a regression task
or for regularization purposes (weight decay).

tf.nn.l2_loss(t, name=None) {#l2_loss}

L2 Loss.

Computes half the L2 norm of a tensor without the sqrt:

output = sum(t ** 2) / 2

Args:

		t: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
Typically 2-D, but may have any dimensions.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as t. 0-D.

tf.nn.log_poisson_loss(log_input, targets, compute_full_loss=False, name=None) {#log_poisson_loss}

Computes log poisson loss given log_input.

Gives the log-likelihood loss between the prediction and the target under the
assumption that the target has a poisson distribution.
Caveat: By default, this is not the exact loss, but the loss minus a
constant term [log(z!)]. That has no effect for optimization, but
does not play well with relative loss comparisons. To compute an
approximation of the log factorial term, specify
compute_full_loss=True to enable Stirling’s Approximation.

For brevity, let c = log(x) = log_input, z = targets. The log poisson
loss is

 -log(exp(-x) * (x^z) / z!)
= -log(exp(-x) * (x^z)) + log(z!)
~ -log(exp(-x)) - log(x^z) [+ z * log(z) - z + 0.5 * log(2 * pi * z)]
 [Note the second term is the Stirling's Approximation for log(z!).
 It is invariant to x and does not affect optimization, though
 important for correct relative loss comparisons. It is only
 computed when compute_full_loss == True.]
= x - z * log(x) [+ z * log(z) - z + 0.5 * log(2 * pi * z)]
= exp(c) - z * c [+ z * log(z) - z + 0.5 * log(2 * pi * z)]

Args:

		log_input: A Tensor of type float32 or float64.

		targets: A Tensor of the same type and shape as log_input.

		compute_full_loss: whether to compute the full loss. If false, a constant
term is dropped in favor of more efficient optimization.

		name: A name for the operation (optional).

Returns:

A Tensor of the same shape as log_input with the componentwise
logistic losses.

Raises:

		ValueError: If log_input and targets do not have the same shape.

Classification

TensorFlow provides several operations that help you perform classification.

tf.nn.sigmoid_cross_entropy_with_logits(logits, targets, name=None) {#sigmoid_cross_entropy_with_logits}

Computes sigmoid cross entropy given logits.

Measures the probability error in discrete classification tasks in which each
class is independent and not mutually exclusive. For instance, one could
perform multilabel classification where a picture can contain both an elephant
and a dog at the same time.

For brevity, let x = logits, z = targets. The logistic loss is

 z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
= z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
= z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
= z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
= (1 - z) * x + log(1 + exp(-x))
= x - x * z + log(1 + exp(-x))

For x < 0, to avoid overflow in exp(-x), we reformulate the above

 x - x * z + log(1 + exp(-x))
= log(exp(x)) - x * z + log(1 + exp(-x))
= - x * z + log(1 + exp(x))

Hence, to ensure stability and avoid overflow, the implementation uses this
equivalent formulation

max(x, 0) - x * z + log(1 + exp(-abs(x)))

logits and targets must have the same type and shape.

Args:

		logits: A Tensor of type float32 or float64.

		targets: A Tensor of the same type and shape as logits.

		name: A name for the operation (optional).

Returns:

A Tensor of the same shape as logits with the componentwise
logistic losses.

Raises:

		ValueError: If logits and targets do not have the same shape.

tf.nn.softmax(logits, dim=-1, name=None) {#softmax}

Computes log softmax activations.

For each batch i and class j we have

softmax = exp(logits) / reduce_sum(exp(logits), dim)

Args:

		logits: A non-empty Tensor. Must be one of the following types: half,
float32, float64.

		dim: The dimension softmax would be performed on. The default is -1 which
indicates the last dimension.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as logits. Same shape as logits.

Raises:

		InvalidArgumentError: if logits is empty or dim is beyond the last
dimension of logits.

tf.nn.log_softmax(logits, dim=-1, name=None) {#log_softmax}

Computes log softmax activations.

For each batch i and class j we have

logsoftmax = logits - reduce_sum(exp(logits), dim)

Args:

		logits: A non-empty Tensor. Must be one of the following types: half,
float32, float64.

		dim: The dimension softmax would be performed on. The default is -1 which
indicates the last dimension.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as logits. Same shape as logits.

Raises:

		InvalidArgumentError: if logits is empty or dim is beyond the last
dimension of logits.

tf.nn.softmax_cross_entropy_with_logits(logits, labels, dim=-1, name=None) {#softmax_cross_entropy_with_logits}

Computes softmax cross entropy between logits and labels.

Measures the probability error in discrete classification tasks in which the
classes are mutually exclusive (each entry is in exactly one class). For
example, each CIFAR-10 image is labeled with one and only one label: an image
can be a dog or a truck, but not both.

NOTE: While the classes are mutually exclusive, their probabilities
need not be. All that is required is that each row of labels is
a valid probability distribution. If they are not, the computation of the
gradient will be incorrect.

If using exclusive labels (wherein one and only
one class is true at a time), see sparse_softmax_cross_entropy_with_logits.

WARNING: This op expects unscaled logits, since it performs a softmax
on logits internally for efficiency. Do not call this op with the
output of softmax, as it will produce incorrect results.

logits and labels must have the same shape [batch_size, num_classes]
and the same dtype (either float16, float32, or float64).

Args:

		logits: Unscaled log probabilities.

		labels: Each row labels[i] must be a valid probability distribution.

		dim: The class dimension. Defaulted to -1 which is the last dimension.

		name: A name for the operation (optional).

Returns:

A 1-D Tensor of length batch_size of the same type as logits with the
softmax cross entropy loss.

tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels, name=None) {#sparse_softmax_cross_entropy_with_logits}

Computes sparse softmax cross entropy between logits and labels.

Measures the probability error in discrete classification tasks in which the
classes are mutually exclusive (each entry is in exactly one class). For
example, each CIFAR-10 image is labeled with one and only one label: an image
can be a dog or a truck, but not both.

NOTE: For this operation, the probability of a given label is considered
exclusive. That is, soft classes are not allowed, and the labels vector
must provide a single specific index for the true class for each row of
logits (each minibatch entry). For soft softmax classification with
a probability distribution for each entry, see
softmax_cross_entropy_with_logits.

WARNING: This op expects unscaled logits, since it performs a softmax
on logits internally for efficiency. Do not call this op with the
output of softmax, as it will produce incorrect results.

A common use case is to have logits of shape [batch_size, num_classes] and
labels of shape [batch_size]. But higher dimensions are supported.

Args:

logits: Unscaled log probabilities of rank r and shape
[d_0, d_1, ..., d_{r-2}, num_classes] and dtype float32 or float64.
labels: Tensor of shape [d_0, d_1, ..., d_{r-2}] and dtype int32 or
int64. Each entry in labels must be an index in [0, num_classes).
Other values will raise an exception when this op is run on CPU, and
return NaN for corresponding corresponding loss and gradient rows
on GPU.
name: A name for the operation (optional).

Returns:

A Tensor of the same shape as labels and of the same type as logits
with the softmax cross entropy loss.

Raises:

		ValueError: If logits are scalars (need to have rank >= 1) or if the rank
of the labels is not equal to the rank of the labels minus one.

tf.nn.weighted_cross_entropy_with_logits(logits, targets, pos_weight, name=None) {#weighted_cross_entropy_with_logits}

Computes a weighted cross entropy.

This is like sigmoid_cross_entropy_with_logits() except that pos_weight,
allows one to trade off recall and precision by up- or down-weighting the
cost of a positive error relative to a negative error.

The usual cross-entropy cost is defined as:

targets * -log(sigmoid(logits)) + (1 - targets) * -log(1 - sigmoid(logits))

The argument pos_weight is used as a multiplier for the positive targets:

targets * -log(sigmoid(logits)) * pos_weight +
(1 - targets) * -log(1 - sigmoid(logits))

For brevity, let x = logits, z = targets, q = pos_weight.
The loss is:

 qz * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
= qz * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
= qz * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
= qz * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
= (1 - z) * x + (qz + 1 - z) * log(1 + exp(-x))
= (1 - z) * x + (1 + (q - 1) * z) * log(1 + exp(-x))

Setting l = (1 + (q - 1) * z), to ensure stability and avoid overflow,
the implementation uses

(1 - z) * x + l * (log(1 + exp(-abs(x))) + max(-x, 0))

logits and targets must have the same type and shape.

Args:

		logits: A Tensor of type float32 or float64.

		targets: A Tensor of the same type and shape as logits.

		pos_weight: A coefficient to use on the positive examples.

		name: A name for the operation (optional).

Returns:

A Tensor of the same shape as logits with the componentwise
weightedlogistic losses.

Raises:

		ValueError: If logits and targets do not have the same shape.

Embeddings

TensorFlow provides library support for looking up values in embedding
tensors.

tf.nn.embedding_lookup(params, ids, partition_strategy='mod', name=None, validate_indices=True) {#embedding_lookup}

Looks up ids in a list of embedding tensors.

This function is used to perform parallel lookups on the list of
tensors in params. It is a generalization of
tf.gather(), where params is
interpreted as a partition of a larger embedding tensor.

If len(params) > 1, each element id of ids is partitioned between
the elements of params according to the partition_strategy.
In all strategies, if the id space does not evenly divide the number of
partitions, each of the first (max_id + 1) % len(params) partitions will
be assigned one more id.

If partition_strategy is "mod", we assign each id to partition
p = id % len(params). For instance,
13 ids are split across 5 partitions as:
[[0, 5, 10], [1, 6, 11], [2, 7, 12], [3, 8], [4, 9]]

If partition_strategy is "div", we assign ids to partitions in a
contiguous manner. In this case, 13 ids are split across 5 partitions as:
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10], [11, 12]]

The results of the lookup are concatenated into a dense
tensor. The returned tensor has shape shape(ids) + shape(params)[1:].

Args:

		params: A list of tensors with the same type and which can be concatenated
along dimension 0. Each Tensor must be appropriately sized for the given
partition_strategy.

		ids: A Tensor with type int32 or int64 containing the ids to be looked
up in params.

		partition_strategy: A string specifying the partitioning strategy, relevant
if len(params) > 1. Currently "div" and "mod" are supported. Default
is "mod".

		name: A name for the operation (optional).

		validate_indices: Whether or not to validate gather indices.

Returns:

A Tensor with the same type as the tensors in params.

Raises:

		ValueError: If params is empty.

tf.nn.embedding_lookup_sparse(params, sp_ids, sp_weights, partition_strategy='mod', name=None, combiner=None) {#embedding_lookup_sparse}

Computes embeddings for the given ids and weights.

This op assumes that there is at least one id for each row in the dense tensor
represented by sp_ids (i.e. there are no rows with empty features), and that
all the indices of sp_ids are in canonical row-major order.

It also assumes that all id values lie in the range [0, p0), where p0
is the sum of the size of params along dimension 0.

Args:

		params: A single tensor representing the complete embedding tensor,
or a list of P tensors all of same shape except for the first dimension,
representing sharded embedding tensors.

		sp_ids: N x M SparseTensor of int64 ids (typically from FeatureValueToId),
where N is typically batch size and M is arbitrary.

		sp_weights: either a SparseTensor of float / double weights, or None to
indicate all weights should be taken to be 1. If specified, sp_weights
must have exactly the same shape and indices as sp_ids.

		partition_strategy: A string specifying the partitioning strategy, relevant
if len(params) > 1. Currently "div" and "mod" are supported. Default
is "mod". See tf.nn.embedding_lookup for more details.

		name: Optional name for the op.

		combiner: A string specifying the reduction op. Currently “mean”, “sqrtn”
and “sum” are supported.
“sum” computes the weighted sum of the embedding results for each row.
“mean” is the weighted sum divided by the total weight.
“sqrtn” is the weighted sum divided by the square root of the sum of the
squares of the weights.

Returns:

A dense tensor representing the combined embeddings for the
sparse ids. For each row in the dense tensor represented by sp_ids, the op
looks up the embeddings for all ids in that row, multiplies them by the
corresponding weight, and combines these embeddings as specified.

In other words, if
shape(combined params) = [p0, p1, ..., pm]
and
shape(sp_ids) = shape(sp_weights) = [d0, d1, ..., dn]
then
shape(output) = [d0, d1, ..., dn-1, p1, ..., pm].

For instance, if params is a 10x20 matrix, and sp_ids / sp_weights are

[0, 0]: id 1, weight 2.0
[0, 1]: id 3, weight 0.5
[1, 0]: id 0, weight 1.0
[2, 3]: id 1, weight 3.0

with combiner=”mean”, then the output will be a 3x20 matrix where
output[0, :] = (params[1, :] * 2.0 + params[3, :] * 0.5) / (2.0 + 0.5)
output[1, :] = params[0, :] * 1.0
output[2, :] = params[1, :] * 3.0

Raises:

		TypeError: If sp_ids is not a SparseTensor, or if sp_weights is neither
None nor SparseTensor.

		ValueError: If combiner is not one of {“mean”, “sqrtn”, “sum”}.

Recurrent Neural Networks

TensorFlow provides a number of methods for constructing Recurrent
Neural Networks. Most accept an RNNCell-subclassed object
(see the documentation for tf.nn.rnn_cell).

tf.nn.dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None) {#dynamic_rnn}

Creates a recurrent neural network specified by RNNCell cell.

This function is functionally identical to the function rnn above, but
performs fully dynamic unrolling of inputs.

Unlike rnn, the input inputs is not a Python list of Tensors, one for
each frame. Instead, inputs may be a single Tensor where
the maximum time is either the first or second dimension (see the parameter
time_major). Alternatively, it may be a (possibly nested) tuple of
Tensors, each of them having matching batch and time dimensions.
The corresponding output is either a single Tensor having the same number
of time steps and batch size, or a (possibly nested) tuple of such tensors,
matching the nested structure of cell.output_size.

The parameter sequence_length is optional and is used to copy-through state
and zero-out outputs when past a batch element’s sequence length. So it’s more
for correctness than performance, unlike in rnn().

Args:

		cell: An instance of RNNCell.

		inputs: The RNN inputs.

If time_major == False (default), this must be a Tensor of shape:
[batch_size, max_time, ...], or a nested tuple of such
elements.

If time_major == True, this must be a Tensor of shape:
[max_time, batch_size, ...], or a nested tuple of such
elements.

This may also be a (possibly nested) tuple of Tensors satisfying
this property. The first two dimensions must match across all the inputs,
but otherwise the ranks and other shape components may differ.
In this case, input to cell at each time-step will replicate the
structure of these tuples, except for the time dimension (from which the
time is taken).

The input to cell at each time step will be a Tensor or (possibly
nested) tuple of Tensors each with dimensions [batch_size, ...].

		sequence_length: (optional) An int32/int64 vector sized [batch_size].

		initial_state: (optional) An initial state for the RNN.
If cell.state_size is an integer, this must be
a Tensor of appropriate type and shape [batch_size, cell.state_size].
If cell.state_size is a tuple, this should be a tuple of
tensors having shapes [batch_size, s] for s in cell.state_size.

		dtype: (optional) The data type for the initial state and expected output.
Required if initial_state is not provided or RNN state has a heterogeneous
dtype.

		parallel_iterations: (Default: 32). The number of iterations to run in
parallel. Those operations which do not have any temporal dependency
and can be run in parallel, will be. This parameter trades off
time for space. Values >> 1 use more memory but take less time,
while smaller values use less memory but computations take longer.

		swap_memory: Transparently swap the tensors produced in forward inference
but needed for back prop from GPU to CPU. This allows training RNNs
which would typically not fit on a single GPU, with very minimal (or no)
performance penalty.

		time_major: The shape format of the inputs and outputs Tensors.
If true, these Tensors must be shaped [max_time, batch_size, depth].
If false, these Tensors must be shaped [batch_size, max_time, depth].
Using time_major = True is a bit more efficient because it avoids
transposes at the beginning and end of the RNN calculation. However,
most TensorFlow data is batch-major, so by default this function
accepts input and emits output in batch-major form.

		scope: VariableScope for the created subgraph; defaults to “RNN”.

Returns:

A pair (outputs, state) where:

		outputs: The RNN output Tensor.

If time_major == False (default), this will be a Tensor shaped:
[batch_size, max_time, cell.output_size].

If time_major == True, this will be a Tensor shaped:
[max_time, batch_size, cell.output_size].

Note, if cell.output_size is a (possibly nested) tuple of integers
or TensorShape objects, then outputs will be a tuple having the
same structure as cell.output_size, containing Tensors having shapes
corresponding to the shape data in cell.output_size.

		state: The final state. If cell.state_size is an int, this
will be shaped [batch_size, cell.state_size]. If it is a
TensorShape, this will be shaped [batch_size] + cell.state_size.
If it is a (possibly nested) tuple of ints or TensorShape, this will
be a tuple having the corresponding shapes.

Raises:

		TypeError: If cell is not an instance of RNNCell.

		ValueError: If inputs is None or an empty list.

tf.nn.rnn(cell, inputs, initial_state=None, dtype=None, sequence_length=None, scope=None) {#rnn}

Creates a recurrent neural network specified by RNNCell cell.

The simplest form of RNN network generated is:

 state = cell.zero_state(...)
 outputs = []
 for input_ in inputs:
 output, state = cell(input_, state)
 outputs.append(output)
 return (outputs, state)

However, a few other options are available:

An initial state can be provided.
If the sequence_length vector is provided, dynamic calculation is performed.
This method of calculation does not compute the RNN steps past the maximum
sequence length of the minibatch (thus saving computational time),
and properly propagates the state at an example’s sequence length
to the final state output.

The dynamic calculation performed is, at time t for batch row b,

 (output, state)(b, t) =
 (t >= sequence_length(b))
 ? (zeros(cell.output_size), states(b, sequence_length(b) - 1))
 : cell(input(b, t), state(b, t - 1))

Args:

		cell: An instance of RNNCell.

		inputs: A length T list of inputs, each a Tensor of shape
[batch_size, input_size], or a nested tuple of such elements.

		initial_state: (optional) An initial state for the RNN.
If cell.state_size is an integer, this must be
a Tensor of appropriate type and shape [batch_size, cell.state_size].
If cell.state_size is a tuple, this should be a tuple of
tensors having shapes [batch_size, s] for s in cell.state_size.

		dtype: (optional) The data type for the initial state and expected output.
Required if initial_state is not provided or RNN state has a heterogeneous
dtype.

		sequence_length: Specifies the length of each sequence in inputs.
An int32 or int64 vector (tensor) size [batch_size], values in [0, T).

		scope: VariableScope for the created subgraph; defaults to “RNN”.

Returns:

A pair (outputs, state) where:
- outputs is a length T list of outputs (one for each input), or a nested
tuple of such elements.
- state is the final state

Raises:

		TypeError: If cell is not an instance of RNNCell.

		ValueError: If inputs is None or an empty list, or if the input depth
(column size) cannot be inferred from inputs via shape inference.

tf.nn.state_saving_rnn(cell, inputs, state_saver, state_name, sequence_length=None, scope=None) {#state_saving_rnn}

RNN that accepts a state saver for time-truncated RNN calculation.

Args:

		cell: An instance of RNNCell.

		inputs: A length T list of inputs, each a Tensor of shape
[batch_size, input_size].

		state_saver: A state saver object with methods state and save_state.

		state_name: Python string or tuple of strings. The name to use with the
state_saver. If the cell returns tuples of states (i.e.,
cell.state_size is a tuple) then state_name should be a tuple of
strings having the same length as cell.state_size. Otherwise it should
be a single string.

		sequence_length: (optional) An int32/int64 vector size [batch_size].
See the documentation for rnn() for more details about sequence_length.

		scope: VariableScope for the created subgraph; defaults to “RNN”.

Returns:

A pair (outputs, state) where:
outputs is a length T list of outputs (one for each input)
states is the final state

Raises:

		TypeError: If cell is not an instance of RNNCell.

		ValueError: If inputs is None or an empty list, or if the arity and
type of state_name does not match that of cell.state_size.

tf.nn.bidirectional_dynamic_rnn(cell_fw, cell_bw, inputs, sequence_length=None, initial_state_fw=None, initial_state_bw=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None) {#bidirectional_dynamic_rnn}

Creates a dynamic version of bidirectional recurrent neural network.

Similar to the unidirectional case above (rnn) but takes input and builds
independent forward and backward RNNs. The input_size of forward and
backward cell must match. The initial state for both directions is zero by
default (but can be set optionally) and no intermediate states are ever
returned – the network is fully unrolled for the given (passed in)
length(s) of the sequence(s) or completely unrolled if length(s) is not
given.

Args:

		cell_fw: An instance of RNNCell, to be used for forward direction.

		cell_bw: An instance of RNNCell, to be used for backward direction.

		inputs: The RNN inputs.
If time_major == False (default), this must be a tensor of shape:
[batch_size, max_time, input_size].
If time_major == True, this must be a tensor of shape:
[max_time, batch_size, input_size].
[batch_size, input_size].

		sequence_length: An int32/int64 vector, size [batch_size],
containing the actual lengths for each of the sequences.

		initial_state_fw: (optional) An initial state for the forward RNN.
This must be a tensor of appropriate type and shape
[batch_size, cell_fw.state_size].
If cell_fw.state_size is a tuple, this should be a tuple of
tensors having shapes [batch_size, s] for s in cell_fw.state_size.

		initial_state_bw: (optional) Same as for initial_state_fw, but using
the corresponding properties of cell_bw.

		dtype: (optional) The data type for the initial states and expected output.
Required if initial_states are not provided or RNN states have a
heterogeneous dtype.

		parallel_iterations: (Default: 32). The number of iterations to run in
parallel. Those operations which do not have any temporal dependency
and can be run in parallel, will be. This parameter trades off
time for space. Values >> 1 use more memory but take less time,
while smaller values use less memory but computations take longer.

		swap_memory: Transparently swap the tensors produced in forward inference
but needed for back prop from GPU to CPU. This allows training RNNs
which would typically not fit on a single GPU, with very minimal (or no)
performance penalty.

		time_major: The shape format of the inputs and outputs Tensors.
If true, these Tensors must be shaped [max_time, batch_size, depth].
If false, these Tensors must be shaped [batch_size, max_time, depth].
Using time_major = True is a bit more efficient because it avoids
transposes at the beginning and end of the RNN calculation. However,
most TensorFlow data is batch-major, so by default this function
accepts input and emits output in batch-major form.

		dtype: (optional) The data type for the initial state. Required if
initial_state is not provided.

		sequence_length: An int32/int64 vector, size [batch_size],
containing the actual lengths for each of the sequences.
either of the initial states are not provided.

		scope: VariableScope for the created subgraph; defaults to “BiRNN”

Returns:

A tuple (outputs, output_states) where:

		outputs: A tuple (output_fw, output_bw) containing the forward and
the backward rnn output Tensor.
If time_major == False (default),
output_fw will be a Tensor shaped:
[batch_size, max_time, cell_fw.output_size]
and output_bw will be a Tensor shaped:
[batch_size, max_time, cell_bw.output_size].
If time_major == True,
output_fw will be a Tensor shaped:
[max_time, batch_size, cell_fw.output_size]
and output_bw will be a Tensor shaped:
[max_time, batch_size, cell_bw.output_size].
It returns a tuple instead of a single concatenated Tensor, unlike
in the bidirectional_rnn. If the concatenated one is preferred,
the forward and backward outputs can be concatenated as
tf.concat(2, outputs).

		output_states: A tuple (output_state_fw, output_state_bw) containing
the forward and the backward final states of bidirectional rnn.

Raises:

		TypeError: If cell_fw or cell_bw is not an instance of RNNCell.

tf.nn.bidirectional_rnn(cell_fw, cell_bw, inputs, initial_state_fw=None, initial_state_bw=None, dtype=None, sequence_length=None, scope=None) {#bidirectional_rnn}

Creates a bidirectional recurrent neural network.

Similar to the unidirectional case above (rnn) but takes input and builds
independent forward and backward RNNs with the final forward and backward
outputs depth-concatenated, such that the output will have the format
[time][batch][cell_fw.output_size + cell_bw.output_size]. The input_size of
forward and backward cell must match. The initial state for both directions
is zero by default (but can be set optionally) and no intermediate states are
ever returned – the network is fully unrolled for the given (passed in)
length(s) of the sequence(s) or completely unrolled if length(s) is not given.

Args:

		cell_fw: An instance of RNNCell, to be used for forward direction.

		cell_bw: An instance of RNNCell, to be used for backward direction.

		inputs: A length T list of inputs, each a tensor of shape
[batch_size, input_size], or a nested tuple of such elements.

		initial_state_fw: (optional) An initial state for the forward RNN.
This must be a tensor of appropriate type and shape
[batch_size, cell_fw.state_size].
If cell_fw.state_size is a tuple, this should be a tuple of
tensors having shapes [batch_size, s] for s in cell_fw.state_size.

		initial_state_bw: (optional) Same as for initial_state_fw, but using
the corresponding properties of cell_bw.

		dtype: (optional) The data type for the initial state. Required if
either of the initial states are not provided.

		sequence_length: (optional) An int32/int64 vector, size [batch_size],
containing the actual lengths for each of the sequences.

		scope: VariableScope for the created subgraph; defaults to “BiRNN”

Returns:

A tuple (outputs, output_state_fw, output_state_bw) where:
outputs is a length T list of outputs (one for each input), which
are depth-concatenated forward and backward outputs.
output_state_fw is the final state of the forward rnn.
output_state_bw is the final state of the backward rnn.

Raises:

		TypeError: If cell_fw or cell_bw is not an instance of RNNCell.

		ValueError: If inputs is None or an empty list.

tf.nn.raw_rnn(cell, loop_fn, parallel_iterations=None, swap_memory=False, scope=None) {#raw_rnn}

Creates an RNN specified by RNNCell cell and loop function loop_fn.

NOTE: This method is still in testing, and the API may change.

This function is a more primitive version of dynamic_rnn that provides
more direct access to the inputs each iteration. It also provides more
control over when to start and finish reading the sequence, and
what to emit for the output.

For example, it can be used to implement the dynamic decoder of a seq2seq
model.

Instead of working with Tensor objects, most operations work with
TensorArray objects directly.

The operation of raw_rnn, in pseudo-code, is basically the following:

time = tf.constant(0, dtype=tf.int32)
(finished, next_input, initial_state, _, loop_state) = loop_fn(
 time=time, cell_output=None, cell_state=None, loop_state=None)
emit_ta = TensorArray(dynamic_size=True, dtype=initial_state.dtype)
state = initial_state
while not all(finished):
 (output, cell_state) = cell(next_input, state)
 (next_finished, next_input, next_state, emit, loop_state) = loop_fn(
 time=time + 1, cell_output=output, cell_state=cell_state,
 loop_state=loop_state)
 # Emit zeros and copy forward state for minibatch entries that are finished.
 state = tf.select(finished, state, next_state)
 emit = tf.select(finished, tf.zeros_like(emit), emit)
 emit_ta = emit_ta.write(time, emit)
 # If any new minibatch entries are marked as finished, mark these
 finished = tf.logical_or(finished, next_finished)
 time += 1
return (emit_ta, state, loop_state)

with the additional properties that output and state may be (possibly nested)
tuples, as determined by cell.output_size and cell.state_size, and
as a result the final state and emit_ta may themselves be tuples.

A simple implementation of dynamic_rnn via raw_rnn looks like this:

inputs = tf.placeholder(shape=(max_time, batch_size, input_depth),
 dtype=tf.float32)
sequence_length = tf.placeholder(shape=(batch_size,), dtype=tf.int32)
inputs_ta = tf.TensorArray(dtype=tf.float32, size=max_time)
inputs_ta = inputs_ta.unpack(inputs)

cell = tf.nn.rnn_cell.LSTMCell(num_units)

def loop_fn(time, cell_output, cell_state, loop_state):
 emit_output = cell_output # == None for time == 0
 if cell_output is None: # time == 0
 next_cell_state = cell.zero_state(batch_size, tf.float32)
 else:
 next_cell_state = cell_state
 elements_finished = (time >= sequence_length)
 finished = tf.reduce_all(elements_finished)
 next_input = tf.cond(
 finished,
 lambda: tf.zeros([batch_size, input_depth], dtype=tf.float32),
 lambda: inputs_ta.read(time))
 next_loop_state = None
 return (elements_finished, next_input, next_cell_state,
 emit_output, next_loop_state)

outputs_ta, final_state, _ = raw_rnn(cell, loop_fn)
outputs = outputs_ta.pack()

Args:

		cell: An instance of RNNCell.

		loop_fn: A callable that takes inputs
(time, cell_output, cell_state, loop_state)
and returns the tuple
(finished, next_input, next_cell_state, emit_output, next_loop_state).
Here time is an int32 scalar Tensor, cell_output is a
Tensor or (possibly nested) tuple of tensors as determined by
cell.output_size, and cell_state is a Tensor
or (possibly nested) tuple of tensors, as determined by the loop_fn
on its first call (and should match cell.state_size).
The outputs are: finished, a boolean Tensor of
shape [batch_size], next_input: the next input to feed to cell,
next_cell_state: the next state to feed to cell,
and emit_output: the output to store for this iteration.

Note that emit_output should be a Tensor or (possibly nested)
tuple of tensors with shapes and structure matching cell.output_size
and cell_output above. The parameter cell_state and output
next_cell_state may be either a single or (possibly nested) tuple
of tensors. The parameter loop_state and
output next_loop_state may be either a single or (possibly nested) tuple
of Tensor and TensorArray objects. This last parameter
may be ignored by loop_fn and the return value may be None. If it
is not None, then the loop_state will be propagated through the RNN
loop, for use purely by loop_fn to keep track of its own state.
The next_loop_state parameter returned may be None.

The first call to loop_fn will be time = 0, cell_output = None,
cell_state = None, and loop_state = None. For this call:
The next_cell_state value should be the value with which to initialize
the cell’s state. It may be a final state from a previous RNN or it
may be the output of cell.zero_state(). It should be a
(possibly nested) tuple structure of tensors.
If cell.state_size is an integer, this must be
a Tensor of appropriate type and shape [batch_size, cell.state_size].
If cell.state_size is a TensorShape, this must be a Tensor of
appropriate type and shape [batch_size] + cell.state_size.
If cell.state_size is a (possibly nested) tuple of ints or
TensorShape, this will be a tuple having the corresponding shapes.
The emit_output value may be either None or a (possibly nested)
tuple structure of tensors, e.g.,
(tf.zeros(shape_0, dtype=dtype_0), tf.zeros(shape_1, dtype=dtype_1)).
If this first emit_output return value is None,
then the emit_ta result of raw_rnn will have the same structure and
dtypes as cell.output_size. Otherwise emit_ta will have the same
structure, shapes (prepended with a batch_size dimension), and dtypes
as emit_output. The actual values returned for emit_output at this
initializing call are ignored. Note, this emit structure must be
consistent across all time steps.

		parallel_iterations: (Default: 32). The number of iterations to run in
parallel. Those operations which do not have any temporal dependency
and can be run in parallel, will be. This parameter trades off
time for space. Values >> 1 use more memory but take less time,
while smaller values use less memory but computations take longer.

		swap_memory: Transparently swap the tensors produced in forward inference
but needed for back prop from GPU to CPU. This allows training RNNs
which would typically not fit on a single GPU, with very minimal (or no)
performance penalty.

		scope: VariableScope for the created subgraph; defaults to “RNN”.

Returns:

A tuple (emit_ta, final_state, final_loop_state) where:

emit_ta: The RNN output TensorArray.
If loop_fn returns a (possibly nested) set of Tensors for
emit_output during initialization, (inputs time = 0,
cell_output = None, and loop_state = None), then emit_ta will
have the same structure, dtypes, and shapes as emit_output instead.
If loop_fn returns emit_output = None during this call,
the structure of cell.output_size is used:
If cell.output_size is a (possibly nested) tuple of integers
or TensorShape objects, then emit_ta will be a tuple having the
same structure as cell.output_size, containing TensorArrays whose
elements’ shapes correspond to the shape data in cell.output_size.

final_state: The final cell state. If cell.state_size is an int, this
will be shaped [batch_size, cell.state_size]. If it is a
TensorShape, this will be shaped [batch_size] + cell.state_size.
If it is a (possibly nested) tuple of ints or TensorShape, this will
be a tuple having the corresponding shapes.

final_loop_state: The final loop state as returned by loop_fn.

Raises:

		TypeError: If cell is not an instance of RNNCell, or loop_fn is not
a callable.

Conectionist Temporal Classification (CTC)

tf.nn.ctc_loss(inputs, labels, sequence_length, preprocess_collapse_repeated=False, ctc_merge_repeated=True, time_major=True) {#ctc_loss}

Computes the CTC (Connectionist Temporal Classification) Loss.

This op implements the CTC loss as presented in the article:

A. Graves, S. Fernandez, F. Gomez, J. Schmidhuber.
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks. ICML 2006, Pittsburgh, USA, pp. 369-376.

http://www.cs.toronto.edu/~graves/icml_2006.pdf

Input requirements:

sequence_length(b) <= time for all b

max(labels.indices(labels.indices[:, 1] == b, 2))
 <= sequence_length(b) for all b.

Notes:

This class performs the softmax operation for you, so inputs should
be e.g. linear projections of outputs by an LSTM.

The inputs Tensor’s innermost dimension size, num_classes, represents
num_labels + 1 classes, where num_labels is the number of true labels, and
the largest value (num_classes - 1) is reserved for the blank label.

For example, for a vocabulary containing 3 labels [a, b, c],
num_classes = 4 and the labels indexing is {a: 0, b: 1, c: 2, blank: 3}.

Regarding the arguments preprocess_collapse_repeated and
ctc_merge_repeated:

If preprocess_collapse_repeated is True, then a preprocessing step runs
before loss calculation, wherein repeated labels passed to the loss
are merged into single labels. This is useful if the training labels come
from, e.g., forced alignments and therefore have unnecessary repetitions.

If ctc_merge_repeated is set False, then deep within the CTC calculation,
repeated non-blank labels will not be merged and are interpreted
as individual labels. This is a simplified (non-standard) version of CTC.

Here is a table of the (roughly) expected first order behavior:

		preprocess_collapse_repeated=False, ctc_merge_repeated=True

Classical CTC behavior: Outputs true repeated classes with blanks in
between, and can also output repeated classes with no blanks in
between that need to be collapsed by the decoder.

		preprocess_collapse_repeated=True, ctc_merge_repeated=False

Never learns to output repeated classes, as they are collapsed
in the input labels before training.

		preprocess_collapse_repeated=False, ctc_merge_repeated=False

Outputs repeated classes with blanks in between, but generally does not
require the decoder to collapse/merge repeated classes.

		preprocess_collapse_repeated=True, ctc_merge_repeated=True

Untested. Very likely will not learn to output repeated classes.

Args:

		inputs: 3-D float Tensor.
If time_major == False, this will be a Tensor shaped:
[batch_size x max_time x num_classes].
If time_major == True (default), this will be a Tensor shaped:
[max_time x batch_size x num_classes].
The logits.

		labels: An int32 SparseTensor.
labels.indices[i, :] == [b, t] means labels.values[i] stores
the id for (batch b, time t).
labels.values[i] must take on values in [0, num_labels).
See core/ops/ctc_ops.cc for more details.

		sequence_length: 1-D int32 vector, size [batch_size].
The sequence lengths.

		preprocess_collapse_repeated: Boolean. Default: False.
If True, repeated labels are collapsed prior to the CTC calculation.

		ctc_merge_repeated: Boolean. Default: True.

		time_major: The shape format of the inputs Tensors.
If True, these Tensors must be shaped [max_time, batch_size, num_classes].
If False, these Tensors must be shaped [batch_size, max_time, num_classes].
Using time_major = True (default) is a bit more efficient because it avoids
transposes at the beginning of the ctc_loss calculation. However, most
TensorFlow data is batch-major, so by this function also accepts inputs
in batch-major form.

Returns:

A 1-D float Tensor, size [batch], containing the negative log probabilities.

Raises:

		TypeError: if labels is not a SparseTensor.

tf.nn.ctc_greedy_decoder(inputs, sequence_length, merge_repeated=True) {#ctc_greedy_decoder}

Performs greedy decoding on the logits given in input (best path).

Note: Regardless of the value of merge_repeated, if the maximum index of a
given time and batch corresponds to the blank index (num_classes - 1), no
new element is emitted.

If merge_repeated is True, merge repeated classes in output.
This means that if consecutive logits’ maximum indices are the same,
only the first of these is emitted. The sequence A B B * B * B (where ‘*‘
is the blank label) becomes

		A B if merge_repeated=True.

		A B B B B B if merge_repeated=False.

Args:

		inputs: 3-D float Tensor sized
[max_time x batch_size x num_classes]. The logits.

		sequence_length: 1-D int32 vector containing sequence lengths,
having size [batch_size].

		merge_repeated: Boolean. Default: True.

Returns:

A tuple (decoded, log_probabilities) where

		decoded: A single-element list. decoded[0]
is an SparseTensor containing the decoded outputs s.t.:
decoded.indices: Indices matrix (total_decoded_outputs x 2).
The rows store: [batch, time].
decoded.values: Values vector, size (total_decoded_outputs).
The vector stores the decoded classes.
decoded.shape: Shape vector, size (2).
The shape values are: [batch_size, max_decoded_length]

		log_probability: A float matrix (batch_size x 1) containing sequence
log-probabilities.

tf.nn.ctc_beam_search_decoder(inputs, sequence_length, beam_width=100, top_paths=1, merge_repeated=True) {#ctc_beam_search_decoder}

Performs beam search decoding on the logits given in input.

Note The ctc_greedy_decoder is a special case of the
ctc_beam_search_decoder with top_paths=1 (but that decoder is faster
for this special case).

If merge_repeated is True, merge repeated classes in the output beams.
This means that if consecutive entries in a beam are the same,
only the first of these is emitted. That is, when the top path
is A B B B B, the return value is:

		A B if merge_repeated = True.

		A B B B B if merge_repeated = False.

Args:

		inputs: 3-D float Tensor, size
[max_time x batch_size x num_classes]. The logits.

		sequence_length: 1-D int32 vector containing sequence lengths,
having size [batch_size].

		beam_width: An int scalar >= 0 (beam search beam width).

		top_paths: An int scalar >= 0, <= beam_width (controls output size).

		merge_repeated: Boolean. Default: True.

Returns:

A tuple (decoded, log_probabilities) where

		decoded: A list of length top_paths, where decoded[j]
is a SparseTensor containing the decoded outputs:
decoded[j].indices: Indices matrix (total_decoded_outputs[j] x 2)
The rows store: [batch, time].
decoded[j].values: Values vector, size (total_decoded_outputs[j]).
The vector stores the decoded classes for beam j.
decoded[j].shape: Shape vector, size (2).
The shape values are: [batch_size, max_decoded_length[j]].

		log_probability: A float matrix (batch_size x top_paths) containing
sequence log-probabilities.

Evaluation

The evaluation ops are useful for measuring the performance of a network.
Since they are nondifferentiable, they are typically used at evaluation time.

tf.nn.top_k(input, k=1, sorted=True, name=None) {#top_k}

Finds values and indices of the k largest entries for the last dimension.

If the input is a vector (rank-1), finds the k largest entries in the vector
and outputs their values and indices as vectors. Thus values[j] is the
j-th largest entry in input, and its index is indices[j].

For matrices (resp. higher rank input), computes the top k entries in each
row (resp. vector along the last dimension). Thus,

values.shape = indices.shape = input.shape[:-1] + [k]

If two elements are equal, the lower-index element appears first.

Args:

		input: 1-D or higher Tensor with last dimension at least k.

		k: 0-D int32 Tensor. Number of top elements to look for along the last
dimension (along each row for matrices).

		sorted: If true the resulting k elements will be sorted by the values in
descending order.

		name: Optional name for the operation.

Returns:

		values: The k largest elements along each last dimensional slice.

		indices: The indices of values within the last dimension of input.

tf.nn.in_top_k(predictions, targets, k, name=None) {#in_top_k}

Says whether the targets are in the top K predictions.

This outputs a batch_size bool array, an entry out[i] is true if the
prediction for the target class is among the top k predictions among
all predictions for example i. Note that the behavior of InTopK differs
from the TopK op in its handling of ties; if multiple classes have the
same prediction value and straddle the top-k boundary, all of those
classes are considered to be in the top k.

More formally, let

\(predictions_i\) be the predictions for all classes for example i,
\(targets_i\) be the target class for example i,
\(out_i\) be the output for example i,

$$out_i = predictions_{i, targets_i} \in TopKIncludingTies(predictions_i)$$

Args:

		predictions: A Tensor of type float32.
A batch_size x classes tensor.

		targets: A Tensor. Must be one of the following types: int32, int64.
A batch_size vector of class ids.

		k: An int. Number of top elements to look at for computing precision.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool. Computed Precision at k as a bool Tensor.

Candidate Sampling

Do you want to train a multiclass or multilabel model with thousands
or millions of output classes (for example, a language model with a
large vocabulary)? Training with a full Softmax is slow in this case,
since all of the classes are evaluated for every training example.
Candidate Sampling training algorithms can speed up your step times by
only considering a small randomly-chosen subset of contrastive classes
(called candidates) for each batch of training examples.

See our [Candidate Sampling Algorithms Reference]
(../../extras/candidate_sampling.pdf)

Sampled Loss Functions

TensorFlow provides the following sampled loss functions for faster training.

tf.nn.nce_loss(weights, biases, inputs, labels, num_sampled, num_classes, num_true=1, sampled_values=None, remove_accidental_hits=False, partition_strategy='mod', name='nce_loss') {#nce_loss}

Computes and returns the noise-contrastive estimation training loss.

See [Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models]
(http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf).
Also see our [Candidate Sampling Algorithms Reference]
(../../extras/candidate_sampling.pdf)

Note: By default this uses a log-uniform (Zipfian) distribution for sampling,
so your labels must be sorted in order of decreasing frequency to achieve
good results. For more details, see
log_uniform_candidate_sampler.

Note: In the case where num_true > 1, we assign to each target class
the target probability 1 / num_true so that the target probabilities
sum to 1 per-example.

Note: It would be useful to allow a variable number of target classes per
example. We hope to provide this functionality in a future release.
For now, if you have a variable number of target classes, you can pad them
out to a constant number by either repeating them or by padding
with an otherwise unused class.

Args:

		weights: A Tensor of shape [num_classes, dim], or a list of Tensor
objects whose concatenation along dimension 0 has shape
[num_classes, dim]. The (possibly-partitioned) class embeddings.

		biases: A Tensor of shape [num_classes]. The class biases.

		inputs: A Tensor of shape [batch_size, dim]. The forward
activations of the input network.

		labels: A Tensor of type int64 and shape [batch_size, num_true]. The target classes.

		num_sampled: An int. The number of classes to randomly sample per batch.

		num_classes: An int. The number of possible classes.

		num_true: An int. The number of target classes per training example.

		sampled_values: a tuple of (sampled_candidates, true_expected_count,
sampled_expected_count) returned by a *_candidate_sampler function.
(if None, we default to log_uniform_candidate_sampler)

		remove_accidental_hits: A bool. Whether to remove “accidental hits”
where a sampled class equals one of the target classes. If set to
True, this is a “Sampled Logistic” loss instead of NCE, and we are
learning to generate log-odds instead of log probabilities. See
our [Candidate Sampling Algorithms Reference]
(../../extras/candidate_sampling.pdf).
Default is False.

		partition_strategy: A string specifying the partitioning strategy, relevant
if len(weights) > 1. Currently "div" and "mod" are supported.
Default is "mod". See tf.nn.embedding_lookup for more details.

		name: A name for the operation (optional).

Returns:

A batch_size 1-D tensor of per-example NCE losses.

tf.nn.sampled_softmax_loss(weights, biases, inputs, labels, num_sampled, num_classes, num_true=1, sampled_values=None, remove_accidental_hits=True, partition_strategy='mod', name='sampled_softmax_loss') {#sampled_softmax_loss}

Computes and returns the sampled softmax training loss.

This is a faster way to train a softmax classifier over a huge number of
classes.

This operation is for training only. It is generally an underestimate of
the full softmax loss.

At inference time, you can compute full softmax probabilities with the
expression tf.nn.softmax(tf.matmul(inputs, tf.transpose(weights)) + biases).

See our [Candidate Sampling Algorithms Reference]
(../../extras/candidate_sampling.pdf)

Also see Section 3 of Jean et al., 2014 [http://arxiv.org/abs/1412.2007]
(pdf [http://arxiv.org/pdf/1412.2007.pdf]) for the math.

Args:

		weights: A Tensor of shape [num_classes, dim], or a list of Tensor
objects whose concatenation along dimension 0 has shape
[num_classes, dim]. The (possibly-sharded) class embeddings.

		biases: A Tensor of shape [num_classes]. The class biases.

		inputs: A Tensor of shape [batch_size, dim]. The forward
activations of the input network.

		labels: A Tensor of type int64 and shape [batch_size, num_true]. The target classes. Note that this format differs from
the labels argument of nn.softmax_cross_entropy_with_logits.

		num_sampled: An int. The number of classes to randomly sample per batch.

		num_classes: An int. The number of possible classes.

		num_true: An int. The number of target classes per training example.

		sampled_values: a tuple of (sampled_candidates, true_expected_count,
sampled_expected_count) returned by a *_candidate_sampler function.
(if None, we default to log_uniform_candidate_sampler)

		remove_accidental_hits: A bool. whether to remove “accidental hits”
where a sampled class equals one of the target classes. Default is
True.

		partition_strategy: A string specifying the partitioning strategy, relevant
if len(weights) > 1. Currently "div" and "mod" are supported.
Default is "mod". See tf.nn.embedding_lookup for more details.

		name: A name for the operation (optional).

Returns:

A batch_size 1-D tensor of per-example sampled softmax losses.

Candidate Samplers

TensorFlow provides the following samplers for randomly sampling candidate
classes when using one of the sampled loss functions above.

tf.nn.uniform_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, seed=None, name=None) {#uniform_candidate_sampler}

Samples a set of classes using a uniform base distribution.

This operation randomly samples a tensor of sampled classes
(sampled_candidates) from the range of integers [0, range_max).

The elements of sampled_candidates are drawn without replacement
(if unique=True) or with replacement (if unique=False) from
the base distribution.

The base distribution for this operation is the uniform distribution
over the range of integers [0, range_max).

In addition, this operation returns tensors true_expected_count
and sampled_expected_count representing the number of times each
of the target classes (true_classes) and the sampled
classes (sampled_candidates) is expected to occur in an average
tensor of sampled classes. These values correspond to Q(y|x)
defined in this
document [http://www.tensorflow.org/extras/candidate_sampling.pdf].
If unique=True, then these are post-rejection probabilities and we
compute them approximately.

Args:

		true_classes: A Tensor of type int64 and shape [batch_size, num_true]. The target classes.

		num_true: An int. The number of target classes per training example.

		num_sampled: An int. The number of classes to randomly sample per batch.

		unique: A bool. Determines whether all sampled classes in a batch are
unique.

		range_max: An int. The number of possible classes.

		seed: An int. An operation-specific seed. Default is 0.

		name: A name for the operation (optional).

Returns:

		sampled_candidates: A tensor of type int64 and shape [num_sampled].
The sampled classes.

		true_expected_count: A tensor of type float. Same shape as
true_classes. The expected counts under the sampling distribution
of each of true_classes.

		sampled_expected_count: A tensor of type float. Same shape as
sampled_candidates. The expected counts under the sampling distribution
of each of sampled_candidates.

tf.nn.log_uniform_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, seed=None, name=None) {#log_uniform_candidate_sampler}

Samples a set of classes using a log-uniform (Zipfian) base distribution.

This operation randomly samples a tensor of sampled classes
(sampled_candidates) from the range of integers [0, range_max).

The elements of sampled_candidates are drawn without replacement
(if unique=True) or with replacement (if unique=False) from
the base distribution.

The base distribution for this operation is an approximately log-uniform
or Zipfian distribution:

P(class) = (log(class + 2) - log(class + 1)) / log(range_max + 1)

This sampler is useful when the target classes approximately follow such
a distribution - for example, if the classes represent words in a lexicon
sorted in decreasing order of frequency. If your classes are not ordered by
decreasing frequency, do not use this op.

In addition, this operation returns tensors true_expected_count
and sampled_expected_count representing the number of times each
of the target classes (true_classes) and the sampled
classes (sampled_candidates) is expected to occur in an average
tensor of sampled classes. These values correspond to Q(y|x)
defined in this
document [http://www.tensorflow.org/extras/candidate_sampling.pdf].
If unique=True, then these are post-rejection probabilities and we
compute them approximately.

Args:

		true_classes: A Tensor of type int64 and shape [batch_size, num_true]. The target classes.

		num_true: An int. The number of target classes per training example.

		num_sampled: An int. The number of classes to randomly sample per batch.

		unique: A bool. Determines whether all sampled classes in a batch are
unique.

		range_max: An int. The number of possible classes.

		seed: An int. An operation-specific seed. Default is 0.

		name: A name for the operation (optional).

Returns:

		sampled_candidates: A tensor of type int64 and shape [num_sampled].
The sampled classes.

		true_expected_count: A tensor of type float. Same shape as
true_classes. The expected counts under the sampling distribution
of each of true_classes.

		sampled_expected_count: A tensor of type float. Same shape as
sampled_candidates. The expected counts under the sampling distribution
of each of sampled_candidates.

tf.nn.learned_unigram_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, seed=None, name=None) {#learned_unigram_candidate_sampler}

Samples a set of classes from a distribution learned during training.

This operation randomly samples a tensor of sampled classes
(sampled_candidates) from the range of integers [0, range_max).

The elements of sampled_candidates are drawn without replacement
(if unique=True) or with replacement (if unique=False) from
the base distribution.

The base distribution for this operation is constructed on the fly
during training. It is a unigram distribution over the target
classes seen so far during training. Every integer in [0, range_max)
begins with a weight of 1, and is incremented by 1 each time it is
seen as a target class. The base distribution is not saved to checkpoints,
so it is reset when the model is reloaded.

In addition, this operation returns tensors true_expected_count
and sampled_expected_count representing the number of times each
of the target classes (true_classes) and the sampled
classes (sampled_candidates) is expected to occur in an average
tensor of sampled classes. These values correspond to Q(y|x)
defined in this
document [http://www.tensorflow.org/extras/candidate_sampling.pdf].
If unique=True, then these are post-rejection probabilities and we
compute them approximately.

Args:

		true_classes: A Tensor of type int64 and shape [batch_size, num_true]. The target classes.

		num_true: An int. The number of target classes per training example.

		num_sampled: An int. The number of classes to randomly sample per batch.

		unique: A bool. Determines whether all sampled classes in a batch are
unique.

		range_max: An int. The number of possible classes.

		seed: An int. An operation-specific seed. Default is 0.

		name: A name for the operation (optional).

Returns:

		sampled_candidates: A tensor of type int64 and shape [num_sampled].
The sampled classes.

		true_expected_count: A tensor of type float. Same shape as
true_classes. The expected counts under the sampling distribution
of each of true_classes.

		sampled_expected_count: A tensor of type float. Same shape as
sampled_candidates. The expected counts under the sampling distribution
of each of sampled_candidates.

tf.nn.fixed_unigram_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, vocab_file='', distortion=1.0, num_reserved_ids=0, num_shards=1, shard=0, unigrams=(), seed=None, name=None) {#fixed_unigram_candidate_sampler}

Samples a set of classes using the provided (fixed) base distribution.

This operation randomly samples a tensor of sampled classes
(sampled_candidates) from the range of integers [0, range_max).

The elements of sampled_candidates are drawn without replacement
(if unique=True) or with replacement (if unique=False) from
the base distribution.

The base distribution is read from a file or passed in as an
in-memory array. There is also an option to skew the distribution by
applying a distortion power to the weights.

In addition, this operation returns tensors true_expected_count
and sampled_expected_count representing the number of times each
of the target classes (true_classes) and the sampled
classes (sampled_candidates) is expected to occur in an average
tensor of sampled classes. These values correspond to Q(y|x)
defined in this
document [http://www.tensorflow.org/extras/candidate_sampling.pdf].
If unique=True, then these are post-rejection probabilities and we
compute them approximately.

Args:

		true_classes: A Tensor of type int64 and shape [batch_size, num_true]. The target classes.

		num_true: An int. The number of target classes per training example.

		num_sampled: An int. The number of classes to randomly sample per batch.

		unique: A bool. Determines whether all sampled classes in a batch are
unique.

		range_max: An int. The number of possible classes.

		vocab_file: Each valid line in this file (which should have a CSV-like
format) corresponds to a valid word ID. IDs are in sequential order,
starting from num_reserved_ids. The last entry in each line is expected
to be a value corresponding to the count or relative probability. Exactly
one of vocab_file and unigrams needs to be passed to this operation.

		distortion: The distortion is used to skew the unigram probability
distribution. Each weight is first raised to the distortion’s power
before adding to the internal unigram distribution. As a result,
distortion = 1.0 gives regular unigram sampling (as defined by the vocab
file), and distortion = 0.0 gives a uniform distribution.

		num_reserved_ids: Optionally some reserved IDs can be added in the range
[0, num_reserved_ids] by the users. One use case is that a special
unknown word token is used as ID 0. These IDs will have a sampling
probability of 0.

		num_shards: A sampler can be used to sample from a subset of the original
range in order to speed up the whole computation through parallelism. This
parameter (together with shard) indicates the number of partitions that
are being used in the overall computation.

		shard: A sampler can be used to sample from a subset of the original range
in order to speed up the whole computation through parallelism. This
parameter (together with num_shards) indicates the particular partition
number of the operation, when partitioning is being used.

		unigrams: A list of unigram counts or probabilities, one per ID in
sequential order. Exactly one of vocab_file and unigrams should be
passed to this operation.

		seed: An int. An operation-specific seed. Default is 0.

		name: A name for the operation (optional).

Returns:

		sampled_candidates: A tensor of type int64 and shape [num_sampled].
The sampled classes.

		true_expected_count: A tensor of type float. Same shape as
true_classes. The expected counts under the sampling distribution
of each of true_classes.

		sampled_expected_count: A tensor of type float. Same shape as
sampled_candidates. The expected counts under the sampling distribution
of each of sampled_candidates.

Miscellaneous candidate sampling utilities

tf.nn.compute_accidental_hits(true_classes, sampled_candidates, num_true, seed=None, name=None) {#compute_accidental_hits}

Compute the position ids in sampled_candidates matching true_classes.

In Candidate Sampling, this operation facilitates virtually removing
sampled classes which happen to match target classes. This is done
in Sampled Softmax and Sampled Logistic.

See our Candidate Sampling Algorithms
Reference [http://www.tensorflow.org/extras/candidate_sampling.pdf].

We presuppose that the sampled_candidates are unique.

We call it an ‘accidental hit’ when one of the target classes
matches one of the sampled classes. This operation reports
accidental hits as triples (index, id, weight), where index
represents the row number in true_classes, id represents the
position in sampled_candidates, and weight is -FLOAT_MAX.

The result of this op should be passed through a sparse_to_dense
operation, then added to the logits of the sampled classes. This
removes the contradictory effect of accidentally sampling the true
target classes as noise classes for the same example.

Args:

		true_classes: A Tensor of type int64 and shape [batch_size, num_true]. The target classes.

		sampled_candidates: A tensor of type int64 and shape [num_sampled].
The sampled_candidates output of CandidateSampler.

		num_true: An int. The number of target classes per training example.

		seed: An int. An operation-specific seed. Default is 0.

		name: A name for the operation (optional).

Returns:

		indices: A Tensor of type int32 and shape [num_accidental_hits].
Values indicate rows in true_classes.

		ids: A Tensor of type int64 and shape [num_accidental_hits].
Values indicate positions in sampled_candidates.

		weights: A Tensor of type float and shape [num_accidental_hits].
Each value is -FLOAT_MAX.

Other Functions and Classes

tf.nn.batch_normalization(x, mean, variance, offset, scale, variance_epsilon, name=None) {#batch_normalization}

Batch normalization.

As described in http://arxiv.org/abs/1502.03167.
Normalizes a tensor by mean and variance, and applies (optionally) a
scale \\(\gamma\\) to it, as well as an offset \\(\beta\\):

\\(\frac{\gamma(x-\mu)}{\sigma}+\beta\\)

mean, variance, offset and scale are all expected to be of one of two
shapes:

		In all generality, they can have the same number of dimensions as the
input x, with identical sizes as x for the dimensions that are not
normalized over (the ‘depth’ dimension(s)), and dimension 1 for the
others which are being normalized over.
mean and variance in this case would typically be the outputs of
tf.nn.moments(..., keep_dims=True) during training, or running averages
thereof during inference.

		In the common case where the ‘depth’ dimension is the last dimension in
the input tensor x, they may be one dimensional tensors of the same
size as the ‘depth’ dimension.
This is the case for example for the common [batch, depth] layout of
fully-connected layers, and [batch, height, width, depth] for
convolutions.
mean and variance in this case would typically be the outputs of
tf.nn.moments(..., keep_dims=False) during training, or running averages
thereof during inference.

Args:

		x: Input Tensor of arbitrary dimensionality.

		mean: A mean Tensor.

		variance: A variance Tensor.

		offset: An offset Tensor, often denoted \\(\beta\\) in equations, or
None. If present, will be added to the normalized tensor.

		scale: A scale Tensor, often denoted \\(\gamma\\) in equations, or
None. If present, the scale is applied to the normalized tensor.

		variance_epsilon: A small float number to avoid dividing by 0.

		name: A name for this operation (optional).

Returns:

the normalized, scaled, offset tensor.

tf.nn.depthwise_conv2d_native(input, filter, strides, padding, name=None) {#depthwise_conv2d_native}

Computes a 2-D depthwise convolution given 4-D input and filter tensors.

Given an input tensor of shape [batch, in_height, in_width, in_channels]
and a filter / kernel tensor of shape
[filter_height, filter_width, in_channels, channel_multiplier], containing
in_channels convolutional filters of depth 1, depthwise_conv2d applies
a different filter to each input channel (expanding from 1 channel to
channel_multiplier channels for each), then concatenates the results
together. Thus, the output has in_channels * channel_multiplier channels.

for k in 0..in_channels-1
for q in 0..channel_multiplier-1
output[b, i, j, k * channel_multiplier + q] =
sum_{di, dj} input[b, strides[1] * i + di, strides[2] * j + dj, k] *
filter[di, dj, k, q]

Must have strides[0] = strides[3] = 1. For the most common case of the same
horizontal and vertices strides, strides = [1, stride, stride, 1].

Args:

		input: A Tensor. Must be one of the following types: float32, float64.

		filter: A Tensor. Must have the same type as input.

		strides: A list of ints.
1-D of length 4. The stride of the sliding window for each dimension
of input.

		padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.train.AdadeltaOptimizer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Optimizer that implements the Adadelta algorithm.

See M. D. Zeiler [http://arxiv.org/abs/1212.5701]
(pdf [http://arxiv.org/pdf/1212.5701v1.pdf])

tf.train.AdadeltaOptimizer.__init__(learning_rate=0.001, rho=0.95, epsilon=1e-08, use_locking=False, name='Adadelta') {#AdadeltaOptimizer.init}

Construct a new Adadelta optimizer.

Args:

		learning_rate: A Tensor or a floating point value. The learning rate.

		rho: A Tensor or a floating point value. The decay rate.

		epsilon: A Tensor or a floating point value. A constant epsilon used
to better conditioning the grad update.

		use_locking: If True use locks for update operations.

		name: Optional name prefix for the operations created when applying
gradients. Defaults to “Adadelta”.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.nn.sufficient_statistics.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.sufficient_statistics(x, axes, shift=None, keep_dims=False, name=None) {#sufficient_statistics}

Calculate the sufficient statistics for the mean and variance of x.

These sufficient statistics are computed using the one pass algorithm on
an input that’s optionally shifted. See:
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Computing_shifted_data

Args:

		x: A Tensor.

		axes: Array of ints. Axes along which to compute mean and variance.

		shift: A Tensor containing the value by which to shift the data for
numerical stability, or None if no shift is to be performed. A shift
close to the true mean provides the most numerically stable results.

		keep_dims: produce statistics with the same dimensionality as the input.

		name: Name used to scope the operations that compute the sufficient stats.

Returns:

Four Tensor objects of the same type as x:

		the count (number of elements to average over).

		the (possibly shifted) sum of the elements in the array.

		the (possibly shifted) sum of squares of the elements in the array.

		the shift by which the mean must be corrected or None if shift is None.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.graph_editor.compute_boundary_ts.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.compute_boundary_ts(ops, ambiguous_ts_are_outputs=True) {#compute_boundary_ts}

Compute the tensors at the boundary of a set of ops.

This function looks at all the tensors connected to the given ops (in/out)
and classify them into three categories:

		input tensors: tensors whose generating operation is not in ops.

		output tensors: tensors whose consumer operations are not in ops

		inside tensors: tensors which are neither input nor output tensors.

Args:

		ops: an object convertible to a list of tf.Operation.

		ambiguous_ts_are_outputs: a tensor can have consumers both inside and
outside ops. Such tensors are treated as outside tensor if
ambiguous_ts_are_outputs is True, otherwise they are treated as
inside tensor.

Returns:

A tuple (outside_input_ts, outside_output_ts, inside_ts) where:
outside_input_ts is a Python list of input tensors;
outside_output_ts is a python list of output tensors;
inside_ts is a python list of inside tensors.

Raises:

		TypeError: if ops cannot be converted to a list of tf.Operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.no_regularizer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.no_regularizer(_) {#no_regularizer}

Use this function to prevent regularization of variables.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.distributions.QuantizedDistribution.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Distribution representing the quantization Y = ceiling(X).

Definition in terms of sampling.

1. Draw X
2. Set Y <-- ceiling(X)
3. If Y < lower_cutoff, reset Y <-- lower_cutoff
4. If Y > upper_cutoff, reset Y <-- upper_cutoff
5. Return Y

Definition in terms of the probability mass function.

Given scalar random variable X, we define a discrete random variable Y
supported on the integers as follows:

P[Y = j] := P[X <= lower_cutoff], if j == lower_cutoff,
 := P[X > upper_cutoff - 1], j == upper_cutoff,
 := 0, if j < lower_cutoff or j > upper_cutoff,
 := P[j - 1 < X <= j], all other j.

Conceptually, without cutoffs, the quantization process partitions the real
line R into half open intervals, and identifies an integer j with the
right endpoints:

R = ... (-2, -1](-1, 0](0, 1](1, 2](2, 3](3, 4] ...
j = ... -1 0 1 2 3 4 ...

P[Y = j] is the mass of X within the jth interval.
If lower_cutoff = 0, and upper_cutoff = 2, then the intervals are redrawn
and j is re-assigned:

R = (-infty, 0](0, 1](1, infty)
j = 0 1 2

P[Y = j] is still the mass of X within the jth interval.

Caveats

Since evaluation of each P[Y = j] involves a cdf evaluation (rather than
a closed form function such as for a Poisson), computations such as mean and
entropy are better done with samples or approximations, and are not
implemented by this class.

tf.contrib.distributions.QuantizedDistribution.__init__(base_dist_cls, lower_cutoff=None, upper_cutoff=None, name='QuantizedDistribution', **base_dist_args) {#QuantizedDistribution.init}

Construct a Quantized Distribution.

Some properties are inherited from the distribution defining X.
In particular, validate_args and allow_nan_stats are determined for this
QuantizedDistribution by reading the additional kwargs passed as
base_dist_args.

Args:

		base_dist_cls: the base distribution class to transform. Must be a
subclass of Distribution implementing cdf.

		lower_cutoff: Tensor with same dtype as this distribution and shape
able to be added to samples. Should be a whole number. Default None.
If provided, base distribution’s pdf/pmf should be defined at
lower_cutoff.

		upper_cutoff: Tensor with same dtype as this distribution and shape
able to be added to samples. Should be a whole number. Default None.
If provided, base distribution’s pdf/pmf should be defined at
upper_cutoff - 1.
upper_cutoff must be strictly greater than lower_cutoff.

		name: The name for the distribution.

		**base_dist_args: kwargs to pass on to dist_cls on construction.
These determine the shape and dtype of this distribution.

Raises:

		TypeError: If base_dist_cls is not a subclass of
Distribution or continuous.

		AttributeError: If the base distribution does not implement cdf.

tf.contrib.distributions.QuantizedDistribution.allow_nan_stats {#QuantizedDistribution.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.QuantizedDistribution.base_distribution {#QuantizedDistribution.base_distribution}

Base distribution, p(x).

tf.contrib.distributions.QuantizedDistribution.batch_shape(name='batch_shape') {#QuantizedDistribution.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.QuantizedDistribution.cdf(value, name='cdf') {#QuantizedDistribution.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.QuantizedDistribution.dtype {#QuantizedDistribution.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.QuantizedDistribution.entropy(name='entropy') {#QuantizedDistribution.entropy}

Shanon entropy in nats.

tf.contrib.distributions.QuantizedDistribution.event_shape(name='event_shape') {#QuantizedDistribution.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.QuantizedDistribution.get_batch_shape() {#QuantizedDistribution.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.QuantizedDistribution.get_event_shape() {#QuantizedDistribution.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.QuantizedDistribution.is_continuous {#QuantizedDistribution.is_continuous}

tf.contrib.distributions.QuantizedDistribution.is_reparameterized {#QuantizedDistribution.is_reparameterized}

tf.contrib.distributions.QuantizedDistribution.log_cdf(value, name='log_cdf') {#QuantizedDistribution.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.QuantizedDistribution.log_pdf(value, name='log_pdf') {#QuantizedDistribution.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.QuantizedDistribution.log_pmf(value, name='log_pmf') {#QuantizedDistribution.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.QuantizedDistribution.log_prob(value, name='log_prob') {#QuantizedDistribution.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.QuantizedDistribution.log_survival_function(value, name='log_survival_function') {#QuantizedDistribution.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.QuantizedDistribution.mean(name='mean') {#QuantizedDistribution.mean}

Mean.

tf.contrib.distributions.QuantizedDistribution.mode(name='mode') {#QuantizedDistribution.mode}

Mode.

tf.contrib.distributions.QuantizedDistribution.name {#QuantizedDistribution.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.QuantizedDistribution.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#QuantizedDistribution.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.QuantizedDistribution.param_static_shapes(cls, sample_shape) {#QuantizedDistribution.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.QuantizedDistribution.parameters {#QuantizedDistribution.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.QuantizedDistribution.pdf(value, name='pdf') {#QuantizedDistribution.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.QuantizedDistribution.pmf(value, name='pmf') {#QuantizedDistribution.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.QuantizedDistribution.prob(value, name='prob') {#QuantizedDistribution.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.QuantizedDistribution.sample(sample_shape=(), seed=None, name='sample') {#QuantizedDistribution.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.QuantizedDistribution.sample_n(n, seed=None, name='sample_n') {#QuantizedDistribution.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.QuantizedDistribution.std(name='std') {#QuantizedDistribution.std}

Standard deviation.

tf.contrib.distributions.QuantizedDistribution.survival_function(value, name='survival_function') {#QuantizedDistribution.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.QuantizedDistribution.validate_args {#QuantizedDistribution.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.QuantizedDistribution.variance(name='variance') {#QuantizedDistribution.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.matrix_set_diag.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.matrix_set_diag(input, diagonal, name=None) {#matrix_set_diag}

Returns a batched matrix tensor with new batched diagonal values.

Given input and diagonal, this operation returns a tensor with the
same shape and values as input, except for the diagonals of the innermost
matrices. These will be overwritten by the values in diagonal.
The batched matrices must be square.

The output is computed as follows:

Assume input has k+1 dimensions [I, J, K, ..., N, N] and diagonal has
k dimensions [I, J, K, ..., N]. Then the output is a
tensor of rank k+1 with dimensions [I, J, K, ..., N, N]` where:

		output[i, j, k, ..., m, n] = diagonal[i, j, k, ..., n] for m == n.

		output[i, j, k, ..., m, n] = input[i, j, k, ..., m, n] for m != n.

Args:

		input: A Tensor. Rank k+1, where k >= 1.

		diagonal: A Tensor. Must have the same type as input.
Rank k, where k >= 1.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
Rank k+1, with output.shape = input.shape.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.reduce_logsumexp.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.reduce_logsumexp(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_logsumexp}

Computes log(sum(exp(elements across dimensions of a tensor))).

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

This funciton is more numerically stable than log(sum(exp(input))). It avoids
overflows caused by taking the exp of large inputs and underflows caused by
taking the log of small inputs.

For example:

'x' is [[0, 0, 0]]
[0, 0, 0]]
tf.reduce_logsumexp(x) ==> log(6)
tf.reduce_logsumexp(x, 0) ==> [log(2), log(2), log(2)]
tf.reduce_logsumexp(x, 1) ==> [log(3), log(3)]
tf.reduce_logsumexp(x, 1, keep_dims=True) ==> [[log(3)], [log(3)]]
tf.reduce_logsumexp(x, [0, 1]) ==> log(6)

Args:

		input_tensor: The tensor to reduce. Should have numeric type.

		reduction_indices: The dimensions to reduce. If None (the defaut),
reduces all dimensions.

		keep_dims: If true, retains reduced dimensions with length 1.

		name: A name for the operation (optional).

Returns:

The reduced tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.get_default_session.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.get_default_session() {#get_default_session}

Returns the default session for the current thread.

The returned Session will be the innermost session on which a
Session or Session.as_default() context has been entered.

NOTE: The default session is a property of the current thread. If you
create a new thread, and wish to use the default session in that
thread, you must explicitly add a with sess.as_default(): in that
thread’s function.

Returns:

The default Session being used in the current thread.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.nn.weighted_cross_entropy_with_logits.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.weighted_cross_entropy_with_logits(logits, targets, pos_weight, name=None) {#weighted_cross_entropy_with_logits}

Computes a weighted cross entropy.

This is like sigmoid_cross_entropy_with_logits() except that pos_weight,
allows one to trade off recall and precision by up- or down-weighting the
cost of a positive error relative to a negative error.

The usual cross-entropy cost is defined as:

targets * -log(sigmoid(logits)) + (1 - targets) * -log(1 - sigmoid(logits))

The argument pos_weight is used as a multiplier for the positive targets:

targets * -log(sigmoid(logits)) * pos_weight +
(1 - targets) * -log(1 - sigmoid(logits))

For brevity, let x = logits, z = targets, q = pos_weight.
The loss is:

 qz * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
= qz * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
= qz * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
= qz * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
= (1 - z) * x + (qz + 1 - z) * log(1 + exp(-x))
= (1 - z) * x + (1 + (q - 1) * z) * log(1 + exp(-x))

Setting l = (1 + (q - 1) * z), to ensure stability and avoid overflow,
the implementation uses

(1 - z) * x + l * (log(1 + exp(-abs(x))) + max(-x, 0))

logits and targets must have the same type and shape.

Args:

		logits: A Tensor of type float32 or float64.

		targets: A Tensor of the same type and shape as logits.

		pos_weight: A coefficient to use on the positive examples.

		name: A name for the operation (optional).

Returns:

A Tensor of the same shape as logits with the componentwise
weightedlogistic losses.

Raises:

		ValueError: If logits and targets do not have the same shape.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Base Class for Tensor-like objects that emit stochastic values.

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.__init__() {#BaseStochasticTensor.init}

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.dtype {#BaseStochasticTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.graph {#BaseStochasticTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.input_dict {#BaseStochasticTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.loss(sample_loss) {#BaseStochasticTensor.loss}

Returns the term to add to the surrogate loss.

This method is called by surrogate_loss. The input sample_loss should
have already had stop_gradient applied to it. This is because the
surrogate_loss usually provides a Monte Carlo sample term of the form
differentiable_surrogate * sample_loss where sample_loss is considered
constant with respect to the input for purposes of the gradient.

Args:

		sample_loss: Tensor, sample loss downstream of this StochasticTensor.

Returns:

Either None or a Tensor.

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.name {#BaseStochasticTensor.name}

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.value(name=None) {#BaseStochasticTensor.value}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.learn.train.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.learn.train(graph, output_dir, train_op, loss_op, global_step_tensor=None, init_op=None, init_feed_dict=None, init_fn=None, log_every_steps=10, supervisor_is_chief=True, supervisor_master='', supervisor_save_model_secs=600, keep_checkpoint_max=5, supervisor_save_summaries_steps=100, feed_fn=None, steps=None, fail_on_nan_loss=True, monitors=None, max_steps=None) {#train}

Train a model.

Given graph, a directory to write outputs to (output_dir), and some ops,
run a training loop. The given train_op performs one step of training on the
model. The loss_op represents the objective function of the training. It is
expected to increment the global_step_tensor, a scalar integer tensor
counting training steps. This function uses Supervisor to initialize the
graph (from a checkpoint if one is available in output_dir), write summaries
defined in the graph, and write regular checkpoints as defined by
supervisor_save_model_secs.

Training continues until global_step_tensor evaluates to max_steps, or, if
fail_on_nan_loss, until loss_op evaluates to NaN. In that case the
program is terminated with exit code 1.

Args:

		graph: A graph to train. It is expected that this graph is not in use
elsewhere.

		output_dir: A directory to write outputs to.

		train_op: An op that performs one training step when run.

		loss_op: A scalar loss tensor.

		global_step_tensor: A tensor representing the global step. If none is given,
one is extracted from the graph using the same logic as in Supervisor.

		init_op: An op that initializes the graph. If None, use Supervisor‘s
default.

		init_feed_dict: A dictionary that maps Tensor objects to feed values.
This feed dictionary will be used when init_op is evaluated.

		init_fn: Optional callable passed to Supervisor to initialize the model.

		log_every_steps: Output logs regularly. The logs contain timing data and the
current loss.

		supervisor_is_chief: Whether the current process is the chief supervisor in
charge of restoring the model and running standard services.

		supervisor_master: The master string to use when preparing the session.

		supervisor_save_model_secs: Save a checkpoint every
supervisor_save_model_secs seconds when training.

		keep_checkpoint_max: The maximum number of recent checkpoint files to
keep. As new files are created, older files are deleted. If None or 0,
all checkpoint files are kept. This is simply passed as the max_to_keep
arg to tf.Saver constructor.

		supervisor_save_summaries_steps: Save summaries every
supervisor_save_summaries_steps seconds when training.

		feed_fn: A function that is called every iteration to produce a feed_dict
passed to session.run calls. Optional.

		steps: Trains for this many steps (e.g. current global step + steps).

		fail_on_nan_loss: If true, raise NanLossDuringTrainingError if loss_op
evaluates to NaN. If false, continue training as if nothing happened.

		monitors: List of BaseMonitor subclass instances. Used for callbacks
inside the training loop.

		max_steps: Number of total steps for which to train model. If None,
train forever. Two calls fit(steps=100) means 200 training iterations.
On the other hand two calls of fit(max_steps=100) means, second call
will not do any iteration since first call did all 100 steps.

Returns:

The final loss value.

Raises:

		ValueError: If output_dir, train_op, loss_op, or global_step_tensor
is not provided. See tf.contrib.framework.get_global_step for how we
look up the latter if not provided explicitly.

		NanLossDuringTrainingError: If fail_on_nan_loss is True, and loss ever
evaluates to NaN.

		ValueError: If both steps and max_steps are not None.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.BetaWithSoftplusAB.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Beta with softplus transform on a and b.

tf.contrib.distributions.BetaWithSoftplusAB.__init__(a, b, validate_args=False, allow_nan_stats=True, name='BetaWithSoftplusAB') {#BetaWithSoftplusAB.init}

tf.contrib.distributions.BetaWithSoftplusAB.a {#BetaWithSoftplusAB.a}

Shape parameter.

tf.contrib.distributions.BetaWithSoftplusAB.a_b_sum {#BetaWithSoftplusAB.a_b_sum}

Sum of parameters.

tf.contrib.distributions.BetaWithSoftplusAB.allow_nan_stats {#BetaWithSoftplusAB.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.BetaWithSoftplusAB.b {#BetaWithSoftplusAB.b}

Shape parameter.

tf.contrib.distributions.BetaWithSoftplusAB.batch_shape(name='batch_shape') {#BetaWithSoftplusAB.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.BetaWithSoftplusAB.cdf(value, name='cdf') {#BetaWithSoftplusAB.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.BetaWithSoftplusAB.dtype {#BetaWithSoftplusAB.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.BetaWithSoftplusAB.entropy(name='entropy') {#BetaWithSoftplusAB.entropy}

Shanon entropy in nats.

tf.contrib.distributions.BetaWithSoftplusAB.event_shape(name='event_shape') {#BetaWithSoftplusAB.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.BetaWithSoftplusAB.get_batch_shape() {#BetaWithSoftplusAB.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.BetaWithSoftplusAB.get_event_shape() {#BetaWithSoftplusAB.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.BetaWithSoftplusAB.is_continuous {#BetaWithSoftplusAB.is_continuous}

tf.contrib.distributions.BetaWithSoftplusAB.is_reparameterized {#BetaWithSoftplusAB.is_reparameterized}

tf.contrib.distributions.BetaWithSoftplusAB.log_cdf(value, name='log_cdf') {#BetaWithSoftplusAB.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.BetaWithSoftplusAB.log_pdf(value, name='log_pdf') {#BetaWithSoftplusAB.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.BetaWithSoftplusAB.log_pmf(value, name='log_pmf') {#BetaWithSoftplusAB.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.BetaWithSoftplusAB.log_prob(value, name='log_prob') {#BetaWithSoftplusAB.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.BetaWithSoftplusAB.log_survival_function(value, name='log_survival_function') {#BetaWithSoftplusAB.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.BetaWithSoftplusAB.mean(name='mean') {#BetaWithSoftplusAB.mean}

Mean.

tf.contrib.distributions.BetaWithSoftplusAB.mode(name='mode') {#BetaWithSoftplusAB.mode}

Mode.

tf.contrib.distributions.BetaWithSoftplusAB.name {#BetaWithSoftplusAB.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.BetaWithSoftplusAB.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#BetaWithSoftplusAB.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.BetaWithSoftplusAB.param_static_shapes(cls, sample_shape) {#BetaWithSoftplusAB.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.BetaWithSoftplusAB.parameters {#BetaWithSoftplusAB.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.BetaWithSoftplusAB.pdf(value, name='pdf') {#BetaWithSoftplusAB.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.BetaWithSoftplusAB.pmf(value, name='pmf') {#BetaWithSoftplusAB.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.BetaWithSoftplusAB.prob(value, name='prob') {#BetaWithSoftplusAB.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.BetaWithSoftplusAB.sample(sample_shape=(), seed=None, name='sample') {#BetaWithSoftplusAB.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.BetaWithSoftplusAB.sample_n(n, seed=None, name='sample_n') {#BetaWithSoftplusAB.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.BetaWithSoftplusAB.std(name='std') {#BetaWithSoftplusAB.std}

Standard deviation.

tf.contrib.distributions.BetaWithSoftplusAB.survival_function(value, name='survival_function') {#BetaWithSoftplusAB.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.BetaWithSoftplusAB.validate_args {#BetaWithSoftplusAB.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.BetaWithSoftplusAB.variance(name='variance') {#BetaWithSoftplusAB.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.image.central_crop.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.central_crop(image, central_fraction) {#central_crop}

Crop the central region of the image.

Remove the outer parts of an image but retain the central region of the image
along each dimension. If we specify central_fraction = 0.5, this function
returns the region marked with “X” in the below diagram.

| |
| XXXX |
| XXXX |
| | where "X" is the central 50% of the image.

Args:

		image: 3-D float Tensor of shape [height, width, depth]

		central_fraction: float (0, 1], fraction of size to crop

Raises:

		ValueError: if central_crop_fraction is not within (0, 1].

Returns:

3-D float Tensor

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.train.shuffle_batch_join.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.shuffle_batch_join(tensors_list, batch_size, capacity, min_after_dequeue, seed=None, enqueue_many=False, shapes=None, allow_smaller_final_batch=False, shared_name=None, name=None) {#shuffle_batch_join}

Create batches by randomly shuffling tensors.

The tensors_list argument is a list of tuples of tensors, or a list of
dictionaries of tensors. Each element in the list is treated similarly
to the tensors argument of tf.train.shuffle_batch().

This version enqueues a different list of tensors in different threads.
It adds the following to the current Graph:

		A shuffling queue into which tensors from tensors_list are enqueued.

		A dequeue_many operation to create batches from the queue.

		A QueueRunner to QUEUE_RUNNER collection, to enqueue the tensors
from tensors_list.

len(tensors_list) threads will be started, with thread i enqueuing
the tensors from tensors_list[i]. tensors_list[i1][j] must match
tensors_list[i2][j] in type and shape, except in the first dimension if
enqueue_many is true.

If enqueue_many is False, each tensors_list[i] is assumed
to represent a single example. An input tensor with shape [x, y, z]
will be output as a tensor with shape [batch_size, x, y, z].

If enqueue_many is True, tensors_list[i] is assumed to
represent a batch of examples, where the first dimension is indexed
by example, and all members of tensors_list[i] should have the
same size in the first dimension. If an input tensor has shape [*, x, y, z], the output will have shape [batch_size, x, y, z].

The capacity argument controls the how long the prefetching is allowed to
grow the queues.

The returned operation is a dequeue operation and will throw
tf.errors.OutOfRangeError if the input queue is exhausted. If this
operation is feeding another input queue, its queue runner will catch
this exception, however, if this operation is used in your main thread
you are responsible for catching this yourself.

If allow_smaller_final_batch is True, a smaller batch value than
batch_size is returned when the queue is closed and there are not enough
elements to fill the batch, otherwise the pending elements are discarded.
In addition, all output tensors’ static shapes, as accessed via the
get_shape method will have a first Dimension value of None, and
operations that depend on fixed batch_size would fail.

Args:

		tensors_list: A list of tuples or dictionaries of tensors to enqueue.

		batch_size: An integer. The new batch size pulled from the queue.

		capacity: An integer. The maximum number of elements in the queue.

		min_after_dequeue: Minimum number elements in the queue after a
dequeue, used to ensure a level of mixing of elements.

		seed: Seed for the random shuffling within the queue.

		enqueue_many: Whether each tensor in tensor_list_list is a single
example.

		shapes: (Optional) The shapes for each example. Defaults to the
inferred shapes for tensors_list[i].

		allow_smaller_final_batch: (Optional) Boolean. If True, allow the final
batch to be smaller if there are insufficient items left in the queue.

		shared_name: (optional). If set, this queue will be shared under the given
name across multiple sessions.

		name: (Optional) A name for the operations.

Returns:

A list or dictionary of tensors with the same number and types as
tensors_list[i].

Raises:

		ValueError: If the shapes are not specified, and cannot be
inferred from the elements of tensors_list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.layers.separable_convolution2d.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.separable_convolution2d(*args, **kwargs) {#separable_convolution2d}

Adds a depth-separable 2D convolution with optional batch_norm layer.

This op first performs a depthwise convolution that acts separately on
channels, creating a variable called depthwise_weights. If num_outputs
is not None, it adds a pointwise convolution that mixes channels, creating a
variable called pointwise_weights. Then, if batch_norm_params is None,
it adds bias to the result, creating a variable called ‘biases’, otherwise
it adds a batch normalization layer. It finally applies an activation function
to produce the end result.

Args:

		inputs: a tensor of size [batch_size, height, width, channels].

		num_outputs: the number of pointwise convolution output filters. If is
None, then we skip the pointwise convolution stage.

		kernel_size: a list of length 2: [kernel_height, kernel_width] of
of the filters. Can be an int if both values are the same.

		depth_multiplier: the number of depthwise convolution output channels for
each input channel. The total number of depthwise convolution output
channels will be equal to num_filters_in * depth_multiplier.

		stride: a list of length 2: [stride_height, stride_width], specifying the
depthwise convolution stride. Can be an int if both strides are the same.

		padding: one of ‘VALID’ or ‘SAME’.

		activation_fn: activation function, set to None to skip it and maintain
a linear activation.

		normalizer_fn: normalization function to use instead of biases. If
normalizer_fn is provided then biases_initializer and
biases_regularizer are ignored and biases are not created nor added.
default set to None for no normalizer function

		normalizer_params: normalization function parameters.

		weights_initializer: An initializer for the weights.

		weights_regularizer: Optional regularizer for the weights.

		biases_initializer: An initializer for the biases. If None skip biases.

		biases_regularizer: Optional regularizer for the biases.

		reuse: whether or not the layer and its variables should be reused. To be
able to reuse the layer scope must be given.

		variables_collections: optional list of collections for all the variables or
a dictionay containing a different list of collection per variable.

		outputs_collections: collection to add the outputs.

		trainable: whether or not the variables should be trainable or not.

		scope: Optional scope for variable_scope.

Returns:

A Tensor representing the output of the operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.Variable.from_proto.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.Variable.from_proto(variable_def) {#Variable.from_proto}

Returns a Variable object created from variable_def.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.losses.cosine_distance.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.losses.cosine_distance(predictions, targets, dim, weight=1.0, scope=None) {#cosine_distance}

Adds a cosine-distance loss to the training procedure.

Note that the function assumes that the predictions and targets are already
unit-normalized.

Args:

		predictions: An arbitrary matrix.

		targets: A Tensor whose shape matches ‘predictions’

		dim: The dimension along which the cosine distance is computed.

		weight: Coefficients for the loss a scalar, a tensor of shape
[batch_size] or a tensor whose shape matches predictions.

		scope: The scope for the operations performed in computing the loss.

Returns:

A scalar Tensor representing the loss value.

Raises:

		ValueError: If predictions.shape doesn’t match targets.shape, if the ignore
mask is provided and its shape doesn’t match targets.shape or if
the ignore mask is not boolean valued.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.reduce_any.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.reduce_any(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_any}

Computes the “logical or” of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

'x' is [[True, True]
[False, False]]
tf.reduce_any(x) ==> True
tf.reduce_any(x, 0) ==> [True, True]
tf.reduce_any(x, 1) ==> [True, False]

Args:

		input_tensor: The boolean tensor to reduce.

		reduction_indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

		keep_dims: If true, retains reduced dimensions with length 1.

		name: A name for the operation (optional).

Returns:

The reduced tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.errors.OutOfRangeError.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Raised when an operation iterates past the valid input range.

This exception is raised in “end-of-file” conditions, such as when a
queue.dequeue()
operation is blocked on an empty queue, and a
queue.close()
operation executes.

tf.errors.OutOfRangeError.__init__(node_def, op, message) {#OutOfRangeError.init}

Creates an OutOfRangeError.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.matching_files.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.matching_files(pattern, name=None) {#matching_files}

Returns the set of files matching a pattern.

Note that this routine only supports wildcard characters in the
basename portion of the pattern, not in the directory portion.

Args:

		pattern: A Tensor of type string. A (scalar) shell wildcard pattern.

		name: A name for the operation (optional).

Returns:

A Tensor of type string. A vector of matching filenames.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.segment_mean.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.segment_mean(data, segment_ids, name=None) {#segment_mean}

Computes the mean along segments of a tensor.

Read the section on
Segmentation for an explanation
of segments.

Computes a tensor such that
\(output_i = \frac{\sum_j data_j}{N}\) where mean is
over j such that segment_ids[j] == i and N is the total number of
values summed.

[image:]

Args:

		data: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		segment_ids: A Tensor. Must be one of the following types: int32, int64.
A 1-D tensor whose rank is equal to the rank of data‘s
first dimension. Values should be sorted and can be repeated.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.
Has same shape as data, except for dimension 0 which
has size k, the number of segments.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.losses.absolute_difference.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.losses.absolute_difference(predictions, targets, weight=1.0, scope=None) {#absolute_difference}

Adds an Absolute Difference loss to the training procedure.

weight acts as a coefficient for the loss. If a scalar is provided, then the
loss is simply scaled by the given value. If weight is a tensor of size
[batch_size], then the total loss for each sample of the batch is rescaled
by the corresponding element in the weight vector. If the shape of
weight matches the shape of predictions, then the loss of each
measurable element of predictions is scaled by the corresponding value of
weight.

Args:

		predictions: The predicted outputs.

		targets: The ground truth output tensor, same dimensions as ‘predictions’.

		weight: Coefficients for the loss a scalar, a tensor of shape
[batch_size] or a tensor whose shape matches predictions.

		scope: The scope for the operations performed in computing the loss.

Returns:

A scalar Tensor representing the loss value.

Raises:

		ValueError: If the shape of predictions doesn’t match that of targets or
if the shape of weight is invalid.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.shape.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.shape(input, name=None, out_type=tf.int32) {#shape}

Returns the shape of a tensor.

This operation returns a 1-D integer tensor representing the shape of input.

For example:

't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]
shape(t) ==> [2, 2, 3]

Args:

		input: A Tensor or SparseTensor.

		name: A name for the operation (optional).

		out_type: (Optional) The specified output type of the operation
(int32 or int64). Defaults to tf.int32.

Returns:

A Tensor of type out_type.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.losses.hinge_loss.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.losses.hinge_loss(logits, target, scope=None) {#hinge_loss}

Method that returns the loss tensor for hinge loss.

Args:

		logits: The logits, a float tensor.

		target: The ground truth output tensor. Its shape should match the shape of
logits. The values of the tensor are expected to be 0.0 or 1.0.

		scope: The scope for the operations performed in computing the loss.

Returns:

A Tensor of same shape as logits and target representing the loss values
across the batch.

Raises:

		ValueError: If the shapes of logits and target don’t match.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.train.AdagradOptimizer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Optimizer that implements the Adagrad algorithm.

See this paper [http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf].

tf.train.AdagradOptimizer.__init__(learning_rate, initial_accumulator_value=0.1, use_locking=False, name='Adagrad') {#AdagradOptimizer.init}

Construct a new Adagrad optimizer.

Args:

		learning_rate: A Tensor or a floating point value. The learning rate.

		initial_accumulator_value: A floating point value.
Starting value for the accumulators, must be positive.

		use_locking: If True use locks for update operations.

		name: Optional name prefix for the operations created when applying
gradients. Defaults to “Adagrad”.

Raises:

		ValueError: If the initial_accumulator_value is invalid.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.graph_editor.ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.ops(*args, **kwargs) {#ops}

Helper to select operations.

Args:

		*args: list of 1) regular expressions (compiled or not) or 2) (array of)
tf.Operation. tf.Tensor instances are silently ignored.

		**kwargs: ‘graph’: tf.Graph in which to perform the regex query.This is
required when using regex.
‘positive_filter’: an elem if selected only if positive_filter(elem) is
True. This is optional.
‘restrict_ops_regex’: a regular expression is ignored if it doesn’t start
with the substring “(?#ops)”.

Returns:

A list of tf.Operation.

Raises:

		TypeError: if the optional keyword argument graph is not a tf.Graph
or if an argument in args is not an (array of) tf.Operation
or an (array of) tf.Tensor (silently ignored) or a string
or a regular expression.

		ValueError: if one of the keyword arguments is unexpected or if a regular
expression is used without passing a graph as a keyword argument.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.parse_tensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.parse_tensor(serialized, out_type, name=None) {#parse_tensor}

Transforms a serialized tensorflow.TensorProto proto into a Tensor.

Args:

		serialized: A Tensor of type string.
A scalar string containing a serialized TensorProto proto.

		out_type: A tf.DType.
The type of the serialized tensor. The provided type must match the
type of the serialized tensor and no implicit conversion will take place.

		name: A name for the operation (optional).

Returns:

A Tensor of type out_type. A Tensor of type out_type.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.train.ClusterSpec.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Represents a cluster as a set of “tasks”, organized into “jobs”.

A tf.train.ClusterSpec represents the set of processes that
participate in a distributed TensorFlow computation. Every
tf.train.Server is constructed in a particular cluster.

To create a cluster with two jobs and five tasks, you specify the
mapping from job names to lists of network addresses (typically
hostname-port pairs).

cluster = tf.train.ClusterSpec({"worker": ["worker0.example.com:2222",
 "worker1.example.com:2222",
 "worker2.example.com:2222"],
 "ps": ["ps0.example.com:2222",
 "ps1.example.com:2222"]})

Each job may also be specified as a sparse mapping from task indices
to network addresses. This enables a server to be configured without
needing to know the identity of (for example) all other worker
tasks:

cluster = tf.train.ClusterSpec({"worker": {1: "worker1.example.com:2222"},
 "ps": ["ps0.example.com:2222",
 "ps1.example.com:2222"]})

tf.train.ClusterSpec.as_cluster_def() {#ClusterSpec.as_cluster_def}

Returns a tf.train.ClusterDef protocol buffer based on this cluster.

tf.train.ClusterSpec.as_dict() {#ClusterSpec.as_dict}

Returns a dictionary from job names to their tasks.

For each job, if the task index space is dense, the corresponding
value will be a list of network addresses; otherwise it will be a
dictionary mapping (sparse) task indices to the corresponding
addresses.

Returns:

A dictionary mapping job names to lists or dictionaries
describing the tasks in those jobs.

Other Methods

tf.train.ClusterSpec.__bool__() {#ClusterSpec.bool}

tf.train.ClusterSpec.__eq__(other) {#ClusterSpec.eq}

tf.train.ClusterSpec.__init__(cluster) {#ClusterSpec.init}

Creates a ClusterSpec.

Args:

		cluster: A dictionary mapping one or more job names to (i) a
list of network addresses, or (ii) a dictionary mapping integer
task indices to network addresses; or a tf.train.ClusterDef
protocol buffer.

Raises:

		TypeError: If cluster is not a dictionary mapping strings to lists
of strings, and not a tf.train.ClusterDef protobuf.

tf.train.ClusterSpec.__ne__(other) {#ClusterSpec.ne}

tf.train.ClusterSpec.__nonzero__() {#ClusterSpec.nonzero}

tf.train.ClusterSpec.job_tasks(job_name) {#ClusterSpec.job_tasks}

Returns a mapping from task ID to address in the given job.

NOTE: For backwards compatibility, this method returns a list. If
the given job was defined with a sparse set of task indices, the
length of this list may not reflect the number of tasks defined in
this job. Use the num_tasks() method
to find the number of tasks defined in a particular job.

Args:

		job_name: The string name of a job in this cluster.

Returns:

A list of task addresses, where the index in the list
corresponds to the task index of each task. The list may contain
None if the job was defined with a sparse set of task indices.

Raises:

		ValueError: If job_name does not name a job in this cluster.

tf.train.ClusterSpec.jobs {#ClusterSpec.jobs}

Returns a list of job names in this cluster.

Returns:

A list of strings, corresponding to the names of jobs in this cluster.

tf.train.ClusterSpec.num_tasks(job_name) {#ClusterSpec.num_tasks}

Returns the number of tasks defined in the given job.

Args:

		job_name: The string name of a job in this cluster.

Returns:

The number of tasks defined in the given job.

Raises:

		ValueError: If job_name does not name a job in this cluster.

tf.train.ClusterSpec.task_address(job_name, task_index) {#ClusterSpec.task_address}

Returns the address of the given task in the given job.

Args:

		job_name: The string name of a job in this cluster.

		task_index: A non-negative integer.

Returns:

The address of the given task in the given job.

Raises:

		ValueError: If job_name does not name a job in this cluster,
or no task with index task_index is defined in that job.

tf.train.ClusterSpec.task_indices(job_name) {#ClusterSpec.task_indices}

Returns a list of valid task indices in the given job.

Args:

		job_name: The string name of a job in this cluster.

Returns:

A list of valid task indices in the given job.

Raises:

		ValueError: If job_name does not name a job in this cluster,
or no task with index task_index is defined in that job.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.foldl.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.foldl(fn, elems, initializer=None, parallel_iterations=10, back_prop=True, swap_memory=False, name=None) {#foldl}

foldl on the list of tensors unpacked from elems on dimension 0.

This foldl operator repeatedly applies the callable fn to a sequence
of elements from first to last. The elements are made of the tensors
unpacked from elems on dimension 0. The callable fn takes two tensors as
arguments. The first argument is the accumulated value computed from the
preceding invocation of fn. If initializer is None, elems must contain
at least one element, and its first element is used as the initializer.

Suppose that elems is unpacked into values, a list of tensors. The shape
of the result tensor is fn(initializer, values[0]).shape`.

Args:

		fn: The callable to be performed.

		elems: A tensor to be unpacked on dimension 0.

		initializer: (optional) The initial value for the accumulator.

		parallel_iterations: (optional) The number of iterations allowed to run
in parallel.

		back_prop: (optional) True enables support for back propagation.

		swap_memory: (optional) True enables GPU-CPU memory swapping.

		name: (optional) Name prefix for the returned tensors.

Returns:

A tensor resulting from applying fn consecutively to the list of tensors
unpacked from elems, from first to last.

Raises:

		TypeError: if fn is not callable.

Example:

elems = [1, 2, 3, 4, 5, 6]
sum = foldl(lambda a, x: a + x, elems)
sum == 21

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.string_to_hash_bucket_strong.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.string_to_hash_bucket_strong(input, num_buckets, key, name=None) {#string_to_hash_bucket_strong}

Converts each string in the input Tensor to its hash mod by a number of buckets.

The hash function is deterministic on the content of the string within the
process. The hash function is a keyed hash function, where attribute key
defines the key of the hash function. key is an array of 2 elements.

A strong hash is important when inputs may be malicious, e.g. URLs with
additional components. Adversaries could try to make their inputs hash to the
same bucket for a denial-of-service attack or to skew the results. A strong
hash prevents this by making it dificult, if not infeasible, to compute inputs
that hash to the same bucket. This comes at a cost of roughly 4x higher compute
time than tf.string_to_hash_bucket_fast.

Args:

		input: A Tensor of type string. The strings to assign a hash bucket.

		num_buckets: An int that is >= 1. The number of buckets.

		key: A list of ints.
The key for the keyed hash function passed as a list of two uint64
elements.

		name: A name for the operation (optional).

Returns:

A Tensor of type int64.
A Tensor of the same shape as the input string_tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.image.adjust_saturation.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.adjust_saturation(image, saturation_factor, name=None) {#adjust_saturation}

Adjust saturation of an RGB image.

This is a convenience method that converts an RGB image to float
representation, converts it to HSV, add an offset to the saturation channel,
converts back to RGB and then back to the original data type. If several
adjustments are chained it is advisable to minimize the number of redundant
conversions.

image is an RGB image. The image saturation is adjusted by converting the
image to HSV and multiplying the saturation (S) channel by
saturation_factor and clipping. The image is then converted back to RGB.

Args:

		image: RGB image or images. Size of the last dimension must be 3.

		saturation_factor: float. Factor to multiply the saturation by.

		name: A name for this operation (optional).

Returns:

Adjusted image(s), same shape and DType as image.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.learn.extract_dask_data.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.learn.extract_dask_data(data) {#extract_dask_data}

Extract data from dask.Series or dask.DataFrame for predictors.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.assert_rank_at_least.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.assert_rank_at_least(x, rank, data=None, summarize=None, message=None, name=None) {#assert_rank_at_least}

Assert x has rank equal to rank or higher.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_rank_at_least(x, 2)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_rank_at_least(x, 2)], x)

Args:

		x: Numeric Tensor.

		rank: Scalar Tensor.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional).
Defaults to “assert_rank_at_least”.

Returns:

Op raising InvalidArgumentError unless x has specified rank or higher.
If static checks determine x has correct rank, a no_op is returned.

Raises:

		ValueError: If static checks determine x has wrong rank.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.parse_single_example.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.parse_single_example(serialized, features, name=None, example_names=None) {#parse_single_example}

Parses a single Example proto.

Similar to parse_example, except:

For dense tensors, the returned Tensor is identical to the output of
parse_example, except there is no batch dimension, the output shape is the
same as the shape given in dense_shape.

For SparseTensors, the first (batch) column of the indices matrix is removed
(the indices matrix is a column vector), the values vector is unchanged, and
the first (batch_size) entry of the shape vector is removed (it is now a
single element vector).

Args:

		serialized: A scalar string Tensor, a single serialized Example.
See _parse_single_example_raw documentation for more details.

		features: A dict mapping feature keys to FixedLenFeature or
VarLenFeature values.

		name: A name for this operation (optional).

		example_names: (Optional) A scalar string Tensor, the associated name.
See _parse_single_example_raw documentation for more details.

Returns:

A dict mapping feature keys to Tensor and SparseTensor values.

Raises:

		ValueError: if any feature is invalid.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.graph_editor.detach_outputs.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.detach_outputs(sgv, control_outputs=None) {#detach_outputs}

Detach the outputa of a subgraph view.

Args:

		sgv: the subgraph view to be detached. This argument is converted to a
subgraph using the same rules as the function subgraph.make_view.
Note that sgv is modified in place.

		control_outputs: a util.ControlOutputs instance or None. If not None the
control outputs are also detached.

Returns:

A tuple (sgv, output_placeholders) where
sgv is a new subgraph view of the detached subgraph;
output_placeholders is a list of the created output placeholders.

Raises:

		StandardError: if sgv cannot be converted to a SubGraphView using
the same rules than the function subgraph.make_view.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.graph_editor.transform_op_in_place.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.transform_op_in_place(info, op, detach_outputs=False) {#transform_op_in_place}

Transform a op in-place - experimental!

Transform an operation in place. It reconnects the inputs if they have been
modified. if detach_outputs is True, the outputs of op are also detached.

Args:

		info: Transform._Info instance.

		op: the op to transform in place.

		detach_outputs: if True, the outputs of op are detached, ready for the user
to add more operation.

Returns:

The transformed op.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.metrics.auc_using_histogram.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.auc_using_histogram(boolean_labels, scores, score_range, nbins=100, collections=None, check_shape=True, name=None) {#auc_using_histogram}

AUC computed by maintaining histograms.

Rather than computing AUC directly, this Op maintains Variables containing
histograms of the scores associated with True and False labels. By
comparing these the AUC is generated, with some discretization error.
See: “Efficient AUC Learning Curve Calculation” by Bouckaert.

This AUC Op updates in O(batch_size + nbins) time and works well even with
large class imbalance. The accuracy is limited by discretization error due
to finite number of bins. If scores are concentrated in a fewer bins,
accuracy is lower. If this is a concern, we recommend trying different
numbers of bins and comparing results.

Args:

		boolean_labels: 1-D boolean Tensor. Entry is True if the corresponding
record is in class.

		scores: 1-D numeric Tensor, same shape as boolean_labels.

		score_range: Tensor of shape [2], same dtype as scores. The min/max
values of score that we expect. Scores outside range will be clipped.

		nbins: Integer number of bins to use. Accuracy strictly increases as the
number of bins increases.

		collections: List of graph collections keys. Internal histogram Variables
are added to these collections. Defaults to [GraphKeys.LOCAL_VARIABLES].

		check_shape: Boolean. If True, do a runtime shape check on the scores
and labels.

		name: A name for this Op. Defaults to “auc_using_histogram”.

Returns:

		auc: float32 scalar Tensor. Fetching this converts internal histograms
to auc value.

		update_op: Op, when run, updates internal histograms.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.assert_less_equal.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.assert_less_equal(x, y, data=None, summarize=None, message=None, name=None) {#assert_less_equal}

Assert the condition x <= y holds element-wise.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_less_equal(x, y)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_less_equal(x, y)], x)

This condition holds if for every pair of (possibly broadcast) elements
x[i], y[i], we have x[i] <= y[i].
If both x and y are empty, this is trivially satisfied.

Args:

		x: Numeric Tensor.

		y: Numeric Tensor, same dtype as and broadcastable to x.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x, y.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional). Defaults to “assert_less_equal”

Returns:

Op that raises InvalidArgumentError if x <= y is False.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.ceil.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.ceil(x, name=None) {#ceil}

Returns element-wise smallest integer in not less than x.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.diag.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.diag(diagonal, name=None) {#diag}

Returns a diagonal tensor with a given diagonal values.

Given a diagonal, this operation returns a tensor with the diagonal and
everything else padded with zeros. The diagonal is computed as follows:

Assume diagonal has dimensions [D1,..., Dk], then the output is a tensor of
rank 2k with dimensions [D1,..., Dk, D1,..., Dk] where:

output[i1,..., ik, i1,..., ik] = diagonal[i1, ..., ik] and 0 everywhere else.

For example:

'diagonal' is [1, 2, 3, 4]
tf.diag(diagonal) ==> [[1, 0, 0, 0]
 [0, 2, 0, 0]
 [0, 0, 3, 0]
 [0, 0, 0, 4]]

Args:

		diagonal: A Tensor. Must be one of the following types: float32, float64, int32, int64, complex64, complex128.
Rank k tensor where k is at most 3.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as diagonal.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 MixtureTensor is a StochasticTensor backed by the distribution Mixture.

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#MixtureTensor.init}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.clone(name=None, **dist_args) {#MixtureTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.distribution {#MixtureTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.dtype {#MixtureTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.entropy(name='entropy') {#MixtureTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.graph {#MixtureTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.input_dict {#MixtureTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.loss(final_loss, name='Loss') {#MixtureTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.mean(name='mean') {#MixtureTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.name {#MixtureTensor.name}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.value(name='value') {#MixtureTensor.value}

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.value_type {#MixtureTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.IdentityReader.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A Reader that outputs the queued work as both the key and value.

To use, enqueue strings in a Queue. Read will take the front
work string and output (work, work).

See ReaderBase for supported methods.

tf.IdentityReader.__init__(name=None) {#IdentityReader.init}

Create a IdentityReader.

Args:

		name: A name for the operation (optional).

tf.IdentityReader.num_records_produced(name=None) {#IdentityReader.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.IdentityReader.num_work_units_completed(name=None) {#IdentityReader.num_work_units_completed}

Returns the number of work units this reader has finished processing.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.IdentityReader.read(queue, name=None) {#IdentityReader.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

		key: A string scalar Tensor.

		value: A string scalar Tensor.

tf.IdentityReader.read_up_to(queue, num_records, name=None) {#IdentityReader.read_up_to}

Returns up to num_records (key, value pairs) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g., when the
Reader needs to start reading from a new file since it has
finished with the previous file).
It may return less than num_records even before the last batch.

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		num_records: Number of records to read.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (keys, values).

		keys: A 1-D string Tensor.

		values: A 1-D string Tensor.

tf.IdentityReader.reader_ref {#IdentityReader.reader_ref}

Op that implements the reader.

tf.IdentityReader.reset(name=None) {#IdentityReader.reset}

Restore a reader to its initial clean state.

Args:

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.IdentityReader.restore_state(state, name=None) {#IdentityReader.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

		state: A string Tensor.
Result of a SerializeState of a Reader with matching type.

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.IdentityReader.serialize_state(name=None) {#IdentityReader.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

		name: A name for the operation (optional).

Returns:

A string Tensor.

tf.IdentityReader.supports_serialize {#IdentityReader.supports_serialize}

Whether the Reader implementation can serialize its state.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.assert_rank.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.assert_rank(x, rank, data=None, summarize=None, message=None, name=None) {#assert_rank}

Assert x has rank equal to rank.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_rank(x, 2)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_rank(x, 2)], x)

Args:

		x: Numeric Tensor.

		rank: Scalar integer Tensor.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional). Defaults to “assert_rank”.

Returns:

Op raising InvalidArgumentError unless x has specified rank.
If static checks determine x has correct rank, a no_op is returned.

Raises:

		ValueError: If static checks determine x has wrong rank.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.map_fn.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.map_fn(fn, elems, dtype=None, parallel_iterations=10, back_prop=True, swap_memory=False, infer_shape=True, name=None) {#map_fn}

map on the list of tensors unpacked from elems on dimension 0.

The simplest version of map repeatedly applies the callable fn to a
sequence of elements from first to last. The elements are made of the
tensors unpacked from elems. dtype is the data type of the return
value of fn. Users must provide dtype if it is different from
the data type of elems.

Suppose that elems is unpacked into values, a list of tensors. The shape
of the result tensor is [values.shape[0]] + fn(values[0]).shape.

This method also allows multi-arity elems and output of fn. If elems
is a (possibly nested) list or tuple of tensors, then each of these tensors
must have a matching first (unpack) dimension. The signature of fn may
match the structure of elems. That is, if elems is
(t1, [t2, t3, [t4, t5]]), then an appropriate signature for fn is:
fn = lambda (t1, [t2, t3, [t4, t5]]):.

Furthermore, fn may emit a different structure than its input. For example,
fn may look like: fn = lambda t1: return (t1 + 1, t1 - 1). In this case,
the dtype parameter is not optional: dtype must be a type or (possibly
nested) tuple of types matching the output of fn.

Args:

		fn: The callable to be performed. It accepts one argument, which will
have the same (possibly nested) structure as elems. Its output
must have the same structure as dtype if one is provided, otherwise
it must have the same structure as elems.

		elems: A tensor or (possibly nested) sequence of tensors, each of which
will be unpacked along their first dimension. The nested sequence
of the resulting slices will be applied to fn.

		dtype: (optional) The output type(s) of fn. If fn returns a structure
of Tensors differing from the structure of elems, then dtype is not
optional and must have the same structure as the output of fn.

		parallel_iterations: (optional) The number of iterations allowed to run
in parallel.

		back_prop: (optional) True enables support for back propagation.

		swap_memory: (optional) True enables GPU-CPU memory swapping.

		infer_shape: (optional) False disables tests for consistent output shapes.

		name: (optional) Name prefix for the returned tensors.

Returns:

A tensor or (possibly nested) sequence of tensors. Each tensor packs the
results of applying fn to tensors unpacked from elems along the first
dimension, from first to last.

Raises:

		TypeError: if fn is not callable or the structure of the output of
fn and dtype do not match.

		ValueError: if the lengths of the output of fn and dtype do not match.

Examples:

elems = np.array([1, 2, 3, 4, 5, 6])
squares = map_fn(lambda x: x * x, elems)
squares == [1, 4, 9, 16, 25, 36]

elems = (np.array([1, 2, 3]), np.array([-1, 1, -1]))
alternate = map_fn(lambda x: x[0] * x[1], elems, dtype=tf.int64)
alternate == [-1, 2, -3]

elems = np.array([1, 2, 3])
alternates = map_fn(lambda x: (x, -x), elems, dtype=(tf.int64, tf.int64))
alternates[0] == [1, 2, 3]
alternates[1] == [-1, -2, -3]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.errors.UnauthenticatedError.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 The request does not have valid authentication credentials.

This exception is not currently used.

tf.errors.UnauthenticatedError.__init__(node_def, op, message) {#UnauthenticatedError.init}

Creates an UnauthenticatedError.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.learn.monitors.SummaryWriterCache.get.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.learn.monitors.SummaryWriterCache.get(logdir) {#SummaryWriterCache.get}

Returns the SummaryWriter for the specified directory.

Args:

		logdir: str, name of the directory.

Returns:

A SummaryWriter.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/contrib.training.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Training (contrib)

[TOC]

Training and input utilities.

Splitting sequence inputs into minibatches with state saving

Use SequenceQueueingStateSaver or
its wrapper batch_sequences_with_states if
you have input data with a dynamic primary time / frame count axis which
you’d like to convert into fixed size segments during minibatching, and would
like to store state in the forward direction across segments of an example.

tf.contrib.training.batch_sequences_with_states(input_key, input_sequences, input_context, input_length, initial_states, num_unroll, batch_size, num_threads=3, capacity=1000, allow_small_batch=True, pad=True, name=None) {#batch_sequences_with_states}

Creates batches of segments of sequential input.

This method creates a SequenceQueueingStateSaver (SQSS) and adds it to
the queuerunners. It returns a NextQueuedSequenceBatch.

It accepts one example at a time identified by a unique input_key.
input_sequence is a dict with values that are tensors with time as first
dimension. This time dimension must be the same across those tensors of an
example. It can vary across examples. Although it always has to be a multiple
of num_unroll. Hence, padding may be necessary and it is turned on by
default by pad=True.

input_length is a Tensor scalar or an int recording the time dimension prior
to padding. It should be between 0 and the time dimension. One reason we want
to keep track of it is so that we can take it into consideration when
computing the loss. If pad=True then input_length can be None and will
be inferred.

This methods segments input_sequence into segments of length num_unroll.
It batches input sequences from batch_size many examples. These mini-batches
are available through the sequence property of the output. Moreover, for
each entry in the batch we can access its original input_key in key and
its input length in total_length. length records within this segment how
many non-padded time steps there are.

Static features of an example that do not vary across time can be part of the
input_context, a dict with Tensor values. This method copies the context for
each segment and makes it availabe in the context of the output.

This method can maintain and update a state for each example. It accepts some
initial_states as a dict with Tensor values. The first mini-batch an example
is contained has initial_states as entry of the state. If save_state is
called then the next segment will have the updated entry of the state.
See NextQueuedSequenceBatch for a complete list of properties and methods.

Example usage:

batch_size = 32
num_unroll = 20
num_enqueue_threads = 3
lstm_size = 8
cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=lstm_size)

key, sequences, context = my_parser(raw_data)
initial_state_values = tf.zeros((state_size,), dtype=tf.float32)
initial_states = {"lstm_state": initial_state_values}
batch = tf.batch_sequences_with_states(
 input_key=key,
 input_sequences=sequences,
 input_context=context,
 initial_states=initial_states,
 num_unroll=num_unroll,
 batch_size=batch_size,
 num_threads=num_enqueue_threads,
 capacity=batch_size * num_enqueue_threads * 2)

inputs = batch.sequences["input"]
context_label = batch.context["label"]

inputs_by_time = tf.split(1, num_unroll, inputs)
assert len(inputs_by_time) == num_unroll

lstm_output, _ = tf.nn.state_saving_rnn(
 cell,
 inputs_by_time,
 state_saver=batch,
 state_name="lstm_state")

Start a prefetcher in the background
sess = tf.Session()

tf.train.start_queue_runners(sess=session)

while True:
 # Step through batches, perform training or inference...
 session.run([lstm_output])

Args:

		input_key: A string scalar Tensor, the unique key for the given
input example. This is used to keep track of the split minibatch elements
of this input. Batched keys of the current iteration are made
accessible via the key property. The shape of input_key (scalar) must
be fully specified.

		input_sequences: A dict mapping string names to Tensor values. The values
must all have matching first dimension, called value_length. They may
vary from input to input. The remainder of the shape (other than the first
dimension) must be fully specified.
The SequenceQueueingStateSaver will split these tensors along
this first dimension into minibatch elements of dimension num_unrolled.
Batched and segmented sequences of the current iteration are made
accessible via the sequences property.

Note: if pad=False, then value_length must always be a multiple
of num_unroll.

		input_context: A dict mapping string names to Tensor values. The values
are treated as “global” across all time splits of the given input example,
and will be copied across for all minibatch elements accordingly.
Batched and copied context of the current iteration are made
accessible via the context property.

Note: All input_context values must have fully defined shapes.

		input_length: None or an int32 scalar Tensor, the length of the sequence
prior to padding. If input_length=None and pad=True then the length
will be inferred and will be equal to value_length. If pad=False then
input_length cannot be None: input_length must be specified. Its
shape of input_length (scalar) must be fully specified. Its value may be
at most value_length for any given input (see above for the definition
of value_length). Batched and total lengths of the current iteration are
made accessible via the length and total_length properties.

		initial_states: A dict mapping string state names to multi-dimensional
values (e.g. constants or tensors). This input defines the set of
states that will be kept track of during computing iterations, and
which can be accessed via the state and save_state methods.

Note: All initial_state values must have fully defined shapes.

		num_unroll: Python integer, how many time steps to unroll at a time.
The input sequences of length k are then split into k / num_unroll many
segments.

		batch_size: int or int32 scalar Tensor, how large minibatches should
be when accessing the state() method and context, sequences, etc,
properties.

		num_threads: The int number of threads enquing input examples into a queue.

		capacity: The max capacity of the queue in number of examples. Needs to be
at least batch_size. Defaults to 1000. When iterating over the same
input example multiple times reusing their keys the capacity must be
smaller than the number of examples.

		allow_small_batch: If true, the queue will return smaller batches when
there aren’t enough input examples to fill a whole batch and the end of
the input has been reached.

		pad: If True, input_sequences will be padded to multiple of
num_unroll. In that case input_length may be None and is assumed to
be the length of first dimension of values in input_sequences
(i.e. value_length).

		name: An op name string (optional).

Returns:

A NextQueuedSequenceBatch with segmented and batched inputs and their
states.

Raises:

		TypeError: if any of the inputs is not an expected type.

		ValueError: if any of the input values is inconsistent, e.g. if
not enough shape information is available from inputs to build
the state saver.

class tf.contrib.training.NextQueuedSequenceBatch {#NextQueuedSequenceBatch}

NextQueuedSequenceBatch stores deferred SequenceQueueingStateSaver data.

This class is instantiated by SequenceQueueingStateSaver and is accessible
via its next_batch property.

tf.contrib.training.NextQueuedSequenceBatch.__init__(state_saver) {#NextQueuedSequenceBatch.init}

tf.contrib.training.NextQueuedSequenceBatch.batch_size {#NextQueuedSequenceBatch.batch_size}

The batch_size of the given batch.

Usually, this is the batch_size requested when initializing the SQSS, but
if allow_small_batch=True this will become smaller when inputs are
exhausted.

Returns:

A scalar integer tensor, the batch_size

tf.contrib.training.NextQueuedSequenceBatch.context {#NextQueuedSequenceBatch.context}

A dict mapping keys of input_context to batched context.

Returns:

A dict mapping keys of input_context to tensors.
If we had at input:

context["name"].get_shape() == [d1, d2, ...]

then for this property:

context["name"].get_shape() == [batch_size, d1, d2, ...]

tf.contrib.training.NextQueuedSequenceBatch.insertion_index {#NextQueuedSequenceBatch.insertion_index}

The insertion indices of the examples (when they were first added).

These indices start with the value -2**63 and increase with every
call to the prefetch op. Each whole example gets its own insertion
index, and this is used to prioritize the example so that its truncated
segments appear in adjacent iterations, even if new examples are inserted
by the prefetch op between iterations.

Returns:

An int64 vector of length batch_size, the insertion indices.

tf.contrib.training.NextQueuedSequenceBatch.key {#NextQueuedSequenceBatch.key}

The key names of the given truncated unrolled examples.

The format of the key is:

"%05d_of_%05d:%s" % (sequence, sequence_count, original_key)

where original_key is the unique key read in by the prefetcher.

Returns:

A string vector of length batch_size, the keys.

tf.contrib.training.NextQueuedSequenceBatch.length {#NextQueuedSequenceBatch.length}

The lengths of the given truncated unrolled examples.

For initial iterations, for which sequence * num_unroll < length,
this number is num_unroll. For the remainder,
this number is between 0 and num_unroll.

Returns:

An integer vector of length batch_size, the lengths.

tf.contrib.training.NextQueuedSequenceBatch.next_key {#NextQueuedSequenceBatch.next_key}

The key names of the next (in iteration) truncated unrolled examples.

The format of the key is:

"%05d_of_%05d:%s" % (sequence + 1, sequence_count, original_key)

if sequence + 1 < sequence_count, otherwise:

"STOP:%s" % original_key

where original_key is the unique key read in by the prefetcher.

Returns:

A string vector of length batch_size, the keys.

tf.contrib.training.NextQueuedSequenceBatch.save_state(state_name, value, name=None) {#NextQueuedSequenceBatch.save_state}

Returns an op to save the current batch of state state_name.

Args:

		state_name: string, matches a key provided in initial_states.

		value: A Tensor.
Its type must match that of initial_states[state_name].dtype.
If we had at input:

initial_states[state_name].get_shape() == [d1, d2, ...]

then the shape of value must match:

tf.shape(value) == [batch_size, d1, d2, ...]

		name: string (optional). The name scope for newly created ops.

Returns:

A control flow op that stores the new state of each entry into
the state saver. This op must be run for every iteration that
accesses data from the state saver (otherwise the state saver
will never progress through its states and run out of capacity).

Raises:

		KeyError: if state_name does not match any of the initial states
declared in initial_states.

tf.contrib.training.NextQueuedSequenceBatch.sequence {#NextQueuedSequenceBatch.sequence}

An int32 vector, length batch_size: the sequence index of each entry.

When an input is split up, the sequence values

0, 1, ..., sequence_count - 1

are assigned to each split.

Returns:

An int32 vector Tensor.

tf.contrib.training.NextQueuedSequenceBatch.sequence_count {#NextQueuedSequenceBatch.sequence_count}

An int32 vector, length batch_size: the sequence count of each entry.

When an input is split up, the number of splits is equal to:
padded_length / num_unroll. This is the sequence_count.

Returns:

An int32 vector Tensor.

tf.contrib.training.NextQueuedSequenceBatch.sequences {#NextQueuedSequenceBatch.sequences}

A dict mapping keys of input_sequences to split and rebatched data.

Returns:

A dict mapping keys of input_sequences to tensors.
If we had at input:

sequences["name"].get_shape() == [None, d1, d2, ...]

where None meant the sequence time was dynamic, then for this property:

sequences["name"].get_shape() == [batch_size, num_unroll, d1, d2, ...].

tf.contrib.training.NextQueuedSequenceBatch.state(state_name) {#NextQueuedSequenceBatch.state}

Returns batched state tensors.

Args:

		state_name: string, matches a key provided in initial_states.

Returns:

A Tensor: a batched set of states, either initial states (if this is
the first run of the given example), or a value as stored during
a previous iteration via save_state control flow.
Its type is the same as initial_states["state_name"].dtype.
If we had at input:

initial_states[state_name].get_shape() == [d1, d2, ...],

then

state(state_name).get_shape() == [batch_size, d1, d2, ...]

Raises:

		KeyError: if state_name does not match any of the initial states
declared in initial_states.

tf.contrib.training.NextQueuedSequenceBatch.total_length {#NextQueuedSequenceBatch.total_length}

The lengths of the original (non-truncated) unrolled examples.

Returns:

An integer vector of length batch_size, the total lengths.

class tf.contrib.training.SequenceQueueingStateSaver {#SequenceQueueingStateSaver}

SequenceQueueingStateSaver provides access to stateful values from input.

This class is meant to be used instead of, e.g., a Queue, for splitting
variable-length sequence inputs into segments of sequences with fixed length
and batching them into mini-batches. It maintains contexts and state for a
sequence across the segments. It can be used in conjunction with a
QueueRunner (see the example below).

The SequenceQueueingStateSaver (SQSS) accepts one example at a time via the
inputs input_length, input_key, input_sequences (a dict),
input_context (a dict), and initial_states (a dict).
The sequences, values in input_sequences, may have variable first dimension
(the padded_length), though this dimension must always be a multiple of
num_unroll. All other dimensions must be fixed and accessible via
get_shape calls. The length prior to padding can be recorded in
input_length. The context values in input_context must all have fixed and
well defined dimensions. The initial state values must all have fixed and
well defined dimensions.

The SQSS splits the sequences of an input example into segments of length
num_unroll. Across examples minibatches of size batch_size are formed.
These minibatches contain a segment of the sequences, copy the context values,
and maintain state, length, and key information of the original input
examples. In the first segment of an example the state is still the initial
state. It can then be updated; and updated state values are accessible in
subsequent segments of the same example. After each segment
batch.save_state() must be called which is done by the state_saving_rnn.
Without this call, the dequeue op associated with the SQSS will not run.
Internally, SQSS has a queue for the input examples. Its capacity is
configurable. If set smaller than batch_size then the dequeue op will block
indefinitely. A small multiple of batch_size is a good rule of thumb to
prevent that queue from becoming a bottleneck and slowing down training.
If set too large (and note that it defaults to unbounded) memory consumption
goes up. Moreover, when iterating over the same input examples multiple times
reusing the same key the capacity must be smaller than the number of
examples.

The prefetcher, which reads one unrolled, variable-length input sequence at
a time, is accessible via prefetch_op. The underlying Barrier object
is accessible via barrier. Processed minibatches, as well as
state read and write capabilities are accessible via next_batch.
Specifically, next_batch provides access to all of the minibatched
data, including the following, see NextQueuedSequenceBatch for details:

		total_length, length, insertion_index, key, next_key,

		sequence (the index each minibatch entry’s time segment index),

		sequence_count (the total time segment count for each minibatch entry),

		context (a dict of the copied minibatched context values),

		sequences (a dict of the split minibatched variable-length sequences),

		state (to access the states of the current segments of these entries)

		save_state (to save the states for the next segments of these entries)

Example usage:

batch_size = 32
num_unroll = 20
lstm_size = 8
cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=lstm_size)
initial_state_values = tf.zeros(cell.state_size, dtype=tf.float32)

raw_data = get_single_input_from_input_reader()
length, key, sequences, context = my_parser(raw_data)
assert "input" in sequences.keys()
assert "label" in context.keys()
initial_states = {"lstm_state": initial_state_value}

stateful_reader = tf.SequenceQueueingStateSaver(
 batch_size, num_unroll,
 length=length, input_key=key, input_sequences=sequences,
 input_context=context, initial_states=initial_states,
 capacity=batch_size*100)

batch = stateful_reader.next_batch
inputs = batch.sequences["input"]
context_label = batch.context["label"]

inputs_by_time = tf.split(1, num_unroll, inputs)
assert len(inputs_by_time) == num_unroll

lstm_output, _ = tf.nn.state_saving_rnn(
 cell,
 inputs_by_time,
 state_saver=batch,
 state_name="lstm_state")

Start a prefetcher in the background
sess = tf.Session()
num_threads = 3
queue_runner = tf.train.QueueRunner(
 stateful_reader, [stateful_reader.prefetch_op] * num_threads)
tf.train.add_queue_runner(queue_runner)
tf.train.start_queue_runners(sess=session)

while True:
 # Step through batches, perform training or inference...
 session.run([lstm_output])

Note: Usually the barrier is given to a QueueRunner as in the
examples above. The QueueRunner will close the barrier if the prefetch_op
receives an OutOfRange Error from upstream input queues (i.e., reaches
the end of the input). If the barrier is closed no further new examples
are added to the SQSS. The underlying barrier might, however, still
contain further unroll-steps of examples that have not undergone all
iterations. To gracefully finish all examples, the flag
allow_small_batch must be set to true, which causes the SQSS to issue
progressively smaller mini-batches with the remaining examples.

tf.contrib.training.SequenceQueueingStateSaver.__init__(batch_size, num_unroll, input_length, input_key, input_sequences, input_context, initial_states, capacity=None, allow_small_batch=False, name=None) {#SequenceQueueingStateSaver.init}

Creates the SequenceQueueingStateSaver.

Args:

		batch_size: int or int32 scalar Tensor, how large minibatches should
be when accessing the state() method and context, sequences, etc,
properties.

		num_unroll: Python integer, how many time steps to unroll at a time.
The input sequences of length k are then split into k / num_unroll
many segments.

		input_length: An int32 scalar Tensor, the length of the sequence prior
to padding. This value may be at most padded_length for any given
input (see below for the definition of padded_length).
Batched and total lengths of the current iteration are made accessible
via the length and total_length properties. The shape of
input_length (scalar) must be fully specified.

		input_key: A string scalar Tensor, the unique key for the given
input. This is used to keep track of the split minibatch elements
of this input. Batched keys of the current iteration are made
accessible via the key property. The shape of input_key (scalar)
must be fully specified.

		input_sequences: A dict mapping string names to Tensor values. The
values must all have matching first dimension, called padded_length.
The SequenceQueueingStateSaver will split these tensors along
this first dimension into minibatch elements of dimension
num_unroll. Batched and segmented sequences of the current iteration
are made accessible via the sequences property.

Note: padded_length may be dynamic, and may vary from input
to input, but must always be a multiple of num_unroll. The remainder
of the shape (other than the first dimension) must be fully specified.

		input_context: A dict mapping string names to Tensor values. The values
are treated as “global” across all time splits of the given input,
and will be copied across for all minibatch elements accordingly.
Batched and copied context of the current iteration are made
accessible via the context property.

Note: All input_context values must have fully defined shapes.

		initial_states: A dict mapping string state names to multi-dimensional
values (e.g. constants or tensors). This input defines the set of
states that will be kept track of during computing iterations, and
which can be accessed via the state and save_state methods.

Note: All initial_state values must have fully defined shapes.

		capacity: The max capacity of the SQSS in number of examples. Needs to be
at least batch_size. Defaults to unbounded.

		allow_small_batch: If true, the SQSS will return smaller batches when
there aren’t enough input examples to fill a whole batch and the end of
the input has been reached (i.e., the underlying barrier has been
closed).

		name: An op name string (optional).

Raises:

		TypeError: if any of the inputs is not an expected type.

		ValueError: if any of the input values is inconsistent, e.g. if
not enough shape information is available from inputs to build
the state saver.

tf.contrib.training.SequenceQueueingStateSaver.barrier {#SequenceQueueingStateSaver.barrier}

tf.contrib.training.SequenceQueueingStateSaver.batch_size {#SequenceQueueingStateSaver.batch_size}

tf.contrib.training.SequenceQueueingStateSaver.close(cancel_pending_enqueues=False, name=None) {#SequenceQueueingStateSaver.close}

Closes the barrier and the FIFOQueue.

This operation signals that no more segments of new sequences will be
enqueued. New segments of already inserted sequences may still be enqueued
and dequeued if there is a sufficient number filling a batch or
allow_small_batch is true. Otherwise dequeue operations will fail
immediately.

Args:

		cancel_pending_enqueues: (Optional.) A boolean, defaulting to
False. If True, all pending enqueues to the underlying queues will
be cancelled, and completing already started sequences is not possible.

		name: Optional name for the op.

Returns:

The operation that closes the barrier and the FIFOQueue.

tf.contrib.training.SequenceQueueingStateSaver.name {#SequenceQueueingStateSaver.name}

tf.contrib.training.SequenceQueueingStateSaver.next_batch {#SequenceQueueingStateSaver.next_batch}

The NextQueuedSequenceBatch providing access to batched output data.

Also provides access to the state and save_state methods.
The first time this gets called, it additionally prepares barrier reads
and creates NextQueuedSequenceBatch / next_batch objects. Subsequent
calls simply return the previously created next_batch.

In order to access data in next_batch without blocking, the prefetch_op
must have been run at least batch_size times (ideally in a separate
thread, or launched via a QueueRunner). After processing a segment in
next_batch(), batch.save_state() must be called which is done by the
state_saving_rnn. Without this call, the dequeue op associated with the SQSS
will not run.

Returns:

A cached NextQueuedSequenceBatch instance.

tf.contrib.training.SequenceQueueingStateSaver.num_unroll {#SequenceQueueingStateSaver.num_unroll}

tf.contrib.training.SequenceQueueingStateSaver.prefetch_op {#SequenceQueueingStateSaver.prefetch_op}

The op used to prefetch new data into the state saver.

Running it once enqueues one new input example into the state saver.
The first time this gets called, it additionally creates the prefetch_op.
Subsequent calls simply return the previously created prefetch_op.

It should be run in a separate thread via e.g. a QueueRunner.

Returns:

An Operation that performs prefetching.

Online data resampling

Use ‘stratified_sample’ or
‘stratified_sample_unknown_dist’ to resample
from the data and change the class proportions that the Tensorflow graph sees.
For instance, if you have a binary classification dataset that is 99.9% class
1, a common approach is to resample from the data so that the data is more
balanced.

tf.contrib.training.stratified_sample(tensors, labels, target_probs, batch_size, init_probs=None, enqueue_many=False, queue_capacity=16, threads_per_queue=1, name=None) {#stratified_sample}

Stochastically creates batches based on per-class probabilities.

This method discards examples. Internally, it creates one queue to amortize
the cost of disk reads, and one queue to hold the properly-proportioned
batch. See stratified_sample_unknown_dist for a function that performs
stratified sampling with one queue per class and doesn’t require knowing the
class data-distribution ahead of time.

Args:

		tensors: List of tensors for data. All tensors are either one item or a
batch, according to enqueue_many.

		labels: Tensor for label of data. Label is a single integer or a batch,
depending on enqueue_many. It is not a one-hot vector.

		target_probs: Target class proportions in batch. An object whose type has a
registered Tensor conversion function.

		batch_size: Size of batch to be returned.

		init_probs: Class proportions in the data. An object whose type has a
registered Tensor conversion function, or None for estimating the
initial distribution.

		enqueue_many: Bool. If true, interpret input tensors as having a batch
dimension.

		queue_capacity: Capacity of the large queue that holds input examples.

		threads_per_queue: Number of threads for the large queue that holds input
examples and for the final queue with the proper class proportions.

		name: Optional prefix for ops created by this function.

Raises:

		ValueError: enqueue_many is True and labels doesn’t have a batch
dimension, or if enqueue_many is False and labels isn’t a scalar.

		ValueError: enqueue_many is True, and batch dimension on data and labels
don’t match.

		ValueError: if probs don’t sum to one.

		ValueError: if a zero initial probability class has a nonzero target
probability.

		TFAssertion: if labels aren’t integers in [0, num classes).

Returns:

(data_batch, label_batch), where data_batch is a list of tensors of the same
length as tensors

Example:

Get tensor for a single data and label example.

data, label = data_provider.Get([‘data’, ‘label’])

Get stratified batch according to per-class probabilities.

target_probs = [...distribution you want...]
[data_batch], labels = tf.contrib.training.stratified_sample(
[data], label, target_probs)

Run batch through network.

...

tf.contrib.training.stratified_sample_unknown_dist(tensors, labels, probs, batch_size, enqueue_many=False, queue_capacity=16, threads_per_queue=1, name=None) {#stratified_sample_unknown_dist}

Stochastically creates batches based on per-class probabilities.

NOTICE This sampler can be significantly slower than stratified_sample
due to each thread discarding all examples not in its assigned class.

This uses a number of threads proportional to the number of classes. See
stratified_sample for an implementation that discards fewer examples and
uses a fixed number of threads. This function’s only advantage over
stratified_sample is that the class data-distribution doesn’t need to be
known ahead of time.

Args:

		tensors: List of tensors for data. All tensors are either one item or a
batch, according to enqueue_many.

		labels: Tensor for label of data. Label is a single integer or a batch,
depending on enqueue_many. It is not a one-hot vector.

		probs: Target class probabilities. An object whose type has a registered
Tensor conversion function.

		batch_size: Size of batch to be returned.

		enqueue_many: Bool. If true, interpret input tensors as having a batch
dimension.

		queue_capacity: Capacity of each per-class queue.

		threads_per_queue: Number of threads for each per-class queue.

		name: Optional prefix for ops created by this function.

Raises:

		ValueError: enqueue_many is True and labels doesn’t have a batch
dimension, or if enqueue_many is False and labels isn’t a scalar.

		ValueError: enqueue_many is True, and batch dimension of data and labels
don’t match.

		ValueError: if probs don’t sum to one.

		TFAssertion: if labels aren’t integers in [0, num classes).

Returns:

(data_batch, label_batch), where data_batch is a list of tensors of the same
length as tensors

Example:

Get tensor for a single data and label example.

data, label = data_provider.Get([‘data’, ‘label’])

Get stratified batch according to per-class probabilities.

init_probs = [1.0/NUM_CLASSES for _ in range(NUM_CLASSES)]
[data_batch], labels = (
tf.contrib.training.stratified_sample_unknown_dist(
[data], label, init_probs, 16))

Run batch through network.

...

Bucketing

Use ‘bucket’ or
‘bucket_by_sequence_length’ to stratify
minibatches into groups (“buckets”). Use bucket_by_sequence_length
with the argument dynamic_pad=True to receive minibatches of similarly
sized sequences for efficient training via dynamic_rnn.

tf.contrib.training.bucket(tensors, which_bucket, batch_size, num_buckets, num_threads=1, capacity=32, shapes=None, dynamic_pad=False, allow_smaller_final_batch=False, keep_input=None, shared_name=None, name=None) {#bucket}

Lazy bucketing of input tensors according to which_bucket.

The argument tensors can be a list or a dictionary of tensors.
The value returned by the function will be of the same type
as tensors.

The tensors entering this function are put into the bucket given by
which_bucket. Each bucket has its own queue. When a bucket contains
batch_size elements, this minibatch is pushed onto a top queue. The
tensors returned from this function are a the result of dequeueing the
next minibatch from this top queue.

This function is implemented using several queues. A QueueRunner for the
queues is added to the current Graph‘s QUEUE_RUNNER collection.

As the returned tensors are the result of of a dequeue operation, evaluating
them will throw a tf.errors.OutOfRangeError when the input queue is
exhausted. If these tensors are feeding another input queue, its queue runner
will catch this exception, however, if they are used in your main thread
you are responsible for catching this yourself.

N.B.: If dynamic_pad is False, you must ensure that either
(i) the shapes argument is passed, or (ii) all of the tensors in
tensors must have fully-defined shapes. ValueError will be
raised if neither of these conditions holds.

If dynamic_pad is True, it is sufficient that the rank of the
tensors is known, but individual dimensions may have shape None.
In this case, for each enqueue the dimensions with value None
may have a variable length; upon dequeue, the output tensors will be padded
on the right to the maximum shape of the tensors in the current minibatch.
For numbers, this padding takes value 0. For strings, this padding is
the empty string. See PaddingFIFOQueue for more info.

If allow_smaller_final_batch is True, a smaller batch value than
batch_size is returned when the queues are closed and there are not enough
elements to fill the batch, otherwise the pending elements are discarded.
In addition, all output tensors’ static shapes, as accessed via the
get_shape() method will have a 0th Dimension value of None, and
operations that depend on fixed batch_size would fail.

Args:

		tensors: The list or dictionary of tensors, representing a single element,
to bucket. Nested lists are not supported.

		which_bucket: An int32 scalar Tensor taking a value in [0, num_buckets).

		batch_size: The new batch size pulled from the queue
(python int or int32 scalar).

		num_buckets: A python integer, the number of buckets.

		num_threads: An integer. The number of threads enqueuing tensors.

		capacity: An integer. The maximum number of minibatches in the top queue,
and also the maximum number of elements within each bucket.

		shapes: (Optional) The shapes for each example. Defaults to the
inferred shapes for tensors.

		dynamic_pad: Boolean. Allow variable dimensions in input shapes.
The given dimensions are padded upon dequeue so that tensors within a
batch have the same shapes.

		allow_smaller_final_batch: (Optional) Boolean. If True, allow the final
batches to be smaller if there are insufficient items left in the queues.

		keep_input: (Optional). A bool scalar Tensor. If provided, this tensor
controls whether the input is added to the queue or not. If it evaluates
True, then tensors are added to the bucket; otherwise they are
dropped. This tensor essentially acts as a filtering mechanism.
The default behavior is to assume keep_input=True.

		shared_name: (Optional). If set, the queues will be shared under the given
name across multiple sessions.

		name: (Optional) A name for the operations.

Returns:

A tuple (bucket, outputs) where bucket is
a int32 scalar tensor and outputs is a list or
dictionary of batched outputs corresponding to elements of tensors.
Every step will receive a new bucket of outputs.

Raises:

		ValueError: If the shapes are not specified, and cannot be
inferred from the elements of tensors.

tf.contrib.training.bucket_by_sequence_length(input_length, tensors, batch_size, bucket_boundaries, num_threads=1, capacity=32, shapes=None, dynamic_pad=False, allow_smaller_final_batch=False, keep_input=None, shared_name=None, name=None) {#bucket_by_sequence_length}

Lazy bucketing of inputs according to their length.

This method calls tf.contrib.training.bucket under the hood, after first
subdividing the bucket boundaries into separate buckets and identifying which
bucket the given input_length belongs to. See the documentation for
which_bucket for details of the other arguments.

Args:

		input_length: int32 scalar Tensor, the sequence length of tensors.

		tensors: The list or dictionary of tensors, representing a single element,
to bucket. Nested lists are not supported.

		batch_size: The new batch size pulled from the queue
(python int or int32 scalar).

		bucket_boundaries: int list, increasing non-negative numbers.
The edges of the buckets to use when bucketing tensors. Two extra buckets
are created, one for input_length < bucket_boundaries[0] and
one for input_length >= bucket_boundaries[-1].

		num_threads: An integer. The number of threads enqueuing tensors.

		capacity: An integer. The maximum number of minibatches in the top queue,
and also the maximum number of elements within each bucket.

		shapes: (Optional) The shapes for each example. Defaults to the
inferred shapes for tensors.

		dynamic_pad: Boolean. Allow variable dimensions in input shapes.
The given dimensions are padded upon dequeue so that tensors within a
batch have the same shapes.

		allow_smaller_final_batch: (Optional) Boolean. If True, allow the final
batches to be smaller if there are insufficient items left in the queues.

		keep_input: (Optional). A bool scalar Tensor. If provided, this tensor
controls whether the input is added to the queue or not. If it evaluates
True, then tensors are added to the bucket; otherwise they are
dropped. This tensor essentially acts as a filtering mechanism.
The default behavior is to assume keep_input=True.

		shared_name: (Optional). If set, the queues will be shared under the given
name across multiple sessions.

		name: (Optional) A name for the operations.

Returns:

A tuple (sequence_length, outputs) where sequence_length is
a 1-D Tensor of size batch_size and outputs is a list or dictionary
of batched, bucketed, outputs corresponding to elements of tensors.

Raises:

		TypeError: if bucket_boundaries is not a list of python integers.

		ValueError: if bucket_boundaries is empty or contains non-increasing
values.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.nn.moments.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.moments(x, axes, shift=None, name=None, keep_dims=False) {#moments}

Calculate the mean and variance of x.

The mean and variance are calculated by aggregating the contents of x
across axes. If x is 1-D and axes = [0] this is just the mean
and variance of a vector.

When using these moments for batch normalization (see
tf.nn.batch_normalization):

		for so-called “global normalization”, used with convolutional filters with
shape [batch, height, width, depth], pass axes=[0, 1, 2].

		for simple batch normalization pass axes=[0] (batch only).

Args:

		x: A Tensor.

		axes: array of ints. Axes along which to compute mean and
variance.

		shift: A Tensor containing the value by which to shift the data for
numerical stability, or None if no shift is to be performed. A shift
close to the true mean provides the most numerically stable results.

		name: Name used to scope the operations that compute the moments.

		keep_dims: produce moments with the same dimensionality as the input.

Returns:

Two Tensor objects: mean and variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/contrib.learn.monitors.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Monitors (contrib)

[TOC]

Monitors allow user instrumentation of the training process.

Monitors are useful to track training, report progress, request early
stopping and more. Monitors use the observer pattern and notify at the following
points:

		when training begins

		before a training step

		after a training step

		when training ends

Monitors are not intended to be reusable.

There are a few pre-defined monitors:

		CaptureVariable: saves a variable’s values

		GraphDump: intended for debug only - saves all tensor values

		PrintTensor: outputs one or more tensor values to log

		SummarySaver: saves summaries to a summary writer

		ValidationMonitor: runs model validation, by periodically calculating eval
metrics on a separate data set; supports optional early stopping

For more specific needs, you can create custom monitors by extending one of the
following classes:

		BaseMonitor: the base class for all monitors

		EveryN: triggers a callback every N training steps

Example:

class ExampleMonitor(monitors.BaseMonitor):
def init(self):
print ‘Init’

def begin(self, max_steps):
 print 'Starting run. Will train until step %d.' % max_steps

def end(self):
 print 'Completed run.'

def step_begin(self, step):
 print 'About to run step %d...' % step
 return ['loss_1:0']

def step_end(self, step, outputs):
 print 'Done running step %d. The value of "loss" tensor: %s' % (
 step, outputs['loss_1:0'])

linear_regressor = LinearRegressor()
example_monitor = ExampleMonitor()
linear_regressor.fit(
x, y, steps=2, batch_size=1, monitors=[example_monitor])

tf.contrib.learn.monitors.get_default_monitors(loss_op=None, summary_op=None, save_summary_steps=100, output_dir=None, summary_writer=None) {#get_default_monitors}

Returns a default set of typically-used monitors.

Args:

		loss_op: Tensor, the loss tensor. This will be printed using PrintTensor
at the default interval.

		summary_op: See SummarySaver.

		save_summary_steps: See SummarySaver.

		output_dir: See SummarySaver.

		summary_writer: See SummarySaver.

Returns:

list of monitors.

class tf.contrib.learn.monitors.BaseMonitor {#BaseMonitor}

Base class for Monitors.

Defines basic interfaces of Monitors.
Monitors can either be run on all workers or, more commonly, restricted
to run exclusively on the elected chief worker.

tf.contrib.learn.monitors.BaseMonitor.__init__() {#BaseMonitor.init}

tf.contrib.learn.monitors.BaseMonitor.begin(max_steps=None) {#BaseMonitor.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.BaseMonitor.end(session=None) {#BaseMonitor.end}

Callback at the end of training/evaluation.

Args:

		session: A tf.Session object that can be used to run ops.

Raises:

		ValueError: if we’ve not begun a run.

tf.contrib.learn.monitors.BaseMonitor.epoch_begin(epoch) {#BaseMonitor.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.BaseMonitor.epoch_end(epoch) {#BaseMonitor.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.BaseMonitor.post_step(step, session) {#BaseMonitor.post_step}

Callback after the step is finished.

Called after step_end and receives session to perform extra session.run
calls. If failure occurred in the process, will be called as well.

Args:

		step: int, global step of the model.

		session: Session object.

tf.contrib.learn.monitors.BaseMonitor.run_on_all_workers {#BaseMonitor.run_on_all_workers}

tf.contrib.learn.monitors.BaseMonitor.set_estimator(estimator) {#BaseMonitor.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.BaseMonitor.step_begin(step) {#BaseMonitor.step_begin}

Callback before training step begins.

You may use this callback to request evaluation of additional tensors
in the graph.

Args:

		step: int, the current value of the global step.

Returns:

List of Tensor objects or string tensor names to be run.

Raises:

		ValueError: if we’ve already begun a step, or step < 0, or
step > max_steps.

tf.contrib.learn.monitors.BaseMonitor.step_end(step, output) {#BaseMonitor.step_end}

Callback after training step finished.

This callback provides access to the tensors/ops evaluated at this step,
including the additional tensors for which evaluation was requested in
step_begin.

In addition, the callback has the opportunity to stop training by returning
True. This is useful for early stopping, for example.

Note that this method is not called if the call to Session.run() that
followed the last call to step_begin() failed.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool. True if training should stop.

Raises:

		ValueError: if we’ve not begun a step, or step number does not match.

class tf.contrib.learn.monitors.CaptureVariable {#CaptureVariable}

Captures a variable’s values into a collection.

This monitor is useful for unit testing. You should exercise caution when
using this monitor in production, since it never discards values.

This is an EveryN monitor and has consistent semantic for every_n
and first_n.

tf.contrib.learn.monitors.CaptureVariable.__init__(var_name, every_n=100, first_n=1) {#CaptureVariable.init}

Initializes a CaptureVariable monitor.

Args:

		var_name: string. The variable name, including suffix (typically ”:0”).

		every_n: int, print every N steps. See PrintN.

		first_n: int, also print the first N steps. See PrintN.

tf.contrib.learn.monitors.CaptureVariable.begin(max_steps=None) {#CaptureVariable.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.CaptureVariable.end(session=None) {#CaptureVariable.end}

tf.contrib.learn.monitors.CaptureVariable.epoch_begin(epoch) {#CaptureVariable.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.CaptureVariable.epoch_end(epoch) {#CaptureVariable.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.CaptureVariable.every_n_post_step(step, session) {#CaptureVariable.every_n_post_step}

Callback after a step is finished or end() is called.

Args:

		step: int, the current value of the global step.

		session: Session object.

tf.contrib.learn.monitors.CaptureVariable.every_n_step_begin(step) {#CaptureVariable.every_n_step_begin}

tf.contrib.learn.monitors.CaptureVariable.every_n_step_end(step, outputs) {#CaptureVariable.every_n_step_end}

tf.contrib.learn.monitors.CaptureVariable.post_step(step, session) {#CaptureVariable.post_step}

tf.contrib.learn.monitors.CaptureVariable.run_on_all_workers {#CaptureVariable.run_on_all_workers}

tf.contrib.learn.monitors.CaptureVariable.set_estimator(estimator) {#CaptureVariable.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.CaptureVariable.step_begin(step) {#CaptureVariable.step_begin}

Overrides BaseMonitor.step_begin.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

Returns:

A list, the result of every_n_step_begin, if that was called this step,
or an empty list otherwise.

Raises:

		ValueError: if called more than once during a step.

tf.contrib.learn.monitors.CaptureVariable.step_end(step, output) {#CaptureVariable.step_end}

Overrides BaseMonitor.step_end.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool, the result of every_n_step_end, if that was called this step,
or False otherwise.

tf.contrib.learn.monitors.CaptureVariable.values {#CaptureVariable.values}

Returns the values captured so far.

Returns:

dict mapping int step numbers to that values of the variable at the
respective step.

class tf.contrib.learn.monitors.CheckpointSaver {#CheckpointSaver}

Saves checkpoints every N steps.

tf.contrib.learn.monitors.CheckpointSaver.__init__(checkpoint_dir, save_secs=None, save_steps=None, saver=None, checkpoint_basename='model.ckpt', scaffold=None) {#CheckpointSaver.init}

Initialize CheckpointSaver monitor.

Args:

		checkpoint_dir: str, base directory for the checkpoint files.

		save_secs: int, save every N secs.

		save_steps: int, save every N steps.

		saver: Saver object, used for saving.

		checkpoint_basename: str, base name for the checkpoint files.

		scaffold: Scaffold, use to get saver object.

Raises:

		ValueError: If both save_steps and save_secs are not None.

		ValueError: If both save_steps and save_secs are None.

tf.contrib.learn.monitors.CheckpointSaver.begin(max_steps=None) {#CheckpointSaver.begin}

tf.contrib.learn.monitors.CheckpointSaver.end(session=None) {#CheckpointSaver.end}

tf.contrib.learn.monitors.CheckpointSaver.epoch_begin(epoch) {#CheckpointSaver.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.CheckpointSaver.epoch_end(epoch) {#CheckpointSaver.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.CheckpointSaver.post_step(step, session) {#CheckpointSaver.post_step}

tf.contrib.learn.monitors.CheckpointSaver.run_on_all_workers {#CheckpointSaver.run_on_all_workers}

tf.contrib.learn.monitors.CheckpointSaver.set_estimator(estimator) {#CheckpointSaver.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.CheckpointSaver.step_begin(step) {#CheckpointSaver.step_begin}

tf.contrib.learn.monitors.CheckpointSaver.step_end(step, output) {#CheckpointSaver.step_end}

Callback after training step finished.

This callback provides access to the tensors/ops evaluated at this step,
including the additional tensors for which evaluation was requested in
step_begin.

In addition, the callback has the opportunity to stop training by returning
True. This is useful for early stopping, for example.

Note that this method is not called if the call to Session.run() that
followed the last call to step_begin() failed.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool. True if training should stop.

Raises:

		ValueError: if we’ve not begun a step, or step number does not match.

class tf.contrib.learn.monitors.EveryN {#EveryN}

Base class for monitors that execute callbacks every N steps.

This class adds three new callbacks:

		every_n_step_begin

		every_n_step_end

		every_n_post_step

The callbacks are executed every n steps, or optionally every step for the
first m steps, where m and n can both be user-specified.

When extending this class, note that if you wish to use any of the
BaseMonitor callbacks, you must call their respective super implementation:

def step_begin(self, step):
super(ExampleMonitor, self).step_begin(step)
return []

Failing to call the super implementation will cause unpredictible behavior.

The every_n_post_step() callback is also called after the last step if it
was not already called through the regular conditions. Note that
every_n_step_begin() and every_n_step_end() do not receive that special
treatment.

tf.contrib.learn.monitors.EveryN.__init__(every_n_steps=100, first_n_steps=1) {#EveryN.init}

Initializes an EveryN monitor.

Args:

		every_n_steps: int, the number of steps to allow between callbacks.

		first_n_steps: int, specifying the number of initial steps during
which the callbacks will always be executed, regardless of the value
of every_n_steps. Note that this value is relative to the global step

tf.contrib.learn.monitors.EveryN.begin(max_steps=None) {#EveryN.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.EveryN.end(session=None) {#EveryN.end}

tf.contrib.learn.monitors.EveryN.epoch_begin(epoch) {#EveryN.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.EveryN.epoch_end(epoch) {#EveryN.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.EveryN.every_n_post_step(step, session) {#EveryN.every_n_post_step}

Callback after a step is finished or end() is called.

Args:

		step: int, the current value of the global step.

		session: Session object.

tf.contrib.learn.monitors.EveryN.every_n_step_begin(step) {#EveryN.every_n_step_begin}

Callback before every n’th step begins.

Args:

		step: int, the current value of the global step.

Returns:

A list of tensors that will be evaluated at this step.

tf.contrib.learn.monitors.EveryN.every_n_step_end(step, outputs) {#EveryN.every_n_step_end}

Callback after every n’th step finished.

This callback provides access to the tensors/ops evaluated at this step,
including the additional tensors for which evaluation was requested in
step_begin.

In addition, the callback has the opportunity to stop training by returning
True. This is useful for early stopping, for example.

Args:

		step: int, the current value of the global step.

		outputs: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool. True if training should stop.

tf.contrib.learn.monitors.EveryN.post_step(step, session) {#EveryN.post_step}

tf.contrib.learn.monitors.EveryN.run_on_all_workers {#EveryN.run_on_all_workers}

tf.contrib.learn.monitors.EveryN.set_estimator(estimator) {#EveryN.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.EveryN.step_begin(step) {#EveryN.step_begin}

Overrides BaseMonitor.step_begin.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

Returns:

A list, the result of every_n_step_begin, if that was called this step,
or an empty list otherwise.

Raises:

		ValueError: if called more than once during a step.

tf.contrib.learn.monitors.EveryN.step_end(step, output) {#EveryN.step_end}

Overrides BaseMonitor.step_end.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool, the result of every_n_step_end, if that was called this step,
or False otherwise.

class tf.contrib.learn.monitors.ExportMonitor {#ExportMonitor}

Monitor that exports Estimator every N steps.

tf.contrib.learn.monitors.ExportMonitor.__init__(*args, **kwargs) {#ExportMonitor.init}

Initializes ExportMonitor. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23.
Instructions for updating:
The signature of the input_fn accepted by export is changing to be consistent with what’s used by tf.Learn Estimator’s train/evaluate. input_fn and input_feature_key will both become required args.

Args:
 every_n_steps: Run monitor every N steps.
 export_dir: str, folder to export.
 input_fn: A function that takes no argument and returns a tuple of
 (features, targets), where features is a dict of string key to `Tensor`
 and targets is a `Tensor` that's currently not used (and so can be
 `None`).
 input_feature_key: String key into the features dict returned by
 `input_fn` that corresponds to the raw `Example` strings `Tensor` that
 the exported model will take as input.
 exports_to_keep: int, number of exports to keep.
 signature_fn: Function that returns a default signature and a named
 signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s
 for features and `dict` of `Tensor`s for predictions.
 default_batch_size: Default batch size of the `Example` placeholder.

Raises:
 ValueError: If `input_fn` and `input_feature_key` are not both defined or
 are not both `None`.

tf.contrib.learn.monitors.ExportMonitor.begin(max_steps=None) {#ExportMonitor.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.ExportMonitor.end(session=None) {#ExportMonitor.end}

tf.contrib.learn.monitors.ExportMonitor.epoch_begin(epoch) {#ExportMonitor.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.ExportMonitor.epoch_end(epoch) {#ExportMonitor.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.ExportMonitor.every_n_post_step(step, session) {#ExportMonitor.every_n_post_step}

Callback after a step is finished or end() is called.

Args:

		step: int, the current value of the global step.

		session: Session object.

tf.contrib.learn.monitors.ExportMonitor.every_n_step_begin(step) {#ExportMonitor.every_n_step_begin}

Callback before every n’th step begins.

Args:

		step: int, the current value of the global step.

Returns:

A list of tensors that will be evaluated at this step.

tf.contrib.learn.monitors.ExportMonitor.every_n_step_end(step, outputs) {#ExportMonitor.every_n_step_end}

tf.contrib.learn.monitors.ExportMonitor.export_dir {#ExportMonitor.export_dir}

tf.contrib.learn.monitors.ExportMonitor.exports_to_keep {#ExportMonitor.exports_to_keep}

tf.contrib.learn.monitors.ExportMonitor.last_export_dir {#ExportMonitor.last_export_dir}

Returns the directory containing the last completed export.

Returns:

The string path to the exported directory. NB: this functionality was
added on 2016/09/25; clients that depend on the return value may need
to handle the case where this function returns None because the
estimator being fitted does not yet return a value during export.

tf.contrib.learn.monitors.ExportMonitor.post_step(step, session) {#ExportMonitor.post_step}

tf.contrib.learn.monitors.ExportMonitor.run_on_all_workers {#ExportMonitor.run_on_all_workers}

tf.contrib.learn.monitors.ExportMonitor.set_estimator(estimator) {#ExportMonitor.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.ExportMonitor.signature_fn {#ExportMonitor.signature_fn}

tf.contrib.learn.monitors.ExportMonitor.step_begin(step) {#ExportMonitor.step_begin}

Overrides BaseMonitor.step_begin.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

Returns:

A list, the result of every_n_step_begin, if that was called this step,
or an empty list otherwise.

Raises:

		ValueError: if called more than once during a step.

tf.contrib.learn.monitors.ExportMonitor.step_end(step, output) {#ExportMonitor.step_end}

Overrides BaseMonitor.step_end.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool, the result of every_n_step_end, if that was called this step,
or False otherwise.

class tf.contrib.learn.monitors.GraphDump {#GraphDump}

Dumps almost all tensors in the graph at every step.

Note, this is very expensive, prefer PrintTensor in production.

tf.contrib.learn.monitors.GraphDump.__init__(ignore_ops=None) {#GraphDump.init}

Initializes GraphDump monitor.

Args:

		ignore_ops: list of string. Names of ops to ignore.
If None, GraphDump.IGNORE_OPS is used.

tf.contrib.learn.monitors.GraphDump.begin(max_steps=None) {#GraphDump.begin}

tf.contrib.learn.monitors.GraphDump.compare(other_dump, step, atol=1e-06) {#GraphDump.compare}

Compares two GraphDump monitors and returns differences.

Args:

		other_dump: Another GraphDump monitor.

		step: int, step to compare on.

		atol: float, absolute tolerance in comparison of floating arrays.

Returns:

Returns tuple:

		matched: list of keys that matched.

		non_matched: dict of keys to tuple of 2 mismatched values.

Raises:

		ValueError: if a key in data is missing from other_dump at step.

tf.contrib.learn.monitors.GraphDump.data {#GraphDump.data}

tf.contrib.learn.monitors.GraphDump.end(session=None) {#GraphDump.end}

Callback at the end of training/evaluation.

Args:

		session: A tf.Session object that can be used to run ops.

Raises:

		ValueError: if we’ve not begun a run.

tf.contrib.learn.monitors.GraphDump.epoch_begin(epoch) {#GraphDump.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.GraphDump.epoch_end(epoch) {#GraphDump.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.GraphDump.post_step(step, session) {#GraphDump.post_step}

Callback after the step is finished.

Called after step_end and receives session to perform extra session.run
calls. If failure occurred in the process, will be called as well.

Args:

		step: int, global step of the model.

		session: Session object.

tf.contrib.learn.monitors.GraphDump.run_on_all_workers {#GraphDump.run_on_all_workers}

tf.contrib.learn.monitors.GraphDump.set_estimator(estimator) {#GraphDump.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.GraphDump.step_begin(step) {#GraphDump.step_begin}

tf.contrib.learn.monitors.GraphDump.step_end(step, output) {#GraphDump.step_end}

class tf.contrib.learn.monitors.LoggingTrainable {#LoggingTrainable}

Writes trainable variable values into log every N steps.

Write the tensors in trainable variables every_n steps,
starting with the first_nth step.

tf.contrib.learn.monitors.LoggingTrainable.__init__(scope=None, every_n=100, first_n=1) {#LoggingTrainable.init}

Initializes LoggingTrainable monitor.

Args:

		scope: An optional string to match variable names using re.match.

		every_n: Print every N steps.

		first_n: Print first N steps.

tf.contrib.learn.monitors.LoggingTrainable.begin(max_steps=None) {#LoggingTrainable.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.LoggingTrainable.end(session=None) {#LoggingTrainable.end}

tf.contrib.learn.monitors.LoggingTrainable.epoch_begin(epoch) {#LoggingTrainable.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.LoggingTrainable.epoch_end(epoch) {#LoggingTrainable.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.LoggingTrainable.every_n_post_step(step, session) {#LoggingTrainable.every_n_post_step}

Callback after a step is finished or end() is called.

Args:

		step: int, the current value of the global step.

		session: Session object.

tf.contrib.learn.monitors.LoggingTrainable.every_n_step_begin(step) {#LoggingTrainable.every_n_step_begin}

tf.contrib.learn.monitors.LoggingTrainable.every_n_step_end(step, outputs) {#LoggingTrainable.every_n_step_end}

tf.contrib.learn.monitors.LoggingTrainable.post_step(step, session) {#LoggingTrainable.post_step}

tf.contrib.learn.monitors.LoggingTrainable.run_on_all_workers {#LoggingTrainable.run_on_all_workers}

tf.contrib.learn.monitors.LoggingTrainable.set_estimator(estimator) {#LoggingTrainable.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.LoggingTrainable.step_begin(step) {#LoggingTrainable.step_begin}

Overrides BaseMonitor.step_begin.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

Returns:

A list, the result of every_n_step_begin, if that was called this step,
or an empty list otherwise.

Raises:

		ValueError: if called more than once during a step.

tf.contrib.learn.monitors.LoggingTrainable.step_end(step, output) {#LoggingTrainable.step_end}

Overrides BaseMonitor.step_end.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool, the result of every_n_step_end, if that was called this step,
or False otherwise.

class tf.contrib.learn.monitors.NanLoss {#NanLoss}

NaN Loss monitor.

Monitors loss and stops training if loss is NaN.
Can either fail with exception or just stop training.

tf.contrib.learn.monitors.NanLoss.__init__(loss_tensor, every_n_steps=100, fail_on_nan_loss=True) {#NanLoss.init}

Initializes NanLoss monitor.

Args:

		loss_tensor: Tensor, the loss tensor.

		every_n_steps: int, run check every this many steps.

		fail_on_nan_loss: bool, whether to raise exception when loss is NaN.

tf.contrib.learn.monitors.NanLoss.begin(max_steps=None) {#NanLoss.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.NanLoss.end(session=None) {#NanLoss.end}

tf.contrib.learn.monitors.NanLoss.epoch_begin(epoch) {#NanLoss.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.NanLoss.epoch_end(epoch) {#NanLoss.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.NanLoss.every_n_post_step(step, session) {#NanLoss.every_n_post_step}

Callback after a step is finished or end() is called.

Args:

		step: int, the current value of the global step.

		session: Session object.

tf.contrib.learn.monitors.NanLoss.every_n_step_begin(step) {#NanLoss.every_n_step_begin}

tf.contrib.learn.monitors.NanLoss.every_n_step_end(step, outputs) {#NanLoss.every_n_step_end}

tf.contrib.learn.monitors.NanLoss.post_step(step, session) {#NanLoss.post_step}

tf.contrib.learn.monitors.NanLoss.run_on_all_workers {#NanLoss.run_on_all_workers}

tf.contrib.learn.monitors.NanLoss.set_estimator(estimator) {#NanLoss.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.NanLoss.step_begin(step) {#NanLoss.step_begin}

Overrides BaseMonitor.step_begin.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

Returns:

A list, the result of every_n_step_begin, if that was called this step,
or an empty list otherwise.

Raises:

		ValueError: if called more than once during a step.

tf.contrib.learn.monitors.NanLoss.step_end(step, output) {#NanLoss.step_end}

Overrides BaseMonitor.step_end.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool, the result of every_n_step_end, if that was called this step,
or False otherwise.

class tf.contrib.learn.monitors.PrintTensor {#PrintTensor}

Prints given tensors every N steps.

This is an EveryN monitor and has consistent semantic for every_n
and first_n.

The tensors will be printed to the log, with INFO severity.

tf.contrib.learn.monitors.PrintTensor.__init__(tensor_names, every_n=100, first_n=1) {#PrintTensor.init}

Initializes a PrintTensor monitor.

Args:

		tensor_names: dict of tag to tensor names or
iterable of tensor names (strings).

		every_n: int, print every N steps. See PrintN.

		first_n: int, also print the first N steps. See PrintN.

tf.contrib.learn.monitors.PrintTensor.begin(max_steps=None) {#PrintTensor.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.PrintTensor.end(session=None) {#PrintTensor.end}

tf.contrib.learn.monitors.PrintTensor.epoch_begin(epoch) {#PrintTensor.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.PrintTensor.epoch_end(epoch) {#PrintTensor.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.PrintTensor.every_n_post_step(step, session) {#PrintTensor.every_n_post_step}

Callback after a step is finished or end() is called.

Args:

		step: int, the current value of the global step.

		session: Session object.

tf.contrib.learn.monitors.PrintTensor.every_n_step_begin(step) {#PrintTensor.every_n_step_begin}

tf.contrib.learn.monitors.PrintTensor.every_n_step_end(step, outputs) {#PrintTensor.every_n_step_end}

tf.contrib.learn.monitors.PrintTensor.post_step(step, session) {#PrintTensor.post_step}

tf.contrib.learn.monitors.PrintTensor.run_on_all_workers {#PrintTensor.run_on_all_workers}

tf.contrib.learn.monitors.PrintTensor.set_estimator(estimator) {#PrintTensor.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.PrintTensor.step_begin(step) {#PrintTensor.step_begin}

Overrides BaseMonitor.step_begin.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

Returns:

A list, the result of every_n_step_begin, if that was called this step,
or an empty list otherwise.

Raises:

		ValueError: if called more than once during a step.

tf.contrib.learn.monitors.PrintTensor.step_end(step, output) {#PrintTensor.step_end}

Overrides BaseMonitor.step_end.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool, the result of every_n_step_end, if that was called this step,
or False otherwise.

class tf.contrib.learn.monitors.StepCounter {#StepCounter}

Steps per second monitor.

tf.contrib.learn.monitors.StepCounter.__init__(every_n_steps=100, output_dir=None, summary_writer=None) {#StepCounter.init}

tf.contrib.learn.monitors.StepCounter.begin(max_steps=None) {#StepCounter.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.StepCounter.end(session=None) {#StepCounter.end}

tf.contrib.learn.monitors.StepCounter.epoch_begin(epoch) {#StepCounter.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.StepCounter.epoch_end(epoch) {#StepCounter.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.StepCounter.every_n_post_step(step, session) {#StepCounter.every_n_post_step}

Callback after a step is finished or end() is called.

Args:

		step: int, the current value of the global step.

		session: Session object.

tf.contrib.learn.monitors.StepCounter.every_n_step_begin(step) {#StepCounter.every_n_step_begin}

Callback before every n’th step begins.

Args:

		step: int, the current value of the global step.

Returns:

A list of tensors that will be evaluated at this step.

tf.contrib.learn.monitors.StepCounter.every_n_step_end(current_step, outputs) {#StepCounter.every_n_step_end}

tf.contrib.learn.monitors.StepCounter.post_step(step, session) {#StepCounter.post_step}

tf.contrib.learn.monitors.StepCounter.run_on_all_workers {#StepCounter.run_on_all_workers}

tf.contrib.learn.monitors.StepCounter.set_estimator(estimator) {#StepCounter.set_estimator}

tf.contrib.learn.monitors.StepCounter.step_begin(step) {#StepCounter.step_begin}

Overrides BaseMonitor.step_begin.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

Returns:

A list, the result of every_n_step_begin, if that was called this step,
or an empty list otherwise.

Raises:

		ValueError: if called more than once during a step.

tf.contrib.learn.monitors.StepCounter.step_end(step, output) {#StepCounter.step_end}

Overrides BaseMonitor.step_end.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool, the result of every_n_step_end, if that was called this step,
or False otherwise.

class tf.contrib.learn.monitors.StopAtStep {#StopAtStep}

Monitor to request stop at a specified step.

tf.contrib.learn.monitors.StopAtStep.__init__(num_steps=None, last_step=None) {#StopAtStep.init}

Create a StopAtStep monitor.

This monitor requests stop after either a number of steps have been
executed or a last step has been reached. Only of the two options can be
specified.

if num_steps is specified, it indicates the number of steps to execute
after begin() is called. If instead last_step is specified, it
indicates the last step we want to execute, as passed to the step_begin()
call.

Args:

		num_steps: Number of steps to execute.

		last_step: Step after which to stop.

Raises:

		ValueError: If one of the arguments is invalid.

tf.contrib.learn.monitors.StopAtStep.begin(max_steps=None) {#StopAtStep.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.StopAtStep.end(session=None) {#StopAtStep.end}

Callback at the end of training/evaluation.

Args:

		session: A tf.Session object that can be used to run ops.

Raises:

		ValueError: if we’ve not begun a run.

tf.contrib.learn.monitors.StopAtStep.epoch_begin(epoch) {#StopAtStep.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.StopAtStep.epoch_end(epoch) {#StopAtStep.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.StopAtStep.post_step(step, session) {#StopAtStep.post_step}

Callback after the step is finished.

Called after step_end and receives session to perform extra session.run
calls. If failure occurred in the process, will be called as well.

Args:

		step: int, global step of the model.

		session: Session object.

tf.contrib.learn.monitors.StopAtStep.run_on_all_workers {#StopAtStep.run_on_all_workers}

tf.contrib.learn.monitors.StopAtStep.set_estimator(estimator) {#StopAtStep.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.StopAtStep.step_begin(step) {#StopAtStep.step_begin}

tf.contrib.learn.monitors.StopAtStep.step_end(step, output) {#StopAtStep.step_end}

class tf.contrib.learn.monitors.SummarySaver {#SummarySaver}

Saves summaries every N steps.

tf.contrib.learn.monitors.SummarySaver.__init__(summary_op, save_steps=100, output_dir=None, summary_writer=None, scaffold=None) {#SummarySaver.init}

Initializes a SummarySaver monitor.

Args:

		summary_op: Tensor of type string. A serialized Summary protocol
buffer, as output by TF summary methods like scalar_summary or
merge_all_summaries.

		save_steps: int, save summaries every N steps. See EveryN.

		output_dir: string, the directory to save the summaries to. Only used
if no summary_writer is supplied.

		summary_writer: SummaryWriter. If None and an output_dir was passed,
one will be created accordingly.

		scaffold: Scaffold to get summary_op if it’s not provided.

tf.contrib.learn.monitors.SummarySaver.begin(max_steps=None) {#SummarySaver.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.SummarySaver.end(session=None) {#SummarySaver.end}

tf.contrib.learn.monitors.SummarySaver.epoch_begin(epoch) {#SummarySaver.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.SummarySaver.epoch_end(epoch) {#SummarySaver.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.SummarySaver.every_n_post_step(step, session) {#SummarySaver.every_n_post_step}

Callback after a step is finished or end() is called.

Args:

		step: int, the current value of the global step.

		session: Session object.

tf.contrib.learn.monitors.SummarySaver.every_n_step_begin(step) {#SummarySaver.every_n_step_begin}

tf.contrib.learn.monitors.SummarySaver.every_n_step_end(step, outputs) {#SummarySaver.every_n_step_end}

tf.contrib.learn.monitors.SummarySaver.post_step(step, session) {#SummarySaver.post_step}

tf.contrib.learn.monitors.SummarySaver.run_on_all_workers {#SummarySaver.run_on_all_workers}

tf.contrib.learn.monitors.SummarySaver.set_estimator(estimator) {#SummarySaver.set_estimator}

tf.contrib.learn.monitors.SummarySaver.step_begin(step) {#SummarySaver.step_begin}

Overrides BaseMonitor.step_begin.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

Returns:

A list, the result of every_n_step_begin, if that was called this step,
or an empty list otherwise.

Raises:

		ValueError: if called more than once during a step.

tf.contrib.learn.monitors.SummarySaver.step_end(step, output) {#SummarySaver.step_end}

Overrides BaseMonitor.step_end.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool, the result of every_n_step_end, if that was called this step,
or False otherwise.

class tf.contrib.learn.monitors.ValidationMonitor {#ValidationMonitor}

Runs evaluation of a given estimator, at most every N steps.

Note that the evaluation is done based on the saved checkpoint, which will
usually be older than the current step.

Can do early stopping on validation metrics if early_stopping_rounds is
provided.

tf.contrib.learn.monitors.ValidationMonitor.__init__(x=None, y=None, input_fn=None, batch_size=None, eval_steps=None, every_n_steps=100, metrics=None, early_stopping_rounds=None, early_stopping_metric='loss', early_stopping_metric_minimize=True, name=None) {#ValidationMonitor.init}

Initializes a ValidationMonitor.

Args:

		x: See BaseEstimator.evaluate.

		y: See BaseEstimator.evaluate.

		input_fn: See BaseEstimator.evaluate.

		batch_size: See BaseEstimator.evaluate.

		eval_steps: See BaseEstimator.evaluate.

		every_n_steps: Check for new checkpoints to evaluate every N steps. If a
new checkpoint is found, it is evaluated. See EveryN.

		metrics: See BaseEstimator.evaluate.

		early_stopping_rounds: int. If the metric indicated by
early_stopping_metric does not change according to
early_stopping_metric_minimize for this many steps, then training
will be stopped.

		early_stopping_metric: string, name of the metric to check for early
stopping.

		early_stopping_metric_minimize: bool, True if early_stopping_metric is
expected to decrease (thus early stopping occurs when this metric
stops decreasing), False if early_stopping_metric is expected to
increase. Typically, early_stopping_metric_minimize is True for
loss metrics like mean squared error, and False for performance
metrics like accuracy.

		name: See BaseEstimator.evaluate.

Raises:

		ValueError: If both x and input_fn are provided.

tf.contrib.learn.monitors.ValidationMonitor.begin(max_steps=None) {#ValidationMonitor.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.ValidationMonitor.best_step {#ValidationMonitor.best_step}

Returns the step at which the best early stopping metric was found.

tf.contrib.learn.monitors.ValidationMonitor.best_value {#ValidationMonitor.best_value}

Returns the best early stopping metric value found so far.

tf.contrib.learn.monitors.ValidationMonitor.early_stopped {#ValidationMonitor.early_stopped}

Returns True if this monitor caused an early stop.

tf.contrib.learn.monitors.ValidationMonitor.end(session=None) {#ValidationMonitor.end}

tf.contrib.learn.monitors.ValidationMonitor.epoch_begin(epoch) {#ValidationMonitor.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.ValidationMonitor.epoch_end(epoch) {#ValidationMonitor.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.ValidationMonitor.every_n_post_step(step, session) {#ValidationMonitor.every_n_post_step}

Callback after a step is finished or end() is called.

Args:

		step: int, the current value of the global step.

		session: Session object.

tf.contrib.learn.monitors.ValidationMonitor.every_n_step_begin(step) {#ValidationMonitor.every_n_step_begin}

Callback before every n’th step begins.

Args:

		step: int, the current value of the global step.

Returns:

A list of tensors that will be evaluated at this step.

tf.contrib.learn.monitors.ValidationMonitor.every_n_step_end(step, outputs) {#ValidationMonitor.every_n_step_end}

tf.contrib.learn.monitors.ValidationMonitor.post_step(step, session) {#ValidationMonitor.post_step}

tf.contrib.learn.monitors.ValidationMonitor.run_on_all_workers {#ValidationMonitor.run_on_all_workers}

tf.contrib.learn.monitors.ValidationMonitor.set_estimator(estimator) {#ValidationMonitor.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.ValidationMonitor.step_begin(step) {#ValidationMonitor.step_begin}

Overrides BaseMonitor.step_begin.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

Returns:

A list, the result of every_n_step_begin, if that was called this step,
or an empty list otherwise.

Raises:

		ValueError: if called more than once during a step.

tf.contrib.learn.monitors.ValidationMonitor.step_end(step, output) {#ValidationMonitor.step_end}

Overrides BaseMonitor.step_end.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool, the result of every_n_step_end, if that was called this step,
or False otherwise.

Other Functions and Classes

class tf.contrib.learn.monitors.RunHookAdapterForMonitors {#RunHookAdapterForMonitors}

Wraps monitors into a SessionRunHook.

tf.contrib.learn.monitors.RunHookAdapterForMonitors.__init__(monitors) {#RunHookAdapterForMonitors.init}

tf.contrib.learn.monitors.RunHookAdapterForMonitors.after_run(run_context, run_values) {#RunHookAdapterForMonitors.after_run}

tf.contrib.learn.monitors.RunHookAdapterForMonitors.before_run(run_context) {#RunHookAdapterForMonitors.before_run}

tf.contrib.learn.monitors.RunHookAdapterForMonitors.begin() {#RunHookAdapterForMonitors.begin}

tf.contrib.learn.monitors.RunHookAdapterForMonitors.end(session) {#RunHookAdapterForMonitors.end}

class tf.contrib.learn.monitors.SummaryWriterCache {#SummaryWriterCache}

Cache for summary writers.

This class caches summary writers, one per directory.

tf.contrib.learn.monitors.SummaryWriterCache.clear() {#SummaryWriterCache.clear}

Clear cached summary writers. Currently only used for unit tests.

tf.contrib.learn.monitors.SummaryWriterCache.get(logdir) {#SummaryWriterCache.get}

Returns the SummaryWriter for the specified directory.

Args:

		logdir: str, name of the directory.

Returns:

A SummaryWriter.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.learn.extract_pandas_data.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.learn.extract_pandas_data(data) {#extract_pandas_data}

Extract data from pandas.DataFrame for predictors.

Given a DataFrame, will extract the values and cast them to float. The
DataFrame is expected to contain values of type int, float or bool.

Args:

		data: pandas.DataFrame containing the data to be extracted.

Returns:

A numpy ndarray of the DataFrame’s values as floats.

Raises:

		ValueError: if data contains types other than int, float or bool.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.layers.l2_regularizer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.l2_regularizer(scale, scope=None) {#l2_regularizer}

Returns a function that can be used to apply L2 regularization to weights.

Small values of L2 can help prevent overfitting the training data.

Args:

		scale: A scalar multiplier Tensor. 0.0 disables the regularizer.

		scope: An optional scope name.

Returns:

A function with signature l2(weights) that applies L2 regularization.

Raises:

		ValueError: If scale is negative or if scale is not a float.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/contrib.copy_graph.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Copying Graph Elements (contrib)

[TOC]

Functions for copying elements from one graph to another.

tf.contrib.copy_graph.copy_op_to_graph(org_instance, to_graph, variables, scope='') {#copy_op_to_graph}

Given an Operation ‘org_instancefrom oneGraph, initializes and returns a copy of it from anotherGraph, under the specified scope (default“”`).

The copying is done recursively, so any Operation whose output
is required to evaluate the org_instance, is also copied (unless
already done).

Since Variable instances are copied separately, those required
to evaluate org_instance must be provided as input.

Args:
org_instance: An Operation from some Graph. Could be a
Placeholder as well.
to_graph: The Graph to copy org_instance to.
variables: An iterable of Variable instances to copy org_instance to.
scope: A scope for the new Variable (default "").

Returns:

The copied `Operation` from `to_graph`.

Raises:

		TypeError: If org_instance is not an Operation or Tensor.

tf.contrib.copy_graph.copy_variable_to_graph(org_instance, to_graph, scope='') {#copy_variable_to_graph}

Given a Variable instance from one Graph, initializes and returns
a copy of it from another Graph, under the specified scope
(default "").

Args:
org_instance: A Variable from some Graph.
to_graph: The Graph to copy the Variable to.
scope: A scope for the new Variable (default "").

Returns:

The copied `Variable` from `to_graph`.

Raises:

		TypeError: If org_instance is not a Variable.

tf.contrib.copy_graph.get_copied_op(org_instance, graph, scope='') {#get_copied_op}

Given an Operation instance from some Graph, returns
its namesake from graph, under the specified scope
(default "").

If a copy of org_instance is present in graph under the given
scope, it will be returned.

Args:
org_instance: An Operation from some Graph.
graph: The Graph to be searched for a copr of org_instance.
scope: The scope org_instance is present in.

Returns:

The `Operation` copy from `graph`.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/contrib.learn.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

Learn (contrib)

[TOC]

High level API for learning with TensorFlow.

Estimators

Train and evaluate TensorFlow models.

class tf.contrib.learn.BaseEstimator {#BaseEstimator}

Abstract BaseEstimator class to train and evaluate TensorFlow models.

Concrete implementation of this class should provide the following functions:

		_get_train_ops

		_get_eval_ops

		_get_predict_ops

Estimator implemented below is a good example of how to use this class.

tf.contrib.learn.BaseEstimator.__init__(model_dir=None, config=None) {#BaseEstimator.init}

Initializes a BaseEstimator instance.

Args:

		model_dir: Directory to save model parameters, graph and etc. This can
also be used to load checkpoints from the directory into a estimator to
continue training a previously saved model.

		config: A RunConfig instance.

tf.contrib.learn.BaseEstimator.__repr__() {#BaseEstimator.repr}

tf.contrib.learn.BaseEstimator.config {#BaseEstimator.config}

tf.contrib.learn.BaseEstimator.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) {#BaseEstimator.evaluate}

See Evaluable.

Raises:

		ValueError: If at least one of x or y is provided, and at least one of
input_fn or feed_fn is provided.
Or if metrics is not None or dict.

tf.contrib.learn.BaseEstimator.export(*args, **kwargs) {#BaseEstimator.export}

Exports inference graph into given dir. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23.
Instructions for updating:
The signature of the input_fn accepted by export is changing to be consistent with what’s used by tf.Learn Estimator’s train/evaluate. input_fn and input_feature_key will become required args, and use_deprecated_input_fn will default to False and be removed altogether.

Args:
 export_dir: A string containing a directory to write the exported graph
 and checkpoints.
 input_fn: If `use_deprecated_input_fn` is true, then a function that given
 `Tensor` of `Example` strings, parses it into features that are then
 passed to the model. Otherwise, a function that takes no argument and
 returns a tuple of (features, targets), where features is a dict of
 string key to `Tensor` and targets is a `Tensor` that's currently not
 used (and so can be `None`).
 input_feature_key: Only used if `use_deprecated_input_fn` is false. String
 key into the features dict returned by `input_fn` that corresponds toa
 the raw `Example` strings `Tensor` that the exported model will take as
 input.
 use_deprecated_input_fn: Determines the signature format of `input_fn`.
 signature_fn: Function that returns a default signature and a named
 signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s
 for features and `Tensor` or `dict` of `Tensor`s for predictions.
 prediction_key: The key for a tensor in the `predictions` dict (output
 from the `model_fn`) to use as the `predictions` input to the
 `signature_fn`. Optional. If `None`, predictions will pass to
 `signature_fn` without filtering.
 default_batch_size: Default batch size of the `Example` placeholder.
 exports_to_keep: Number of exports to keep.

Returns:
 The string path to the exported directory. NB: this functionality was
 added ca. 2016/09/25; clients that depend on the return value may need
 to handle the case where this function returns None because subclasses
 are not returning a value.

tf.contrib.learn.BaseEstimator.fit(x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None) {#BaseEstimator.fit}

See Trainable.

Raises:

		ValueError: If x or y are not None while input_fn is not None.

		ValueError: If both steps and max_steps are not None.

tf.contrib.learn.BaseEstimator.get_params(deep=True) {#BaseEstimator.get_params}

Get parameters for this estimator.

Args:

		deep: boolean, optional

If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns:

params : mapping of string to any
Parameter names mapped to their values.

tf.contrib.learn.BaseEstimator.get_variable_names() {#BaseEstimator.get_variable_names}

Returns list of all variable names in this model.

Returns:

List of names.

tf.contrib.learn.BaseEstimator.get_variable_value(name) {#BaseEstimator.get_variable_value}

Returns value of the variable given by name.

Args:

		name: string, name of the tensor.

Returns:

Numpy array - value of the tensor.

tf.contrib.learn.BaseEstimator.model_dir {#BaseEstimator.model_dir}

tf.contrib.learn.BaseEstimator.partial_fit(x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None) {#BaseEstimator.partial_fit}

Incremental fit on a batch of samples.

This method is expected to be called several times consecutively
on different or the same chunks of the dataset. This either can
implement iterative training or out-of-core/online training.

This is especially useful when the whole dataset is too big to
fit in memory at the same time. Or when model is taking long time
to converge, and you want to split up training into subparts.

Args:

		x: Matrix of shape [n_samples, n_features...]. Can be iterator that
returns arrays of features. The training input samples for fitting the
model. If set, input_fn must be None.

		y: Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of targets. The training target values
(class labels in classification, real numbers in regression). If set,
input_fn must be None.

		input_fn: Input function. If set, x, y, and batch_size must be
None.

		steps: Number of steps for which to train model. If None, train forever.

		batch_size: minibatch size to use on the input, defaults to first
dimension of x. Must be None if input_fn is provided.

		monitors: List of BaseMonitor subclass instances. Used for callbacks
inside the training loop.

Returns:

self, for chaining.

Raises:

		ValueError: If at least one of x and y is provided, and input_fn is
provided.

tf.contrib.learn.BaseEstimator.predict(*args, **kwargs) {#BaseEstimator.predict}

Returns predictions for given features. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-15.
Instructions for updating:
The default behavior of predict() is changing. The default value for
as_iterable will change to True, and then the flag will be removed
altogether. The behavior of this flag is described below.

Args:
 x: Matrix of shape [n_samples, n_features...]. Can be iterator that
 returns arrays of features. The training input samples for fitting the
 model. If set, `input_fn` must be `None`.
 input_fn: Input function. If set, `x` and 'batch_size' must be `None`.
 batch_size: Override default batch size. If set, 'input_fn' must be
 'None'.
 outputs: list of `str`, name of the output to predict.
 If `None`, returns all.
 as_iterable: If True, return an iterable which keeps yielding predictions
 for each example until inputs are exhausted. Note: The inputs must
 terminate if you want the iterable to terminate (e.g. be sure to pass
 num_epochs=1 if you are using something like read_batch_features).

Returns:
 A numpy array of predicted classes or regression values if the
 constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict`
 of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of
 predictions if as_iterable is True.

Raises:
 ValueError: If x and input_fn are both provided or both `None`.

tf.contrib.learn.BaseEstimator.set_params(**params) {#BaseEstimator.set_params}

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.

Args:

		**params: Parameters.

Returns:

self

Raises:

		ValueError: If params contain invalid names.

class tf.contrib.learn.Estimator {#Estimator}

Estimator class is the basic TensorFlow model trainer/evaluator.

tf.contrib.learn.Estimator.__init__(model_fn=None, model_dir=None, config=None, params=None, feature_engineering_fn=None) {#Estimator.init}

Constructs an Estimator instance.

Args:

		model_fn: Model function, takes features and targets tensors or dicts of
tensors and returns predictions and loss tensors.
Supports next three signatures for the function:

		(features, targets) -> (predictions, loss, train_op)

		(features, targets, mode) -> (predictions, loss, train_op)

		(features, targets, mode, params) -> (predictions, loss, train_op)

Where

		features are single Tensor or dict of Tensors
(depending on data passed to fit),

		targets are Tensor or dict of Tensors (for multi-head
models). If mode is ModeKeys.INFER, targets=None will be
passed. If the model_fn‘s signature does not accept
mode, the model_fn must still be able to handle
targets=None.

		mode represents if this training, evaluation or
prediction. See ModeKeys.

		params is a dict of hyperparameters. Will receive what
is passed to Estimator in params parameter. This allows
to configure Estimators from hyper parameter tunning.

		model_dir: Directory to save model parameters, graph and etc. This can
also be used to load checkpoints from the directory into a estimator to
continue training a previously saved model.

		config: Configuration object.

		params: dict of hyper parameters that will be passed into model_fn.
Keys are names of parameters, values are basic python types.

		feature_engineering_fn: Feature engineering function. Takes features and
targets which are the output of input_fn and
returns features and targets which will be fed
into model_fn. Please check model_fn for
a definition of features and targets.

Raises:

		ValueError: parameters of model_fn don’t match params.

tf.contrib.learn.Estimator.__repr__() {#Estimator.repr}

tf.contrib.learn.Estimator.config {#Estimator.config}

tf.contrib.learn.Estimator.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) {#Estimator.evaluate}

See Evaluable.

Raises:

		ValueError: If at least one of x or y is provided, and at least one of
input_fn or feed_fn is provided.
Or if metrics is not None or dict.

tf.contrib.learn.Estimator.export(*args, **kwargs) {#Estimator.export}

Exports inference graph into given dir. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23.
Instructions for updating:
The signature of the input_fn accepted by export is changing to be consistent with what’s used by tf.Learn Estimator’s train/evaluate. input_fn and input_feature_key will become required args, and use_deprecated_input_fn will default to False and be removed altogether.

Args:
 export_dir: A string containing a directory to write the exported graph
 and checkpoints.
 input_fn: If `use_deprecated_input_fn` is true, then a function that given
 `Tensor` of `Example` strings, parses it into features that are then
 passed to the model. Otherwise, a function that takes no argument and
 returns a tuple of (features, targets), where features is a dict of
 string key to `Tensor` and targets is a `Tensor` that's currently not
 used (and so can be `None`).
 input_feature_key: Only used if `use_deprecated_input_fn` is false. String
 key into the features dict returned by `input_fn` that corresponds toa
 the raw `Example` strings `Tensor` that the exported model will take as
 input.
 use_deprecated_input_fn: Determines the signature format of `input_fn`.
 signature_fn: Function that returns a default signature and a named
 signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s
 for features and `Tensor` or `dict` of `Tensor`s for predictions.
 prediction_key: The key for a tensor in the `predictions` dict (output
 from the `model_fn`) to use as the `predictions` input to the
 `signature_fn`. Optional. If `None`, predictions will pass to
 `signature_fn` without filtering.
 default_batch_size: Default batch size of the `Example` placeholder.
 exports_to_keep: Number of exports to keep.

Returns:
 The string path to the exported directory. NB: this functionality was
 added ca. 2016/09/25; clients that depend on the return value may need
 to handle the case where this function returns None because subclasses
 are not returning a value.

tf.contrib.learn.Estimator.fit(x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None) {#Estimator.fit}

See Trainable.

Raises:

		ValueError: If x or y are not None while input_fn is not None.

		ValueError: If both steps and max_steps are not None.

tf.contrib.learn.Estimator.get_params(deep=True) {#Estimator.get_params}

Get parameters for this estimator.

Args:

		deep: boolean, optional

If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns:

params : mapping of string to any
Parameter names mapped to their values.

tf.contrib.learn.Estimator.get_variable_names() {#Estimator.get_variable_names}

Returns list of all variable names in this model.

Returns:

List of names.

tf.contrib.learn.Estimator.get_variable_value(name) {#Estimator.get_variable_value}

Returns value of the variable given by name.

Args:

		name: string, name of the tensor.

Returns:

Numpy array - value of the tensor.

tf.contrib.learn.Estimator.model_dir {#Estimator.model_dir}

tf.contrib.learn.Estimator.partial_fit(x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None) {#Estimator.partial_fit}

Incremental fit on a batch of samples.

This method is expected to be called several times consecutively
on different or the same chunks of the dataset. This either can
implement iterative training or out-of-core/online training.

This is especially useful when the whole dataset is too big to
fit in memory at the same time. Or when model is taking long time
to converge, and you want to split up training into subparts.

Args:

		x: Matrix of shape [n_samples, n_features...]. Can be iterator that
returns arrays of features. The training input samples for fitting the
model. If set, input_fn must be None.

		y: Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of targets. The training target values
(class labels in classification, real numbers in regression). If set,
input_fn must be None.

		input_fn: Input function. If set, x, y, and batch_size must be
None.

		steps: Number of steps for which to train model. If None, train forever.

		batch_size: minibatch size to use on the input, defaults to first
dimension of x. Must be None if input_fn is provided.

		monitors: List of BaseMonitor subclass instances. Used for callbacks
inside the training loop.

Returns:

self, for chaining.

Raises:

		ValueError: If at least one of x and y is provided, and input_fn is
provided.

tf.contrib.learn.Estimator.predict(*args, **kwargs) {#Estimator.predict}

Returns predictions for given features. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-15.
Instructions for updating:
The default behavior of predict() is changing. The default value for
as_iterable will change to True, and then the flag will be removed
altogether. The behavior of this flag is described below.

Args:
 x: Matrix of shape [n_samples, n_features...]. Can be iterator that
 returns arrays of features. The training input samples for fitting the
 model. If set, `input_fn` must be `None`.
 input_fn: Input function. If set, `x` and 'batch_size' must be `None`.
 batch_size: Override default batch size. If set, 'input_fn' must be
 'None'.
 outputs: list of `str`, name of the output to predict.
 If `None`, returns all.
 as_iterable: If True, return an iterable which keeps yielding predictions
 for each example until inputs are exhausted. Note: The inputs must
 terminate if you want the iterable to terminate (e.g. be sure to pass
 num_epochs=1 if you are using something like read_batch_features).

Returns:
 A numpy array of predicted classes or regression values if the
 constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict`
 of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of
 predictions if as_iterable is True.

Raises:
 ValueError: If x and input_fn are both provided or both `None`.

tf.contrib.learn.Estimator.set_params(**params) {#Estimator.set_params}

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.

Args:

		**params: Parameters.

Returns:

self

Raises:

		ValueError: If params contain invalid names.

class tf.contrib.learn.ModeKeys {#ModeKeys}

Standard names for model modes.

The following standard keys are defined:

		TRAIN: training mode.

		EVAL: evaluation mode.

		INFER: inference mode.

class tf.contrib.learn.DNNClassifier {#DNNClassifier}

A classifier for TensorFlow DNN models.

Example:

education = sparse_column_with_hash_bucket(column_name="education",
 hash_bucket_size=1000)
occupation = sparse_column_with_hash_bucket(column_name="occupation",
 hash_bucket_size=1000)

education_emb = embedding_column(sparse_id_column=education, dimension=16,
 combiner="sum")
occupation_emb = embedding_column(sparse_id_column=occupation, dimension=16,
 combiner="sum")

estimator = DNNClassifier(
 feature_columns=[education_emb, occupation_emb],
 hidden_units=[1024, 512, 256])

Or estimator using the ProximalAdagradOptimizer optimizer with
regularization.
estimator = DNNClassifier(
 feature_columns=[education_emb, occupation_emb],
 hidden_units=[1024, 512, 256],
 optimizer=tf.train.ProximalAdagradOptimizer(
 learning_rate=0.1,
 l1_regularization_strength=0.001
))

Input builders
def input_fn_train: # returns x, Y
 pass
estimator.fit(input_fn=input_fn_train)

def input_fn_eval: # returns x, Y
 pass
estimator.evaluate(input_fn=input_fn_eval)
estimator.predict(x=x)

Input of fit and evaluate should have following features,
otherwise there will be a KeyError:

		if weight_column_name is not None, a feature with
key=weight_column_name whose value is a Tensor.

		for each column in feature_columns:
		if column is a SparseColumn, a feature with key=column.name
whose value is a SparseTensor.

		if column is a WeightedSparseColumn, two features: the first with
key the id column name, the second with key the weight column name.
Both features’ value must be a SparseTensor.

		if column is a RealValuedColumn, a feature with key=column.name
whose value is a Tensor.

tf.contrib.learn.DNNClassifier.__init__(hidden_units, feature_columns, model_dir=None, n_classes=2, weight_column_name=None, optimizer=None, activation_fn=relu, dropout=None, gradient_clip_norm=None, enable_centered_bias=None, config=None) {#DNNClassifier.init}

Initializes a DNNClassifier instance.

Args:

		hidden_units: List of hidden units per layer. All layers are fully
connected. Ex. [64, 32] means first layer has 64 nodes and second one
has 32.

		feature_columns: An iterable containing all the feature columns used by
the model. All items in the set should be instances of classes derived
from FeatureColumn.

		model_dir: Directory to save model parameters, graph and etc. This can also
be used to load checkpoints from the directory into a estimator to continue
training a previously saved model.

		n_classes: number of target classes. Default is binary classification.
It must be greater than 1.

		weight_column_name: A string defining feature column name representing
weights. It is used to down weight or boost examples during training. It
will be multiplied by the loss of the example.

		optimizer: An instance of tf.Optimizer used to train the model. If
None, will use an Adagrad optimizer.

		activation_fn: Activation function applied to each layer. If None, will
use tf.nn.relu.

		dropout: When not None, the probability we will drop out a given
coordinate.

		gradient_clip_norm: A float > 0. If provided, gradients are
clipped to their global norm with this clipping ratio. See
tf.clip_by_global_norm for more details.

		enable_centered_bias: A bool. If True, estimator will learn a centered
bias variable for each class. Rest of the model structure learns the
residual after centered bias.

		config: RunConfig object to configure the runtime settings.

Returns:

A DNNClassifier estimator.

Raises:

		ValueError: If n_classes < 2.

tf.contrib.learn.DNNClassifier.bias_ {#DNNClassifier.bias_}

DEPRECATED FUNCTION

THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-13.
Instructions for updating:
This method inspects the private state of the object, and should not be used

tf.contrib.learn.DNNClassifier.config {#DNNClassifier.config}

tf.contrib.learn.DNNClassifier.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) {#DNNClassifier.evaluate}

See evaluable.Evaluable.

tf.contrib.learn.DNNClassifier.export(export_dir, input_fn=None, input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, default_batch_size=1, exports_to_keep=None) {#DNNClassifier.export}

See BaseEstimator.export.

tf.contrib.learn.DNNClassifier.fit(x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None) {#DNNClassifier.fit}

See trainable.Trainable.

tf.contrib.learn.DNNClassifier.get_variable_names() {#DNNClassifier.get_variable_names}

Returns list of all variable names in this model.

Returns:

List of names.

tf.contrib.learn.DNNClassifier.get_variable_value(name) {#DNNClassifier.get_variable_value}

Returns value of the variable given by name.

Args:

		name: string, name of the tensor.

Returns:

Tensor object.

tf.contrib.learn.DNNClassifier.model_dir {#DNNClassifier.model_dir}

tf.contrib.learn.DNNClassifier.predict(*args, **kwargs) {#DNNClassifier.predict}

Returns predicted classes for given features. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-15.
Instructions for updating:
The default behavior of predict() is changing. The default value for
as_iterable will change to True, and then the flag will be removed
altogether. The behavior of this flag is described below.

Args:
 x: features.
 input_fn: Input function. If set, x must be None.
 batch_size: Override default batch size.
 as_iterable: If True, return an iterable which keeps yielding predictions
 for each example until inputs are exhausted. Note: The inputs must
 terminate if you want the iterable to terminate (e.g. be sure to pass
 num_epochs=1 if you are using something like read_batch_features).

Returns:
 Numpy array of predicted classes (or an iterable of predicted classes if
 as_iterable is True).

tf.contrib.learn.DNNClassifier.predict_proba(*args, **kwargs) {#DNNClassifier.predict_proba}

Returns prediction probabilities for given features. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-15.
Instructions for updating:
The default behavior of predict() is changing. The default value for
as_iterable will change to True, and then the flag will be removed
altogether. The behavior of this flag is described below.

Args:
 x: features.
 input_fn: Input function. If set, x and y must be None.
 batch_size: Override default batch size.
 as_iterable: If True, return an iterable which keeps yielding predictions
 for each example until inputs are exhausted. Note: The inputs must
 terminate if you want the iterable to terminate (e.g. be sure to pass
 num_epochs=1 if you are using something like read_batch_features).

Returns:
 Numpy array of predicted probabilities (or an iterable of predicted
 probabilities if as_iterable is True).

tf.contrib.learn.DNNClassifier.weights_ {#DNNClassifier.weights_}

DEPRECATED FUNCTION

THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-13.
Instructions for updating:
This method inspects the private state of the object, and should not be used

class tf.contrib.learn.DNNRegressor {#DNNRegressor}

A regressor for TensorFlow DNN models.

Example:

education = sparse_column_with_hash_bucket(column_name="education",
 hash_bucket_size=1000)
occupation = sparse_column_with_hash_bucket(column_name="occupation",
 hash_bucket_size=1000)

education_emb = embedding_column(sparse_id_column=education, dimension=16,
 combiner="sum")
occupation_emb = embedding_column(sparse_id_column=occupation, dimension=16,
 combiner="sum")

estimator = DNNRegressor(
 feature_columns=[education_emb, occupation_emb],
 hidden_units=[1024, 512, 256])

Or estimator using the ProximalAdagradOptimizer optimizer with
regularization.
estimator = DNNRegressor(
 feature_columns=[education_emb, occupation_emb],
 hidden_units=[1024, 512, 256],
 optimizer=tf.train.ProximalAdagradOptimizer(
 learning_rate=0.1,
 l1_regularization_strength=0.001
))

Input builders
def input_fn_train: # returns x, Y
 pass
estimator.fit(input_fn=input_fn_train)

def input_fn_eval: # returns x, Y
 pass
estimator.evaluate(input_fn=input_fn_eval)
estimator.predict(x=x)

Input of fit and evaluate should have following features,
otherwise there will be a KeyError:

		if weight_column_name is not None, a feature with
key=weight_column_name whose value is a Tensor.

		for each column in feature_columns:
		if column is a SparseColumn, a feature with key=column.name
whose value is a SparseTensor.

		if column is a WeightedSparseColumn, two features: the first with
key the id column name, the second with key the weight column name.
Both features’ value must be a SparseTensor.

		if column is a RealValuedColumn, a feature with key=column.name
whose value is a Tensor.

tf.contrib.learn.DNNRegressor.__init__(hidden_units, feature_columns, model_dir=None, weight_column_name=None, optimizer=None, activation_fn=relu, dropout=None, gradient_clip_norm=None, enable_centered_bias=None, config=None) {#DNNRegressor.init}

Initializes a DNNRegressor instance.

Args:

		hidden_units: List of hidden units per layer. All layers are fully
connected. Ex. [64, 32] means first layer has 64 nodes and second one
has 32.

		feature_columns: An iterable containing all the feature columns used by
the model. All items in the set should be instances of classes derived
from FeatureColumn.

		model_dir: Directory to save model parameters, graph and etc. This can also
be used to load checkpoints from the directory into a estimator to continue
training a previously saved model.

		weight_column_name: A string defining feature column name representing
weights. It is used to down weight or boost examples during training. It
will be multiplied by the loss of the example.

		optimizer: An instance of tf.Optimizer used to train the model. If
None, will use an Adagrad optimizer.

		activation_fn: Activation function applied to each layer. If None, will
use tf.nn.relu.

		dropout: When not None, the probability we will drop out a given
coordinate.

		gradient_clip_norm: A float > 0. If provided, gradients are clipped
to their global norm with this clipping ratio. See
tf.clip_by_global_norm for more details.

		enable_centered_bias: A bool. If True, estimator will learn a centered
bias variable for each class. Rest of the model structure learns the
residual after centered bias.

		config: RunConfig object to configure the runtime settings.

Returns:

A DNNRegressor estimator.

tf.contrib.learn.DNNRegressor.__repr__() {#DNNRegressor.repr}

tf.contrib.learn.DNNRegressor.bias_ {#DNNRegressor.bias_}

tf.contrib.learn.DNNRegressor.config {#DNNRegressor.config}

tf.contrib.learn.DNNRegressor.dnn_bias_ {#DNNRegressor.dnn_bias_}

Returns bias of deep neural network part.

tf.contrib.learn.DNNRegressor.dnn_weights_ {#DNNRegressor.dnn_weights_}

Returns weights of deep neural network part.

tf.contrib.learn.DNNRegressor.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) {#DNNRegressor.evaluate}

See Evaluable.

Raises:

		ValueError: If at least one of x or y is provided, and at least one of
input_fn or feed_fn is provided.
Or if metrics is not None or dict.

tf.contrib.learn.DNNRegressor.export(*args, **kwargs) {#DNNRegressor.export}

Exports inference graph into given dir. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23.
Instructions for updating:
The signature of the input_fn accepted by export is changing to be consistent with what’s used by tf.Learn Estimator’s train/evaluate. input_fn and input_feature_key will become required args, and use_deprecated_input_fn will default to False and be removed altogether.

Args:
 export_dir: A string containing a directory to write the exported graph
 and checkpoints.
 input_fn: If `use_deprecated_input_fn` is true, then a function that given
 `Tensor` of `Example` strings, parses it into features that are then
 passed to the model. Otherwise, a function that takes no argument and
 returns a tuple of (features, targets), where features is a dict of
 string key to `Tensor` and targets is a `Tensor` that's currently not
 used (and so can be `None`).
 input_feature_key: Only used if `use_deprecated_input_fn` is false. String
 key into the features dict returned by `input_fn` that corresponds toa
 the raw `Example` strings `Tensor` that the exported model will take as
 input.
 use_deprecated_input_fn: Determines the signature format of `input_fn`.
 signature_fn: Function that returns a default signature and a named
 signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s
 for features and `Tensor` or `dict` of `Tensor`s for predictions.
 prediction_key: The key for a tensor in the `predictions` dict (output
 from the `model_fn`) to use as the `predictions` input to the
 `signature_fn`. Optional. If `None`, predictions will pass to
 `signature_fn` without filtering.
 default_batch_size: Default batch size of the `Example` placeholder.
 exports_to_keep: Number of exports to keep.

Returns:
 The string path to the exported directory. NB: this functionality was
 added ca. 2016/09/25; clients that depend on the return value may need
 to handle the case where this function returns None because subclasses
 are not returning a value.

tf.contrib.learn.DNNRegressor.fit(x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None) {#DNNRegressor.fit}

See Trainable.

Raises:

		ValueError: If x or y are not None while input_fn is not None.

		ValueError: If both steps and max_steps are not None.

tf.contrib.learn.DNNRegressor.get_params(deep=True) {#DNNRegressor.get_params}

Get parameters for this estimator.

Args:

		deep: boolean, optional

If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns:

params : mapping of string to any
Parameter names mapped to their values.

tf.contrib.learn.DNNRegressor.get_variable_names() {#DNNRegressor.get_variable_names}

Returns list of all variable names in this model.

Returns:

List of names.

tf.contrib.learn.DNNRegressor.get_variable_value(name) {#DNNRegressor.get_variable_value}

Returns value of the variable given by name.

Args:

		name: string, name of the tensor.

Returns:

Numpy array - value of the tensor.

tf.contrib.learn.DNNRegressor.linear_bias_ {#DNNRegressor.linear_bias_}

Returns bias of the linear part.

tf.contrib.learn.DNNRegressor.linear_weights_ {#DNNRegressor.linear_weights_}

Returns weights per feature of the linear part.

tf.contrib.learn.DNNRegressor.model_dir {#DNNRegressor.model_dir}

tf.contrib.learn.DNNRegressor.partial_fit(x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None) {#DNNRegressor.partial_fit}

Incremental fit on a batch of samples.

This method is expected to be called several times consecutively
on different or the same chunks of the dataset. This either can
implement iterative training or out-of-core/online training.

This is especially useful when the whole dataset is too big to
fit in memory at the same time. Or when model is taking long time
to converge, and you want to split up training into subparts.

Args:

		x: Matrix of shape [n_samples, n_features...]. Can be iterator that
returns arrays of features. The training input samples for fitting the
model. If set, input_fn must be None.

		y: Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of targets. The training target values
(class labels in classification, real numbers in regression). If set,
input_fn must be None.

		input_fn: Input function. If set, x, y, and batch_size must be
None.

		steps: Number of steps for which to train model. If None, train forever.

		batch_size: minibatch size to use on the input, defaults to first
dimension of x. Must be None if input_fn is provided.

		monitors: List of BaseMonitor subclass instances. Used for callbacks
inside the training loop.

Returns:

self, for chaining.

Raises:

		ValueError: If at least one of x and y is provided, and input_fn is
provided.

tf.contrib.learn.DNNRegressor.predict(*args, **kwargs) {#DNNRegressor.predict}

Returns predictions for given features. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-15.
Instructions for updating:
The default behavior of predict() is changing. The default value for
as_iterable will change to True, and then the flag will be removed
altogether. The behavior of this flag is described below.

Args:
 x: Matrix of shape [n_samples, n_features...]. Can be iterator that
 returns arrays of features. The training input samples for fitting the
 model. If set, `input_fn` must be `None`.
 input_fn: Input function. If set, `x` and 'batch_size' must be `None`.
 batch_size: Override default batch size. If set, 'input_fn' must be
 'None'.
 outputs: list of `str`, name of the output to predict.
 If `None`, returns all.
 as_iterable: If True, return an iterable which keeps yielding predictions
 for each example until inputs are exhausted. Note: The inputs must
 terminate if you want the iterable to terminate (e.g. be sure to pass
 num_epochs=1 if you are using something like read_batch_features).

Returns:
 A numpy array of predicted classes or regression values if the
 constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict`
 of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of
 predictions if as_iterable is True.

Raises:
 ValueError: If x and input_fn are both provided or both `None`.

tf.contrib.learn.DNNRegressor.set_params(**params) {#DNNRegressor.set_params}

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.

Args:

		**params: Parameters.

Returns:

self

Raises:

		ValueError: If params contain invalid names.

tf.contrib.learn.DNNRegressor.weights_ {#DNNRegressor.weights_}

class tf.contrib.learn.TensorFlowEstimator {#TensorFlowEstimator}

Base class for all TensorFlow estimators.

tf.contrib.learn.TensorFlowEstimator.__init__(model_fn, n_classes, batch_size=32, steps=200, optimizer='Adagrad', learning_rate=0.1, clip_gradients=5.0, class_weight=None, continue_training=False, config=None, verbose=1) {#TensorFlowEstimator.init}

Initializes a TensorFlowEstimator instance.

Args:

		model_fn: Model function, that takes input x, y tensors and outputs
prediction and loss tensors.

		n_classes: Number of classes in the target.

		batch_size: Mini batch size.

		steps: Number of steps to run over data.

		optimizer: Optimizer name (or class), for example “SGD”, “Adam”,
“Adagrad”.

		learning_rate: If this is constant float value, no decay function is used.
Instead, a customized decay function can be passed that accepts
global_step as parameter and returns a Tensor.
e.g. exponential decay function:

def exp_decay(global_step):
 return tf.train.exponential_decay(
 learning_rate=0.1, global_step,
 decay_steps=2, decay_rate=0.001)

		clip_gradients: Clip norm of the gradients to this value to stop
gradient explosion.

		class_weight: None or list of n_classes floats. Weight associated with
classes for loss computation. If not given, all classes are supposed to
have weight one.

		continue_training: when continue_training is True, once initialized
model will be continuely trained on every call of fit.

		config: RunConfig object that controls the configurations of the
session, e.g. num_cores, gpu_memory_fraction, etc.

		verbose: Controls the verbosity, possible values:
		0: the algorithm and debug information is muted.

		1: trainer prints the progress.

		2: log device placement is printed.

tf.contrib.learn.TensorFlowEstimator.__repr__() {#TensorFlowEstimator.repr}

tf.contrib.learn.TensorFlowEstimator.config {#TensorFlowEstimator.config}

tf.contrib.learn.TensorFlowEstimator.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) {#TensorFlowEstimator.evaluate}

Evaluates given model with provided evaluation data.

See superclass Estimator for more details.

Args:

		x: features.

		y: targets.

		input_fn: Input function.

		feed_fn: Function creating a feed dict every time it is called.

		batch_size: minibatch size to use on the input.

		steps: Number of steps for which to evaluate model.

		metrics: Dict of metric ops to run. If None, the default metrics are used.

		name: Name of the evaluation.

Returns:

Returns dict with evaluation results.

tf.contrib.learn.TensorFlowEstimator.export(*args, **kwargs) {#TensorFlowEstimator.export}

Exports inference graph into given dir. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23.
Instructions for updating:
The signature of the input_fn accepted by export is changing to be consistent with what’s used by tf.Learn Estimator’s train/evaluate. input_fn and input_feature_key will become required args, and use_deprecated_input_fn will default to False and be removed altogether.

Args:
 export_dir: A string containing a directory to write the exported graph
 and checkpoints.
 input_fn: If `use_deprecated_input_fn` is true, then a function that given
 `Tensor` of `Example` strings, parses it into features that are then
 passed to the model. Otherwise, a function that takes no argument and
 returns a tuple of (features, targets), where features is a dict of
 string key to `Tensor` and targets is a `Tensor` that's currently not
 used (and so can be `None`).
 input_feature_key: Only used if `use_deprecated_input_fn` is false. String
 key into the features dict returned by `input_fn` that corresponds toa
 the raw `Example` strings `Tensor` that the exported model will take as
 input.
 use_deprecated_input_fn: Determines the signature format of `input_fn`.
 signature_fn: Function that returns a default signature and a named
 signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s
 for features and `Tensor` or `dict` of `Tensor`s for predictions.
 prediction_key: The key for a tensor in the `predictions` dict (output
 from the `model_fn`) to use as the `predictions` input to the
 `signature_fn`. Optional. If `None`, predictions will pass to
 `signature_fn` without filtering.
 default_batch_size: Default batch size of the `Example` placeholder.
 exports_to_keep: Number of exports to keep.

Returns:
 The string path to the exported directory. NB: this functionality was
 added ca. 2016/09/25; clients that depend on the return value may need
 to handle the case where this function returns None because subclasses
 are not returning a value.

tf.contrib.learn.TensorFlowEstimator.fit(x, y, steps=None, monitors=None, logdir=None) {#TensorFlowEstimator.fit}

Neural network model from provided model_fn and training data.

Note: called first time constructs the graph and initializers
variables. Consecutives times it will continue training the same model.
This logic follows partial_fit() interface in scikit-learn.
To restart learning, create new estimator.

Args:

		x: matrix or tensor of shape [n_samples, n_features...]. Can be
iterator that returns arrays of features. The training input
samples for fitting the model.

		y: vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of targets. The training target values
(class labels in classification, real numbers in regression).

		steps: int, number of steps to train.
If None or 0, train for self.steps.

		monitors: List of BaseMonitor objects to print training progress and
invoke early stopping.

		logdir: the directory to save the log file that can be used for
optional visualization.

Returns:

Returns self.

tf.contrib.learn.TensorFlowEstimator.get_params(deep=True) {#TensorFlowEstimator.get_params}

Get parameters for this estimator.

Args:

		deep: boolean, optional

If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns:

params : mapping of string to any
Parameter names mapped to their values.

tf.contrib.learn.TensorFlowEstimator.get_tensor(name) {#TensorFlowEstimator.get_tensor}

Returns tensor by name.

Args:

		name: string, name of the tensor.

Returns:

Tensor.

tf.contrib.learn.TensorFlowEstimator.get_variable_names() {#TensorFlowEstimator.get_variable_names}

Returns list of all variable names in this model.

Returns:

List of names.

tf.contrib.learn.TensorFlowEstimator.get_variable_value(name) {#TensorFlowEstimator.get_variable_value}

Returns value of the variable given by name.

Args:

		name: string, name of the tensor.

Returns:

Numpy array - value of the tensor.

tf.contrib.learn.TensorFlowEstimator.model_dir {#TensorFlowEstimator.model_dir}

tf.contrib.learn.TensorFlowEstimator.partial_fit(x, y) {#TensorFlowEstimator.partial_fit}

Incremental fit on a batch of samples.

This method is expected to be called several times consecutively
on different or the same chunks of the dataset. This either can
implement iterative training or out-of-core/online training.
This is especially useful when the whole dataset is too big to
fit in memory at the same time. Or when model is taking long time
to converge, and you want to split up training into subparts.

Args:

		x: matrix or tensor of shape [n_samples, n_features...]. Can be
iterator that returns arrays of features. The training input
samples for fitting the model.

		y: vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of targets. The training target values
(class label in classification, real numbers in regression).

Returns:

Returns self.

tf.contrib.learn.TensorFlowEstimator.predict(x, axis=1, batch_size=None) {#TensorFlowEstimator.predict}

Predict class or regression for x.

For a classification model, the predicted class for each sample in x is
returned. For a regression model, the predicted value based on x is
returned.

Args:

		x: array-like matrix, [n_samples, n_features...] or iterator.

		axis: Which axis to argmax for classification.
By default axis 1 (next after batch) is used.
Use 2 for sequence predictions.

		batch_size: If test set is too big, use batch size to split
it into mini batches. By default the batch_size member
variable is used.

Returns:

		y: array of shape [n_samples]. The predicted classes or predicted
value.

tf.contrib.learn.TensorFlowEstimator.predict_proba(x, batch_size=None) {#TensorFlowEstimator.predict_proba}

Predict class probability of the input samples x.

Args:

		x: array-like matrix, [n_samples, n_features...] or iterator.

		batch_size: If test set is too big, use batch size to split
it into mini batches. By default the batch_size member variable is used.

Returns:

		y: array of shape [n_samples, n_classes]. The predicted
probabilities for each class.

tf.contrib.learn.TensorFlowEstimator.restore(cls, path, config=None) {#TensorFlowEstimator.restore}

Restores model from give path.

Args:

		path: Path to the checkpoints and other model information.

		config: RunConfig object that controls the configurations of the session,
e.g. num_cores, gpu_memory_fraction, etc. This is allowed to be
reconfigured.

Returns:

Estimator, object of the subclass of TensorFlowEstimator.

Raises:

		ValueError: if path does not contain a model definition.

tf.contrib.learn.TensorFlowEstimator.save(path) {#TensorFlowEstimator.save}

Saves checkpoints and graph to given path.

Args:

		path: Folder to save model to.

tf.contrib.learn.TensorFlowEstimator.set_params(**params) {#TensorFlowEstimator.set_params}

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.

Args:

		**params: Parameters.

Returns:

self

Raises:

		ValueError: If params contain invalid names.

class tf.contrib.learn.LinearClassifier {#LinearClassifier}

Linear classifier model.

Train a linear model to classify instances into one of multiple possible
classes. When number of possible classes is 2, this is binary classification.

Example:

education = sparse_column_with_hash_bucket(column_name="education",
 hash_bucket_size=1000)
occupation = sparse_column_with_hash_bucket(column_name="occupation",
 hash_bucket_size=1000)

education_x_occupation = crossed_column(columns=[education, occupation],
 hash_bucket_size=10000)

Estimator using the default optimizer.
estimator = LinearClassifier(
 feature_columns=[occupation, education_x_occupation])

Or estimator using the FTRL optimizer with regularization.
estimator = LinearClassifier(
 feature_columns=[occupation, education_x_occupation],
 optimizer=tf.train.FtrlOptimizer(
 learning_rate=0.1,
 l1_regularization_strength=0.001
))

Or estimator using the SDCAOptimizer.
estimator = LinearClassifier(
 feature_columns=[occupation, education_x_occupation],
 optimizer=tf.contrib.linear_optimizer.SDCAOptimizer(
 example_id_column='example_id',
 num_loss_partitions=...,
 symmetric_l2_regularization=2.0
))

Input builders
def input_fn_train: # returns x, y
 ...
def input_fn_eval: # returns x, y
 ...
estimator.fit(input_fn=input_fn_train)
estimator.evaluate(input_fn=input_fn_eval)
estimator.predict(x=x)

Input of fit and evaluate should have following features,
otherwise there will be a KeyError:

		if weight_column_name is not None, a feature with
key=weight_column_name whose value is a Tensor.

		for each column in feature_columns:
		if column is a SparseColumn, a feature with key=column.name
whose value is a SparseTensor.

		if column is a WeightedSparseColumn, two features: the first with
key the id column name, the second with key the weight column name.
Both features’ value must be a SparseTensor.

		if column is a RealValuedColumn, a feature with key=column.name
whose value is a Tensor.

tf.contrib.learn.LinearClassifier.__init__(feature_columns, model_dir=None, n_classes=2, weight_column_name=None, optimizer=None, gradient_clip_norm=None, enable_centered_bias=None, _joint_weight=False, config=None) {#LinearClassifier.init}

Construct a LinearClassifier estimator object.

Args:

		feature_columns: An iterable containing all the feature columns used by
the model. All items in the set should be instances of classes derived
from FeatureColumn.

		model_dir: Directory to save model parameters, graph and etc. This can
also be used to load checkpoints from the directory into a estimator
to continue training a previously saved model.

		n_classes: number of target classes. Default is binary classification.

		weight_column_name: A string defining feature column name representing
weights. It is used to down weight or boost examples during training. It
will be multiplied by the loss of the example.

		optimizer: The optimizer used to train the model. If specified, it should
be either an instance of tf.Optimizer or the SDCAOptimizer. If None,
the Ftrl optimizer will be used.

		gradient_clip_norm: A float > 0. If provided, gradients are clipped
to their global norm with this clipping ratio. See
tf.clip_by_global_norm for more details.

		enable_centered_bias: A bool. If True, estimator will learn a centered
bias variable for each class. Rest of the model structure learns the
residual after centered bias.
_joint_weight: If True, the weights for all columns will be stored in a
single (possibly partitioned) variable. It’s more efficient, but it’s
incompatible with SDCAOptimizer, and requires all feature columns are
sparse and use the ‘sum’ combiner.

		config: RunConfig object to configure the runtime settings.

Returns:

A LinearClassifier estimator.

Raises:

		ValueError: if n_classes < 2.

tf.contrib.learn.LinearClassifier.bias_ {#LinearClassifier.bias_}

tf.contrib.learn.LinearClassifier.config {#LinearClassifier.config}

tf.contrib.learn.LinearClassifier.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) {#LinearClassifier.evaluate}

See evaluable.Evaluable.

tf.contrib.learn.LinearClassifier.export(export_dir, input_fn=None, input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, default_batch_size=1, exports_to_keep=None) {#LinearClassifier.export}

See BaseEstimator.export.

tf.contrib.learn.LinearClassifier.fit(x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None) {#LinearClassifier.fit}

See trainable.Trainable.

tf.contrib.learn.LinearClassifier.get_estimator() {#LinearClassifier.get_estimator}

tf.contrib.learn.LinearClassifier.get_variable_names() {#LinearClassifier.get_variable_names}

tf.contrib.learn.LinearClassifier.get_variable_value(name) {#LinearClassifier.get_variable_value}

tf.contrib.learn.LinearClassifier.model_dir {#LinearClassifier.model_dir}

tf.contrib.learn.LinearClassifier.predict(x=None, input_fn=None, batch_size=None, as_iterable=False) {#LinearClassifier.predict}

Runs inference to determine the predicted class.

tf.contrib.learn.LinearClassifier.predict_proba(x=None, input_fn=None, batch_size=None, outputs=None, as_iterable=False) {#LinearClassifier.predict_proba}

Runs inference to determine the class probability predictions.

tf.contrib.learn.LinearClassifier.weights_ {#LinearClassifier.weights_}

class tf.contrib.learn.LinearRegressor {#LinearRegressor}

Linear regressor model.

Train a linear regression model to predict target variable value given
observation of feature values.

Example:

education = sparse_column_with_hash_bucket(column_name="education",
 hash_bucket_size=1000)
occupation = sparse_column_with_hash_bucket(column_name="occupation",
 hash_bucket_size=1000)

education_x_occupation = crossed_column(columns=[education, occupation],
 hash_bucket_size=10000)

estimator = LinearRegressor(
 feature_columns=[occupation, education_x_occupation])

Input builders
def input_fn_train: # returns x, y
 ...
def input_fn_eval: # returns x, y
 ...
estimator.fit(input_fn=input_fn_train)
estimator.evaluate(input_fn=input_fn_eval)
estimator.predict(x=x)

Input of fit and evaluate should have following features,
otherwise there will be a KeyError:

		if weight_column_name is not None:
key=weight_column_name, value=a Tensor

		for column in feature_columns:
		if isinstance(column, SparseColumn):
key=column.name, value=a SparseTensor

		if isinstance(column, WeightedSparseColumn):
{key=id column name, value=a SparseTensor,
key=weight column name, value=a SparseTensor}

		if isinstance(column, RealValuedColumn):
key=column.name, value=a Tensor

tf.contrib.learn.LinearRegressor.__init__(feature_columns, model_dir=None, weight_column_name=None, optimizer=None, gradient_clip_norm=None, enable_centered_bias=None, target_dimension=1, _joint_weights=False, config=None) {#LinearRegressor.init}

Construct a LinearRegressor estimator object.

Args:

		feature_columns: An iterable containing all the feature columns used by
the model. All items in the set should be instances of classes derived
from FeatureColumn.

		model_dir: Directory to save model parameters, graph, etc. This can
also be used to load checkpoints from the directory into a estimator
to continue training a previously saved model.

		weight_column_name: A string defining feature column name representing
weights. It is used to down weight or boost examples during training. It
will be multiplied by the loss of the example.

		optimizer: An instance of tf.Optimizer used to train the model. If
None, will use an Ftrl optimizer.

		gradient_clip_norm: A float > 0. If provided, gradients are clipped
to their global norm with this clipping ratio. See
tf.clip_by_global_norm for more details.

		enable_centered_bias: A bool. If True, estimator will learn a centered
bias variable for each class. Rest of the model structure learns the
residual after centered bias.

		target_dimension: dimension of the target for multilabels.
_joint_weights: If True use a single (possibly partitioned) variable to
store the weights. It’s faster, but requires all feature columns are
sparse and have the ‘sum’ combiner. Incompatible with SDCAOptimizer.

		config: RunConfig object to configure the runtime settings.

Returns:

A LinearRegressor estimator.

tf.contrib.learn.LinearRegressor.__repr__() {#LinearRegressor.repr}

tf.contrib.learn.LinearRegressor.bias_ {#LinearRegressor.bias_}

tf.contrib.learn.LinearRegressor.config {#LinearRegressor.config}

tf.contrib.learn.LinearRegressor.dnn_bias_ {#LinearRegressor.dnn_bias_}

Returns bias of deep neural network part.

tf.contrib.learn.LinearRegressor.dnn_weights_ {#LinearRegressor.dnn_weights_}

Returns weights of deep neural network part.

tf.contrib.learn.LinearRegressor.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) {#LinearRegressor.evaluate}

See Evaluable.

Raises:

		ValueError: If at least one of x or y is provided, and at least one of
input_fn or feed_fn is provided.
Or if metrics is not None or dict.

tf.contrib.learn.LinearRegressor.export(*args, **kwargs) {#LinearRegressor.export}

Exports inference graph into given dir. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23.
Instructions for updating:
The signature of the input_fn accepted by export is changing to be consistent with what’s used by tf.Learn Estimator’s train/evaluate. input_fn and input_feature_key will become required args, and use_deprecated_input_fn will default to False and be removed altogether.

Args:
 export_dir: A string containing a directory to write the exported graph
 and checkpoints.
 input_fn: If `use_deprecated_input_fn` is true, then a function that given
 `Tensor` of `Example` strings, parses it into features that are then
 passed to the model. Otherwise, a function that takes no argument and
 returns a tuple of (features, targets), where features is a dict of
 string key to `Tensor` and targets is a `Tensor` that's currently not
 used (and so can be `None`).
 input_feature_key: Only used if `use_deprecated_input_fn` is false. String
 key into the features dict returned by `input_fn` that corresponds toa
 the raw `Example` strings `Tensor` that the exported model will take as
 input.
 use_deprecated_input_fn: Determines the signature format of `input_fn`.
 signature_fn: Function that returns a default signature and a named
 signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s
 for features and `Tensor` or `dict` of `Tensor`s for predictions.
 prediction_key: The key for a tensor in the `predictions` dict (output
 from the `model_fn`) to use as the `predictions` input to the
 `signature_fn`. Optional. If `None`, predictions will pass to
 `signature_fn` without filtering.
 default_batch_size: Default batch size of the `Example` placeholder.
 exports_to_keep: Number of exports to keep.

Returns:
 The string path to the exported directory. NB: this functionality was
 added ca. 2016/09/25; clients that depend on the return value may need
 to handle the case where this function returns None because subclasses
 are not returning a value.

tf.contrib.learn.LinearRegressor.fit(x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None) {#LinearRegressor.fit}

See Trainable.

Raises:

		ValueError: If x or y are not None while input_fn is not None.

		ValueError: If both steps and max_steps are not None.

tf.contrib.learn.LinearRegressor.get_params(deep=True) {#LinearRegressor.get_params}

Get parameters for this estimator.

Args:

		deep: boolean, optional

If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns:

params : mapping of string to any
Parameter names mapped to their values.

tf.contrib.learn.LinearRegressor.get_variable_names() {#LinearRegressor.get_variable_names}

Returns list of all variable names in this model.

Returns:

List of names.

tf.contrib.learn.LinearRegressor.get_variable_value(name) {#LinearRegressor.get_variable_value}

Returns value of the variable given by name.

Args:

		name: string, name of the tensor.

Returns:

Numpy array - value of the tensor.

tf.contrib.learn.LinearRegressor.linear_bias_ {#LinearRegressor.linear_bias_}

Returns bias of the linear part.

tf.contrib.learn.LinearRegressor.linear_weights_ {#LinearRegressor.linear_weights_}

Returns weights per feature of the linear part.

tf.contrib.learn.LinearRegressor.model_dir {#LinearRegressor.model_dir}

tf.contrib.learn.LinearRegressor.partial_fit(x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None) {#LinearRegressor.partial_fit}

Incremental fit on a batch of samples.

This method is expected to be called several times consecutively
on different or the same chunks of the dataset. This either can
implement iterative training or out-of-core/online training.

This is especially useful when the whole dataset is too big to
fit in memory at the same time. Or when model is taking long time
to converge, and you want to split up training into subparts.

Args:

		x: Matrix of shape [n_samples, n_features...]. Can be iterator that
returns arrays of features. The training input samples for fitting the
model. If set, input_fn must be None.

		y: Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of targets. The training target values
(class labels in classification, real numbers in regression). If set,
input_fn must be None.

		input_fn: Input function. If set, x, y, and batch_size must be
None.

		steps: Number of steps for which to train model. If None, train forever.

		batch_size: minibatch size to use on the input, defaults to first
dimension of x. Must be None if input_fn is provided.

		monitors: List of BaseMonitor subclass instances. Used for callbacks
inside the training loop.

Returns:

self, for chaining.

Raises:

		ValueError: If at least one of x and y is provided, and input_fn is
provided.

tf.contrib.learn.LinearRegressor.predict(*args, **kwargs) {#LinearRegressor.predict}

Returns predictions for given features. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-15.
Instructions for updating:
The default behavior of predict() is changing. The default value for
as_iterable will change to True, and then the flag will be removed
altogether. The behavior of this flag is described below.

Args:
 x: Matrix of shape [n_samples, n_features...]. Can be iterator that
 returns arrays of features. The training input samples for fitting the
 model. If set, `input_fn` must be `None`.
 input_fn: Input function. If set, `x` and 'batch_size' must be `None`.
 batch_size: Override default batch size. If set, 'input_fn' must be
 'None'.
 outputs: list of `str`, name of the output to predict.
 If `None`, returns all.
 as_iterable: If True, return an iterable which keeps yielding predictions
 for each example until inputs are exhausted. Note: The inputs must
 terminate if you want the iterable to terminate (e.g. be sure to pass
 num_epochs=1 if you are using something like read_batch_features).

Returns:
 A numpy array of predicted classes or regression values if the
 constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict`
 of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of
 predictions if as_iterable is True.

Raises:
 ValueError: If x and input_fn are both provided or both `None`.

tf.contrib.learn.LinearRegressor.set_params(**params) {#LinearRegressor.set_params}

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.

Args:

		**params: Parameters.

Returns:

self

Raises:

		ValueError: If params contain invalid names.

tf.contrib.learn.LinearRegressor.weights_ {#LinearRegressor.weights_}

class tf.contrib.learn.TensorFlowRNNClassifier {#TensorFlowRNNClassifier}

TensorFlow RNN Classifier model.

tf.contrib.learn.TensorFlowRNNClassifier.__init__(rnn_size, n_classes, cell_type='gru', num_layers=1, input_op_fn=null_input_op_fn, initial_state=None, bidirectional=False, sequence_length=None, attn_length=None, attn_size=None, attn_vec_size=None, batch_size=32, steps=50, optimizer='Adagrad', learning_rate=0.1, class_weight=None, clip_gradients=5.0, continue_training=False, config=None, verbose=1) {#TensorFlowRNNClassifier.init}

Initializes a TensorFlowRNNClassifier instance.

Args:

		rnn_size: The size for rnn cell, e.g. size of your word embeddings.

		cell_type: The type of rnn cell, including rnn, gru, and lstm.

		num_layers: The number of layers of the rnn model.

		input_op_fn: Function that will transform the input tensor, such as
creating word embeddings, byte list, etc. This takes
an argument x for input and returns transformed x.

		bidirectional: boolean, Whether this is a bidirectional rnn.

		sequence_length: If sequence_length is provided, dynamic calculation
is performed. This saves computational time when unrolling past max
sequence length.

		initial_state: An initial state for the RNN. This must be a tensor of
appropriate type and shape [batch_size x cell.state_size].

		attn_length: integer, the size of attention vector attached to rnn cells.

		attn_size: integer, the size of an attention window attached to rnn cells.

		attn_vec_size: integer, the number of convolutional features calculated on
attention state and the size of the hidden layer built from base cell state.

		n_classes: Number of classes in the target.

		batch_size: Mini batch size.

		steps: Number of steps to run over data.

		optimizer: Optimizer name (or class), for example “SGD”, “Adam”,
“Adagrad”.

		learning_rate: If this is constant float value, no decay function is
used. Instead, a customized decay function can be passed that accepts
global_step as parameter and returns a Tensor.
e.g. exponential decay function:

def exp_decay(global_step):
 return tf.train.exponential_decay(
 learning_rate=0.1, global_step,
 decay_steps=2, decay_rate=0.001)

		class_weight: None or list of n_classes floats. Weight associated with
classes for loss computation. If not given, all classes are
supposed to have weight one.

		continue_training: when continue_training is True, once initialized
model will be continuely trained on every call of fit.

		config: RunConfig object that controls the configurations of the session,
e.g. num_cores, gpu_memory_fraction, etc.

tf.contrib.learn.TensorFlowRNNClassifier.__repr__() {#TensorFlowRNNClassifier.repr}

tf.contrib.learn.TensorFlowRNNClassifier.bias_ {#TensorFlowRNNClassifier.bias_}

Returns bias of the rnn layer.

tf.contrib.learn.TensorFlowRNNClassifier.config {#TensorFlowRNNClassifier.config}

tf.contrib.learn.TensorFlowRNNClassifier.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) {#TensorFlowRNNClassifier.evaluate}

Evaluates given model with provided evaluation data.

See superclass Estimator for more details.

Args:

		x: features.

		y: targets.

		input_fn: Input function.

		feed_fn: Function creating a feed dict every time it is called.

		batch_size: minibatch size to use on the input.

		steps: Number of steps for which to evaluate model.

		metrics: Dict of metric ops to run. If None, the default metrics are used.

		name: Name of the evaluation.

Returns:

Returns dict with evaluation results.

tf.contrib.learn.TensorFlowRNNClassifier.export(*args, **kwargs) {#TensorFlowRNNClassifier.export}

Exports inference graph into given dir. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23.
Instructions for updating:
The signature of the input_fn accepted by export is changing to be consistent with what’s used by tf.Learn Estimator’s train/evaluate. input_fn and input_feature_key will become required args, and use_deprecated_input_fn will default to False and be removed altogether.

Args:
 export_dir: A string containing a directory to write the exported graph
 and checkpoints.
 input_fn: If `use_deprecated_input_fn` is true, then a function that given
 `Tensor` of `Example` strings, parses it into features that are then
 passed to the model. Otherwise, a function that takes no argument and
 returns a tuple of (features, targets), where features is a dict of
 string key to `Tensor` and targets is a `Tensor` that's currently not
 used (and so can be `None`).
 input_feature_key: Only used if `use_deprecated_input_fn` is false. String
 key into the features dict returned by `input_fn` that corresponds toa
 the raw `Example` strings `Tensor` that the exported model will take as
 input.
 use_deprecated_input_fn: Determines the signature format of `input_fn`.
 signature_fn: Function that returns a default signature and a named
 signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s
 for features and `Tensor` or `dict` of `Tensor`s for predictions.
 prediction_key: The key for a tensor in the `predictions` dict (output
 from the `model_fn`) to use as the `predictions` input to the
 `signature_fn`. Optional. If `None`, predictions will pass to
 `signature_fn` without filtering.
 default_batch_size: Default batch size of the `Example` placeholder.
 exports_to_keep: Number of exports to keep.

Returns:
 The string path to the exported directory. NB: this functionality was
 added ca. 2016/09/25; clients that depend on the return value may need
 to handle the case where this function returns None because subclasses
 are not returning a value.

tf.contrib.learn.TensorFlowRNNClassifier.fit(x, y, steps=None, monitors=None, logdir=None) {#TensorFlowRNNClassifier.fit}

Neural network model from provided model_fn and training data.

Note: called first time constructs the graph and initializers
variables. Consecutives times it will continue training the same model.
This logic follows partial_fit() interface in scikit-learn.
To restart learning, create new estimator.

Args:

		x: matrix or tensor of shape [n_samples, n_features...]. Can be
iterator that returns arrays of features. The training input
samples for fitting the model.

		y: vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of targets. The training target values
(class labels in classification, real numbers in regression).

		steps: int, number of steps to train.
If None or 0, train for self.steps.

		monitors: List of BaseMonitor objects to print training progress and
invoke early stopping.

		logdir: the directory to save the log file that can be used for
optional visualization.

Returns:

Returns self.

tf.contrib.learn.TensorFlowRNNClassifier.get_params(deep=True) {#TensorFlowRNNClassifier.get_params}

Get parameters for this estimator.

Args:

		deep: boolean, optional

If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns:

params : mapping of string to any
Parameter names mapped to their values.

tf.contrib.learn.TensorFlowRNNClassifier.get_tensor(name) {#TensorFlowRNNClassifier.get_tensor}

Returns tensor by name.

Args:

		name: string, name of the tensor.

Returns:

Tensor.

tf.contrib.learn.TensorFlowRNNClassifier.get_variable_names() {#TensorFlowRNNClassifier.get_variable_names}

Returns list of all variable names in this model.

Returns:

List of names.

tf.contrib.learn.TensorFlowRNNClassifier.get_variable_value(name) {#TensorFlowRNNClassifier.get_variable_value}

Returns value of the variable given by name.

Args:

		name: string, name of the tensor.

Returns:

Numpy array - value of the tensor.

tf.contrib.learn.TensorFlowRNNClassifier.model_dir {#TensorFlowRNNClassifier.model_dir}

tf.contrib.learn.TensorFlowRNNClassifier.partial_fit(x, y) {#TensorFlowRNNClassifier.partial_fit}

Incremental fit on a batch of samples.

This method is expected to be called several times consecutively
on different or the same chunks of the dataset. This either can
implement iterative training or out-of-core/online training.
This is especially useful when the whole dataset is too big to
fit in memory at the same time. Or when model is taking long time
to converge, and you want to split up training into subparts.

Args:

		x: matrix or tensor of shape [n_samples, n_features...]. Can be
iterator that returns arrays of features. The training input
samples for fitting the model.

		y: vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of targets. The training target values
(class label in classification, real numbers in regression).

Returns:

Returns self.

tf.contrib.learn.TensorFlowRNNClassifier.predict(x, axis=1, batch_size=None) {#TensorFlowRNNClassifier.predict}

Predict class or regression for x.

For a classification model, the predicted class for each sample in x is
returned. For a regression model, the predicted value based on x is
returned.

Args:

		x: array-like matrix, [n_samples, n_features...] or iterator.

		axis: Which axis to argmax for classification.
By default axis 1 (next after batch) is used.
Use 2 for sequence predictions.

		batch_size: If test set is too big, use batch size to split
it into mini batches. By default the batch_size member
variable is used.

Returns:

		y: array of shape [n_samples]. The predicted classes or predicted
value.

tf.contrib.learn.TensorFlowRNNClassifier.predict_proba(x, batch_size=None) {#TensorFlowRNNClassifier.predict_proba}

Predict class probability of the input samples x.

Args:

		x: array-like matrix, [n_samples, n_features...] or iterator.

		batch_size: If test set is too big, use batch size to split
it into mini batches. By default the batch_size member variable is used.

Returns:

		y: array of shape [n_samples, n_classes]. The predicted
probabilities for each class.

tf.contrib.learn.TensorFlowRNNClassifier.restore(cls, path, config=None) {#TensorFlowRNNClassifier.restore}

Restores model from give path.

Args:

		path: Path to the checkpoints and other model information.

		config: RunConfig object that controls the configurations of the session,
e.g. num_cores, gpu_memory_fraction, etc. This is allowed to be
reconfigured.

Returns:

Estimator, object of the subclass of TensorFlowEstimator.

Raises:

		ValueError: if path does not contain a model definition.

tf.contrib.learn.TensorFlowRNNClassifier.save(path) {#TensorFlowRNNClassifier.save}

Saves checkpoints and graph to given path.

Args:

		path: Folder to save model to.

tf.contrib.learn.TensorFlowRNNClassifier.set_params(**params) {#TensorFlowRNNClassifier.set_params}

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.

Args:

		**params: Parameters.

Returns:

self

Raises:

		ValueError: If params contain invalid names.

tf.contrib.learn.TensorFlowRNNClassifier.weights_ {#TensorFlowRNNClassifier.weights_}

Returns weights of the rnn layer.

class tf.contrib.learn.TensorFlowRNNRegressor {#TensorFlowRNNRegressor}

TensorFlow RNN Regressor model.

tf.contrib.learn.TensorFlowRNNRegressor.__init__(rnn_size, cell_type='gru', num_layers=1, input_op_fn=null_input_op_fn, initial_state=None, bidirectional=False, sequence_length=None, attn_length=None, attn_size=None, attn_vec_size=None, n_classes=0, batch_size=32, steps=50, optimizer='Adagrad', learning_rate=0.1, clip_gradients=5.0, continue_training=False, config=None, verbose=1) {#TensorFlowRNNRegressor.init}

Initializes a TensorFlowRNNRegressor instance.

Args:

		rnn_size: The size for rnn cell, e.g. size of your word embeddings.

		cell_type: The type of rnn cell, including rnn, gru, and lstm.

		num_layers: The number of layers of the rnn model.

		input_op_fn: Function that will transform the input tensor, such as
creating word embeddings, byte list, etc. This takes
an argument x for input and returns transformed x.

		bidirectional: boolean, Whether this is a bidirectional rnn.

		sequence_length: If sequence_length is provided, dynamic calculation
is performed. This saves computational time when unrolling past max
sequence length.

		attn_length: integer, the size of attention vector attached to rnn cells.

		attn_size: integer, the size of an attention window attached to rnn cells.

		attn_vec_size: integer, the number of convolutional features calculated on
attention state and the size of the hidden layer built from base cell state.

		initial_state: An initial state for the RNN. This must be a tensor of
appropriate type and shape [batch_size x cell.state_size].

		batch_size: Mini batch size.

		steps: Number of steps to run over data.

		optimizer: Optimizer name (or class), for example “SGD”, “Adam”,
“Adagrad”.

		learning_rate: If this is constant float value, no decay function is
used. Instead, a customized decay function can be passed that accepts
global_step as parameter and returns a Tensor.
e.g. exponential decay function:

def exp_decay(global_step):
 return tf.train.exponential_decay(
 learning_rate=0.1, global_step,
 decay_steps=2, decay_rate=0.001)

		continue_training: when continue_training is True, once initialized
model will be continuely trained on every call of fit.

		config: RunConfig object that controls the configurations of the
session, e.g. num_cores, gpu_memory_fraction, etc.

		verbose: Controls the verbosity, possible values:
		0: the algorithm and debug information is muted.

		1: trainer prints the progress.

		2: log device placement is printed.

tf.contrib.learn.TensorFlowRNNRegressor.__repr__() {#TensorFlowRNNRegressor.repr}

tf.contrib.learn.TensorFlowRNNRegressor.bias_ {#TensorFlowRNNRegressor.bias_}

Returns bias of the rnn layer.

tf.contrib.learn.TensorFlowRNNRegressor.config {#TensorFlowRNNRegressor.config}

tf.contrib.learn.TensorFlowRNNRegressor.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) {#TensorFlowRNNRegressor.evaluate}

Evaluates given model with provided evaluation data.

See superclass Estimator for more details.

Args:

		x: features.

		y: targets.

		input_fn: Input function.

		feed_fn: Function creating a feed dict every time it is called.

		batch_size: minibatch size to use on the input.

		steps: Number of steps for which to evaluate model.

		metrics: Dict of metric ops to run. If None, the default metrics are used.

		name: Name of the evaluation.

Returns:

Returns dict with evaluation results.

tf.contrib.learn.TensorFlowRNNRegressor.export(*args, **kwargs) {#TensorFlowRNNRegressor.export}

Exports inference graph into given dir. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23.
Instructions for updating:
The signature of the input_fn accepted by export is changing to be consistent with what’s used by tf.Learn Estimator’s train/evaluate. input_fn and input_feature_key will become required args, and use_deprecated_input_fn will default to False and be removed altogether.

Args:
 export_dir: A string containing a directory to write the exported graph
 and checkpoints.
 input_fn: If `use_deprecated_input_fn` is true, then a function that given
 `Tensor` of `Example` strings, parses it into features that are then
 passed to the model. Otherwise, a function that takes no argument and
 returns a tuple of (features, targets), where features is a dict of
 string key to `Tensor` and targets is a `Tensor` that's currently not
 used (and so can be `None`).
 input_feature_key: Only used if `use_deprecated_input_fn` is false. String
 key into the features dict returned by `input_fn` that corresponds toa
 the raw `Example` strings `Tensor` that the exported model will take as
 input.
 use_deprecated_input_fn: Determines the signature format of `input_fn`.
 signature_fn: Function that returns a default signature and a named
 signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s
 for features and `Tensor` or `dict` of `Tensor`s for predictions.
 prediction_key: The key for a tensor in the `predictions` dict (output
 from the `model_fn`) to use as the `predictions` input to the
 `signature_fn`. Optional. If `None`, predictions will pass to
 `signature_fn` without filtering.
 default_batch_size: Default batch size of the `Example` placeholder.
 exports_to_keep: Number of exports to keep.

Returns:
 The string path to the exported directory. NB: this functionality was
 added ca. 2016/09/25; clients that depend on the return value may need
 to handle the case where this function returns None because subclasses
 are not returning a value.

tf.contrib.learn.TensorFlowRNNRegressor.fit(x, y, steps=None, monitors=None, logdir=None) {#TensorFlowRNNRegressor.fit}

Neural network model from provided model_fn and training data.

Note: called first time constructs the graph and initializers
variables. Consecutives times it will continue training the same model.
This logic follows partial_fit() interface in scikit-learn.
To restart learning, create new estimator.

Args:

		x: matrix or tensor of shape [n_samples, n_features...]. Can be
iterator that returns arrays of features. The training input
samples for fitting the model.

		y: vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of targets. The training target values
(class labels in classification, real numbers in regression).

		steps: int, number of steps to train.
If None or 0, train for self.steps.

		monitors: List of BaseMonitor objects to print training progress and
invoke early stopping.

		logdir: the directory to save the log file that can be used for
optional visualization.

Returns:

Returns self.

tf.contrib.learn.TensorFlowRNNRegressor.get_params(deep=True) {#TensorFlowRNNRegressor.get_params}

Get parameters for this estimator.

Args:

		deep: boolean, optional

If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns:

params : mapping of string to any
Parameter names mapped to their values.

tf.contrib.learn.TensorFlowRNNRegressor.get_tensor(name) {#TensorFlowRNNRegressor.get_tensor}

Returns tensor by name.

Args:

		name: string, name of the tensor.

Returns:

Tensor.

tf.contrib.learn.TensorFlowRNNRegressor.get_variable_names() {#TensorFlowRNNRegressor.get_variable_names}

Returns list of all variable names in this model.

Returns:

List of names.

tf.contrib.learn.TensorFlowRNNRegressor.get_variable_value(name) {#TensorFlowRNNRegressor.get_variable_value}

Returns value of the variable given by name.

Args:

		name: string, name of the tensor.

Returns:

Numpy array - value of the tensor.

tf.contrib.learn.TensorFlowRNNRegressor.model_dir {#TensorFlowRNNRegressor.model_dir}

tf.contrib.learn.TensorFlowRNNRegressor.partial_fit(x, y) {#TensorFlowRNNRegressor.partial_fit}

Incremental fit on a batch of samples.

This method is expected to be called several times consecutively
on different or the same chunks of the dataset. This either can
implement iterative training or out-of-core/online training.
This is especially useful when the whole dataset is too big to
fit in memory at the same time. Or when model is taking long time
to converge, and you want to split up training into subparts.

Args:

		x: matrix or tensor of shape [n_samples, n_features...]. Can be
iterator that returns arrays of features. The training input
samples for fitting the model.

		y: vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of targets. The training target values
(class label in classification, real numbers in regression).

Returns:

Returns self.

tf.contrib.learn.TensorFlowRNNRegressor.predict(x, axis=1, batch_size=None) {#TensorFlowRNNRegressor.predict}

Predict class or regression for x.

For a classification model, the predicted class for each sample in x is
returned. For a regression model, the predicted value based on x is
returned.

Args:

		x: array-like matrix, [n_samples, n_features...] or iterator.

		axis: Which axis to argmax for classification.
By default axis 1 (next after batch) is used.
Use 2 for sequence predictions.

		batch_size: If test set is too big, use batch size to split
it into mini batches. By default the batch_size member
variable is used.

Returns:

		y: array of shape [n_samples]. The predicted classes or predicted
value.

tf.contrib.learn.TensorFlowRNNRegressor.predict_proba(x, batch_size=None) {#TensorFlowRNNRegressor.predict_proba}

Predict class probability of the input samples x.

Args:

		x: array-like matrix, [n_samples, n_features...] or iterator.

		batch_size: If test set is too big, use batch size to split
it into mini batches. By default the batch_size member variable is used.

Returns:

		y: array of shape [n_samples, n_classes]. The predicted
probabilities for each class.

tf.contrib.learn.TensorFlowRNNRegressor.restore(cls, path, config=None) {#TensorFlowRNNRegressor.restore}

Restores model from give path.

Args:

		path: Path to the checkpoints and other model information.

		config: RunConfig object that controls the configurations of the session,
e.g. num_cores, gpu_memory_fraction, etc. This is allowed to be
reconfigured.

Returns:

Estimator, object of the subclass of TensorFlowEstimator.

Raises:

		ValueError: if path does not contain a model definition.

tf.contrib.learn.TensorFlowRNNRegressor.save(path) {#TensorFlowRNNRegressor.save}

Saves checkpoints and graph to given path.

Args:

		path: Folder to save model to.

tf.contrib.learn.TensorFlowRNNRegressor.set_params(**params) {#TensorFlowRNNRegressor.set_params}

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.

Args:

		**params: Parameters.

Returns:

self

Raises:

		ValueError: If params contain invalid names.

tf.contrib.learn.TensorFlowRNNRegressor.weights_ {#TensorFlowRNNRegressor.weights_}

Returns weights of the rnn layer.

Graph actions

Perform various training, evaluation, and inference actions on a graph.

class tf.contrib.learn.NanLossDuringTrainingError {#NanLossDuringTrainingError}

tf.contrib.learn.NanLossDuringTrainingError.__str__() {#NanLossDuringTrainingError.str}

class tf.contrib.learn.RunConfig {#RunConfig}

This class specifies the specific configurations for the run.

If you’re a Google-internal user using command line flags with learn_runner.py
(for instance, to do distributed training or to use parameter servers), you
probably want to use learn_runner.EstimatorConfig instead.

tf.contrib.learn.RunConfig.__init__(master=None, task=None, num_ps_replicas=None, num_cores=0, log_device_placement=False, gpu_memory_fraction=1, cluster_spec=None, tf_random_seed=None, save_summary_steps=100, save_checkpoints_secs=600, keep_checkpoint_max=5, keep_checkpoint_every_n_hours=10000, job_name=None, is_chief=None, evaluation_master='') {#RunConfig.init}

Constructor.

If set to None, master, task, num_ps_replicas, cluster_spec,
job_name, and is_chief are set based on the TF_CONFIG environment
variable, if the pertinent information is present; otherwise, the defaults
listed in the Args section apply.

The TF_CONFIG environment variable is a JSON object with two relevant
attributes: task and cluster_spec. cluster_spec is a JSON serialized
version of the Python dict described in server_lib.py. task has two
attributes: type and index, where type can be any of the task types
in the cluster_spec. When TF_CONFIG contains said information, the
following properties are set on this class:

		job_name is set to [task][type]

		task is set to [task][index]

		cluster_spec is parsed from [cluster]

		‘master’ is determined by looking up job_name and task in the
cluster_spec.

		num_ps_replicas is set by counting the number of nodes listed
in the ps job of cluster_spec.

		is_chief: true when job_name == “master” and task == 0.

Example:

 cluster = {'ps': ['host1:2222', 'host2:2222'],
 'worker': ['host3:2222', 'host4:2222', 'host5:2222']}
 os.environ['TF_CONFIG'] = json.dumps({
 {'cluster': cluster,
 'task': {'type': 'worker', 'index': 1}}})
 config = RunConfig()
 assert config.master == 'host4:2222'
 assert config.task == 1
 assert config.num_ps_replicas == 2
 assert config.cluster_spec == server_lib.ClusterSpec(cluster)
 assert config.job_name == 'worker'
 assert not config.is_chief

Args:

		master: TensorFlow master. Defaults to empty string for local.

		task: Task id of the replica running the training (default: 0).

		num_ps_replicas: Number of parameter server tasks to use (default: 0).

		num_cores: Number of cores to be used. If 0, the system picks an
appropriate number (default: 0).

		log_device_placement: Log the op placement to devices (default: False).

		gpu_memory_fraction: Fraction of GPU memory used by the process on
each GPU uniformly on the same machine.

		cluster_spec: a tf.train.ClusterSpec object that describes the cluster
in the case of distributed computation. If missing, reasonable
assumptions are made for the addresses of jobs.

		tf_random_seed: Random seed for TensorFlow initializers.
Setting this value allows consistency between reruns.

		save_summary_steps: Save summaries every this many steps.

		save_checkpoints_secs: Save checkpoints every this many seconds.

		keep_checkpoint_max: The maximum number of recent checkpoint files to
keep. As new files are created, older files are deleted. If None or 0,
all checkpoint files are kept. Defaults to 5 (that is, the 5 most recent
checkpoint files are kept.)

		keep_checkpoint_every_n_hours: Number of hours between each checkpoint
to be saved. The default value of 10,000 hours effectively disables
the feature.

		job_name: the type of task, e.g., ‘ps’, ‘worker’, etc. The job_name
must exist in the cluster_spec.jobs.

		is_chief: whether or not this task (as identified by the other parameters)
should be the chief task.

		evaluation_master: the master on which to perform evaluation.

Raises:

		ValueError: if num_ps_replicas and cluster_spec are set (cluster_spec
may fome from the TF_CONFIG environment variable).

tf.contrib.learn.RunConfig.is_chief {#RunConfig.is_chief}

tf.contrib.learn.RunConfig.job_name {#RunConfig.job_name}

tf.contrib.learn.evaluate(graph, output_dir, checkpoint_path, eval_dict, update_op=None, global_step_tensor=None, supervisor_master='', log_every_steps=10, feed_fn=None, max_steps=None) {#evaluate}

Evaluate a model loaded from a checkpoint.

Given graph, a directory to write summaries to (output_dir), a checkpoint
to restore variables from, and a dict of Tensors to evaluate, run an eval
loop for max_steps steps, or until an exception (generally, an
end-of-input signal from a reader operation) is raised from running
eval_dict.

In each step of evaluation, all tensors in the eval_dict are evaluated, and
every log_every_steps steps, they are logged. At the very end of evaluation,
a summary is evaluated (finding the summary ops using Supervisor‘s logic)
and written to output_dir.

Args:

		graph: A Graph to train. It is expected that this graph is not in use
elsewhere.

		output_dir: A string containing the directory to write a summary to.

		checkpoint_path: A string containing the path to a checkpoint to restore.
Can be None if the graph doesn’t require loading any variables.

		eval_dict: A dict mapping string names to tensors to evaluate. It is
evaluated in every logging step. The result of the final evaluation is
returned. If update_op is None, then it’s evaluated in every step. If
max_steps is None, this should depend on a reader that will raise an
end-of-inupt exception when the inputs are exhausted.

		update_op: A Tensor which is run in every step.

		global_step_tensor: A Variable containing the global step. If None,
one is extracted from the graph using the same logic as in Supervisor.
Used to place eval summaries on training curves.

		supervisor_master: The master string to use when preparing the session.

		log_every_steps: Integer. Output logs every log_every_steps evaluation
steps. The logs contain the eval_dict and timing information.

		feed_fn: A function that is called every iteration to produce a feed_dict
passed to session.run calls. Optional.

		max_steps: Integer. Evaluate eval_dict this many times.

Returns:

A tuple (eval_results, global_step):

		eval_results: A dict mapping string to numeric values (int, float)
that are the result of running eval_dict in the last step. None if no
eval steps were run.

		global_step: The global step this evaluation corresponds to.

Raises:

		ValueError: if output_dir is empty.

tf.contrib.learn.infer(restore_checkpoint_path, output_dict, feed_dict=None) {#infer}

Restore graph from restore_checkpoint_path and run output_dict tensors.

If restore_checkpoint_path is supplied, restore from checkpoint. Otherwise,
init all variables.

Args:

		restore_checkpoint_path: A string containing the path to a checkpoint to
restore.

		output_dict: A dict mapping string names to Tensor objects to run.
Tensors must all be from the same graph.

		feed_dict: dict object mapping Tensor objects to input values to feed.

Returns:

Dict of values read from output_dict tensors. Keys are the same as
output_dict, values are the results read from the corresponding Tensor
in output_dict.

Raises:

		ValueError: if output_dict or feed_dicts is None or empty.

tf.contrib.learn.run_feeds(*args, **kwargs) {#run_feeds}

See run_feeds_iter(). Returns a list instead of an iterator.

tf.contrib.learn.run_n(output_dict, feed_dict=None, restore_checkpoint_path=None, n=1) {#run_n}

Run output_dict tensors n times, with the same feed_dict each run.

Args:

		output_dict: A dict mapping string names to tensors to run. Must all be
from the same graph.

		feed_dict: dict of input values to feed each run.

		restore_checkpoint_path: A string containing the path to a checkpoint to
restore.

		n: Number of times to repeat.

Returns:

A list of n dict objects, each containing values read from output_dict
tensors.

tf.contrib.learn.train(graph, output_dir, train_op, loss_op, global_step_tensor=None, init_op=None, init_feed_dict=None, init_fn=None, log_every_steps=10, supervisor_is_chief=True, supervisor_master='', supervisor_save_model_secs=600, keep_checkpoint_max=5, supervisor_save_summaries_steps=100, feed_fn=None, steps=None, fail_on_nan_loss=True, monitors=None, max_steps=None) {#train}

Train a model.

Given graph, a directory to write outputs to (output_dir), and some ops,
run a training loop. The given train_op performs one step of training on the
model. The loss_op represents the objective function of the training. It is
expected to increment the global_step_tensor, a scalar integer tensor
counting training steps. This function uses Supervisor to initialize the
graph (from a checkpoint if one is available in output_dir), write summaries
defined in the graph, and write regular checkpoints as defined by
supervisor_save_model_secs.

Training continues until global_step_tensor evaluates to max_steps, or, if
fail_on_nan_loss, until loss_op evaluates to NaN. In that case the
program is terminated with exit code 1.

Args:

		graph: A graph to train. It is expected that this graph is not in use
elsewhere.

		output_dir: A directory to write outputs to.

		train_op: An op that performs one training step when run.

		loss_op: A scalar loss tensor.

		global_step_tensor: A tensor representing the global step. If none is given,
one is extracted from the graph using the same logic as in Supervisor.

		init_op: An op that initializes the graph. If None, use Supervisor‘s
default.

		init_feed_dict: A dictionary that maps Tensor objects to feed values.
This feed dictionary will be used when init_op is evaluated.

		init_fn: Optional callable passed to Supervisor to initialize the model.

		log_every_steps: Output logs regularly. The logs contain timing data and the
current loss.

		supervisor_is_chief: Whether the current process is the chief supervisor in
charge of restoring the model and running standard services.

		supervisor_master: The master string to use when preparing the session.

		supervisor_save_model_secs: Save a checkpoint every
supervisor_save_model_secs seconds when training.

		keep_checkpoint_max: The maximum number of recent checkpoint files to
keep. As new files are created, older files are deleted. If None or 0,
all checkpoint files are kept. This is simply passed as the max_to_keep
arg to tf.Saver constructor.

		supervisor_save_summaries_steps: Save summaries every
supervisor_save_summaries_steps seconds when training.

		feed_fn: A function that is called every iteration to produce a feed_dict
passed to session.run calls. Optional.

		steps: Trains for this many steps (e.g. current global step + steps).

		fail_on_nan_loss: If true, raise NanLossDuringTrainingError if loss_op
evaluates to NaN. If false, continue training as if nothing happened.

		monitors: List of BaseMonitor subclass instances. Used for callbacks
inside the training loop.

		max_steps: Number of total steps for which to train model. If None,
train forever. Two calls fit(steps=100) means 200 training iterations.
On the other hand two calls of fit(max_steps=100) means, second call
will not do any iteration since first call did all 100 steps.

Returns:

The final loss value.

Raises:

		ValueError: If output_dir, train_op, loss_op, or global_step_tensor
is not provided. See tf.contrib.framework.get_global_step for how we
look up the latter if not provided explicitly.

		NanLossDuringTrainingError: If fail_on_nan_loss is True, and loss ever
evaluates to NaN.

		ValueError: If both steps and max_steps are not None.

Input processing

Queue and read batched input data.

tf.contrib.learn.extract_dask_data(data) {#extract_dask_data}

Extract data from dask.Series or dask.DataFrame for predictors.

tf.contrib.learn.extract_dask_labels(labels) {#extract_dask_labels}

Extract data from dask.Series for labels.

tf.contrib.learn.extract_pandas_data(data) {#extract_pandas_data}

Extract data from pandas.DataFrame for predictors.

Given a DataFrame, will extract the values and cast them to float. The
DataFrame is expected to contain values of type int, float or bool.

Args:

		data: pandas.DataFrame containing the data to be extracted.

Returns:

A numpy ndarray of the DataFrame’s values as floats.

Raises:

		ValueError: if data contains types other than int, float or bool.

tf.contrib.learn.extract_pandas_labels(labels) {#extract_pandas_labels}

Extract data from pandas.DataFrame for labels.

Args:

		labels: pandas.DataFrame or pandas.Series containing one column of
labels to be extracted.

Returns:

A numpy ndarray of labels from the DataFrame.

Raises:

		ValueError: if more than one column is found or type is not int, float or
bool.

tf.contrib.learn.extract_pandas_matrix(data) {#extract_pandas_matrix}

Extracts numpy matrix from pandas DataFrame.

Args:

		data: pandas.DataFrame containing the data to be extracted.

Returns:

A numpy ndarray of the DataFrame’s values.

tf.contrib.learn.read_batch_examples(file_pattern, batch_size, reader, randomize_input=True, num_epochs=None, queue_capacity=10000, num_threads=1, read_batch_size=1, parse_fn=None, name=None) {#read_batch_examples}

Adds operations to read, queue, batch Example protos.

Given file pattern (or list of files), will setup a queue for file names,
read Example proto using provided reader, use batch queue to create
batches of examples of size batch_size.

All queue runners are added to the queue runners collection, and may be
started via start_queue_runners.

All ops are added to the default graph.

Use parse_fn if you need to do parsing / processing on single examples.

Args:

		file_pattern: List of files or pattern of file paths containing
Example records. See tf.gfile.Glob for pattern rules.

		batch_size: An int or scalar Tensor specifying the batch size to use.

		reader: A function or class that returns an object with
read method, (filename tensor) -> (example tensor).

		randomize_input: Whether the input should be randomized.

		num_epochs: Integer specifying the number of times to read through the
dataset. If None, cycles through the dataset forever.
NOTE - If specified, creates a variable that must be initialized, so call
tf.initialize_all_variables() as shown in the tests.

		queue_capacity: Capacity for input queue.

		num_threads: The number of threads enqueuing examples.

		read_batch_size: An int or scalar Tensor specifying the number of
records to read at once

		parse_fn: Parsing function, takes Example Tensor returns parsed
representation. If None, no parsing is done.

		name: Name of resulting op.

Returns:

String Tensor of batched Example proto.

Raises:

		ValueError: for invalid inputs.

tf.contrib.learn.read_batch_features(file_pattern, batch_size, features, reader, randomize_input=True, num_epochs=None, queue_capacity=10000, feature_queue_capacity=100, reader_num_threads=1, parser_num_threads=1, parse_fn=None, name=None) {#read_batch_features}

Adds operations to read, queue, batch and parse Example protos.

Given file pattern (or list of files), will setup a queue for file names,
read Example proto using provided reader, use batch queue to create
batches of examples of size batch_size and parse example given features
specification.

All queue runners are added to the queue runners collection, and may be
started via start_queue_runners.

All ops are added to the default graph.

Args:

		file_pattern: List of files or pattern of file paths containing
Example records. See tf.gfile.Glob for pattern rules.

		batch_size: An int or scalar Tensor specifying the batch size to use.

		features: A dict mapping feature keys to FixedLenFeature or
VarLenFeature values.

		reader: A function or class that returns an object with
read method, (filename tensor) -> (example tensor).

		randomize_input: Whether the input should be randomized.

		num_epochs: Integer specifying the number of times to read through the
dataset. If None, cycles through the dataset forever. NOTE - If specified,
creates a variable that must be initialized, so call
tf.initialize_local_variables() as shown in the tests.

		queue_capacity: Capacity for input queue.

		feature_queue_capacity: Capacity of the parsed features queue. Set this
value to a small number, for example 5 if the parsed features are large.

		reader_num_threads: The number of threads to read examples.

		parser_num_threads: The number of threads to parse examples.
records to read at once

		parse_fn: Parsing function, takes Example Tensor returns parsed
representation. If None, no parsing is done.

		name: Name of resulting op.

Returns:

A dict of Tensor or SparseTensor objects for each in features.

Raises:

		ValueError: for invalid inputs.

tf.contrib.learn.read_batch_record_features(file_pattern, batch_size, features, randomize_input=True, num_epochs=None, queue_capacity=10000, reader_num_threads=1, parser_num_threads=1, name='dequeue_record_examples') {#read_batch_record_features}

Reads TFRecord, queues, batches and parses Example proto.

See more detailed description in read_examples.

Args:

		file_pattern: List of files or pattern of file paths containing
Example records. See tf.gfile.Glob for pattern rules.

		batch_size: An int or scalar Tensor specifying the batch size to use.

		features: A dict mapping feature keys to FixedLenFeature or
VarLenFeature values.

		randomize_input: Whether the input should be randomized.

		num_epochs: Integer specifying the number of times to read through the
dataset. If None, cycles through the dataset forever. NOTE - If specified,
creates a variable that must be initialized, so call
tf.initialize_local_variables() as shown in the tests.

		queue_capacity: Capacity for input queue.

		reader_num_threads: The number of threads to read examples.

		parser_num_threads: The number of threads to parse examples.

		name: Name of resulting op.

Returns:

A dict of Tensor or SparseTensor objects for each in features.

Raises:

		ValueError: for invalid inputs.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.accumulate_n.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.accumulate_n(inputs, shape=None, tensor_dtype=None, name=None) {#accumulate_n}

Returns the element-wise sum of a list of tensors.

Optionally, pass shape and tensor_dtype for shape and type checking,
otherwise, these are inferred.

NOTE: This operation is not differentiable and cannot be used if inputs depend
on trainable variables. Please use tf.add_n for such cases.

For example:

tensor 'a' is [[1, 2], [3, 4]]
tensor `b` is [[5, 0], [0, 6]]
tf.accumulate_n([a, b, a]) ==> [[7, 4], [6, 14]]

Explicitly pass shape and type
tf.accumulate_n([a, b, a], shape=[2, 2], tensor_dtype=tf.int32)
 ==> [[7, 4], [6, 14]]

Args:

		inputs: A list of Tensor objects, each with same shape and type.

		shape: Shape of elements of inputs.

		tensor_dtype: The type of inputs.

		name: A name for the operation (optional).

Returns:

A Tensor of same shape and type as the elements of inputs.

Raises:

		ValueError: If inputs don’t all have same shape and dtype or the shape
cannot be inferred.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.distributions.GammaWithSoftplusAlphaBeta.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Gamma with softplus transform on alpha and beta.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.__init__(alpha, beta, validate_args=False, allow_nan_stats=True, name='GammaWithSoftplusAlphaBeta') {#GammaWithSoftplusAlphaBeta.init}

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.allow_nan_stats {#GammaWithSoftplusAlphaBeta.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.alpha {#GammaWithSoftplusAlphaBeta.alpha}

Shape parameter.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.batch_shape(name='batch_shape') {#GammaWithSoftplusAlphaBeta.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.beta {#GammaWithSoftplusAlphaBeta.beta}

Inverse scale parameter.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.cdf(value, name='cdf') {#GammaWithSoftplusAlphaBeta.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.dtype {#GammaWithSoftplusAlphaBeta.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.entropy(name='entropy') {#GammaWithSoftplusAlphaBeta.entropy}

Shanon entropy in nats.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.event_shape(name='event_shape') {#GammaWithSoftplusAlphaBeta.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.get_batch_shape() {#GammaWithSoftplusAlphaBeta.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.get_event_shape() {#GammaWithSoftplusAlphaBeta.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.is_continuous {#GammaWithSoftplusAlphaBeta.is_continuous}

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.is_reparameterized {#GammaWithSoftplusAlphaBeta.is_reparameterized}

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_cdf(value, name='log_cdf') {#GammaWithSoftplusAlphaBeta.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_pdf(value, name='log_pdf') {#GammaWithSoftplusAlphaBeta.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_pmf(value, name='log_pmf') {#GammaWithSoftplusAlphaBeta.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_prob(value, name='log_prob') {#GammaWithSoftplusAlphaBeta.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_survival_function(value, name='log_survival_function') {#GammaWithSoftplusAlphaBeta.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.mean(name='mean') {#GammaWithSoftplusAlphaBeta.mean}

Mean.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.mode(name='mode') {#GammaWithSoftplusAlphaBeta.mode}

Mode.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.name {#GammaWithSoftplusAlphaBeta.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#GammaWithSoftplusAlphaBeta.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.param_static_shapes(cls, sample_shape) {#GammaWithSoftplusAlphaBeta.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.parameters {#GammaWithSoftplusAlphaBeta.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.pdf(value, name='pdf') {#GammaWithSoftplusAlphaBeta.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.pmf(value, name='pmf') {#GammaWithSoftplusAlphaBeta.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.prob(value, name='prob') {#GammaWithSoftplusAlphaBeta.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.sample(sample_shape=(), seed=None, name='sample') {#GammaWithSoftplusAlphaBeta.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.sample_n(n, seed=None, name='sample_n') {#GammaWithSoftplusAlphaBeta.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.std(name='std') {#GammaWithSoftplusAlphaBeta.std}

Standard deviation.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.survival_function(value, name='survival_function') {#GammaWithSoftplusAlphaBeta.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.validate_args {#GammaWithSoftplusAlphaBeta.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.variance(name='variance') {#GammaWithSoftplusAlphaBeta.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.nn.depthwise_conv2d_native.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.depthwise_conv2d_native(input, filter, strides, padding, name=None) {#depthwise_conv2d_native}

Computes a 2-D depthwise convolution given 4-D input and filter tensors.

Given an input tensor of shape [batch, in_height, in_width, in_channels]
and a filter / kernel tensor of shape
[filter_height, filter_width, in_channels, channel_multiplier], containing
in_channels convolutional filters of depth 1, depthwise_conv2d applies
a different filter to each input channel (expanding from 1 channel to
channel_multiplier channels for each), then concatenates the results
together. Thus, the output has in_channels * channel_multiplier channels.

for k in 0..in_channels-1
for q in 0..channel_multiplier-1
output[b, i, j, k * channel_multiplier + q] =
sum_{di, dj} input[b, strides[1] * i + di, strides[2] * j + dj, k] *
filter[di, dj, k, q]

Must have strides[0] = strides[3] = 1. For the most common case of the same
horizontal and vertices strides, strides = [1, stride, stride, 1].

Args:

		input: A Tensor. Must be one of the following types: float32, float64.

		filter: A Tensor. Must have the same type as input.

		strides: A list of ints.
1-D of length 4. The stride of the sliding window for each dimension
of input.

		padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.train.AdagradDAOptimizer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Adagrad Dual Averaging algorithm for sparse linear models.

See this paper [http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf].

This optimizer takes care of regularization of unseen features in a mini batch
by updating them when they are seen with a closed form update rule that is
equivalent to having updated them on every mini-batch.

AdagradDA is typically used when there is a need for large sparsity in the
trained model. This optimizer only guarantees sparsity for linear models. Be
careful when using AdagradDA for deep networks as it will require careful
initialization of the gradient accumulators for it to train.

tf.train.AdagradDAOptimizer.__init__(learning_rate, global_step, initial_gradient_squared_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0, use_locking=False, name='AdagradDA') {#AdagradDAOptimizer.init}

Construct a new AdagradDA optimizer.

Args:

		learning_rate: A Tensor or a floating point value. The learning rate.

		global_step: A Tensor containing the current training step number.

		initial_gradient_squared_accumulator_value: A floating point value.
Starting value for the accumulators, must be positive.

		l1_regularization_strength: A float value, must be greater than or
equal to zero.

		l2_regularization_strength: A float value, must be greater than or
equal to zero.

		use_locking: If True use locks for update operations.

		name: Optional name prefix for the operations created when applying
gradients. Defaults to “AdagradDA”.

Raises:

		ValueError: If the initial_gradient_squared_accumulator_value is
invalid.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.argmin.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.argmin(input, dimension, name=None) {#argmin}

Returns the index with the smallest value across dimensions of a tensor.

Args:

		input: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.

		dimension: A Tensor. Must be one of the following types: int32, int64.
int32, 0 <= dimension < rank(input). Describes which dimension
of the input Tensor to reduce across. For vectors, use dimension = 0.

		name: A name for the operation (optional).

Returns:

A Tensor of type int64.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.while_loop.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.while_loop(cond, body, loop_vars, shape_invariants=None, parallel_iterations=10, back_prop=True, swap_memory=False, name=None) {#while_loop}

Repeat body while the condition cond is true.

cond is a callable returning a boolean scalar tensor. body is a callable
returning a (possibly nested) tuple or list of tensors of the same
arity (length and structure) and types as loop_vars. loop_vars is a
(possibly nested) tuple or list of tensors that is passed to both cond
and body. cond and body both take as many arguments as there are
loop_vars.

While cond evaluates to true, body is executed.

In addition to regular Tensors or IndexedSlices, the body may accept and
return TensorArray objects. The flows of the TensorArray objects will
be appropriately forwarded between loops and during gradient calculations.

For correctness, tf.while_loop() strictly enforces shape invariants for
the loop variables. A shape invariant is a (possibly partial) shape that
is unchanged across the iterations of the loop. An error will be raised
if the shape of a loop variable after an iteration is determined to be more
general than or incompatible with its shape invariant. For example, a shape
of [11, None] is more general than a shape of [11, 17], and [11, 21] is not
compatible with [11, 17]. By default (if the argument shape_invariants is
not specified), it is assumed that the initial shape of each tensor in
loop_vars is the same in every iteration. The shape_invariants argument
allows the caller to specify a less specific shape invariant for each loop
variable, which is needed if the shape varies between iterations. The
Tensor.set_shape()
function may also be used in the body function to indicate that
the output loop variable has a particular shape. The shape invariant for
SparseTensor and IndexedSlices are treated specially as follows:

a) If a loop variable is a SparseTensor, the shape invariant must be
TensorShape([r]) where r is the rank of the dense tensor represented
by the sparse tensor. It means the shapes of the three tensors of the
SparseTensor are ([None], [None, r], [r]). NOTE: The shape invariant here
is the shape of the SparseTensor.shape property. It must be the shape of
a vector.

b) If a loop variable is an IndexedSlices, the shape invariant must be
a shape invariant of the values tensor of the IndexedSlices. It means
the shapes of the three tensors of the IndexedSlices are (shape, [shape[0]],
[shape.ndims]).

while_loop implements non-strict semantics, enabling multiple iterations
to run in parallel. The maximum number of parallel iterations can be
controlled by parallel_iterations, which gives users some control over
memory consumption and execution order. For correct programs, while_loop
should return the same result for any parallel_iterations > 0.

For training, TensorFlow remembers the tensors that are produced in the
forward inference but needed in back propagation. These tensors can be a
main source of memory consumption and often cause OOM problems when training
on GPUs. When the flag swap_memory is true, we swap out these tensors from
GPU to CPU. This for example allows us to train RNN models with very long
sequences and large batches.

Args:

		cond: A callable that represents the termination condition of the loop.

		body: A callable that represents the loop body.

		loop_vars: A (possibly nested) tuple or list of numpy array, Tensor,
and TensorArray objects.

		shape_invariants: The shape invariants for the loop variables.

		parallel_iterations: The number of iterations allowed to run in parallel.

		back_prop: Whether backprop is enabled for this while loop.

		swap_memory: Whether GPU-CPU memory swap is enabled for this loop.

		name: Optional name prefix for the returned tensors.

Returns:

The output tensors for the loop variables after the loop. When the length
of loop_vars is 1 this is a Tensor, TensorArray or IndexedSlice and when
the length of loop_vars is greater than 1 it returns a list.

Raises:

		TypeError: if cond or body is not callable.

		ValueError: if loop_vars is empty.

		Example:

i = tf.constant(0)
c = lambda i: tf.less(i, 10)
b = lambda i: tf.add(i, 1)
r = tf.while_loop(c, b, [i])

Example with nesting:

ijk_0 = (tf.constant(0), (tf.constant(1), tf.constant(2)))
c = lambda i, (j, k): i < 10
b = lambda i, (j, k): (i + 1, ((j + k), (j - k)))
ijk_final = tf.while_loop(c, b, ijk_0)

Example using shape_invariants:

i0 = tf.constant(0)
m0 = tf.ones([2, 2])
c = lambda i, m: i < 10
b = lambda i, m: [i+1, tf.concat(0, [m, m])]
tf.while_loop(
 c, b, loop_vars=[i0, m0],
 shape_invariants=[i0.get_shape(), tensor_shape.TensorShape([None, 2])])

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.sparse_placeholder.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_placeholder(dtype, shape=None, name=None) {#sparse_placeholder}

Inserts a placeholder for a sparse tensor that will be always fed.

Important: This sparse tensor will produce an error if evaluated.
Its value must be fed using the feed_dict optional argument to
Session.run(), Tensor.eval(), or Operation.run().

For example:

x = tf.sparse_placeholder(tf.float32)
y = tf.sparse_reduce_sum(x)

with tf.Session() as sess:
 print(sess.run(y)) # ERROR: will fail because x was not fed.

 indices = np.array([[3, 2, 0], [4, 5, 1]], dtype=np.int64)
 values = np.array([1.0, 2.0], dtype=np.float32)
 shape = np.array([7, 9, 2], dtype=np.int64)
 print(sess.run(y, feed_dict={
 x: tf.SparseTensorValue(indices, values, shape)})) # Will succeed.
 print(sess.run(y, feed_dict={
 x: (indices, values, shape)})) # Will succeed.

 sp = tf.SparseTensor(indices=indices, values=values, shape=shape)
 sp_value = sp.eval(session)
 print(sess.run(y, feed_dict={x: sp_value})) # Will succeed.

Args:

		dtype: The type of values elements in the tensor to be fed.

		shape: The shape of the tensor to be fed (optional). If the shape is not
specified, you can feed a sparse tensor of any shape.

		name: A name for prefixing the operations (optional).

Returns:

A SparseTensor that may be used as a handle for feeding a value, but not
evaluated directly.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.metrics.streaming_accuracy.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.streaming_accuracy(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None) {#streaming_accuracy}

Calculates how often predictions matches labels.

The streaming_accuracy function creates two local variables, total and
count that are used to compute the frequency with which predictions
matches labels. This frequency is ultimately returned as accuracy: an
idempotent operation that simply divides total by count.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the accuracy.
Internally, an is_correct operation computes a Tensor with elements 1.0
where the corresponding elements of predictions and labels match and 0.0
otherwise. Then update_op increments total with the reduced sum of the
product of weights and is_correct, and it increments count with the
reduced sum of weights.

If weights is None, weights default to 1. Use weights of 0 to mask values.

Args:

		predictions: The predicted values, a Tensor of any shape.

		labels: The ground truth values, a Tensor whose shape matches
predictions.

		weights: An optional Tensor whose shape is broadcastable to predictions.

		metrics_collections: An optional list of collections that accuracy should
be added to.

		updates_collections: An optional list of collections that update_op should
be added to.

		name: An optional variable_scope name.

Returns:

		accuracy: A tensor representing the accuracy, the value of total divided
by count.

		update_op: An operation that increments the total and count variables
appropriately and whose value matches accuracy.

Raises:

		ValueError: If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn’t match predictions, or if
either metrics_collections or updates_collections are not a list or
tuple.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.nn.depthwise_conv2d.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.depthwise_conv2d(input, filter, strides, padding, name=None) {#depthwise_conv2d}

Depthwise 2-D convolution.

Given an input tensor of shape [batch, in_height, in_width, in_channels]
and a filter tensor of shape
[filter_height, filter_width, in_channels, channel_multiplier]
containing in_channels convolutional filters of depth 1, depthwise_conv2d
applies a different filter to each input channel (expanding from 1 channel
to channel_multiplier channels for each), then concatenates the results
together. The output has in_channels * channel_multiplier channels.

In detail,

output[b, i, j, k * channel_multiplier + q] =
 sum_{di, dj} input[b, strides[1] * i + di, strides[2] * j + dj, k] *
 filter[di, dj, k, q]

Must have strides[0] = strides[3] = 1. For the most common case of the
same horizontal and vertical strides, strides = [1, stride, stride, 1].

Args:

		input: 4-D with shape [batch, in_height, in_width, in_channels].

		filter: 4-D with shape
[filter_height, filter_width, in_channels, channel_multiplier].

		strides: 1-D of size 4. The stride of the sliding window for each
dimension of input.

		padding: A string, either 'VALID' or 'SAME'. The padding algorithm.
See the comment
here [https://www.tensorflow.org/api_docs/python/nn.html#convolution]

		name: A name for this operation (optional).

Returns:

A 4-D Tensor of shape
[batch, out_height, out_width, in_channels * channel_multiplier].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.distributions.Mixture.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Mixture distribution.

The Mixture object implements batched mixture distributions.
The mixture model is defined by a Categorical distribution (the mixture)
and a python list of Distribution objects.

Methods supported include log_prob, prob, mean, sample, and
entropy_lower_bound.

tf.contrib.distributions.Mixture.__init__(cat, components, validate_args=False, allow_nan_stats=True, name='Mixture') {#Mixture.init}

Initialize a Mixture distribution.

A Mixture is defined by a Categorical (cat, representing the
mixture probabilities) and a list of Distribution objects
all having matching dtype, batch shape, event shape, and continuity
properties (the components).

The num_classes of cat must be possible to infer at graph construction
time and match len(components).

Args:

		cat: A Categorical distribution instance, representing the probabilities
of distributions.

		components: A list or tuple of Distribution instances.
Each instance must have the same type, be defined on the same domain,
and have matching event_shape and batch_shape.

		validate_args: Boolean, default False. If True, raise a runtime
error if batch or event ranks are inconsistent between cat and any of
the distributions. This is only checked if the ranks cannot be
determined statically at graph construction time.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: A name for this distribution (optional).

Raises:

		TypeError: If cat is not a Categorical, or components is not
a list or tuple, or the elements of components are not
instances of Distribution, or do not have matching dtype.

		ValueError: If components is an empty list or tuple, or its
elements do not have a statically known event rank.
If cat.num_classes cannot be inferred at graph creation time,
or the constant value of cat.num_classes is not equal to
len(components), or all components and cat do not have
matching static batch shapes, or all components do not
have matching static event shapes.

tf.contrib.distributions.Mixture.allow_nan_stats {#Mixture.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.Mixture.batch_shape(name='batch_shape') {#Mixture.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.Mixture.cat {#Mixture.cat}

tf.contrib.distributions.Mixture.cdf(value, name='cdf') {#Mixture.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Mixture.components {#Mixture.components}

tf.contrib.distributions.Mixture.dtype {#Mixture.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Mixture.entropy(name='entropy') {#Mixture.entropy}

Shanon entropy in nats.

tf.contrib.distributions.Mixture.entropy_lower_bound(name='entropy_lower_bound') {#Mixture.entropy_lower_bound}

A lower bound on the entropy of this mixture model.

The bound below is not always very tight, and its usefulness depends
on the mixture probabilities and the components in use.

A lower bound is useful for ELBO when the Mixture is the variational
distribution:

\(
\log p(x) >= ELBO = \int q(z) \log p(x, z) dz + H[q]
\)

where \(p \) is the prior disribution, \(q \) is the variational,
and \(H[q] \) is the entropy of \(q \). If there is a lower bound
\(G[q] \) such that \(H[q] \geq G[q] \) then it can be used in
place of \(H[q] \).

For a mixture of distributions \(q(Z) = \sum_i c_i q_i(Z) \) with
\(\sum_i c_i = 1 \), by the concavity of \(f(x) = -x \log x \), a
simple lower bound is:

\(
\begin{align}
H[q] & = - \int q(z) \log q(z) dz \& = - \int (\sum_i c_i q_i(z)) \log(\sum_i c_i q_i(z)) dz \& \geq - \sum_i c_i \int q_i(z) \log q_i(z) dz \& = \sum_i c_i H[q_i]
\end{align}
\)

This is the term we calculate below for \(G[q] \).

Args:

		name: A name for this operation (optional).

Returns:

A lower bound on the Mixture’s entropy.

tf.contrib.distributions.Mixture.event_shape(name='event_shape') {#Mixture.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.Mixture.get_batch_shape() {#Mixture.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Mixture.get_event_shape() {#Mixture.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Mixture.is_continuous {#Mixture.is_continuous}

tf.contrib.distributions.Mixture.is_reparameterized {#Mixture.is_reparameterized}

tf.contrib.distributions.Mixture.log_cdf(value, name='log_cdf') {#Mixture.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Mixture.log_pdf(value, name='log_pdf') {#Mixture.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Mixture.log_pmf(value, name='log_pmf') {#Mixture.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Mixture.log_prob(value, name='log_prob') {#Mixture.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Mixture.log_survival_function(value, name='log_survival_function') {#Mixture.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.Mixture.mean(name='mean') {#Mixture.mean}

Mean.

tf.contrib.distributions.Mixture.mode(name='mode') {#Mixture.mode}

Mode.

tf.contrib.distributions.Mixture.name {#Mixture.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Mixture.num_components {#Mixture.num_components}

tf.contrib.distributions.Mixture.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#Mixture.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.Mixture.param_static_shapes(cls, sample_shape) {#Mixture.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Mixture.parameters {#Mixture.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Mixture.pdf(value, name='pdf') {#Mixture.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.Mixture.pmf(value, name='pmf') {#Mixture.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.Mixture.prob(value, name='prob') {#Mixture.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.Mixture.sample(sample_shape=(), seed=None, name='sample') {#Mixture.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Mixture.sample_n(n, seed=None, name='sample_n') {#Mixture.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.Mixture.std(name='std') {#Mixture.std}

Standard deviation.

tf.contrib.distributions.Mixture.survival_function(value, name='survival_function') {#Mixture.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Mixture.validate_args {#Mixture.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Mixture.variance(name='variance') {#Mixture.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.self_adjoint_eigvals.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.self_adjoint_eigvals(tensor, name=None) {#self_adjoint_eigvals}

Computes the eigenvalues of one or more self-adjoint matrices.

Args:

		tensor: Tensor of shape [..., N, N].

		name: string, optional name of the operation.

Returns:

		e: Eigenvalues. Shape is [..., N]. The vector e[..., :] contains the N
eigenvalues of tensor[..., :, :].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.framework.assert_scalar_int.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.assert_scalar_int(tensor) {#assert_scalar_int}

Assert tensor is 0-D, of type tf.int32 or tf.int64.

Args:

		tensor: Tensor to test.

Returns:

tensor, for chaining.

Raises:

		ValueError: if tensor is not 0-D, of type tf.int32 or tf.int64.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.zeta.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.zeta(x, q, name=None) {#zeta}

Compute the Hurwitz zeta function \(\zeta(x, q)\).

The Hurwitz zeta function is defined as:

\zeta(x, q) = \sum_{n=0}^{\infty} (q + n)^{-x}

Args:

		x: A Tensor. Must be one of the following types: float32, float64.

		q: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.string_to_hash_bucket_fast.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.string_to_hash_bucket_fast(input, num_buckets, name=None) {#string_to_hash_bucket_fast}

Converts each string in the input Tensor to its hash mod by a number of buckets.

The hash function is deterministic on the content of the string within the
process and will never change. However, it is not suitable for cryptography.
This function may be used when CPU time is scarce and inputs are trusted or
unimportant. There is a risk of adversaries constructing inputs that all hash
to the same bucket. To prevent this problem, use a strong hash function with
tf.string_to_hash_bucket_strong.

Args:

		input: A Tensor of type string. The strings to assign a hash bucket.

		num_buckets: An int that is >= 1. The number of buckets.

		name: A name for the operation (optional).

Returns:

A Tensor of type int64.
A Tensor of the same shape as the input string_tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.layers.safe_embedding_lookup_sparse.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.safe_embedding_lookup_sparse(embedding_weights, sparse_ids, sparse_weights=None, combiner=None, default_id=None, name=None, partition_strategy='div') {#safe_embedding_lookup_sparse}

Lookup embedding results, accounting for invalid IDs and empty features.

The partitioned embedding in embedding_weights must all be the same shape
except for the first dimension. The first dimension is allowed to vary as the
vocabulary size is not necessarily a multiple of P.

Invalid IDs (< 0) are pruned from input IDs and weights, as well as any IDs
with non-positive weight. For an entry with no features, the embedding vector
for default_id is returned, or the 0-vector if default_id is not supplied.

The ids and weights may be multi-dimensional. Embeddings are always aggregated
along the last dimension.

Args:

		embedding_weights: A list of P float tensors or values representing
partitioned embedding tensors. The total unpartitioned shape should be
[e_0, e_1, ..., e_m], where e_0 represents the vocab size and
e_1, ..., e_m are the embedding dimensions.

		sparse_ids: SparseTensor of shape [d_0, d_1, ..., d_n] containing the
ids. d_0 is typically batch size.

		sparse_weights: SparseTensor of same shape as sparse_ids, containing
float weights corresponding to sparse_ids, or None if all weights
are be assumed to be 1.0.

		combiner: A string specifying how to combine embedding results for each
entry. Currently “mean”, “sqrtn” and “sum” are supported, with “mean”
the default.

		default_id: The id to use for an entry with no features.

		name: A name for this operation (optional).

		partition_strategy: A string specifying the partitioning strategy.
Currently "div" and "mod" are supported. Default is "div".

Returns:

Dense tensor of shape [d_0, d_1, ..., d_{n-1}, e_1, ..., e_m].

Raises:

		ValueError: if embedding_weights is empty.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.learn.NanLossDuringTrainingError.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.learn.NanLossDuringTrainingError.__str__() {#NanLossDuringTrainingError.str}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.reduce_mean.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.reduce_mean(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_mean}

Computes the mean of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

'x' is [[1., 1.]
[2., 2.]]
tf.reduce_mean(x) ==> 1.5
tf.reduce_mean(x, 0) ==> [1.5, 1.5]
tf.reduce_mean(x, 1) ==> [1., 2.]

Args:

		input_tensor: The tensor to reduce. Should have numeric type.

		reduction_indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

		keep_dims: If true, retains reduced dimensions with length 1.

		name: A name for the operation (optional).

Returns:

The reduced tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.InteractiveSession.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A TensorFlow Session for use in interactive contexts, such as a shell.

The only difference with a regular Session is that an InteractiveSession
installs itself as the default session on construction.
The methods Tensor.eval()
and Operation.run()
will use that session to run ops.

This is convenient in interactive shells and IPython
notebooks [http://ipython.org], as it avoids having to pass an explicit
Session object to run ops.

For example:

sess = tf.InteractiveSession()
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
We can just use 'c.eval()' without passing 'sess'
print(c.eval())
sess.close()

Note that a regular session installs itself as the default session when it
is created in a with statement. The common usage in non-interactive
programs is to follow that pattern:

a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
with tf.Session():
 # We can also use 'c.eval()' here.
 print(c.eval())

tf.InteractiveSession.__init__(target='', graph=None, config=None) {#InteractiveSession.init}

Creates a new interactive TensorFlow session.

If no graph argument is specified when constructing the session,
the default graph will be launched in the session. If you are
using more than one graph (created with tf.Graph() in the same
process, you will have to use different sessions for each graph,
but each graph can be used in multiple sessions. In this case, it
is often clearer to pass the graph to be launched explicitly to
the session constructor.

Args:

		target: (Optional.) The execution engine to connect to.
Defaults to using an in-process engine.

		graph: (Optional.) The Graph to be launched (described above).

		config: (Optional) ConfigProto proto used to configure the session.

tf.InteractiveSession.close() {#InteractiveSession.close}

Closes an InteractiveSession.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.GraphKeys.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Standard names to use for graph collections.

The standard library uses various well-known names to collect and
retrieve values associated with a graph. For example, the
tf.Optimizer subclasses default to optimizing the variables
collected under tf.GraphKeys.TRAINABLE_VARIABLES if none is
specified, but it is also possible to pass an explicit list of
variables.

The following standard keys are defined:

		VARIABLES: the Variable objects that comprise a model, and
must be saved and restored together. See
tf.all_variables()
for more details.

		TRAINABLE_VARIABLES: the subset of Variable objects that will
be trained by an optimizer. See
tf.trainable_variables()
for more details.

		SUMMARIES: the summary Tensor objects that have been created in the
graph. See
tf.merge_all_summaries()
for more details.

		QUEUE_RUNNERS: the QueueRunner objects that are used to
produce input for a computation. See
tf.start_queue_runners()
for more details.

		MOVING_AVERAGE_VARIABLES: the subset of Variable objects that will also
keep moving averages. See
tf.moving_average_variables()
for more details.

		REGULARIZATION_LOSSES: regularization losses collected during graph
construction.

		WEIGHTS: weights inside neural network layers

		BIASES: biases inside neural network layers

		ACTIVATIONS: activations of neural network layers

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.nn.sparse_softmax_cross_entropy_with_logits.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels, name=None) {#sparse_softmax_cross_entropy_with_logits}

Computes sparse softmax cross entropy between logits and labels.

Measures the probability error in discrete classification tasks in which the
classes are mutually exclusive (each entry is in exactly one class). For
example, each CIFAR-10 image is labeled with one and only one label: an image
can be a dog or a truck, but not both.

NOTE: For this operation, the probability of a given label is considered
exclusive. That is, soft classes are not allowed, and the labels vector
must provide a single specific index for the true class for each row of
logits (each minibatch entry). For soft softmax classification with
a probability distribution for each entry, see
softmax_cross_entropy_with_logits.

WARNING: This op expects unscaled logits, since it performs a softmax
on logits internally for efficiency. Do not call this op with the
output of softmax, as it will produce incorrect results.

A common use case is to have logits of shape [batch_size, num_classes] and
labels of shape [batch_size]. But higher dimensions are supported.

Args:

logits: Unscaled log probabilities of rank r and shape
[d_0, d_1, ..., d_{r-2}, num_classes] and dtype float32 or float64.
labels: Tensor of shape [d_0, d_1, ..., d_{r-2}] and dtype int32 or
int64. Each entry in labels must be an index in [0, num_classes).
Other values will raise an exception when this op is run on CPU, and
return NaN for corresponding corresponding loss and gradient rows
on GPU.
name: A name for the operation (optional).

Returns:

A Tensor of the same shape as labels and of the same type as logits
with the softmax cross entropy loss.

Raises:

		ValueError: If logits are scalars (need to have rank >= 1) or if the rank
of the labels is not equal to the rank of the labels minus one.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.learn.monitors.GraphDump.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Dumps almost all tensors in the graph at every step.

Note, this is very expensive, prefer PrintTensor in production.

tf.contrib.learn.monitors.GraphDump.__init__(ignore_ops=None) {#GraphDump.init}

Initializes GraphDump monitor.

Args:

		ignore_ops: list of string. Names of ops to ignore.
If None, GraphDump.IGNORE_OPS is used.

tf.contrib.learn.monitors.GraphDump.begin(max_steps=None) {#GraphDump.begin}

tf.contrib.learn.monitors.GraphDump.compare(other_dump, step, atol=1e-06) {#GraphDump.compare}

Compares two GraphDump monitors and returns differences.

Args:

		other_dump: Another GraphDump monitor.

		step: int, step to compare on.

		atol: float, absolute tolerance in comparison of floating arrays.

Returns:

Returns tuple:

		matched: list of keys that matched.

		non_matched: dict of keys to tuple of 2 mismatched values.

Raises:

		ValueError: if a key in data is missing from other_dump at step.

tf.contrib.learn.monitors.GraphDump.data {#GraphDump.data}

tf.contrib.learn.monitors.GraphDump.end(session=None) {#GraphDump.end}

Callback at the end of training/evaluation.

Args:

		session: A tf.Session object that can be used to run ops.

Raises:

		ValueError: if we’ve not begun a run.

tf.contrib.learn.monitors.GraphDump.epoch_begin(epoch) {#GraphDump.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.GraphDump.epoch_end(epoch) {#GraphDump.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.GraphDump.post_step(step, session) {#GraphDump.post_step}

Callback after the step is finished.

Called after step_end and receives session to perform extra session.run
calls. If failure occurred in the process, will be called as well.

Args:

		step: int, global step of the model.

		session: Session object.

tf.contrib.learn.monitors.GraphDump.run_on_all_workers {#GraphDump.run_on_all_workers}

tf.contrib.learn.monitors.GraphDump.set_estimator(estimator) {#GraphDump.set_estimator}

A setter called automatically by the target estimator.

If the estimator is locked, this method does nothing.

Args:

		estimator: the estimator that this monitor monitors.

Raises:

		ValueError: if the estimator is None.

tf.contrib.learn.monitors.GraphDump.step_begin(step) {#GraphDump.step_begin}

tf.contrib.learn.monitors.GraphDump.step_end(step, output) {#GraphDump.step_end}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.metrics.streaming_pearson_correlation.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.streaming_pearson_correlation(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None) {#streaming_pearson_correlation}

Computes pearson correlation coefficient between predictions, labels.

The streaming_pearson_correlation function delegates to
streaming_covariance the tracking of three [co]variances:

		streaming_covariance(predictions, labels), i.e. covariance

		streaming_covariance(predictions, predictions), i.e. variance

		streaming_covariance(labels, labels), i.e. variance

The product-moment correlation ultimately returned is an idempotent operation
cov(predictions, labels) / sqrt(var(predictions) * var(labels)). To
facilitate correlation computation across multiple batches, the function
groups the update_ops of the underlying streaming_covariance and returns an
update_op.

If weights is not None, then it is used to compute a weighted correlation.
NOTE: these weights are treated as “frequency weights”, as opposed to
“reliability weights”. See discussion of the difference on
https://wikipedia.org/wiki/Weighted_arithmetic_mean#Weighted_sample_variance

Args:

		predictions: A Tensor of arbitrary size.

		labels: A Tensor of the same size as predictions.

		weights: An optional set of weights which indicates the frequency with which
an example is sampled. Must be broadcastable with labels.

		metrics_collections: An optional list of collections that the metric
value variable should be added to.

		updates_collections: An optional list of collections that the metric update
ops should be added to.

		name: An optional variable_scope name.

Returns:

		pearson_r: A tensor representing the current pearson product-moment
correlation coefficient, the value of
cov(predictions, labels) / sqrt(var(predictions) * var(labels)).

		update_op: An operation that updates the underlying variables appropriately.

Raises:

		ValueError: If labels and predictions are of different sizes, or if
weights is the wrong size, or if either metrics_collections or
updates_collections are not a list or tuple.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.select.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.select(condition, t, e, name=None) {#select}

Selects elements from t or e, depending on condition.

The t, and e tensors must all have the same shape,
and the output will also have that shape. The condition tensor
must be a scalar if t and e are scalars. If t and e are vectors
or higher rank, then condition must be either a vector with size
matching the first dimension of t, or must have the same shape as t.

The condition tensor acts as a mask that chooses, based on the value at each
element, whether the corresponding element / row in the output should be
taken from t (if true) or e (if false).

If condition is a vector and t and e are higher rank matrices, then
it chooses which row (outer dimension) to copy from t and e.
If condition has the same shape as t and e, then it chooses which
element to copy from t and e.

For example:

'condition' tensor is [[True, False]
[False, True]]
't' is [[1, 2],
[3, 4]]
'e' is [[5, 6],
[7, 8]]
select(condition, t, e) ==> [[1, 6],
 [7, 4]]

'condition' tensor is [True, False]
't' is [[1, 2],
[3, 4]]
'e' is [[5, 6],
[7, 8]]
select(condition, t, e) ==> [[1, 2],
 [7, 8]]

Args:

		condition: A Tensor of type bool.

		t: A Tensor which may have the same shape as condition.
If condition is rank 1, t may have higher rank,
but its first dimension must match the size of condition.

		e: A Tensor with the same type and shape as t.

		name: A name for the operation (optional).

Returns:

A Tensor with the same type and shape as t and e.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.matmul.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.matmul(a, b, transpose_a=False, transpose_b=False, a_is_sparse=False, b_is_sparse=False, name=None) {#matmul}

Multiplies matrix a by matrix b, producing a * b.

The inputs must be two-dimensional matrices, with matching inner dimensions,
possibly after transposition.

Both matrices must be of the same type. The supported types are:
float32, float64, int32, complex64.

Either matrix can be transposed on the fly by setting the corresponding flag
to True. This is False by default.

If one or both of the matrices contain a lot of zeros, a more efficient
multiplication algorithm can be used by setting the corresponding
a_is_sparse or b_is_sparse flag to True. These are False by default.

For example:

2-D tensor `a`
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3]) => [[1. 2. 3.]
 [4. 5. 6.]]
2-D tensor `b`
b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2]) => [[7. 8.]
 [9. 10.]
 [11. 12.]]
c = tf.matmul(a, b) => [[58 64]
 [139 154]]

Args:

		a: Tensor of type float32, float64, int32 or complex64.

		b: Tensor with same type as a.

		transpose_a: If True, a is transposed before multiplication.

		transpose_b: If True, b is transposed before multiplication.

		a_is_sparse: If True, a is treated as a sparse matrix.

		b_is_sparse: If True, b is treated as a sparse matrix.

		name: Name for the operation (optional).

Returns:

A Tensor of the same type as a.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.train.import_meta_graph.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.import_meta_graph(meta_graph_or_file, clear_devices=False) {#import_meta_graph}

Recreates a Graph saved in a MetaGraphDef proto.

This function takes a MetaGraphDef protocol buffer as input. If
the argument is a file containing a MetaGraphDef protocol buffer ,
it constructs a protocol buffer from the file content. The function
then adds all the nodes from the graph_def field to the
current graph, recreates all the collections, and returns a saver
constructed from the saver_def field.

In combination with export_meta_graph(), this function can be used to

		Serialize a graph along with other Python objects such as QueueRunner,
Variable into a MetaGraphDef.

		Restart training from a saved graph and checkpoints.

		Run inference from a saved graph and checkpoints.

...
Create a saver.
saver = tf.train.Saver(...variables...)
Remember the training_op we want to run by adding it to a collection.
tf.add_to_collection('train_op', train_op)
sess = tf.Session()
for step in xrange(1000000):
 sess.run(train_op)
 if step % 1000 == 0:
 # Saves checkpoint, which by default also exports a meta_graph
 # named 'my-model-global_step.meta'.
 saver.save(sess, 'my-model', global_step=step)

Later we can continue training from this saved meta_graph without building
the model from scratch.

with tf.Session() as sess:
 new_saver = tf.train.import_meta_graph('my-save-dir/my-model-10000.meta')
 new_saver.restore(sess, 'my-save-dir/my-model-10000')
 # tf.get_collection() returns a list. In this example we only want the
 # first one.
 train_op = tf.get_collection('train_op')[0]
 for step in xrange(1000000):
 sess.run(train_op)

NOTE: Restarting training from saved meta_graph only works if the
device assignments have not changed.

Args:

		meta_graph_or_file: MetaGraphDef protocol buffer or filename (including
the path) containing a MetaGraphDef.

		clear_devices: Boolean which controls whether to clear device information
from graph_def. Default false.

Returns:

A saver constructed from saver_def in MetaGraphDef or None.

A None value is returned if no variables exist in the MetaGraphDef
(i.e., there are no variables to restore).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.train.write_graph.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.write_graph(graph_def, logdir, name, as_text=True) {#write_graph}

Writes a graph proto to a file.

The graph is written as a binary proto unless as_text is True.

v = tf.Variable(0, name='my_variable')
sess = tf.Session()
tf.train.write_graph(sess.graph_def, '/tmp/my-model', 'train.pbtxt')

Args:

		graph_def: A GraphDef protocol buffer.

		logdir: Directory where to write the graph. This can refer to remote
filesystems, such as Google Cloud Storage (GCS).

		name: Filename for the graph.

		as_text: If True, writes the graph as an ASCII proto.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.learn.monitors.StepCounter.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Steps per second monitor.

tf.contrib.learn.monitors.StepCounter.__init__(every_n_steps=100, output_dir=None, summary_writer=None) {#StepCounter.init}

tf.contrib.learn.monitors.StepCounter.begin(max_steps=None) {#StepCounter.begin}

Called at the beginning of training.

When called, the default graph is the one we are executing.

Args:

		max_steps: int, the maximum global step this training will run until.

Raises:

		ValueError: if we’ve already begun a run.

tf.contrib.learn.monitors.StepCounter.end(session=None) {#StepCounter.end}

tf.contrib.learn.monitors.StepCounter.epoch_begin(epoch) {#StepCounter.epoch_begin}

Begin epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve already begun an epoch, or epoch < 0.

tf.contrib.learn.monitors.StepCounter.epoch_end(epoch) {#StepCounter.epoch_end}

End epoch.

Args:

		epoch: int, the epoch number.

Raises:

		ValueError: if we’ve not begun an epoch, or epoch number does not match.

tf.contrib.learn.monitors.StepCounter.every_n_post_step(step, session) {#StepCounter.every_n_post_step}

Callback after a step is finished or end() is called.

Args:

		step: int, the current value of the global step.

		session: Session object.

tf.contrib.learn.monitors.StepCounter.every_n_step_begin(step) {#StepCounter.every_n_step_begin}

Callback before every n’th step begins.

Args:

		step: int, the current value of the global step.

Returns:

A list of tensors that will be evaluated at this step.

tf.contrib.learn.monitors.StepCounter.every_n_step_end(current_step, outputs) {#StepCounter.every_n_step_end}

tf.contrib.learn.monitors.StepCounter.post_step(step, session) {#StepCounter.post_step}

tf.contrib.learn.monitors.StepCounter.run_on_all_workers {#StepCounter.run_on_all_workers}

tf.contrib.learn.monitors.StepCounter.set_estimator(estimator) {#StepCounter.set_estimator}

tf.contrib.learn.monitors.StepCounter.step_begin(step) {#StepCounter.step_begin}

Overrides BaseMonitor.step_begin.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

Returns:

A list, the result of every_n_step_begin, if that was called this step,
or an empty list otherwise.

Raises:

		ValueError: if called more than once during a step.

tf.contrib.learn.monitors.StepCounter.step_end(step, output) {#StepCounter.step_end}

Overrides BaseMonitor.step_end.

When overriding this method, you must call the super implementation.

Args:

		step: int, the current value of the global step.

		output: dict mapping string values representing tensor names to
the value resulted from running these tensors. Values may be either
scalars, for scalar tensors, or Numpy array, for non-scalar tensors.

Returns:

bool, the result of every_n_step_end, if that was called this step,
or False otherwise.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.learn.extract_pandas_labels.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.learn.extract_pandas_labels(labels) {#extract_pandas_labels}

Extract data from pandas.DataFrame for labels.

Args:

		labels: pandas.DataFrame or pandas.Series containing one column of
labels to be extracted.

Returns:

A numpy ndarray of labels from the DataFrame.

Raises:

		ValueError: if more than one column is found or type is not int, float or
bool.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 DirichletMultinomialTensor is a StochasticTensor backed by the distribution DirichletMultinomial.

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#DirichletMultinomialTensor.init}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.clone(name=None, **dist_args) {#DirichletMultinomialTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.distribution {#DirichletMultinomialTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.dtype {#DirichletMultinomialTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.entropy(name='entropy') {#DirichletMultinomialTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.graph {#DirichletMultinomialTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.input_dict {#DirichletMultinomialTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.loss(final_loss, name='Loss') {#DirichletMultinomialTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.mean(name='mean') {#DirichletMultinomialTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.name {#DirichletMultinomialTensor.name}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.value(name='value') {#DirichletMultinomialTensor.value}

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.value_type {#DirichletMultinomialTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.sin.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sin(x, name=None) {#sin}

Computes sin of x element-wise.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.nn.dynamic_rnn.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None) {#dynamic_rnn}

Creates a recurrent neural network specified by RNNCell cell.

This function is functionally identical to the function rnn above, but
performs fully dynamic unrolling of inputs.

Unlike rnn, the input inputs is not a Python list of Tensors, one for
each frame. Instead, inputs may be a single Tensor where
the maximum time is either the first or second dimension (see the parameter
time_major). Alternatively, it may be a (possibly nested) tuple of
Tensors, each of them having matching batch and time dimensions.
The corresponding output is either a single Tensor having the same number
of time steps and batch size, or a (possibly nested) tuple of such tensors,
matching the nested structure of cell.output_size.

The parameter sequence_length is optional and is used to copy-through state
and zero-out outputs when past a batch element’s sequence length. So it’s more
for correctness than performance, unlike in rnn().

Args:

		cell: An instance of RNNCell.

		inputs: The RNN inputs.

If time_major == False (default), this must be a Tensor of shape:
[batch_size, max_time, ...], or a nested tuple of such
elements.

If time_major == True, this must be a Tensor of shape:
[max_time, batch_size, ...], or a nested tuple of such
elements.

This may also be a (possibly nested) tuple of Tensors satisfying
this property. The first two dimensions must match across all the inputs,
but otherwise the ranks and other shape components may differ.
In this case, input to cell at each time-step will replicate the
structure of these tuples, except for the time dimension (from which the
time is taken).

The input to cell at each time step will be a Tensor or (possibly
nested) tuple of Tensors each with dimensions [batch_size, ...].

		sequence_length: (optional) An int32/int64 vector sized [batch_size].

		initial_state: (optional) An initial state for the RNN.
If cell.state_size is an integer, this must be
a Tensor of appropriate type and shape [batch_size, cell.state_size].
If cell.state_size is a tuple, this should be a tuple of
tensors having shapes [batch_size, s] for s in cell.state_size.

		dtype: (optional) The data type for the initial state and expected output.
Required if initial_state is not provided or RNN state has a heterogeneous
dtype.

		parallel_iterations: (Default: 32). The number of iterations to run in
parallel. Those operations which do not have any temporal dependency
and can be run in parallel, will be. This parameter trades off
time for space. Values >> 1 use more memory but take less time,
while smaller values use less memory but computations take longer.

		swap_memory: Transparently swap the tensors produced in forward inference
but needed for back prop from GPU to CPU. This allows training RNNs
which would typically not fit on a single GPU, with very minimal (or no)
performance penalty.

		time_major: The shape format of the inputs and outputs Tensors.
If true, these Tensors must be shaped [max_time, batch_size, depth].
If false, these Tensors must be shaped [batch_size, max_time, depth].
Using time_major = True is a bit more efficient because it avoids
transposes at the beginning and end of the RNN calculation. However,
most TensorFlow data is batch-major, so by default this function
accepts input and emits output in batch-major form.

		scope: VariableScope for the created subgraph; defaults to “RNN”.

Returns:

A pair (outputs, state) where:

		outputs: The RNN output Tensor.

If time_major == False (default), this will be a Tensor shaped:
[batch_size, max_time, cell.output_size].

If time_major == True, this will be a Tensor shaped:
[max_time, batch_size, cell.output_size].

Note, if cell.output_size is a (possibly nested) tuple of integers
or TensorShape objects, then outputs will be a tuple having the
same structure as cell.output_size, containing Tensors having shapes
corresponding to the shape data in cell.output_size.

		state: The final state. If cell.state_size is an int, this
will be shaped [batch_size, cell.state_size]. If it is a
TensorShape, this will be shaped [batch_size] + cell.state_size.
If it is a (possibly nested) tuple of ints or TensorShape, this will
be a tuple having the corresponding shapes.

Raises:

		TypeError: If cell is not an instance of RNNCell.

		ValueError: If inputs is None or an empty list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.metrics.streaming_sparse_precision_at_k.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.streaming_sparse_precision_at_k(*args, **kwargs) {#streaming_sparse_precision_at_k}

Computes precision@k of the predictions with respect to sparse labels. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-10-19.
Instructions for updating:
ignore_mask is being deprecated. Instead use weights with values 0.0 and 1.0 to mask values. For example, weights=tf.logical_not(mask).

If class_id is specified, we calculate precision by considering only the
entries in the batch for which class_id is in the top-k highest
predictions, and computing the fraction of them for which class_id is
indeed a correct label.
If class_id is not specified, we’ll calculate precision as how often on
average a class among the top-k classes with the highest predicted values
of a batch entry is correct and can be found in the label for that entry.

streaming_sparse_precision_at_k creates two local variables,
true_positive_at_<k> and false_positive_at_<k>, that are used to compute
the precision@k frequency. This frequency is ultimately returned as
precision_at_<k>: an idempotent operation that simply divides
true_positive_at_<k> by total (true_positive_at_<k> +
false_positive_at_<k>).

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
precision_at_<k>. Internally, a top_k operation computes a Tensor
indicating the top k predictions. Set operations applied to top_k and
labels calculate the true positives and false positives weighted by
weights. Then update_op increments true_positive_at_<k> and
false_positive_at_<k> using these values.

If weights is None, weights default to 1. Use weights of 0 to mask values.
Alternatively, if ignore_mask is not None, then mask values where
ignore_mask is True.

Args:
predictions: Float Tensor with shape [D1, ... DN, num_classes] where
N >= 1. Commonly, N=1 and predictions has shape [batch size, num_classes].
The final dimension contains the logit values for each class. [D1, ... DN]
must match labels.
labels: int64 Tensor or SparseTensor with shape
[D1, ... DN, num_labels], where N >= 1 and num_labels is the number of
target classes for the associated prediction. Commonly, N=1 and labels
has shape [batch_size, num_labels]. [D1, ... DN] must match
predictions_idx. Values should be in range [0, num_classes], where
num_classes is the last dimension of predictions.
k: Integer, k for @k metric.
class_id: Integer class ID for which we want binary metrics. This should be
in range [0, num_classes], where num_classes is the last dimension of
predictions.
ignore_mask: An optional, bool Tensor whose shape is broadcastable to
the the first [D1, ... DN] dimensions of predictions and labels.
weights: An optional Tensor whose shape is broadcastable to the the first
[D1, ... DN] dimensions of predictions and labels.
metrics_collections: An optional list of collections that values should
be added to.
updates_collections: An optional list of collections that updates should
be added to.
name: Name of new update operation, and namespace for other dependant ops.

Returns:
precision: Scalar float64 Tensor with the value of true_positives
divided by the sum of true_positives and false_positives.
update_op: Operation that increments true_positives and
false_positives variables appropriately, and whose value matches
precision.

Raises:
ValueError: If ignore_mask is not None and its shape doesn’t match
predictions, or if weights is not None and its shape doesn’t match
predictions, or if either metrics_collections or updates_collections
are not a list or tuple.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.metrics.confusion_matrix.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.confusion_matrix(predictions, labels, num_classes=None, dtype=tf.int32, name=None, weights=None) {#confusion_matrix}

Computes the confusion matrix from predictions and labels.

Calculate the Confusion Matrix for a pair of prediction and
label 1-D int arrays.

Considering a prediction array such as: [1, 2, 3]
And a label array such as: [2, 2, 3]

The confusion matrix returned would be the following one:

[[0, 0, 0]
 [0, 1, 0]
 [0, 1, 0]
 [0, 0, 1]]

If weights is not None, then the confusion matrix elements are the
corresponding weights elements.

Where the matrix rows represent the prediction labels and the columns
represents the real labels. The confusion matrix is always a 2-D array
of shape [n, n], where n is the number of valid labels for a given
classification task. Both prediction and labels must be 1-D arrays of
the same shape in order for this function to work.

Args:

		predictions: A 1-D array represeting the predictions for a given
classification.

		labels: A 1-D represeting the real labels for the classification task.

		num_classes: The possible number of labels the classification task can
have. If this value is not provided, it will be calculated
using both predictions and labels array.

		dtype: Data type of the confusion matrix.

		name: Scope name.

		weights: An optional Tensor whose shape matches predictions.

Returns:

A k X k matrix represeting the confusion matrix, where k is the number of
possible labels in the classification task.

Raises:

		ValueError: If both predictions and labels are not 1-D vectors and have
mismatched shapes, or if weights is not None and its shape doesn’t
match predictions.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.constant.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.constant(value, dtype=None, shape=None, name='Const') {#constant}

Creates a constant tensor.

The resulting tensor is populated with values of type dtype, as
specified by arguments value and (optionally) shape (see examples
below).

The argument value can be a constant value, or a list of values of type
dtype. If value is a list, then the length of the list must be less
than or equal to the number of elements implied by the shape argument (if
specified). In the case where the list length is less than the number of
elements specified by shape, the last element in the list will be used
to fill the remaining entries.

The argument shape is optional. If present, it specifies the dimensions of
the resulting tensor. If not present, the shape of value is used.

If the argument dtype is not specified, then the type is inferred from
the type of value.

For example:

Constant 1-D Tensor populated with value list.
tensor = tf.constant([1, 2, 3, 4, 5, 6, 7]) => [1 2 3 4 5 6 7]

Constant 2-D tensor populated with scalar value -1.
tensor = tf.constant(-1.0, shape=[2, 3]) => [[-1. -1. -1.]
 [-1. -1. -1.]]

Args:

		value: A constant value (or list) of output type dtype.

		dtype: The type of the elements of the resulting tensor.

		shape: Optional dimensions of resulting tensor.

		name: Optional name for the tensor.

Returns:

A Constant Tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.shape_n.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.shape_n(input, out_type=None, name=None) {#shape_n}

Returns shape of tensors.

This operation returns N 1-D integer tensors representing shape of input[i]s.

Args:

		input: A list of at least 1 Tensor objects of the same type.

		out_type: An optional tf.DType from: tf.int32, tf.int64. Defaults to tf.int32.

		name: A name for the operation (optional).

Returns:

A list with the same number of Tensor objects as input of Tensor objects of type out_type.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.learn.evaluate.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.learn.evaluate(graph, output_dir, checkpoint_path, eval_dict, update_op=None, global_step_tensor=None, supervisor_master='', log_every_steps=10, feed_fn=None, max_steps=None) {#evaluate}

Evaluate a model loaded from a checkpoint.

Given graph, a directory to write summaries to (output_dir), a checkpoint
to restore variables from, and a dict of Tensors to evaluate, run an eval
loop for max_steps steps, or until an exception (generally, an
end-of-input signal from a reader operation) is raised from running
eval_dict.

In each step of evaluation, all tensors in the eval_dict are evaluated, and
every log_every_steps steps, they are logged. At the very end of evaluation,
a summary is evaluated (finding the summary ops using Supervisor‘s logic)
and written to output_dir.

Args:

		graph: A Graph to train. It is expected that this graph is not in use
elsewhere.

		output_dir: A string containing the directory to write a summary to.

		checkpoint_path: A string containing the path to a checkpoint to restore.
Can be None if the graph doesn’t require loading any variables.

		eval_dict: A dict mapping string names to tensors to evaluate. It is
evaluated in every logging step. The result of the final evaluation is
returned. If update_op is None, then it’s evaluated in every step. If
max_steps is None, this should depend on a reader that will raise an
end-of-inupt exception when the inputs are exhausted.

		update_op: A Tensor which is run in every step.

		global_step_tensor: A Variable containing the global step. If None,
one is extracted from the graph using the same logic as in Supervisor.
Used to place eval summaries on training curves.

		supervisor_master: The master string to use when preparing the session.

		log_every_steps: Integer. Output logs every log_every_steps evaluation
steps. The logs contain the eval_dict and timing information.

		feed_fn: A function that is called every iteration to produce a feed_dict
passed to session.run calls. Optional.

		max_steps: Integer. Evaluate eval_dict this many times.

Returns:

A tuple (eval_results, global_step):

		eval_results: A dict mapping string to numeric values (int, float)
that are the result of running eval_dict in the last step. None if no
eval steps were run.

		global_step: The global step this evaluation corresponds to.

Raises:

		ValueError: if output_dir is empty.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.histogram_fixed_width.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.histogram_fixed_width(values, value_range, nbins=100, dtype=tf.int32, name=None) {#histogram_fixed_width}

Return histogram of values.

Given the tensor values, this operation returns a rank 1 histogram counting
the number of entries in values that fell into every bin. The bins are
equal width and determined by the arguments value_range and nbins.

Args:

		values: Numeric Tensor.

		value_range: Shape [2] Tensor. new_values <= value_range[0] will be
mapped to hist[0], values >= value_range[1] will be mapped to hist[-1].
Must be same dtype as new_values.

		nbins: Scalar int32 Tensor. Number of histogram bins.

		dtype: dtype for returned histogram.

		name: A name for this operation (defaults to ‘histogram_fixed_width’).

Returns:

A 1-D Tensor holding histogram of values.

		Examples:

Bins will be: (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf)
nbins = 5
value_range = [0.0, 5.0]
new_values = [-1.0, 0.0, 1.5, 2.0, 5.0, 15]

with tf.default_session() as sess:
 hist = tf.histogram_fixed_width(new_values, value_range, nbins=5)
 variables.initialize_all_variables().run()
 sess.run(hist) => [2, 1, 1, 0, 2]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.graph_editor.get_ops_ios.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.get_ops_ios(ops, control_inputs=False, control_outputs=None, control_ios=None) {#get_ops_ios}

Return all the tf.Operation which are connected to an op in ops.

Args:

		ops: an object convertible to a list of tf.Operation.

		control_inputs: A boolean indicating whether control inputs are enabled.

		control_outputs: An instance of util.ControlOutputs or None. If not None,
control outputs are enabled.

		control_ios: An instance of util.ControlOutputs or None. If not None, both
control inputs and control outputs are enabled. This is equivalent to set
control_inputs to True and control_outputs to the util.ControlOutputs
instance.

Returns:

All the tf.Operation surrounding the given ops.

Raises:

		TypeError: if ops cannot be converted to a list of tf.Operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.nn.l2_loss.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.l2_loss(t, name=None) {#l2_loss}

L2 Loss.

Computes half the L2 norm of a tensor without the sqrt:

output = sum(t ** 2) / 2

Args:

		t: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
Typically 2-D, but may have any dimensions.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as t. 0-D.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.losses.sparse_softmax_cross_entropy.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.losses.sparse_softmax_cross_entropy(logits, labels, weight=1.0, scope=None) {#sparse_softmax_cross_entropy}

Cross-entropy loss using tf.nn.sparse_softmax_cross_entropy_with_logits.

weight acts as a coefficient for the loss. If a scalar is provided,
then the loss is simply scaled by the given value. If weight is a
tensor of size [batch_size], then the loss weights apply to each
corresponding sample.

Args:

		logits: [batch_size, num_classes] logits outputs of the network .

		labels: [batch_size, 1] or [batch_size] target labels of dtype int32 or
int64 in the range [0, num_classes).

		weight: Coefficients for the loss. The tensor must be a scalar or a tensor
of shape [batch_size] or [batch_size, 1].

		scope: the scope for the operations performed in computing the loss.

Returns:

A scalar Tensor representing the loss value.

Raises:

		ValueError: If the shapes of logits, labels, and weight are incompatible, or
if weight is None.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.layers.batch_norm.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.batch_norm(*args, **kwargs) {#batch_norm}

Adds a Batch Normalization layer from http://arxiv.org/abs/1502.03167.

“Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift”

Sergey Ioffe, Christian Szegedy

Can be used as a normalizer function for conv2d and fully_connected.

Note: When is_training is True the moving_mean and moving_variance need to be
updated, by default the update_ops are placed in tf.GraphKeys.UPDATE_OPS so
they need to be added as a dependency to the train_op, example:

update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
if update_ops:
updates = tf.group(*update_ops)
total_loss = control_flow_ops.with_dependencies([updates], total_loss)

One can set update_collections=None to force the updates in place, but that
can have speed penalty, specially in distributed settings.

Args:

		inputs: a tensor with 2 or more dimensions, where the first dimension has
batch_size. The normalization is over all but the last dimension.

		decay: decay for the moving average.

		center: If True, subtract beta. If False, beta is ignored.

		scale: If True, multiply by gamma. If False, gamma is
not used. When the next layer is linear (also e.g. nn.relu), this can be
disabled since the scaling can be done by the next layer.

		epsilon: small float added to variance to avoid dividing by zero.

		activation_fn: activation function, default set to None to skip it and
maintain a linear activation.

		updates_collections: collections to collect the update ops for computation.
The updates_ops need to be excuted with the train_op.
If None, a control dependency would be added to make sure the updates are
computed in place.

		is_training: whether or not the layer is in training mode. In training mode
it would accumulate the statistics of the moments into moving_mean and
moving_variance using an exponential moving average with the given
decay. When it is not in training mode then it would use the values of
the moving_mean and the moving_variance.

		reuse: whether or not the layer and its variables should be reused. To be
able to reuse the layer scope must be given.

		variables_collections: optional collections for the variables.

		outputs_collections: collections to add the outputs.

		trainable: If True also add variables to the graph collection
GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

		scope: Optional scope for variable_scope.

Returns:

A Tensor representing the output of the operation.

Raises:

		ValueError: if rank or last dimension of inputs is undefined.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.image.encode_jpeg.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.encode_jpeg(image, format=None, quality=None, progressive=None, optimize_size=None, chroma_downsampling=None, density_unit=None, x_density=None, y_density=None, xmp_metadata=None, name=None) {#encode_jpeg}

JPEG-encode an image.

image is a 3-D uint8 Tensor of shape [height, width, channels].

The attr format can be used to override the color format of the encoded
output. Values can be:

		'': Use a default format based on the number of channels in the image.

		grayscale: Output a grayscale JPEG image. The channels dimension
of image must be 1.

		rgb: Output an RGB JPEG image. The channels dimension
of image must be 3.

If format is not specified or is the empty string, a default format is picked
in function of the number of channels in image:

		1: Output a grayscale image.

		3: Output an RGB image.

Args:

		image: A Tensor of type uint8.
3-D with shape [height, width, channels].

		format: An optional string from: "", "grayscale", "rgb". Defaults to "".
Per pixel image format.

		quality: An optional int. Defaults to 95.
Quality of the compression from 0 to 100 (higher is better and slower).

		progressive: An optional bool. Defaults to False.
If True, create a JPEG that loads progressively (coarse to fine).

		optimize_size: An optional bool. Defaults to False.
If True, spend CPU/RAM to reduce size with no quality change.

		chroma_downsampling: An optional bool. Defaults to True.
See http://en.wikipedia.org/wiki/Chroma_subsampling.

		density_unit: An optional string from: "in", "cm". Defaults to "in".
Unit used to specify x_density and y_density:
pixels per inch ('in') or centimeter ('cm').

		x_density: An optional int. Defaults to 300.
Horizontal pixels per density unit.

		y_density: An optional int. Defaults to 300.
Vertical pixels per density unit.

		xmp_metadata: An optional string. Defaults to "".
If not empty, embed this XMP metadata in the image header.

		name: A name for the operation (optional).

Returns:

A Tensor of type string. 0-D. JPEG-encoded image.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.sparse_to_dense.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_to_dense(sparse_indices, output_shape, sparse_values, default_value=0, validate_indices=True, name=None) {#sparse_to_dense}

Converts a sparse representation into a dense tensor.

Builds an array dense with shape output_shape such that

If sparse_indices is scalar
dense[i] = (i == sparse_indices ? sparse_values : default_value)

If sparse_indices is a vector, then for each i
dense[sparse_indices[i]] = sparse_values[i]

If sparse_indices is an n by d matrix, then for each i in [0, n)
dense[sparse_indices[i][0], ..., sparse_indices[i][d-1]] = sparse_values[i]

All other values in dense are set to default_value. If sparse_values
is a scalar, all sparse indices are set to this single value.

Indices should be sorted in lexicographic order, and indices must not
contain any repeats. If validate_indices is True, these properties
are checked during execution.

Args:

		sparse_indices: A 0-D, 1-D, or 2-D Tensor of type int32 or int64.
sparse_indices[i] contains the complete index where sparse_values[i]
will be placed.

		output_shape: A 1-D Tensor of the same type as sparse_indices. Shape
of the dense output tensor.

		sparse_values: A 0-D or 1-D Tensor. Values corresponding to each row of
sparse_indices, or a scalar value to be used for all sparse indices.

		default_value: A 0-D Tensor of the same type as sparse_values. Value
to set for indices not specified in sparse_indices. Defaults to zero.

		validate_indices: A boolean value. If True, indices are checked to make
sure they are sorted in lexicographic order and that there are no repeats.

		name: A name for the operation (optional).

Returns:

Dense Tensor of shape output_shape. Has the same type as
sparse_values.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.rnn.TimeFreqLSTMCell.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Time-Frequency Long short-term memory unit (LSTM) recurrent network cell.

This implementation is based on:

Tara N. Sainath and Bo Li
“Modeling Time-Frequency Patterns with LSTM vs. Convolutional Architectures
for LVCSR Tasks.” submitted to INTERSPEECH, 2016.

It uses peep-hole connections and optional cell clipping.

tf.contrib.rnn.TimeFreqLSTMCell.__call__(inputs, state, scope=None) {#TimeFreqLSTMCell.call}

Run one step of LSTM.

Args:

		inputs: input Tensor, 2D, batch x num_units.

		state: state Tensor, 2D, batch x state_size.

		scope: VariableScope for the created subgraph; defaults to
“TimeFreqLSTMCell”.

Returns:

A tuple containing:

		A 2D, batch x output_dim, Tensor representing the output of the LSTM
after reading “inputs” when previous state was “state”.
Here output_dim is num_units.

		A 2D, batch x state_size, Tensor representing the new state of LSTM
after reading “inputs” when previous state was “state”.

Raises:

		ValueError: if an input_size was specified and the provided inputs have
a different dimension.

tf.contrib.rnn.TimeFreqLSTMCell.__init__(num_units, use_peepholes=False, cell_clip=None, initializer=None, num_unit_shards=1, forget_bias=1.0, feature_size=None, frequency_skip=None) {#TimeFreqLSTMCell.init}

Initialize the parameters for an LSTM cell.

Args:

		num_units: int, The number of units in the LSTM cell

		use_peepholes: bool, set True to enable diagonal/peephole connections.

		cell_clip: (optional) A float value, if provided the cell state is clipped
by this value prior to the cell output activation.

		initializer: (optional) The initializer to use for the weight and
projection matrices.

		num_unit_shards: int, How to split the weight matrix. If >1, the weight
matrix is stored across num_unit_shards.

		forget_bias: float, Biases of the forget gate are initialized by default
to 1 in order to reduce the scale of forgetting at the beginning
of the training.

		feature_size: int, The size of the input feature the LSTM spans over.

		frequency_skip: int, The amount the LSTM filter is shifted by in
frequency.

tf.contrib.rnn.TimeFreqLSTMCell.output_size {#TimeFreqLSTMCell.output_size}

tf.contrib.rnn.TimeFreqLSTMCell.state_size {#TimeFreqLSTMCell.state_size}

tf.contrib.rnn.TimeFreqLSTMCell.zero_state(batch_size, dtype) {#TimeFreqLSTMCell.zero_state}

Return zero-filled state tensor(s).

Args:

		batch_size: int, float, or unit Tensor representing the batch size.

		dtype: the data type to use for the state.

Returns:

If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.squeeze.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.squeeze(input, squeeze_dims=None, name=None) {#squeeze}

Removes dimensions of size 1 from the shape of a tensor.

Given a tensor input, this operation returns a tensor of the same type with
all dimensions of size 1 removed. If you don’t want to remove all size 1
dimensions, you can remove specific size 1 dimensions by specifying
squeeze_dims.

For example:

't' is a tensor of shape [1, 2, 1, 3, 1, 1]
shape(squeeze(t)) ==> [2, 3]

Or, to remove specific size 1 dimensions:

't' is a tensor of shape [1, 2, 1, 3, 1, 1]
shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]

Args:

		input: A Tensor. The input to squeeze.

		squeeze_dims: An optional list of ints. Defaults to [].
If specified, only squeezes the dimensions listed. The dimension
index starts at 0. It is an error to squeeze a dimension that is not 1.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
Contains the same data as input, but has one or more dimensions of
size 1 removed.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.image.resize_images.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.resize_images(images, size, method=0, align_corners=False) {#resize_images}

Resize images to size using the specified method.

Resized images will be distorted if their original aspect ratio is not
the same as size. To avoid distortions see
resize_image_with_crop_or_pad.

method can be one of:

		ResizeMethod.BILINEAR: [Bilinear interpolation.]
(https://en.wikipedia.org/wiki/Bilinear_interpolation)

		ResizeMethod.NEAREST_NEIGHBOR: [Nearest neighbor interpolation.]
(https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation)

		ResizeMethod.BICUBIC: [Bicubic interpolation.]
(https://en.wikipedia.org/wiki/Bicubic_interpolation)

		ResizeMethod.AREA: Area interpolation.

Args:

		images: 4-D Tensor of shape [batch, height, width, channels] or
3-D Tensor of shape [height, width, channels].

		size: A 1-D int32 Tensor of 2 elements: new_height, new_width. The
new size for the images.

		method: ResizeMethod. Defaults to ResizeMethod.BILINEAR.

		align_corners: bool. If true, exactly align all 4 corners of the input and
output. Defaults to false.

Raises:

		ValueError: if the shape of images is incompatible with the
shape arguments to this function

		ValueError: if size has invalid shape or type.

		ValueError: if an unsupported resize method is specified.

Returns:

If images was 4-D, a 4-D float Tensor of shape
[batch, new_height, new_width, channels].
If images was 3-D, a 3-D float Tensor of shape
[new_height, new_width, channels].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.training.NextQueuedSequenceBatch.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 NextQueuedSequenceBatch stores deferred SequenceQueueingStateSaver data.

This class is instantiated by SequenceQueueingStateSaver and is accessible
via its next_batch property.

tf.contrib.training.NextQueuedSequenceBatch.__init__(state_saver) {#NextQueuedSequenceBatch.init}

tf.contrib.training.NextQueuedSequenceBatch.batch_size {#NextQueuedSequenceBatch.batch_size}

The batch_size of the given batch.

Usually, this is the batch_size requested when initializing the SQSS, but
if allow_small_batch=True this will become smaller when inputs are
exhausted.

Returns:

A scalar integer tensor, the batch_size

tf.contrib.training.NextQueuedSequenceBatch.context {#NextQueuedSequenceBatch.context}

A dict mapping keys of input_context to batched context.

Returns:

A dict mapping keys of input_context to tensors.
If we had at input:

context["name"].get_shape() == [d1, d2, ...]

then for this property:

context["name"].get_shape() == [batch_size, d1, d2, ...]

tf.contrib.training.NextQueuedSequenceBatch.insertion_index {#NextQueuedSequenceBatch.insertion_index}

The insertion indices of the examples (when they were first added).

These indices start with the value -2**63 and increase with every
call to the prefetch op. Each whole example gets its own insertion
index, and this is used to prioritize the example so that its truncated
segments appear in adjacent iterations, even if new examples are inserted
by the prefetch op between iterations.

Returns:

An int64 vector of length batch_size, the insertion indices.

tf.contrib.training.NextQueuedSequenceBatch.key {#NextQueuedSequenceBatch.key}

The key names of the given truncated unrolled examples.

The format of the key is:

"%05d_of_%05d:%s" % (sequence, sequence_count, original_key)

where original_key is the unique key read in by the prefetcher.

Returns:

A string vector of length batch_size, the keys.

tf.contrib.training.NextQueuedSequenceBatch.length {#NextQueuedSequenceBatch.length}

The lengths of the given truncated unrolled examples.

For initial iterations, for which sequence * num_unroll < length,
this number is num_unroll. For the remainder,
this number is between 0 and num_unroll.

Returns:

An integer vector of length batch_size, the lengths.

tf.contrib.training.NextQueuedSequenceBatch.next_key {#NextQueuedSequenceBatch.next_key}

The key names of the next (in iteration) truncated unrolled examples.

The format of the key is:

"%05d_of_%05d:%s" % (sequence + 1, sequence_count, original_key)

if sequence + 1 < sequence_count, otherwise:

"STOP:%s" % original_key

where original_key is the unique key read in by the prefetcher.

Returns:

A string vector of length batch_size, the keys.

tf.contrib.training.NextQueuedSequenceBatch.save_state(state_name, value, name=None) {#NextQueuedSequenceBatch.save_state}

Returns an op to save the current batch of state state_name.

Args:

		state_name: string, matches a key provided in initial_states.

		value: A Tensor.
Its type must match that of initial_states[state_name].dtype.
If we had at input:

initial_states[state_name].get_shape() == [d1, d2, ...]

then the shape of value must match:

tf.shape(value) == [batch_size, d1, d2, ...]

		name: string (optional). The name scope for newly created ops.

Returns:

A control flow op that stores the new state of each entry into
the state saver. This op must be run for every iteration that
accesses data from the state saver (otherwise the state saver
will never progress through its states and run out of capacity).

Raises:

		KeyError: if state_name does not match any of the initial states
declared in initial_states.

tf.contrib.training.NextQueuedSequenceBatch.sequence {#NextQueuedSequenceBatch.sequence}

An int32 vector, length batch_size: the sequence index of each entry.

When an input is split up, the sequence values

0, 1, ..., sequence_count - 1

are assigned to each split.

Returns:

An int32 vector Tensor.

tf.contrib.training.NextQueuedSequenceBatch.sequence_count {#NextQueuedSequenceBatch.sequence_count}

An int32 vector, length batch_size: the sequence count of each entry.

When an input is split up, the number of splits is equal to:
padded_length / num_unroll. This is the sequence_count.

Returns:

An int32 vector Tensor.

tf.contrib.training.NextQueuedSequenceBatch.sequences {#NextQueuedSequenceBatch.sequences}

A dict mapping keys of input_sequences to split and rebatched data.

Returns:

A dict mapping keys of input_sequences to tensors.
If we had at input:

sequences["name"].get_shape() == [None, d1, d2, ...]

where None meant the sequence time was dynamic, then for this property:

sequences["name"].get_shape() == [batch_size, num_unroll, d1, d2, ...].

tf.contrib.training.NextQueuedSequenceBatch.state(state_name) {#NextQueuedSequenceBatch.state}

Returns batched state tensors.

Args:

		state_name: string, matches a key provided in initial_states.

Returns:

A Tensor: a batched set of states, either initial states (if this is
the first run of the given example), or a value as stored during
a previous iteration via save_state control flow.
Its type is the same as initial_states["state_name"].dtype.
If we had at input:

initial_states[state_name].get_shape() == [d1, d2, ...],

then

state(state_name).get_shape() == [batch_size, d1, d2, ...]

Raises:

		KeyError: if state_name does not match any of the initial states
declared in initial_states.

tf.contrib.training.NextQueuedSequenceBatch.total_length {#NextQueuedSequenceBatch.total_length}

The lengths of the original (non-truncated) unrolled examples.

Returns:

An integer vector of length batch_size, the total lengths.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.scatter_div.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.scatter_div(ref, indices, updates, use_locking=None, name=None) {#scatter_div}

Divides a variable reference by sparse updates.

This operation computes

Scalar indices
ref[indices, ...] /= updates[...]

Vector indices (for each i)
ref[indices[i], ...] /= updates[i, ...]

High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] /= updates[i, ..., j, ...]

This operation outputs ref after the update is done.
This makes it easier to chain operations that need to use the reset value.

Duplicate entries are handled correctly: if multiple indices reference
the same location, their contributions divide.

Requires updates.shape = indices.shape + ref.shape[1:].

Args:

		ref: A mutable Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
Should be from a Variable node.

		indices: A Tensor. Must be one of the following types: int32, int64.
A tensor of indices into the first dimension of ref.

		updates: A Tensor. Must have the same type as ref.
A tensor of values that ref is divided by.

		use_locking: An optional bool. Defaults to False.
If True, the operation will be protected by a lock;
otherwise the behavior is undefined, but may exhibit less contention.

		name: A name for the operation (optional).

Returns:

Same as ref. Returned as a convenience for operations that want
to use the updated values after the update is done.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.train.update_checkpoint_state.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.update_checkpoint_state(save_dir, model_checkpoint_path, all_model_checkpoint_paths=None, latest_filename=None) {#update_checkpoint_state}

Updates the content of the ‘checkpoint’ file.

This updates the checkpoint file containing a CheckpointState
proto.

Args:

		save_dir: Directory where the model was saved.

		model_checkpoint_path: The checkpoint file.

		all_model_checkpoint_paths: List of strings. Paths to all not-yet-deleted
checkpoints, sorted from oldest to newest. If this is a non-empty list,
the last element must be equal to model_checkpoint_path. These paths
are also saved in the CheckpointState proto.

		latest_filename: Optional name of the checkpoint file. Default to
‘checkpoint’.

Raises:

		RuntimeError: If the save paths conflict.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.set_random_seed.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.set_random_seed(seed) {#set_random_seed}

Sets the graph-level random seed.

Operations that rely on a random seed actually derive it from two seeds:
the graph-level and operation-level seeds. This sets the graph-level seed.

Its interactions with operation-level seeds is as follows:

		If neither the graph-level nor the operation seed is set:
A random seed is used for this op.

		If the graph-level seed is set, but the operation seed is not:
The system deterministically picks an operation seed in conjunction
with the graph-level seed so that it gets a unique random sequence.

		If the graph-level seed is not set, but the operation seed is set:
A default graph-level seed and the specified operation seed are used to
determine the random sequence.

		If both the graph-level and the operation seed are set:
Both seeds are used in conjunction to determine the random sequence.

To illustrate the user-visible effects, consider these examples:

To generate different sequences across sessions, set neither
graph-level nor op-level seeds:

a = tf.random_uniform([1])
b = tf.random_normal([1])

print("Session 1")
with tf.Session() as sess1:
 print(sess1.run(a)) # generates 'A1'
 print(sess1.run(a)) # generates 'A2'
 print(sess1.run(b)) # generates 'B1'
 print(sess1.run(b)) # generates 'B2'

print("Session 2")
with tf.Session() as sess2:
 print(sess2.run(a)) # generates 'A3'
 print(sess2.run(a)) # generates 'A4'
 print(sess2.run(b)) # generates 'B3'
 print(sess2.run(b)) # generates 'B4'

To generate the same repeatable sequence for an op across sessions, set the
seed for the op:

a = tf.random_uniform([1], seed=1)
b = tf.random_normal([1])

Repeatedly running this block with the same graph will generate the same
sequence of values for 'a', but different sequences of values for 'b'.
print("Session 1")
with tf.Session() as sess1:
 print(sess1.run(a)) # generates 'A1'
 print(sess1.run(a)) # generates 'A2'
 print(sess1.run(b)) # generates 'B1'
 print(sess1.run(b)) # generates 'B2'

print("Session 2")
with tf.Session() as sess2:
 print(sess2.run(a)) # generates 'A1'
 print(sess2.run(a)) # generates 'A2'
 print(sess2.run(b)) # generates 'B3'
 print(sess2.run(b)) # generates 'B4'

To make the random sequences generated by all ops be repeatable across
sessions, set a graph-level seed:

tf.set_random_seed(1234)
a = tf.random_uniform([1])
b = tf.random_normal([1])

Repeatedly running this block with the same graph will generate different
sequences of 'a' and 'b'.
print("Session 1")
with tf.Session() as sess1:
 print(sess1.run(a)) # generates 'A1'
 print(sess1.run(a)) # generates 'A2'
 print(sess1.run(b)) # generates 'B1'
 print(sess1.run(b)) # generates 'B2'

print("Session 2")
with tf.Session() as sess2:
 print(sess2.run(a)) # generates 'A1'
 print(sess2.run(a)) # generates 'A2'
 print(sess2.run(b)) # generates 'B1'
 print(sess2.run(b)) # generates 'B2'

Args:

		seed: integer.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.assert_less.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.assert_less(x, y, data=None, summarize=None, message=None, name=None) {#assert_less}

Assert the condition x < y holds element-wise.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_less(x, y)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_less(x, y)], x)

This condition holds if for every pair of (possibly broadcast) elements
x[i], y[i], we have x[i] < y[i].
If both x and y are empty, this is trivially satisfied.

Args:

		x: Numeric Tensor.

		y: Numeric Tensor, same dtype as and broadcastable to x.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x, y.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional). Defaults to “assert_less”.

Returns:

Op that raises InvalidArgumentError if x < y is False.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.bayesflow.variational_inference.elbo_with_log_joint.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.bayesflow.variational_inference.elbo_with_log_joint(log_joint, variational=None, keep_batch_dim=True, form=None, name='ELBO') {#elbo_with_log_joint}

Evidence Lower BOund. log p(x) >= ELBO.

This method is for models that have computed p(x,Z) instead of p(x|Z).
See elbo for further details.

Because only the joint is specified, analytic KL is not available.

Args:

		log_joint: Tensor log p(x, Z).

		variational: list of DistributionTensor q(Z). If None, defaults to all
DistributionTensor objects upstream of log_joint.

		keep_batch_dim: bool. Whether to keep the batch dimension when summing
entropy term. When the sample is per data point, this should be True;
otherwise (e.g. in a Bayesian NN), this should be False.

		form: ELBOForms constant. Controls how the ELBO is computed. Defaults to
ELBOForms.default.

		name: name to prefix ops with.

Returns:

Tensor ELBO of the same type and shape as log_joint.

Raises:

		TypeError: if variationals in variational are not DistributionTensors.

		TypeError: if form is not a valid ELBOForms constant.

		ValueError: if variational is None and there are no DistributionTensors
upstream of log_joint.

		ValueError: if form is ELBOForms.analytic_kl.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.log.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.log(x, name=None) {#log}

Computes natural logarithm of x element-wise.

I.e., \(y = \log_e x\).

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.scatter_add.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.scatter_add(ref, indices, updates, use_locking=None, name=None) {#scatter_add}

Adds sparse updates to a variable reference.

This operation computes

Scalar indices
ref[indices, ...] += updates[...]

Vector indices (for each i)
ref[indices[i], ...] += updates[i, ...]

High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] += updates[i, ..., j, ...]

This operation outputs ref after the update is done.
This makes it easier to chain operations that need to use the reset value.

Duplicate entries are handled correctly: if multiple indices reference
the same location, their contributions add.

Requires updates.shape = indices.shape + ref.shape[1:].

[image:]

Args:

		ref: A mutable Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
Should be from a Variable node.

		indices: A Tensor. Must be one of the following types: int32, int64.
A tensor of indices into the first dimension of ref.

		updates: A Tensor. Must have the same type as ref.
A tensor of updated values to add to ref.

		use_locking: An optional bool. Defaults to False.
If True, the addition will be protected by a lock;
otherwise the behavior is undefined, but may exhibit less contention.

		name: A name for the operation (optional).

Returns:

Same as ref. Returned as a convenience for operations that want
to use the updated values after the update is done.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.sub.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sub(x, y, name=None) {#sub}

Returns x - y element-wise.

NOTE: Sub supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.graph_editor.copy_with_input_replacements.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.copy_with_input_replacements(sgv, replacement_ts, dst_graph=None, dst_scope='', src_scope='', reuse_dst_scope=False) {#copy_with_input_replacements}

Copy a subgraph, replacing some of its inputs.

Note a replacement only happens if the tensor to be replaced
is an input of the given subgraph. The inputs of a subgraph can
be queried using sgv.inputs.

Args:

		sgv: the source subgraph-view. This argument is converted to a subgraph
using the same rules as the function subgraph.make_view.

		replacement_ts: dictionary mapping from original tensors to the
replaced one.

		dst_graph: the destination graph.

		dst_scope: the destination scope.

		src_scope: the source scope.

		reuse_dst_scope: if True the dst_scope is re-used if it already exists.
Otherwise, the scope is given a unique name based on the one given
by appending an underscore followed by a digit (default).

Returns:

A tuple (sgv, info) where:
sgv is the transformed subgraph view;
info is an instance of Transformer.ResultInfo containing
information about the transform, including mapping between
original and transformed tensors and operations.

Raises:

		TypeError: if dst_graph is not a tf.Graph.

		StandardError: if sgv cannot be converted to a SubGraphView using
the same rules as the function subgraph.make_view.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.nn.bidirectional_dynamic_rnn.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.bidirectional_dynamic_rnn(cell_fw, cell_bw, inputs, sequence_length=None, initial_state_fw=None, initial_state_bw=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None) {#bidirectional_dynamic_rnn}

Creates a dynamic version of bidirectional recurrent neural network.

Similar to the unidirectional case above (rnn) but takes input and builds
independent forward and backward RNNs. The input_size of forward and
backward cell must match. The initial state for both directions is zero by
default (but can be set optionally) and no intermediate states are ever
returned – the network is fully unrolled for the given (passed in)
length(s) of the sequence(s) or completely unrolled if length(s) is not
given.

Args:

		cell_fw: An instance of RNNCell, to be used for forward direction.

		cell_bw: An instance of RNNCell, to be used for backward direction.

		inputs: The RNN inputs.
If time_major == False (default), this must be a tensor of shape:
[batch_size, max_time, input_size].
If time_major == True, this must be a tensor of shape:
[max_time, batch_size, input_size].
[batch_size, input_size].

		sequence_length: An int32/int64 vector, size [batch_size],
containing the actual lengths for each of the sequences.

		initial_state_fw: (optional) An initial state for the forward RNN.
This must be a tensor of appropriate type and shape
[batch_size, cell_fw.state_size].
If cell_fw.state_size is a tuple, this should be a tuple of
tensors having shapes [batch_size, s] for s in cell_fw.state_size.

		initial_state_bw: (optional) Same as for initial_state_fw, but using
the corresponding properties of cell_bw.

		dtype: (optional) The data type for the initial states and expected output.
Required if initial_states are not provided or RNN states have a
heterogeneous dtype.

		parallel_iterations: (Default: 32). The number of iterations to run in
parallel. Those operations which do not have any temporal dependency
and can be run in parallel, will be. This parameter trades off
time for space. Values >> 1 use more memory but take less time,
while smaller values use less memory but computations take longer.

		swap_memory: Transparently swap the tensors produced in forward inference
but needed for back prop from GPU to CPU. This allows training RNNs
which would typically not fit on a single GPU, with very minimal (or no)
performance penalty.

		time_major: The shape format of the inputs and outputs Tensors.
If true, these Tensors must be shaped [max_time, batch_size, depth].
If false, these Tensors must be shaped [batch_size, max_time, depth].
Using time_major = True is a bit more efficient because it avoids
transposes at the beginning and end of the RNN calculation. However,
most TensorFlow data is batch-major, so by default this function
accepts input and emits output in batch-major form.

		dtype: (optional) The data type for the initial state. Required if
initial_state is not provided.

		sequence_length: An int32/int64 vector, size [batch_size],
containing the actual lengths for each of the sequences.
either of the initial states are not provided.

		scope: VariableScope for the created subgraph; defaults to “BiRNN”

Returns:

A tuple (outputs, output_states) where:

		outputs: A tuple (output_fw, output_bw) containing the forward and
the backward rnn output Tensor.
If time_major == False (default),
output_fw will be a Tensor shaped:
[batch_size, max_time, cell_fw.output_size]
and output_bw will be a Tensor shaped:
[batch_size, max_time, cell_bw.output_size].
If time_major == True,
output_fw will be a Tensor shaped:
[max_time, batch_size, cell_fw.output_size]
and output_bw will be a Tensor shaped:
[max_time, batch_size, cell_bw.output_size].
It returns a tuple instead of a single concatenated Tensor, unlike
in the bidirectional_rnn. If the concatenated one is preferred,
the forward and backward outputs can be concatenated as
tf.concat(2, outputs).

		output_states: A tuple (output_state_fw, output_state_bw) containing
the forward and the backward final states of bidirectional rnn.

Raises:

		TypeError: If cell_fw or cell_bw is not an instance of RNNCell.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.clip_by_value.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.clip_by_value(t, clip_value_min, clip_value_max, name=None) {#clip_by_value}

Clips tensor values to a specified min and max.

Given a tensor t, this operation returns a tensor of the same type and
shape as t with its values clipped to clip_value_min and clip_value_max.
Any values less than clip_value_min are set to clip_value_min. Any values
greater than clip_value_max are set to clip_value_max.

Args:

		t: A Tensor.

		clip_value_min: A 0-D (scalar) Tensor. The minimum value to clip by.

		clip_value_max: A 0-D (scalar) Tensor. The maximum value to clip by.

		name: A name for the operation (optional).

Returns:

A clipped Tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.image.draw_bounding_boxes.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.draw_bounding_boxes(images, boxes, name=None) {#draw_bounding_boxes}

Draw bounding boxes on a batch of images.

Outputs a copy of images but draws on top of the pixels zero or more bounding
boxes specified by the locations in boxes. The coordinates of the each
bounding box in boxes are encoded as [y_min, x_min, y_max, x_max]. The
bounding box coordinates are floats in [0.0, 1.0] relative to the width and
height of the underlying image.

For example, if an image is 100 x 200 pixels and the bounding box is
[0.1, 0.2, 0.5, 0.9], the bottom-left and upper-right coordinates of the
bounding box will be (10, 40) to (50, 180).

Parts of the bounding box may fall outside the image.

Args:

		images: A Tensor. Must be one of the following types: float32, half.
4-D with shape [batch, height, width, depth]. A batch of images.

		boxes: A Tensor of type float32.
3-D with shape [batch, num_bounding_boxes, 4] containing bounding
boxes.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as images.
4-D with the same shape as images. The batch of input images with
bounding boxes drawn on the images.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.cross.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.cross(a, b, name=None) {#cross}

Compute the pairwise cross product.

a and b must be the same shape; they can either be simple 3-element vectors,
or any shape where the innermost dimension is 3. In the latter case, each pair
of corresponding 3-element vectors is cross-multiplied independently.

Args:

		a: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.
A tensor containing 3-element vectors.

		b: A Tensor. Must have the same type as a.
Another tensor, of same type and shape as a.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as a.
Pairwise cross product of the vectors in a and b.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.framework.get_graph_from_inputs.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.get_graph_from_inputs(op_input_list, graph=None) {#get_graph_from_inputs}

Returns the appropriate graph to use for the given inputs.

		If graph is provided, we validate that all inputs in op_input_list are
from the same graph.

		Otherwise, we attempt to select a graph from the first Operation- or
Tensor-valued input in op_input_list, and validate that all other
such inputs are in the same graph.

		If the graph was not specified and it could not be inferred from
op_input_list, we attempt to use the default graph.

Args:

		op_input_list: A list of inputs to an operation, which may include Tensor,
Operation, and other objects that may be converted to a graph element.

		graph: (Optional) The explicit graph to use.

Raises:

		TypeError: If op_input_list is not a list or tuple, or if graph is not a
Graph.

		ValueError: If a graph is explicitly passed and not all inputs are from it,
or if the inputs are from multiple graphs, or we could not find a graph
and there was no default graph.

Returns:

The appropriate graph to use for the given inputs.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.IndexedSlices.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A sparse representation of a set of tensor slices at given indices.

This class is a simple wrapper for a pair of Tensor objects:

		values: A Tensor of any dtype with shape [D0, D1, ..., Dn].

		indices: A 1-D integer Tensor with shape [D0].

An IndexedSlices is typically used to represent a subset of a larger
tensor dense of shape [LARGE0, D1, .. , DN] where LARGE0 >> D0.
The values in indices are the indices in the first dimension of
the slices that have been extracted from the larger tensor.

The dense tensor dense represented by an IndexedSlices slices has

dense[slices.indices[i], :, :, :, ...] = slices.values[i, :, :, :, ...]

The IndexedSlices class is used principally in the definition of
gradients for operations that have sparse gradients
(e.g. tf.gather).

Contrast this representation with
SparseTensor,
which uses multi-dimensional indices and scalar values.

tf.IndexedSlices.__init__(values, indices, dense_shape=None) {#IndexedSlices.init}

Creates an IndexedSlices.

tf.IndexedSlices.values {#IndexedSlices.values}

A Tensor containing the values of the slices.

tf.IndexedSlices.indices {#IndexedSlices.indices}

A 1-D Tensor containing the indices of the slices.

tf.IndexedSlices.dense_shape {#IndexedSlices.dense_shape}

A 1-D Tensor containing the shape of the corresponding dense tensor.

tf.IndexedSlices.name {#IndexedSlices.name}

The name of this IndexedSlices.

tf.IndexedSlices.dtype {#IndexedSlices.dtype}

The DType of elements in this tensor.

tf.IndexedSlices.device {#IndexedSlices.device}

The name of the device on which values will be produced, or None.

tf.IndexedSlices.op {#IndexedSlices.op}

The Operation that produces values as an output.

Other Methods

tf.IndexedSlices.__neg__() {#IndexedSlices.neg}

tf.IndexedSlices.__str__() {#IndexedSlices.str}

tf.IndexedSlices.graph {#IndexedSlices.graph}

The Graph that contains the values, indices, and shape tensors.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.FixedLenSequenceFeature.__new__.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.FixedLenSequenceFeature.__new__(_cls, shape, dtype, allow_missing=False) {#FixedLenSequenceFeature.new}

Create new instance of FixedLenSequenceFeature(shape, dtype, allow_missing)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.Tensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Represents one of the outputs of an Operation.

Note: the Tensor class will be replaced by Output in the future.
Currently these two are aliases for each other.

A Tensor is a symbolic handle to one of the outputs of an
Operation. It does not hold the values of that operation’s output,
but instead provides a means of computing those values in a
TensorFlow Session.

This class has two primary purposes:

		A Tensor can be passed as an input to another Operation.
This builds a dataflow connection between operations, which
enables TensorFlow to execute an entire Graph that represents a
large, multi-step computation.

		After the graph has been launched in a session, the value of the
Tensor can be computed by passing it to
Session.run().
t.eval() is a shortcut for calling
tf.get_default_session().run(t).

In the following example, c, d, and e are symbolic Tensor
objects, whereas result is a numpy array that stores a concrete
value:

Build a dataflow graph.
c = tf.constant([[1.0, 2.0], [3.0, 4.0]])
d = tf.constant([[1.0, 1.0], [0.0, 1.0]])
e = tf.matmul(c, d)

Construct a `Session` to execute the graph.
sess = tf.Session()

Execute the graph and store the value that `e` represents in `result`.
result = sess.run(e)

tf.Tensor.dtype {#Tensor.dtype}

The DType of elements in this tensor.

tf.Tensor.name {#Tensor.name}

The string name of this tensor.

tf.Tensor.value_index {#Tensor.value_index}

The index of this tensor in the outputs of its Operation.

tf.Tensor.graph {#Tensor.graph}

The Graph that contains this tensor.

tf.Tensor.op {#Tensor.op}

The Operation that produces this tensor as an output.

tf.Tensor.consumers() {#Tensor.consumers}

Returns a list of Operations that consume this tensor.

Returns:

A list of Operations.

tf.Tensor.eval(feed_dict=None, session=None) {#Tensor.eval}

Evaluates this tensor in a Session.

Calling this method will execute all preceding operations that
produce the inputs needed for the operation that produces this
tensor.

N.B. Before invoking Tensor.eval(), its graph must have been
launched in a session, and either a default session must be
available, or session must be specified explicitly.

Args:

		feed_dict: A dictionary that maps Tensor objects to feed values.
See Session.run() for a
description of the valid feed values.

		session: (Optional.) The Session to be used to evaluate this tensor. If
none, the default session will be used.

Returns:

A numpy array corresponding to the value of this tensor.

tf.Tensor.get_shape() {#Tensor.get_shape}

Returns the TensorShape that represents the shape of this tensor.

The shape is computed using shape inference functions that are
registered for each Operation type using tf.RegisterShape.
See TensorShape for more
details of what a shape represents.

The inferred shape of a tensor is used to provide shape
information without having to launch the graph in a session. This
can be used for debugging, and providing early error messages. For
example:

c = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])

print(c.get_shape())
==> TensorShape([Dimension(2), Dimension(3)])

d = tf.constant([[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0]])

print(d.get_shape())
==> TensorShape([Dimension(4), Dimension(2)])

Raises a ValueError, because `c` and `d` do not have compatible
inner dimensions.
e = tf.matmul(c, d)

f = tf.matmul(c, d, transpose_a=True, transpose_b=True)

print(f.get_shape())
==> TensorShape([Dimension(3), Dimension(4)])

In some cases, the inferred shape may have unknown dimensions. If
the caller has additional information about the values of these
dimensions, Tensor.set_shape() can be used to augment the
inferred shape.

Returns:

A TensorShape representing the shape of this tensor.

tf.Tensor.set_shape(shape) {#Tensor.set_shape}

Updates the shape of this tensor.

This method can be called multiple times, and will merge the given
shape with the current shape of this tensor. It can be used to
provide additional information about the shape of this tensor that
cannot be inferred from the graph alone. For example, this can be used
to provide additional information about the shapes of images:

_, image_data = tf.TFRecordReader(...).read(...)
image = tf.image.decode_png(image_data, channels=3)

The height and width dimensions of `image` are data dependent, and
cannot be computed without executing the op.
print(image.get_shape())
==> TensorShape([Dimension(None), Dimension(None), Dimension(3)])

We know that each image in this dataset is 28 x 28 pixels.
image.set_shape([28, 28, 3])
print(image.get_shape())
==> TensorShape([Dimension(28), Dimension(28), Dimension(3)])

Args:

		shape: A TensorShape representing the shape of this tensor.

Raises:

		ValueError: If shape is not compatible with the current shape of
this tensor.

Other Methods

tf.Tensor.__abs__(x, name=None) {#Tensor.abs}

Computes the absolute value of a tensor.

Given a tensor of real numbers x, this operation returns a tensor
containing the absolute value of each element in x. For example, if x is
an input element and y is an output element, this operation computes
\(y = |x|\).

See tf.complex_abs() to compute the absolute value of a complex
number.

Args:

		x: A Tensor or SparseTensor of type float32, float64, int32, or
int64.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor the same size and type as x with absolute
values.

tf.Tensor.__add__(x, y) {#Tensor.add}

Returns x + y element-wise.

NOTE: Add supports broadcasting. AddN does not. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, int16, int32, int64, complex64, complex128, string.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Tensor.__and__(x, y) {#Tensor.and}

Returns the truth value of x AND y element-wise.

NOTE: LogicalAnd supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor of type bool.

		y: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Tensor.__bool__() {#Tensor.bool}

Dummy method to prevent a tensor from being used as a Python bool.

This overload raises a TypeError when the user inadvertently
treats a Tensor as a boolean (e.g. in an if statement). For
example:

if tf.constant(True): # Will raise.
 # ...

if tf.constant(5) < tf.constant(7): # Will raise.
 # ...

Raises:

TypeError.

tf.Tensor.__div__(x, y) {#Tensor.div}

Returns x / y element-wise.

NOTE: Div supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Tensor.__eq__(other) {#Tensor.eq}

tf.Tensor.__floordiv__(x, y) {#Tensor.floordiv}

Divides x / y elementwise, rounding down for floating point.

The same as tf.div(x,y) for integers, but uses tf.floor(tf.div(x,y)) for
floating point arguments so that the result is always an integer (though
possibly an integer represented as floating point). This op is generated by
x // y floor division in Python 3 and in Python 2.7 with
from __future__ import division.

Note that for efficiency, floordiv uses C semantics for negative numbers
(unlike Python and Numpy).

x and y must have the same type, and the result will have the same type
as well.

Args:

		x: Tensor numerator of real numeric type.

		y: Tensor denominator of real numeric type.

		name: A name for the operation (optional).

Returns:

x / y rounded down (except possibly towards zero for negative integers).

Raises:

		TypeError: If the inputs are complex.

tf.Tensor.__ge__(x, y, name=None) {#Tensor.ge}

Returns the truth value of (x >= y) element-wise.

NOTE: GreaterEqual supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Tensor.__getitem__(tensor, slice_spec, var=None) {#Tensor.getitem}

Overload for Tensor.getitem.

This operation extracts the specified region from the tensor.
The notation is similar to NumPy with the restriction that
currently only support basic indexing. That means that
using a tensor as input is not currently allowed

Some useful examples:

strip leading and trailing 2 elements
foo = tf.constant([1,2,3,4,5,6])
print(foo[2:-2].eval()) # => [3,4]

skip every row and reverse every column
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
print(foo[::2,::-1].eval()) # => [[3,2,1], [9,8,7]]

Insert another dimension
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
print(foo[tf.newaxis, :, :].eval()) # => [[[3,2,1], [9,8,7]]]
print(foo[:, tf.newaxis, :].eval()) # => [[[3,2,1]], [[9,8,7]]]
print(foo[:, :, tf.newaxis].eval()) # => [[[3],[2],[1]], [[9],[8],[7]]]

Ellipses (3 equivalent operations)
print(foo[tf.newaxis, :, :].eval()) # => [[[3,2,1], [9,8,7]]]
print(foo[tf.newaxis, ...].eval()) # => [[[3,2,1], [9,8,7]]]
print(foo[tf.newaxis].eval()) # => [[[3,2,1], [9,8,7]]]

Notes:

		tf.newaxis is None as in NumPy.

		An implicit ellipsis is placed at the end of the slice_spec

		NumPy advanced indexing is currently not supported.

Args:

		tensor: An ops.Tensor object.

		slice_spec: The arguments to Tensor.getitem.

		var: In the case of variable slice assignment, the Variable
object to slice (i.e. tensor is the read-only view of this
variable).

Returns:

The appropriate slice of “tensor”, based on “slice_spec”.

Raises:

		ValueError: If a slice range is negative size.

		TypeError: If the slice indices aren’t int, slice, or Ellipsis.

tf.Tensor.__gt__(x, y, name=None) {#Tensor.gt}

Returns the truth value of (x > y) element-wise.

NOTE: Greater supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Tensor.__hash__() {#Tensor.hash}

tf.Tensor.__init__(op, value_index, dtype) {#Tensor.init}

Creates a new Tensor.

Args:

		op: An Operation. Operation that computes this tensor.

		value_index: An int. Index of the operation’s endpoint that produces
this tensor.

		dtype: A DType. Type of elements stored in this tensor.

Raises:

		TypeError: If the op is not an Operation.

tf.Tensor.__invert__(x, name=None) {#Tensor.invert}

Returns the truth value of NOT x element-wise.

Args:

		x: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Tensor.__iter__() {#Tensor.iter}

Dummy method to prevent iteration. Do not call.

NOTE(mrry): If we register getitem as an overloaded operator,
Python will valiantly attempt to iterate over the Tensor from 0 to
infinity. Declaring this method prevents this unintended
behavior.

Raises:

		TypeError: when invoked.

tf.Tensor.__le__(x, y, name=None) {#Tensor.le}

Returns the truth value of (x <= y) element-wise.

NOTE: LessEqual supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Tensor.__lt__(x, y, name=None) {#Tensor.lt}

Returns the truth value of (x < y) element-wise.

NOTE: Less supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Tensor.__mod__(x, y) {#Tensor.mod}

Returns element-wise remainder of division.

NOTE: Mod supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: int32, int64, float32, float64.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Tensor.__mul__(x, y) {#Tensor.mul}

Dispatches cwise mul for “DenseDense” and “DenseSparse”.

tf.Tensor.__neg__(x, name=None) {#Tensor.neg}

Computes numerical negative value element-wise.

I.e., \(y = -x\).

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Tensor.__nonzero__() {#Tensor.nonzero}

Dummy method to prevent a tensor from being used as a Python bool.

This is the Python 2.x counterpart to __bool__() above.

Raises:

TypeError.

tf.Tensor.__or__(x, y) {#Tensor.or}

Returns the truth value of x OR y element-wise.

NOTE: LogicalOr supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor of type bool.

		y: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Tensor.__pow__(x, y) {#Tensor.pow}

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for
corresponding elements in x and y. For example:

tensor 'x' is [[2, 2], [3, 3]]
tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]

Args:

		x: A Tensor of type float32, float64, int32, int64, complex64,
or complex128.

		y: A Tensor of type float32, float64, int32, int64, complex64,
or complex128.

		name: A name for the operation (optional).

Returns:

A Tensor.

tf.Tensor.__radd__(y, x) {#Tensor.radd}

Returns x + y element-wise.

NOTE: Add supports broadcasting. AddN does not. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, int16, int32, int64, complex64, complex128, string.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Tensor.__rand__(y, x) {#Tensor.rand}

Returns the truth value of x AND y element-wise.

NOTE: LogicalAnd supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor of type bool.

		y: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Tensor.__rdiv__(y, x) {#Tensor.rdiv}

Returns x / y element-wise.

NOTE: Div supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Tensor.__repr__() {#Tensor.repr}

tf.Tensor.__rfloordiv__(y, x) {#Tensor.rfloordiv}

Divides x / y elementwise, rounding down for floating point.

The same as tf.div(x,y) for integers, but uses tf.floor(tf.div(x,y)) for
floating point arguments so that the result is always an integer (though
possibly an integer represented as floating point). This op is generated by
x // y floor division in Python 3 and in Python 2.7 with
from __future__ import division.

Note that for efficiency, floordiv uses C semantics for negative numbers
(unlike Python and Numpy).

x and y must have the same type, and the result will have the same type
as well.

Args:

		x: Tensor numerator of real numeric type.

		y: Tensor denominator of real numeric type.

		name: A name for the operation (optional).

Returns:

x / y rounded down (except possibly towards zero for negative integers).

Raises:

		TypeError: If the inputs are complex.

tf.Tensor.__rmod__(y, x) {#Tensor.rmod}

Returns element-wise remainder of division.

NOTE: Mod supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: int32, int64, float32, float64.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Tensor.__rmul__(y, x) {#Tensor.rmul}

Dispatches cwise mul for “DenseDense” and “DenseSparse”.

tf.Tensor.__ror__(y, x) {#Tensor.ror}

Returns the truth value of x OR y element-wise.

NOTE: LogicalOr supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor of type bool.

		y: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Tensor.__rpow__(y, x) {#Tensor.rpow}

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for
corresponding elements in x and y. For example:

tensor 'x' is [[2, 2], [3, 3]]
tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]

Args:

		x: A Tensor of type float32, float64, int32, int64, complex64,
or complex128.

		y: A Tensor of type float32, float64, int32, int64, complex64,
or complex128.

		name: A name for the operation (optional).

Returns:

A Tensor.

tf.Tensor.__rsub__(y, x) {#Tensor.rsub}

Returns x - y element-wise.

NOTE: Sub supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Tensor.__rtruediv__(y, x) {#Tensor.rtruediv}

Divides x / y elementwise, always producing floating point results.

The same as tf.div for floating point arguments, but casts integer arguments
to floating point before dividing so that the result is always floating point.
This op is generated by normal x / y division in Python 3 and in Python 2.7
with from __future__ import division. If you want integer division that
rounds down, use x // y or tf.floordiv.

x and y must have the same numeric type. If the inputs are floating
point, the output will have the same type. If the inputs are integral, the
inputs are cast to float32 for int8 and int16 and float64 for int32
and int64 (matching the behavior of Numpy).

Args:

		x: Tensor numerator of numeric type.

		y: Tensor denominator of numeric type.

		name: A name for the operation (optional).

Returns:

x / y evaluated in floating point.

Raises:

		TypeError: If x and y have different dtypes.

tf.Tensor.__rxor__(y, x) {#Tensor.rxor}

x ^ y = (x | y) & ~(x & y).

tf.Tensor.__str__() {#Tensor.str}

tf.Tensor.__sub__(x, y) {#Tensor.sub}

Returns x - y element-wise.

NOTE: Sub supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Tensor.__truediv__(x, y) {#Tensor.truediv}

Divides x / y elementwise, always producing floating point results.

The same as tf.div for floating point arguments, but casts integer arguments
to floating point before dividing so that the result is always floating point.
This op is generated by normal x / y division in Python 3 and in Python 2.7
with from __future__ import division. If you want integer division that
rounds down, use x // y or tf.floordiv.

x and y must have the same numeric type. If the inputs are floating
point, the output will have the same type. If the inputs are integral, the
inputs are cast to float32 for int8 and int16 and float64 for int32
and int64 (matching the behavior of Numpy).

Args:

		x: Tensor numerator of numeric type.

		y: Tensor denominator of numeric type.

		name: A name for the operation (optional).

Returns:

x / y evaluated in floating point.

Raises:

		TypeError: If x and y have different dtypes.

tf.Tensor.__xor__(x, y) {#Tensor.xor}

x ^ y = (x | y) & ~(x & y).

tf.Tensor.device {#Tensor.device}

The name of the device on which this tensor will be produced, or None.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.matrix_inverse.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.matrix_inverse(input, adjoint=None, name=None) {#matrix_inverse}

Computes the inverse of one or more square invertible matrices or their

adjoints (conjugate transposes).

The input is a tensor of shape [..., M, M] whose inner-most 2 dimensions
form square matrices. The output is a tensor of the same shape as the input
containing the inverse for all input submatrices [..., :, :].

The op uses LU decomposition with partial pivoting to compute the inverses.

If a matrix is not invertible there is no guarantee what the op does. It
may detect the condition and raise an exception or it may simply return a
garbage result.

Args:

		input: A Tensor. Must be one of the following types: float64, float32.
Shape is [..., M, M].

		adjoint: An optional bool. Defaults to False.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shape is [..., M, M].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.distributions.TransformedDistribution.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A Transformed Distribution.

A Transformed Distribution models p(y) given a base distribution p(x),
an invertible transform, y = f(x), and the determinant of the Jacobian of
f(x).

Shapes, type, and reparameterization are taken from the base distribution.

Mathematical details

		p(x) - probability distribution for random variable X

		p(y) - probability distribution for random variable Y

		f - transform

		g - inverse transform, g(f(x)) = x

		J(x) - Jacobian of f(x)

A Transformed Distribution exposes sample and pdf:

		sample: y = f(x), after drawing a sample of X.

		pdf: p(y) = p(x) / det|J(x)| = p(g(y)) / det|J(g(y))|

A simple example constructing a Log-Normal distribution from a Normal
distribution:

logit_normal = TransformedDistribution(
 base_dist_cls=tf.contrib.distributions.Normal,
 mu=mu,
 sigma=sigma,
 transform=lambda x: tf.sigmoid(x),
 inverse=lambda y: tf.log(y) - tf.log(1. - y),
 log_det_jacobian=(lambda x:
 tf.reduce_sum(tf.log(tf.sigmoid(x)) + tf.log(1. - tf.sigmoid(x)),
 reduction_indices=[-1])))
 name="LogitNormalTransformedDistribution"
)

tf.contrib.distributions.TransformedDistribution.__init__(base_dist_cls, transform, inverse, log_det_jacobian, name='TransformedDistribution', **base_dist_args) {#TransformedDistribution.init}

Construct a Transformed Distribution.

Args:

		base_dist_cls: the base distribution class to transform. Must be a
subclass of Distribution.

		transform: a callable that takes a Tensor sample from base_dist and
returns a Tensor of the same shape and type. x => y.

		inverse: a callable that computes the inverse of transform. y => x. If
None, users can only call log_pdf on values returned by sample.

		log_det_jacobian: a callable that takes a Tensor sample from base_dist
and returns the log of the determinant of the Jacobian of transform.

		name: The name for the distribution.

		**base_dist_args: kwargs to pass on to dist_cls on construction.

Raises:

		TypeError: if base_dist_cls is not a subclass of
Distribution.

tf.contrib.distributions.TransformedDistribution.allow_nan_stats {#TransformedDistribution.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.TransformedDistribution.base_distribution {#TransformedDistribution.base_distribution}

Base distribution, p(x).

tf.contrib.distributions.TransformedDistribution.batch_shape(name='batch_shape') {#TransformedDistribution.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.TransformedDistribution.cdf(value, name='cdf') {#TransformedDistribution.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.TransformedDistribution.dtype {#TransformedDistribution.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.TransformedDistribution.entropy(name='entropy') {#TransformedDistribution.entropy}

Shanon entropy in nats.

tf.contrib.distributions.TransformedDistribution.event_shape(name='event_shape') {#TransformedDistribution.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.TransformedDistribution.get_batch_shape() {#TransformedDistribution.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.TransformedDistribution.get_event_shape() {#TransformedDistribution.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.TransformedDistribution.inverse {#TransformedDistribution.inverse}

Inverse function of transform, y => x.

tf.contrib.distributions.TransformedDistribution.is_continuous {#TransformedDistribution.is_continuous}

tf.contrib.distributions.TransformedDistribution.is_reparameterized {#TransformedDistribution.is_reparameterized}

tf.contrib.distributions.TransformedDistribution.log_cdf(value, name='log_cdf') {#TransformedDistribution.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.TransformedDistribution.log_det_jacobian {#TransformedDistribution.log_det_jacobian}

Function computing the log determinant of the Jacobian of transform.

tf.contrib.distributions.TransformedDistribution.log_pdf(value, name='log_pdf') {#TransformedDistribution.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.TransformedDistribution.log_pmf(value, name='log_pmf') {#TransformedDistribution.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.TransformedDistribution.log_prob(value, name='log_prob') {#TransformedDistribution.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.TransformedDistribution.log_survival_function(value, name='log_survival_function') {#TransformedDistribution.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.TransformedDistribution.mean(name='mean') {#TransformedDistribution.mean}

Mean.

tf.contrib.distributions.TransformedDistribution.mode(name='mode') {#TransformedDistribution.mode}

Mode.

tf.contrib.distributions.TransformedDistribution.name {#TransformedDistribution.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.TransformedDistribution.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#TransformedDistribution.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.TransformedDistribution.param_static_shapes(cls, sample_shape) {#TransformedDistribution.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.TransformedDistribution.parameters {#TransformedDistribution.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.TransformedDistribution.pdf(value, name='pdf') {#TransformedDistribution.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.TransformedDistribution.pmf(value, name='pmf') {#TransformedDistribution.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.TransformedDistribution.prob(value, name='prob') {#TransformedDistribution.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.TransformedDistribution.sample(sample_shape=(), seed=None, name='sample') {#TransformedDistribution.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.TransformedDistribution.sample_n(n, seed=None, name='sample_n') {#TransformedDistribution.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.TransformedDistribution.std(name='std') {#TransformedDistribution.std}

Standard deviation.

tf.contrib.distributions.TransformedDistribution.survival_function(value, name='survival_function') {#TransformedDistribution.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.TransformedDistribution.transform {#TransformedDistribution.transform}

Function transforming x => y.

tf.contrib.distributions.TransformedDistribution.validate_args {#TransformedDistribution.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.TransformedDistribution.variance(name='variance') {#TransformedDistribution.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.image.crop_to_bounding_box.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.crop_to_bounding_box(image, offset_height, offset_width, target_height, target_width) {#crop_to_bounding_box}

Crops an image to a specified bounding box.

This op cuts a rectangular part out of image. The top-left corner of the
returned image is at offset_height, offset_width in image, and its
lower-right corner is at
offset_height + target_height, offset_width + target_width.

Args:

		image: 3-D tensor with shape [height, width, channels]

		offset_height: Vertical coordinate of the top-left corner of the result in
the input.

		offset_width: Horizontal coordinate of the top-left corner of the result in
the input.

		target_height: Height of the result.

		target_width: Width of the result.

Returns:

3-D tensor of image with shape [target_height, target_width, channels]

Raises:

		ValueError: If the shape of image is incompatible with the offset_* or
target_* arguments, or either offset_height or offset_width is
negative, or either target_height or target_width is not positive.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.convert_to_tensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.convert_to_tensor(value, dtype=None, name=None, as_ref=False, preferred_dtype=None) {#convert_to_tensor}

Converts the given value to a Tensor.

This function converts Python objects of various types to Tensor
objects. It accepts Tensor objects, numpy arrays, Python lists,
and Python scalars. For example:

import numpy as np

def my_func(arg):
 arg = tf.convert_to_tensor(arg, dtype=tf.float32)
 return tf.matmul(arg, arg) + arg

The following calls are equivalent.
value_1 = my_func(tf.constant([[1.0, 2.0], [3.0, 4.0]]))
value_2 = my_func([[1.0, 2.0], [3.0, 4.0]])
value_3 = my_func(np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32))

This function can be useful when composing a new operation in Python
(such as my_func in the example above). All standard Python op
constructors apply this function to each of their Tensor-valued
inputs, which allows those ops to accept numpy arrays, Python lists,
and scalars in addition to Tensor objects.

Args:

		value: An object whose type has a registered Tensor conversion function.

		dtype: Optional element type for the returned tensor. If missing, the
type is inferred from the type of value.

		name: Optional name to use if a new Tensor is created.

		as_ref: True if we want the result as a ref tensor. Only used if a new
Tensor is created.

		preferred_dtype: Optional element type for the returned tensor,
used when dtype is None. In some cases, a caller may not have a
dtype in mind when converting to a tensor, so preferred_dtype
can be used as a soft preference. If the conversion to
preferred_dtype is not possible, this argument has no effect.

Returns:

A Tensor based on value.

Raises:

		TypeError: If no conversion function is registered for value.

		RuntimeError: If a registered conversion function returns an invalid value.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.nn.rnn_cell.LSTMStateTuple.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Tuple used by LSTM Cells for state_size, zero_state, and output state.

Stores two elements: (c, h), in that order.

Only used when state_is_tuple=True.

tf.nn.rnn_cell.LSTMStateTuple.__getnewargs__() {#LSTMStateTuple.getnewargs}

Return self as a plain tuple. Used by copy and pickle.

tf.nn.rnn_cell.LSTMStateTuple.__getstate__() {#LSTMStateTuple.getstate}

Exclude the OrderedDict from pickling

tf.nn.rnn_cell.LSTMStateTuple.__new__(_cls, c, h) {#LSTMStateTuple.new}

Create new instance of LSTMStateTuple(c, h)

tf.nn.rnn_cell.LSTMStateTuple.__repr__() {#LSTMStateTuple.repr}

Return a nicely formatted representation string

tf.nn.rnn_cell.LSTMStateTuple.c {#LSTMStateTuple.c}

Alias for field number 0

tf.nn.rnn_cell.LSTMStateTuple.dtype {#LSTMStateTuple.dtype}

tf.nn.rnn_cell.LSTMStateTuple.h {#LSTMStateTuple.h}

Alias for field number 1

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.rnn.GridLSTMCell.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Grid Long short-term memory unit (LSTM) recurrent network cell.

The default is based on:
Nal Kalchbrenner, Ivo Danihelka and Alex Graves
“Grid Long Short-Term Memory,” Proc. ICLR 2016.
http://arxiv.org/abs/1507.01526

When peephole connections are used, the implementation is based on:
Tara N. Sainath and Bo Li
“Modeling Time-Frequency Patterns with LSTM vs. Convolutional Architectures
for LVCSR Tasks.” submitted to INTERSPEECH, 2016.

The code uses optional peephole connections, shared_weights and cell clipping.

tf.contrib.rnn.GridLSTMCell.__call__(inputs, state, scope=None) {#GridLSTMCell.call}

Run one step of LSTM.

Args:

		inputs: input Tensor, 2D, batch x num_units.

		state: state Tensor, 2D, batch x state_size.

		scope: VariableScope for the created subgraph; defaults to “LSTMCell”.

Returns:

A tuple containing:

		A 2D, batch x output_dim, Tensor representing the output of the LSTM
after reading “inputs” when previous state was “state”.
Here output_dim is num_units.

		A 2D, batch x state_size, Tensor representing the new state of LSTM
after reading “inputs” when previous state was “state”.

Raises:

		ValueError: if an input_size was specified and the provided inputs have
a different dimension.

tf.contrib.rnn.GridLSTMCell.__init__(num_units, use_peepholes=False, share_time_frequency_weights=False, cell_clip=None, initializer=None, num_unit_shards=1, forget_bias=1.0, feature_size=None, frequency_skip=None, num_frequency_blocks=1, couple_input_forget_gates=False, state_is_tuple=False) {#GridLSTMCell.init}

Initialize the parameters for an LSTM cell.

Args:

		num_units: int, The number of units in the LSTM cell

		use_peepholes: bool, default False. Set True to enable diagonal/peephole
connections.

		share_time_frequency_weights: bool, default False. Set True to enable
shared cell weights between time and frequency LSTMs.

		cell_clip: (optional) A float value, if provided the cell state is clipped
by this value prior to the cell output activation.

		initializer: (optional) The initializer to use for the weight and
projection matrices.

		num_unit_shards: int, How to split the weight matrix. If >1, the weight
matrix is stored across num_unit_shards.

		forget_bias: float, Biases of the forget gate are initialized by default
to 1 in order to reduce the scale of forgetting at the beginning
of the training.

		feature_size: int, The size of the input feature the LSTM spans over.

		frequency_skip: int, The amount the LSTM filter is shifted by in
frequency.

		num_frequency_blocks: int, The total number of frequency blocks needed to
cover the whole input feature.

		couple_input_forget_gates: bool, Whether to couple the input and forget
gates, i.e. f_gate = 1.0 - i_gate, to reduce model parameters and
computation cost.

		state_is_tuple: If True, accepted and returned states are 2-tuples of
the c_state and m_state. By default (False), they are concatenated
along the column axis. This default behavior will soon be deprecated.

tf.contrib.rnn.GridLSTMCell.output_size {#GridLSTMCell.output_size}

tf.contrib.rnn.GridLSTMCell.state_size {#GridLSTMCell.state_size}

tf.contrib.rnn.GridLSTMCell.state_tuple_type {#GridLSTMCell.state_tuple_type}

tf.contrib.rnn.GridLSTMCell.zero_state(batch_size, dtype) {#GridLSTMCell.zero_state}

Return zero-filled state tensor(s).

Args:

		batch_size: int, float, or unit Tensor representing the batch size.

		dtype: the data type to use for the state.

Returns:

If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.sequence_mask.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sequence_mask(lengths, maxlen=None, dtype=tf.bool, name=None) {#sequence_mask}

Return a mask tensor representing the first N positions of each row.

Example:

tf.sequence_mask([1, 3, 2], 5) =
 [[True, False, False, False, False],
 [True, True, True, False, False],
 [True, True, False, False, False]]

Args:

		lengths: 1D integer tensor, all its values < maxlen.

		maxlen: scalar integer tensor, maximum length of each row. Default: use
maximum over lengths.

		dtype: output type of the resulting tensor.

		name: name of the op.

Returns:

A 2D mask tensor, as shown in the example above, cast to specified dtype.

Raises:

		ValueError: if the arguments have invalid rank.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.nn.normalize_moments.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.normalize_moments(counts, mean_ss, variance_ss, shift, name=None) {#normalize_moments}

Calculate the mean and variance of based on the sufficient statistics.

Args:

		counts: A Tensor containing a the total count of the data (one value).

		mean_ss: A Tensor containing the mean sufficient statistics: the (possibly
shifted) sum of the elements to average over.

		variance_ss: A Tensor containing the variance sufficient statistics: the
(possibly shifted) squared sum of the data to compute the variance over.

		shift: A Tensor containing the value by which the data is shifted for
numerical stability, or None if no shift was performed.

		name: Name used to scope the operations that compute the moments.

Returns:

Two Tensor objects: mean and variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.bayesflow.stochastic_tensor.MeanValue.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.bayesflow.stochastic_tensor.MeanValue.__init__(stop_gradient=False) {#MeanValue.init}

tf.contrib.bayesflow.stochastic_tensor.MeanValue.declare_inputs(unused_stochastic_tensor, unused_inputs_dict) {#MeanValue.declare_inputs}

tf.contrib.bayesflow.stochastic_tensor.MeanValue.popped_above(unused_value_type) {#MeanValue.popped_above}

tf.contrib.bayesflow.stochastic_tensor.MeanValue.pushed_above(unused_value_type) {#MeanValue.pushed_above}

tf.contrib.bayesflow.stochastic_tensor.MeanValue.stop_gradient {#MeanValue.stop_gradient}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.losses.sum_of_pairwise_squares.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.losses.sum_of_pairwise_squares(*args, **kwargs) {#sum_of_pairwise_squares}

Adds a pairwise-errors-squared loss to the training procedure. (deprecated)

THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-01.
Instructions for updating:
Use mean_pairwise_squared_error.

Unlike the sum_of_squares loss, which is a measure of the differences between
corresponding elements of predictions and targets, sum_of_pairwise_squares
is a measure of the differences between pairs of corresponding elements of
predictions and targets.

For example, if targets=[a, b, c] and predictions=[x, y, z], there are
three pairs of differences are summed to compute the loss:
loss = [((a-b) - (x-y)).^2 + ((a-c) - (x-z)).^2 + ((b-c) - (y-z)).^2] / 3

Note that since the inputs are of size [batch_size, d0, ... dN], the
corresponding pairs are computed within each batch sample but not across
samples within a batch. For example, if predictions represents a batch of
16 grayscale images of dimenion [batch_size, 100, 200], then the set of pairs
is drawn from each image, but not across images.

weight acts as a coefficient for the loss. If a scalar is provided, then the
loss is simply scaled by the given value. If weight is a tensor of size
[batch_size], then the total loss for each sample of the batch is rescaled
by the corresponding element in the weight vector.

Args:
predictions: The predicted outputs, a tensor of size [batch_size, d0, .. dN]
where N+1 is the total number of dimensions in predictions.
targets: The ground truth output tensor, whose shape must match the shape of
the predictions tensor.
weight: Coefficients for the loss a scalar, a tensor of shape [batch_size]
or a tensor whose shape matches predictions.
scope: The scope for the operations performed in computing the loss.

Returns:
A scalar Tensor representing the loss value.

Raises:
ValueError: If the shape of predictions doesn’t match that of targets or
if the shape of weight is invalid.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.layers.max_pool2d.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.max_pool2d(*args, **kwargs) {#max_pool2d}

Adds a 2D Max Pooling op.

It is assumed that the pooling is done per image but not in batch or channels.

Args:

		inputs: A Tensor of size [batch_size, height, width, channels].

		kernel_size: A list of length 2: [kernel_height, kernel_width] of the
pooling kernel over which the op is computed. Can be an int if both
values are the same.

		stride: A list of length 2: [stride_height, stride_width].
Can be an int if both strides are the same. Note that presently
both strides must have the same value.

		padding: The padding method, either ‘VALID’ or ‘SAME’.

		outputs_collections: The collections to which the outputs are added.

		scope: Optional scope for name_scope.

Returns:

A Tensor representing the results of the pooling operation.

Raises:

		ValueError: If ‘kernel_size’ is not a 2-D list

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.nn.embedding_lookup_sparse.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.embedding_lookup_sparse(params, sp_ids, sp_weights, partition_strategy='mod', name=None, combiner=None) {#embedding_lookup_sparse}

Computes embeddings for the given ids and weights.

This op assumes that there is at least one id for each row in the dense tensor
represented by sp_ids (i.e. there are no rows with empty features), and that
all the indices of sp_ids are in canonical row-major order.

It also assumes that all id values lie in the range [0, p0), where p0
is the sum of the size of params along dimension 0.

Args:

		params: A single tensor representing the complete embedding tensor,
or a list of P tensors all of same shape except for the first dimension,
representing sharded embedding tensors.

		sp_ids: N x M SparseTensor of int64 ids (typically from FeatureValueToId),
where N is typically batch size and M is arbitrary.

		sp_weights: either a SparseTensor of float / double weights, or None to
indicate all weights should be taken to be 1. If specified, sp_weights
must have exactly the same shape and indices as sp_ids.

		partition_strategy: A string specifying the partitioning strategy, relevant
if len(params) > 1. Currently "div" and "mod" are supported. Default
is "mod". See tf.nn.embedding_lookup for more details.

		name: Optional name for the op.

		combiner: A string specifying the reduction op. Currently “mean”, “sqrtn”
and “sum” are supported.
“sum” computes the weighted sum of the embedding results for each row.
“mean” is the weighted sum divided by the total weight.
“sqrtn” is the weighted sum divided by the square root of the sum of the
squares of the weights.

Returns:

A dense tensor representing the combined embeddings for the
sparse ids. For each row in the dense tensor represented by sp_ids, the op
looks up the embeddings for all ids in that row, multiplies them by the
corresponding weight, and combines these embeddings as specified.

In other words, if
shape(combined params) = [p0, p1, ..., pm]
and
shape(sp_ids) = shape(sp_weights) = [d0, d1, ..., dn]
then
shape(output) = [d0, d1, ..., dn-1, p1, ..., pm].

For instance, if params is a 10x20 matrix, and sp_ids / sp_weights are

[0, 0]: id 1, weight 2.0
[0, 1]: id 3, weight 0.5
[1, 0]: id 0, weight 1.0
[2, 3]: id 1, weight 3.0

with combiner=”mean”, then the output will be a 3x20 matrix where
output[0, :] = (params[1, :] * 2.0 + params[3, :] * 0.5) / (2.0 + 0.5)
output[1, :] = params[0, :] * 1.0
output[2, :] = params[1, :] * 3.0

Raises:

		TypeError: If sp_ids is not a SparseTensor, or if sp_weights is neither
None nor SparseTensor.

		ValueError: If combiner is not one of {“mean”, “sqrtn”, “sum”}.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.train.batch.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.batch(tensors, batch_size, num_threads=1, capacity=32, enqueue_many=False, shapes=None, dynamic_pad=False, allow_smaller_final_batch=False, shared_name=None, name=None) {#batch}

Creates batches of tensors in tensors.

The argument tensors can be a list or a dictionary of tensors.
The value returned by the function will be of the same type
as tensors.

This function is implemented using a queue. A QueueRunner for the
queue is added to the current Graph‘s QUEUE_RUNNER collection.

If enqueue_many is False, tensors is assumed to represent a single
example. An input tensor with shape [x, y, z] will be output as a tensor
with shape [batch_size, x, y, z].

If enqueue_many is True, tensors is assumed to represent a batch of
examples, where the first dimension is indexed by example, and all members of
tensors should have the same size in the first dimension. If an input
tensor has shape [*, x, y, z], the output will have shape [batch_size, x, y, z]. The capacity argument controls the how long the prefetching is
allowed to grow the queues.

The returned operation is a dequeue operation and will throw
tf.errors.OutOfRangeError if the input queue is exhausted. If this
operation is feeding another input queue, its queue runner will catch
this exception, however, if this operation is used in your main thread
you are responsible for catching this yourself.

N.B.: If dynamic_pad is False, you must ensure that either
(i) the shapes argument is passed, or (ii) all of the tensors in
tensors must have fully-defined shapes. ValueError will be
raised if neither of these conditions holds.

If dynamic_pad is True, it is sufficient that the rank of the
tensors is known, but individual dimensions may have shape None.
In this case, for each enqueue the dimensions with value None
may have a variable length; upon dequeue, the output tensors will be padded
on the right to the maximum shape of the tensors in the current minibatch.
For numbers, this padding takes value 0. For strings, this padding is
the empty string. See PaddingFIFOQueue for more info.

If allow_smaller_final_batch is True, a smaller batch value than
batch_size is returned when the queue is closed and there are not enough
elements to fill the batch, otherwise the pending elements are discarded.
In addition, all output tensors’ static shapes, as accessed via the
get_shape method will have a first Dimension value of None, and
operations that depend on fixed batch_size would fail.

Args:

		tensors: The list or dictionary of tensors to enqueue.

		batch_size: The new batch size pulled from the queue.

		num_threads: The number of threads enqueuing tensors.

		capacity: An integer. The maximum number of elements in the queue.

		enqueue_many: Whether each tensor in tensors is a single example.

		shapes: (Optional) The shapes for each example. Defaults to the
inferred shapes for tensors.

		dynamic_pad: Boolean. Allow variable dimensions in input shapes.
The given dimensions are padded upon dequeue so that tensors within a
batch have the same shapes.

		allow_smaller_final_batch: (Optional) Boolean. If True, allow the final
batch to be smaller if there are insufficient items left in the queue.

		shared_name: (Optional). If set, this queue will be shared under the given
name across multiple sessions.

		name: (Optional) A name for the operations.

Returns:

A list or dictionary of tensors with the same types as tensors.

Raises:

		ValueError: If the shapes are not specified, and cannot be
inferred from the elements of tensors.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.nn.erosion2d.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.erosion2d(value, kernel, strides, rates, padding, name=None) {#erosion2d}

Computes the grayscale erosion of 4-D value and 3-D kernel tensors.

The value tensor has shape [batch, in_height, in_width, depth] and the
kernel tensor has shape [kernel_height, kernel_width, depth], i.e.,
each input channel is processed independently of the others with its own
structuring function. The output tensor has shape
[batch, out_height, out_width, depth]. The spatial dimensions of the
output tensor depend on the padding algorithm. We currently only support the
default “NHWC” data_format.

In detail, the grayscale morphological 2-D erosion is given by:

output[b, y, x, c] =
 min_{dy, dx} value[b,
 strides[1] * y - rates[1] * dy,
 strides[2] * x - rates[2] * dx,
 c] -
 kernel[dy, dx, c]

Duality: The erosion of value by the kernel is equal to the negation of
the dilation of -value by the reflected kernel.

Args:

		value: A Tensor. 4-D with shape [batch, in_height, in_width, depth].

		kernel: A Tensor. Must have the same type as value.
3-D with shape [kernel_height, kernel_width, depth].

		strides: A list of ints that has length >= 4.
1-D of length 4. The stride of the sliding window for each dimension of
the input tensor. Must be: [1, stride_height, stride_width, 1].

		rates: A list of ints that has length >= 4.
1-D of length 4. The input stride for atrous morphological dilation.
Must be: [1, rate_height, rate_width, 1].

		padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.

		name: A name for the operation (optional). If not specified “erosion2d”
is used.

Returns:

A Tensor. Has the same type as value.
4-D with shape [batch, out_height, out_width, depth].

Raises:

		ValueError: If the value depth does not match kernel‘ shape, or if
padding is other than 'VALID' or 'SAME'.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.Session.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A class for running TensorFlow operations.

A Session object encapsulates the environment in which Operation
objects are executed, and Tensor objects are evaluated. For
example:

Build a graph.
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b

Launch the graph in a session.
sess = tf.Session()

Evaluate the tensor `c`.
print(sess.run(c))

A session may own resources, such as
variables, queues,
and readers. It is important to release
these resources when they are no longer required. To do this, either
invoke the close() method on the session, or use
the session as a context manager. The following two examples are
equivalent:

Using the `close()` method.
sess = tf.Session()
sess.run(...)
sess.close()

Using the context manager.
with tf.Session() as sess:
 sess.run(...)

The [ConfigProto]
(https://www.tensorflow.org/code/tensorflow/core/protobuf/config.proto)
protocol buffer exposes various configuration options for a
session. For example, to create a session that uses soft constraints
for device placement, and log the resulting placement decisions,
create a session as follows:

Launch the graph in a session that allows soft device placement and
logs the placement decisions.
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
 log_device_placement=True))

tf.Session.__init__(target='', graph=None, config=None) {#Session.init}

Creates a new TensorFlow session.

If no graph argument is specified when constructing the session,
the default graph will be launched in the session. If you are
using more than one graph (created with tf.Graph() in the same
process, you will have to use different sessions for each graph,
but each graph can be used in multiple sessions. In this case, it
is often clearer to pass the graph to be launched explicitly to
the session constructor.

Args:

		target: (Optional.) The execution engine to connect to.
Defaults to using an in-process engine. See [Distributed Tensorflow]
(https://www.tensorflow.org/how_tos/distributed/index.html)
for more examples.

		graph: (Optional.) The Graph to be launched (described above).

		config: (Optional.) A ConfigProto [https://www.tensorflow.org/code/tensorflow/core/protobuf/config.proto]
protocol buffer with configuration options for the session.

tf.Session.run(fetches, feed_dict=None, options=None, run_metadata=None) {#Session.run}

Runs operations and evaluates tensors in fetches.

This method runs one “step” of TensorFlow computation, by
running the necessary graph fragment to execute every Operation
and evaluate every Tensor in fetches, substituting the values in
feed_dict for the corresponding input values.

The fetches argument may be a single graph element, or an arbitrarily
nested list, tuple, namedtuple, or dict containing graph elements at its
leaves. A graph element can be one of the following types:

		An Operation.
The corresponding fetched value will be None.

		A Tensor.
The corresponding fetched value will be a numpy ndarray containing the
value of that tensor.

		A SparseTensor.
The corresponding fetched value will be a
SparseTensorValue
containing the value of that sparse tensor.

		A get_tensor_handle op. The corresponding fetched value will be a
numpy ndarray containing the handle of that tensor.

		A string which is the name of a tensor or operation in the graph.

The value returned by run() has the same shape as the fetches argument,
where the leaves are replaced by the corresponding values returned by
TensorFlow.

Example:

 a = tf.constant([10, 20])
 b = tf.constant([1.0, 2.0])
 # 'fetches' can be a singleton
 v = session.run(a)
 # v is the numpy array [10, 20]
 # 'fetches' can be a list.
 v = session.run([a, b])
 # v a Python list with 2 numpy arrays: the numpy array [10, 20] and the
 # 1-D array [1.0, 2.0]
 # 'fetches' can be arbitrary lists, tuples, namedtuple, dicts:
 MyData = collections.namedtuple('MyData', ['a', 'b'])
 v = session.run({'k1': MyData(a, b), 'k2': [b, a]})
 # v is a dict with
 # v['k1'] is a MyData namedtuple with 'a' the numpy array [10, 20] and
 # 'b' the numpy array [1.0, 2.0]
 # v['k2'] is a list with the numpy array [1.0, 2.0] and the numpy array
 # [10, 20].

The optional feed_dict argument allows the caller to override
the value of tensors in the graph. Each key in feed_dict can be
one of the following types:

		If the key is a Tensor, the
value may be a Python scalar, string, list, or numpy ndarray
that can be converted to the same dtype as that
tensor. Additionally, if the key is a
placeholder, the shape of
the value will be checked for compatibility with the placeholder.

		If the key is a
SparseTensor,
the value should be a
SparseTensorValue.

		If the key is a nested tuple of Tensors or SparseTensors, the value
should be a nested tuple with the same structure that maps to their
corresponding values as above.

Each value in feed_dict must be convertible to a numpy array of the dtype
of the corresponding key.

The optional options argument expects a [RunOptions] proto. The options
allow controlling the behavior of this particular step (e.g. turning tracing
on).

The optional run_metadata argument expects a [RunMetadata] proto. When
appropriate, the non-Tensor output of this step will be collected there. For
example, when users turn on tracing in options, the profiled info will be
collected into this argument and passed back.

Args:

		fetches: A single graph element, a list of graph elements,
or a dictionary whose values are graph elements or lists of graph
elements (described above).

		feed_dict: A dictionary that maps graph elements to values
(described above).

		options: A [RunOptions] protocol buffer

		run_metadata: A [RunMetadata] protocol buffer

Returns:

Either a single value if fetches is a single graph element, or
a list of values if fetches is a list, or a dictionary with the
same keys as fetches if that is a dictionary (described above).

Raises:

		RuntimeError: If this Session is in an invalid state (e.g. has been
closed).

		TypeError: If fetches or feed_dict keys are of an inappropriate type.

		ValueError: If fetches or feed_dict keys are invalid or refer to a
Tensor that doesn’t exist.

tf.Session.close() {#Session.close}

Closes this session.

Calling this method frees all resources associated with the session.

Raises:

tf.errors.OpError: Or one of its subclasses if an error occurs while
closing the TensorFlow session.

tf.Session.graph {#Session.graph}

The graph that was launched in this session.

tf.Session.as_default() {#Session.as_default}

Returns a context manager that makes this object the default session.

Use with the with keyword to specify that calls to
Operation.run() or
Tensor.eval() should be
executed in this session.

c = tf.constant(..)
sess = tf.Session()

with sess.as_default():
 assert tf.get_default_session() is sess
 print(c.eval())

To get the current default session, use
tf.get_default_session().

N.B. The as_default context manager does not close the
session when you exit the context, and you must close the session
explicitly.

c = tf.constant(...)
sess = tf.Session()
with sess.as_default():
 print(c.eval())
...
with sess.as_default():
 print(c.eval())

sess.close()

Alternatively, you can use with tf.Session(): to create a
session that is automatically closed on exiting the context,
including when an uncaught exception is raised.

N.B. The default graph is a property of the current thread. If you
create a new thread, and wish to use the default session in that
thread, you must explicitly add a with sess.as_default(): in that
thread’s function.

Returns:

A context manager using this session as the default session.

tf.Session.reset(target, containers=None, config=None) {#Session.reset}

Resets resource containers on target, and close all connected sessions.

A resource container is distributed across all workers in the
same cluster as target. When a resource container on target
is reset, resources associated with that container will be cleared.
In particular, all Variables in the container will become undefined:
they lose their values and shapes.

NOTE:
(i) reset() is currently only implemented for distributed sessions.
(ii) Any sessions on the master named by target will be closed.

If no resource containers are provided, all containers are reset.

Args:

		target: The execution engine to connect to.

		containers: A list of resource container name strings, or None if all of
all the containers are to be reset.

		config: (Optional.) Protocol buffer with configuration options.

Raises:

tf.errors.OpError: Or one of its subclasses if an error occurs while
resetting containers.

Other Methods

tf.Session.__enter__() {#Session.enter}

tf.Session.__exit__(exec_type, exec_value, exec_tb) {#Session.exit}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.AggregationMethod.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A class listing aggregation methods used to combine gradients.

Computing partial derivatives can require aggregating gradient
contributions. This class lists the various methods that can
be used to combine gradients in the graph:

		ADD_N: All of the gradient terms are summed as part of one
operation using the “AddN” op. It has the property that all
gradients must be ready before any aggregation is performed.

		DEFAULT: The system-chosen default aggregation method.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.crf.crf_log_likelihood.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.crf.crf_log_likelihood(inputs, tag_indices, sequence_lengths, transition_params=None) {#crf_log_likelihood}

Computes the log-likehood of tag sequences in a CRF.

Args:

		inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials
to use as input to the CRF layer.

		tag_indices: A [batch_size, max_seq_len] matrix of tag indices for which we
compute the log-likehood.

		sequence_lengths: A [batch_size] vector of true sequence lengths.

		transition_params: A [num_tags, num_tags] transition matrix, if available.

Returns:

		log_likelihood: A scalar containing the log-likelihood of the given sequence
of tag indices.

		transition_params: A [num_tags, num_tags] transition matrix. This is either
provided by the caller or created in this function.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.nn.rnn_cell.MultiRNNCell.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 RNN cell composed sequentially of multiple simple cells.

tf.nn.rnn_cell.MultiRNNCell.__call__(inputs, state, scope=None) {#MultiRNNCell.call}

Run this multi-layer cell on inputs, starting from state.

tf.nn.rnn_cell.MultiRNNCell.__init__(cells, state_is_tuple=True) {#MultiRNNCell.init}

Create a RNN cell composed sequentially of a number of RNNCells.

Args:

		cells: list of RNNCells that will be composed in this order.

		state_is_tuple: If True, accepted and returned states are n-tuples, where
n = len(cells). If False, the states are all
concatenated along the column axis. This latter behavior will soon be
deprecated.

Raises:

		ValueError: if cells is empty (not allowed), or at least one of the cells
returns a state tuple but the flag state_is_tuple is False.

tf.nn.rnn_cell.MultiRNNCell.output_size {#MultiRNNCell.output_size}

tf.nn.rnn_cell.MultiRNNCell.state_size {#MultiRNNCell.state_size}

tf.nn.rnn_cell.MultiRNNCell.zero_state(batch_size, dtype) {#MultiRNNCell.zero_state}

Return zero-filled state tensor(s).

Args:

		batch_size: int, float, or unit Tensor representing the batch size.

		dtype: the data type to use for the state.

Returns:

If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.sparse_segment_sqrt_n.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_segment_sqrt_n(data, indices, segment_ids, name=None) {#sparse_segment_sqrt_n}

Computes the sum along sparse segments of a tensor divided by the sqrt of N.

N is the size of the segment being reduced.

Read the section on
Segmentation for an explanation
of segments.

Args:

		data: A Tensor. Must be one of the following types: float32, float64.

		indices: A Tensor. Must be one of the following types: int32, int64.
A 1-D tensor. Has same rank as segment_ids.

		segment_ids: A Tensor of type int32.
A 1-D tensor. Values should be sorted and can be repeated.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.
Has same shape as data, except for dimension 0 which
has size k, the number of segments.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.invert_permutation.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.invert_permutation(x, name=None) {#invert_permutation}

Computes the inverse permutation of a tensor.

This operation computes the inverse of an index permutation. It takes a 1-D
integer tensor x, which represents the indices of a zero-based array, and
swaps each value with its index position. In other words, for an output tensor
y and an input tensor x, this operation computes the following:

y[x[i]] = i for i in [0, 1, ..., len(x) - 1]

The values must include 0. There can be no duplicate values or negative values.

For example:

tensor `x` is [3, 4, 0, 2, 1]
invert_permutation(x) ==> [2, 4, 3, 0, 1]

Args:

		x: A Tensor. Must be one of the following types: int32, int64. 1-D.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x. 1-D.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.atan.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.atan(x, name=None) {#atan}

Computes atan of x element-wise.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.is_strictly_increasing.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.is_strictly_increasing(x, name=None) {#is_strictly_increasing}

Returns True if x is strictly increasing.

Elements of x are compared in row-major order. The tensor [x[0],...]
is strictly increasing if for every adjacent pair we have x[i] < x[i+1].
If x has less than two elements, it is trivially strictly increasing.

See also: is_non_decreasing

Args:

		x: Numeric Tensor.

		name: A name for this operation (optional).
Defaults to “is_strictly_increasing”

Returns:

Boolean Tensor, equal to True iff x is strictly increasing.

Raises:

		TypeError: if x is not a numeric tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.assert_negative.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.assert_negative(x, data=None, summarize=None, message=None, name=None) {#assert_negative}

Assert the condition x < 0 holds element-wise.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_negative(x)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_negative(x)], x)

Negative means, for every element x[i] of x, we have x[i] < 0.
If x is empty this is trivially satisfied.

Args:

		x: Numeric Tensor.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional). Defaults to “assert_negative”.

Returns:

Op raising InvalidArgumentError unless x is all negative.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.graph_editor.get_name_scope_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.get_name_scope_ops(ops, scope) {#get_name_scope_ops}

Get all the operations under the given scope path.

Args:

		ops: an object convertible to a list of tf.Operation.

		scope: a scope path.

Returns:

A list of tf.Operation.

Raises:

		TypeError: if ops cannot be converted to a list of tf.Operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.argmax.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.argmax(input, dimension, name=None) {#argmax}

Returns the index with the largest value across dimensions of a tensor.

Args:

		input: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.

		dimension: A Tensor. Must be one of the following types: int32, int64.
int32, 0 <= dimension < rank(input). Describes which dimension
of the input Tensor to reduce across. For vectors, use dimension = 0.

		name: A name for the operation (optional).

Returns:

A Tensor of type int64.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.merge_all_summaries.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.merge_all_summaries(key='summaries') {#merge_all_summaries}

Merges all summaries collected in the default graph.

Args:

		key: GraphKey used to collect the summaries. Defaults to
GraphKeys.SUMMARIES.

Returns:

If no summaries were collected, returns None. Otherwise returns a scalar
Tensor of type string containing the serialized Summary protocol
buffer resulting from the merging.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.training.bucket_by_sequence_length.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.training.bucket_by_sequence_length(input_length, tensors, batch_size, bucket_boundaries, num_threads=1, capacity=32, shapes=None, dynamic_pad=False, allow_smaller_final_batch=False, keep_input=None, shared_name=None, name=None) {#bucket_by_sequence_length}

Lazy bucketing of inputs according to their length.

This method calls tf.contrib.training.bucket under the hood, after first
subdividing the bucket boundaries into separate buckets and identifying which
bucket the given input_length belongs to. See the documentation for
which_bucket for details of the other arguments.

Args:

		input_length: int32 scalar Tensor, the sequence length of tensors.

		tensors: The list or dictionary of tensors, representing a single element,
to bucket. Nested lists are not supported.

		batch_size: The new batch size pulled from the queue
(python int or int32 scalar).

		bucket_boundaries: int list, increasing non-negative numbers.
The edges of the buckets to use when bucketing tensors. Two extra buckets
are created, one for input_length < bucket_boundaries[0] and
one for input_length >= bucket_boundaries[-1].

		num_threads: An integer. The number of threads enqueuing tensors.

		capacity: An integer. The maximum number of minibatches in the top queue,
and also the maximum number of elements within each bucket.

		shapes: (Optional) The shapes for each example. Defaults to the
inferred shapes for tensors.

		dynamic_pad: Boolean. Allow variable dimensions in input shapes.
The given dimensions are padded upon dequeue so that tensors within a
batch have the same shapes.

		allow_smaller_final_batch: (Optional) Boolean. If True, allow the final
batches to be smaller if there are insufficient items left in the queues.

		keep_input: (Optional). A bool scalar Tensor. If provided, this tensor
controls whether the input is added to the queue or not. If it evaluates
True, then tensors are added to the bucket; otherwise they are
dropped. This tensor essentially acts as a filtering mechanism.
The default behavior is to assume keep_input=True.

		shared_name: (Optional). If set, the queues will be shared under the given
name across multiple sessions.

		name: (Optional) A name for the operations.

Returns:

A tuple (sequence_length, outputs) where sequence_length is
a 1-D Tensor of size batch_size and outputs is a list or dictionary
of batched, bucketed, outputs corresponding to elements of tensors.

Raises:

		TypeError: if bucket_boundaries is not a list of python integers.

		ValueError: if bucket_boundaries is empty or contains non-increasing
values.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.nn.embedding_lookup.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.embedding_lookup(params, ids, partition_strategy='mod', name=None, validate_indices=True) {#embedding_lookup}

Looks up ids in a list of embedding tensors.

This function is used to perform parallel lookups on the list of
tensors in params. It is a generalization of
tf.gather(), where params is
interpreted as a partition of a larger embedding tensor.

If len(params) > 1, each element id of ids is partitioned between
the elements of params according to the partition_strategy.
In all strategies, if the id space does not evenly divide the number of
partitions, each of the first (max_id + 1) % len(params) partitions will
be assigned one more id.

If partition_strategy is "mod", we assign each id to partition
p = id % len(params). For instance,
13 ids are split across 5 partitions as:
[[0, 5, 10], [1, 6, 11], [2, 7, 12], [3, 8], [4, 9]]

If partition_strategy is "div", we assign ids to partitions in a
contiguous manner. In this case, 13 ids are split across 5 partitions as:
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10], [11, 12]]

The results of the lookup are concatenated into a dense
tensor. The returned tensor has shape shape(ids) + shape(params)[1:].

Args:

		params: A list of tensors with the same type and which can be concatenated
along dimension 0. Each Tensor must be appropriately sized for the given
partition_strategy.

		ids: A Tensor with type int32 or int64 containing the ids to be looked
up in params.

		partition_strategy: A string specifying the partitioning strategy, relevant
if len(params) > 1. Currently "div" and "mod" are supported. Default
is "mod".

		name: A name for the operation (optional).

		validate_indices: Whether or not to validate gather indices.

Returns:

A Tensor with the same type as the tensors in params.

Raises:

		ValueError: If params is empty.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.RegisterShape.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A decorator for registering the shape function for an op type.

This decorator is only used when defining a new op type. A shape
function is a function from an Operation object to a list of
TensorShape objects, with one TensorShape for each output of the
operation.

For example, assuming that operations of type "Sub" take two
inputs x and y, and return a single output x - y, all with the
same shape, the following shape function would be registered:

@tf.RegisterShape("Sub")
def _sub_shape(op):
 return [op.inputs[0].get_shape().merge_with(op.inputs[1].get_shape())]

The decorator argument op_type is the string type of an
operation. This corresponds to the OpDef.name field for the proto
that defines the operation.

tf.RegisterShape.__call__(f) {#RegisterShape.call}

Registers “f” as the shape function for “op_type”.

tf.RegisterShape.__init__(op_type) {#RegisterShape.init}

Saves the op_type as the Operation type.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.unpack.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.unpack(value, num=None, axis=0, name='unpack') {#unpack}

Unpacks the given dimension of a rank-R tensor into rank-(R-1) tensors.

Unpacks num tensors from value by chipping it along the axis dimension.
If num is not specified (the default), it is inferred from value‘s shape.
If value.shape[axis] is not known, ValueError is raised.

For example, given a tensor of shape (A, B, C, D);

If axis == 0 then the i’th tensor in output is the slice
value[i, :, :, :] and each tensor in output will have shape (B, C, D).
(Note that the dimension unpacked along is gone, unlike split).

If axis == 1 then the i’th tensor in output is the slice
value[:, i, :, :] and each tensor in output will have shape (A, C, D).
Etc.

This is the opposite of pack. The numpy equivalent is

tf.unpack(x, n) = list(x)

Args:

		value: A rank R > 0 Tensor to be unpacked.

		num: An int. The length of the dimension axis. Automatically inferred
if None (the default).

		axis: An int. The axis to unpack along. Defaults to the first
dimension. Supports negative indexes.

		name: A name for the operation (optional).

Returns:

The list of Tensor objects unpacked from value.

Raises:

		ValueError: If num is unspecified and cannot be inferred.

		ValueError: If axis is out of the range [-R, R).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.framework.with_same_shape.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.with_same_shape(expected_tensor, tensor) {#with_same_shape}

Assert tensors are the same shape, from the same graph.

Args:

		expected_tensor: Tensor with expected shape.

		tensor: Tensor of actual values.

Returns:

Tuple of (actual_tensor, label_tensor), possibly with assert ops added.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.graph_editor.get_backward_walk_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.get_backward_walk_ops(seed_ops, inclusive=True, within_ops=None, stop_at_ts=(), control_inputs=False) {#get_backward_walk_ops}

Do a backward graph walk and return all the visited ops.

Args:

		seed_ops: an iterable of operations from which the backward graph
walk starts. If a list of tensors is given instead, the seed_ops are set
to be the generators of those tensors.

		inclusive: if True the given seed_ops are also part of the resulting set.

		within_ops: an iterable of tf.Operation whithin which the search is
restricted. If within_ops is None, the search is performed within
the whole graph.

		stop_at_ts: an iterable of tensors at which the graph walk stops.

		control_inputs: if True, control inputs will be used while moving backward.

Returns:

A Python set of all the tf.Operation behind seed_ops.

Raises:

		TypeError: if seed_ops or within_ops cannot be converted to a list of
tf.Operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.metrics.streaming_recall_at_k.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.streaming_recall_at_k(*args, **kwargs) {#streaming_recall_at_k}

Computes the recall@k of the predictions with respect to dense labels. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-10-19.
Instructions for updating:
ignore_mask is being deprecated. Instead use weights with values 0.0 and 1.0 to mask values. For example, weights=tf.logical_not(mask).

The streaming_recall_at_k function creates two local variables, total and
count, that are used to compute the recall@k frequency. This frequency is
ultimately returned as recall_at_<k>: an idempotent operation that simply
divides total by count.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
recall_at_<k>. Internally, an in_top_k operation computes a Tensor with
shape [batch_size] whose elements indicate whether or not the corresponding
label is in the top k predictions. Then update_op increments total
with the reduced sum of weights where in_top_k is True, and it
increments count with the reduced sum of weights.

If weights is None, weights default to 1. Use weights of 0 to mask values.
Alternatively, if ignore_mask is not None, then mask values where
ignore_mask is True.

Args:
predictions: A floating point tensor of dimension [batch_size, num_classes]
labels: A tensor of dimension [batch_size] whose type is in int32,
int64.
k: The number of top elements to look at for computing recall.
ignore_mask: An optional, bool Tensor whose shape matches predictions.
weights: An optional Tensor whose shape is broadcastable to predictions.
metrics_collections: An optional list of collections that recall_at_k
should be added to.
updates_collections: An optional list of collections update_op should be
added to.
name: An optional variable_scope name.

Returns:
recall_at_k: A tensor representing the recall@k, the fraction of labels
which fall into the top k predictions.
update_op: An operation that increments the total and count variables
appropriately and whose value matches recall_at_k.

Raises:
ValueError: If predictions and labels have mismatched shapes, or if
ignore_mask is not None and its shape doesn’t match predictions, or
if weights is not None and its shape doesn’t match predictions, or
if either metrics_collections or updates_collections are not a list or
tuple.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.test.compute_gradient.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.test.compute_gradient(x, x_shape, y, y_shape, x_init_value=None, delta=0.001, init_targets=None) {#compute_gradient}

Computes and returns the theoretical and numerical Jacobian.

If x or y is complex, the Jacobian will still be real but the
corresponding Jacobian dimension(s) will be twice as large. This is required
even if both input and output is complex since TensorFlow graphs are not
necessarily holomorphic, and may have gradients not expressible as complex
numbers. For example, if x is complex with shape [m] and y is complex
with shape [n], each Jacobian J will have shape [m * 2, n * 2] with

J[:m, :n] = d(Re y)/d(Re x)
J[:m, n:] = d(Im y)/d(Re x)
J[m:, :n] = d(Re y)/d(Im x)
J[m:, n:] = d(Im y)/d(Im x)

Args:

		x: a tensor or list of tensors

		x_shape: the dimensions of x as a tuple or an array of ints. If x is a list,
then this is the list of shapes.

		y: a tensor

		y_shape: the dimensions of y as a tuple or an array of ints.

		x_init_value: (optional) a numpy array of the same shape as “x”
representing the initial value of x. If x is a list, this should be a list
of numpy arrays. If this is none, the function will pick a random tensor
as the initial value.

		delta: (optional) the amount of perturbation.

		init_targets: list of targets to run to initialize model params.
TODO(mrry): remove this argument.

Returns:

Two 2-d numpy arrays representing the theoretical and numerical
Jacobian for dy/dx. Each has “x_size” rows and “y_size” columns
where “x_size” is the number of elements in x and “y_size” is the
number of elements in y. If x is a list, returns a list of two numpy arrays.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.distributions.matrix_diag_transform.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.distributions.matrix_diag_transform(matrix, transform=None, name=None) {#matrix_diag_transform}

Transform diagonal of [batch-]matrix, leave rest of matrix unchanged.

Create a trainable covariance defined by a Cholesky factor:

Transform network layer into 2 x 2 array.
matrix_values = tf.contrib.layers.fully_connected(activations, 4)
matrix = tf.reshape(matrix_values, (batch_size, 2, 2))

Make the diagonal positive. If the upper triangle was zero, this would be a
valid Cholesky factor.
chol = matrix_diag_transform(matrix, transform=tf.nn.softplus)

OperatorPDCholesky ignores the upper triangle.
operator = OperatorPDCholesky(chol)

Example of heteroskedastic 2-D linear regression.

Get a trainable Cholesky factor.
matrix_values = tf.contrib.layers.fully_connected(activations, 4)
matrix = tf.reshape(matrix_values, (batch_size, 2, 2))
chol = matrix_diag_transform(matrix, transform=tf.nn.softplus)

Get a trainable mean.
mu = tf.contrib.layers.fully_connected(activations, 2)

This is a fully trainable multivariate normal!
dist = tf.contrib.distributions.MVNCholesky(mu, chol)

Standard log loss. Minimizing this will "train" mu and chol, and then dist
will be a distribution predicting labels as multivariate Gaussians.
loss = -1 * tf.reduce_mean(dist.log_pdf(labels))

Args:

		matrix: Rank R Tensor, R >= 2, where the last two dimensions are
equal.

		transform: Element-wise function mapping Tensors to Tensors. To
be applied to the diagonal of matrix. If None, matrix is returned
unchanged. Defaults to None.

		name: A name to give created ops.
Defaults to “matrix_diag_transform”.

Returns:

A Tensor with same shape and dtype as matrix.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.neg.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.neg(x, name=None) {#neg}

Computes numerical negative value element-wise.

I.e., (y = -x).

Args:

		x: A Tensor or SparseTensor. Must be one of the following types: half,
float32, float64, int32, int64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor, respectively. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 MultinomialTensor is a StochasticTensor backed by the distribution Multinomial.

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#MultinomialTensor.init}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.clone(name=None, **dist_args) {#MultinomialTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.distribution {#MultinomialTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.dtype {#MultinomialTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.entropy(name='entropy') {#MultinomialTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.graph {#MultinomialTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.input_dict {#MultinomialTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.loss(final_loss, name='Loss') {#MultinomialTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.mean(name='mean') {#MultinomialTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.name {#MultinomialTensor.name}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.value(name='value') {#MultinomialTensor.value}

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.value_type {#MultinomialTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.placeholder_with_default.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.placeholder_with_default(input, shape, name=None) {#placeholder_with_default}

A placeholder op that passes though input when its output is not fed.

Args:

		input: A Tensor. The default value to produce when output is not fed.

		shape: A tf.TensorShape or list of ints.
The (possibly partial) shape of the tensor.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
A placeholder tensor that defaults to input if it is not fed.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.nn.sampled_softmax_loss.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.sampled_softmax_loss(weights, biases, inputs, labels, num_sampled, num_classes, num_true=1, sampled_values=None, remove_accidental_hits=True, partition_strategy='mod', name='sampled_softmax_loss') {#sampled_softmax_loss}

Computes and returns the sampled softmax training loss.

This is a faster way to train a softmax classifier over a huge number of
classes.

This operation is for training only. It is generally an underestimate of
the full softmax loss.

At inference time, you can compute full softmax probabilities with the
expression tf.nn.softmax(tf.matmul(inputs, tf.transpose(weights)) + biases).

See our [Candidate Sampling Algorithms Reference]
(../../extras/candidate_sampling.pdf)

Also see Section 3 of Jean et al., 2014 [http://arxiv.org/abs/1412.2007]
(pdf [http://arxiv.org/pdf/1412.2007.pdf]) for the math.

Args:

		weights: A Tensor of shape [num_classes, dim], or a list of Tensor
objects whose concatenation along dimension 0 has shape
[num_classes, dim]. The (possibly-sharded) class embeddings.

		biases: A Tensor of shape [num_classes]. The class biases.

		inputs: A Tensor of shape [batch_size, dim]. The forward
activations of the input network.

		labels: A Tensor of type int64 and shape [batch_size, num_true]. The target classes. Note that this format differs from
the labels argument of nn.softmax_cross_entropy_with_logits.

		num_sampled: An int. The number of classes to randomly sample per batch.

		num_classes: An int. The number of possible classes.

		num_true: An int. The number of target classes per training example.

		sampled_values: a tuple of (sampled_candidates, true_expected_count,
sampled_expected_count) returned by a *_candidate_sampler function.
(if None, we default to log_uniform_candidate_sampler)

		remove_accidental_hits: A bool. whether to remove “accidental hits”
where a sampled class equals one of the target classes. Default is
True.

		partition_strategy: A string specifying the partitioning strategy, relevant
if len(weights) > 1. Currently "div" and "mod" are supported.
Default is "mod". See tf.nn.embedding_lookup for more details.

		name: A name for the operation (optional).

Returns:

A batch_size 1-D tensor of per-example sampled softmax losses.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.framework.get_variables_to_restore.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.get_variables_to_restore(include=None, exclude=None) {#get_variables_to_restore}

Gets the list of the variables to restore.

Args:

		include: an optional list/tuple of scope strings for filtering which
variables from the VARIABLES collection to include. None would include all
the variables.

		exclude: an optional list/tuple of scope strings for filtering which
variables from the VARIABLES collection to exclude. None it would not
exclude any.

Returns:

a list of variables to restore.

Raises:

		TypeError: include or exclude is provided but is not a list or a tuple.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.less_equal.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.less_equal(x, y, name=None) {#less_equal}

Returns the truth value of (x <= y) element-wise.

NOTE: LessEqual supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard1/tf.contrib.distributions.MultivariateNormalDiag.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 The multivariate normal distribution on R^k.

This distribution is defined by a 1-D mean mu and a 1-D diagonal
diag_stdev, representing the standard deviations. This distribution
assumes the random variables, (X_1,...,X_k) are independent, thus no
non-diagonal terms of the covariance matrix are needed.

This allows for O(k) pdf evaluation, sampling, and storage.

Mathematical details

The PDF of this distribution is defined in terms of the diagonal covariance
determined by diag_stdev: C_{ii} = diag_stdev[i]**2.

f(x) = (2 pi)^(-k/2) |det(C)|^(-1/2) exp(-1/2 (x - mu)^T C^{-1} (x - mu))

Examples

A single multi-variate Gaussian distribution is defined by a vector of means
of length k, and the square roots of the (independent) random variables.

Extra leading dimensions, if provided, allow for batches.

Initialize a single 3-variate Gaussian with diagonal standard deviation.
mu = [1, 2, 3.]
diag_stdev = [4, 5, 6.]
dist = tf.contrib.distributions.MultivariateNormalDiag(mu, diag_stdev)

Evaluate this on an observation in R^3, returning a scalar.
dist.pdf([-1, 0, 1])

Initialize a batch of two 3-variate Gaussians.
mu = [[1, 2, 3], [11, 22, 33]] # shape 2 x 3
diag_stdev = ... # shape 2 x 3, positive.
dist = tf.contrib.distributions.MultivariateNormalDiag(mu, diag_stdev)

Evaluate this on a two observations, each in R^3, returning a length two
tensor.
x = [[-1, 0, 1], [-11, 0, 11]] # Shape 2 x 3.
dist.pdf(x)

tf.contrib.distributions.MultivariateNormalDiag.__init__(mu, diag_stdev, validate_args=False, allow_nan_stats=True, name='MultivariateNormalDiag') {#MultivariateNormalDiag.init}

Multivariate Normal distributions on R^k.

User must provide means mu and standard deviations diag_stdev.
Each batch member represents a random vector (X_1,...,X_k) of independent
random normals.
The mean of X_i is mu[i], and the standard deviation is diag_stdev[i].

Args:

		mu: Rank N + 1 floating point tensor with shape [N1,...,Nb, k],
b >= 0.

		diag_stdev: Rank N + 1 Tensor with same dtype and shape as mu,
representing the standard deviations. Must be positive.

		validate_args: Boolean, default False. Whether to validate
input with asserts. If validate_args is False,
and the inputs are invalid, correct behavior is not guaranteed.

		allow_nan_stats: Boolean, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

		name: The name to give Ops created by the initializer.

Raises:

		TypeError: If mu and diag_stdev are different dtypes.

tf.contrib.distributions.MultivariateNormalDiag.allow_nan_stats {#MultivariateNormalDiag.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.MultivariateNormalDiag.batch_shape(name='batch_shape') {#MultivariateNormalDiag.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.MultivariateNormalDiag.cdf(value, name='cdf') {#MultivariateNormalDiag.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiag.dtype {#MultivariateNormalDiag.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.MultivariateNormalDiag.entropy(name='entropy') {#MultivariateNormalDiag.entropy}

Shanon entropy in nats.

tf.contrib.distributions.MultivariateNormalDiag.event_shape(name='event_shape') {#MultivariateNormalDiag.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.MultivariateNormalDiag.get_batch_shape() {#MultivariateNormalDiag.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.MultivariateNormalDiag.get_event_shape() {#MultivariateNormalDiag.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.MultivariateNormalDiag.is_continuous {#MultivariateNormalDiag.is_continuous}

tf.contrib.distributions.MultivariateNormalDiag.is_reparameterized {#MultivariateNormalDiag.is_reparameterized}

tf.contrib.distributions.MultivariateNormalDiag.log_cdf(value, name='log_cdf') {#MultivariateNormalDiag.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiag.log_pdf(value, name='log_pdf') {#MultivariateNormalDiag.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.MultivariateNormalDiag.log_pmf(value, name='log_pmf') {#MultivariateNormalDiag.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalDiag.log_prob(value, name='log_prob') {#MultivariateNormalDiag.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiag.log_sigma_det(name='log_sigma_det') {#MultivariateNormalDiag.log_sigma_det}

Log of determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalDiag.log_survival_function(value, name='log_survival_function') {#MultivariateNormalDiag.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.MultivariateNormalDiag.mean(name='mean') {#MultivariateNormalDiag.mean}

Mean.

tf.contrib.distributions.MultivariateNormalDiag.mode(name='mode') {#MultivariateNormalDiag.mode}

Mode.

tf.contrib.distributions.MultivariateNormalDiag.mu {#MultivariateNormalDiag.mu}

tf.contrib.distributions.MultivariateNormalDiag.name {#MultivariateNormalDiag.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.MultivariateNormalDiag.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#MultivariateNormalDiag.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.MultivariateNormalDiag.param_static_shapes(cls, sample_shape) {#MultivariateNormalDiag.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.MultivariateNormalDiag.parameters {#MultivariateNormalDiag.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.MultivariateNormalDiag.pdf(value, name='pdf') {#MultivariateNormalDiag.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.MultivariateNormalDiag.pmf(value, name='pmf') {#MultivariateNormalDiag.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalDiag.prob(value, name='prob') {#MultivariateNormalDiag.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiag.sample(sample_shape=(), seed=None, name='sample') {#MultivariateNormalDiag.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.MultivariateNormalDiag.sample_n(n, seed=None, name='sample_n') {#MultivariateNormalDiag.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.MultivariateNormalDiag.sigma {#MultivariateNormalDiag.sigma}

Dense (batch) covariance matrix, if available.

tf.contrib.distributions.MultivariateNormalDiag.sigma_det(name='sigma_det') {#MultivariateNormalDiag.sigma_det}

Determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalDiag.std(name='std') {#MultivariateNormalDiag.std}

Standard deviation.

tf.contrib.distributions.MultivariateNormalDiag.survival_function(value, name='survival_function') {#MultivariateNormalDiag.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.MultivariateNormalDiag.validate_args {#MultivariateNormalDiag.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.MultivariateNormalDiag.variance(name='variance') {#MultivariateNormalDiag.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.FixedLenSequenceFeature.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Configuration for a dense input feature in a sequence item.

To treat a sparse input as dense, provide allow_missing=True; otherwise,
the parse functions will fail on any examples missing this feature.

Fields:
shape: Shape of input data.
dtype: Data type of input.
allow_missing: Whether to allow this feature to be missing from a feature
list item.

tf.FixedLenSequenceFeature.__getnewargs__() {#FixedLenSequenceFeature.getnewargs}

Return self as a plain tuple. Used by copy and pickle.

tf.FixedLenSequenceFeature.__getstate__() {#FixedLenSequenceFeature.getstate}

Exclude the OrderedDict from pickling

tf.FixedLenSequenceFeature.__new__(_cls, shape, dtype, allow_missing=False) {#FixedLenSequenceFeature.new}

Create new instance of FixedLenSequenceFeature(shape, dtype, allow_missing)

tf.FixedLenSequenceFeature.__repr__() {#FixedLenSequenceFeature.repr}

Return a nicely formatted representation string

tf.FixedLenSequenceFeature.allow_missing {#FixedLenSequenceFeature.allow_missing}

Alias for field number 2

tf.FixedLenSequenceFeature.dtype {#FixedLenSequenceFeature.dtype}

Alias for field number 1

tf.FixedLenSequenceFeature.shape {#FixedLenSequenceFeature.shape}

Alias for field number 0

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.image.non_max_suppression.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.non_max_suppression(boxes, scores, max_output_size, iou_threshold=None, name=None) {#non_max_suppression}

Greedily selects a subset of bounding boxes in descending order of score,

pruning away boxes that have high intersection-over-union (IOU) overlap
with previously selected boxes. Bounding boxes are supplied as
[y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any
diagonal pair of box corners and the coordinates can be provided as normalized
(i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm
is agnostic to where the origin is in the coordinate system. Note that this
algorithm is invariant to orthogonal transformations and translations
of the coordinate system; thus translating or reflections of the coordinate
system result in the same boxes being selected by the algorithm.

The output of this operation is a set of integers indexing into the input
collection of bounding boxes representing the selected boxes. The bounding
box coordinates corresponding to the selected indices can then be obtained
using the tf.gather operation. For example:

selected_indices = tf.image.non_max_suppression(
boxes, scores, max_output_size, iou_threshold)
selected_boxes = tf.gather(boxes, selected_indices)

Args:

		boxes: A Tensor of type float32.
A 2-D float tensor of shape [num_boxes, 4].

		scores: A Tensor of type float32.
A 1-D float tensor of shape [num_boxes] representing a single
score corresponding to each box (each row of boxes).

		max_output_size: A Tensor of type int32.
A scalar integer tensor representing the maximum number of
boxes to be selected by non max suppression.

		iou_threshold: An optional float. Defaults to 0.5.
A float representing the threshold for deciding whether boxes
overlap too much with respect to IOU.

		name: A name for the operation (optional).

Returns:

A Tensor of type int32.
A 1-D integer tensor of shape [M] representing the selected
indices from the boxes tensor, where M <= max_output_size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.train.AdamOptimizer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Optimizer that implements the Adam algorithm.

See Kingma et. al., 2014 [http://arxiv.org/abs/1412.6980]
(pdf [http://arxiv.org/pdf/1412.6980.pdf]).

tf.train.AdamOptimizer.__init__(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, use_locking=False, name='Adam') {#AdamOptimizer.init}

Construct a new Adam optimizer.

Initialization:

m_0 <- 0 (Initialize initial 1st moment vector)
v_0 <- 0 (Initialize initial 2nd moment vector)
t <- 0 (Initialize timestep)

The update rule for variable with gradient g uses an optimization
described at the end of section2 of the paper:

t <- t + 1
lr_t <- learning_rate * sqrt(1 - beta2^t) / (1 - beta1^t)

m_t <- beta1 * m_{t-1} + (1 - beta1) * g
v_t <- beta2 * v_{t-1} + (1 - beta2) * g * g
variable <- variable - lr_t * m_t / (sqrt(v_t) + epsilon)

The default value of 1e-8 for epsilon might not be a good default in
general. For example, when training an Inception network on ImageNet a
current good choice is 1.0 or 0.1.

Note that in dense implement of this algorithm, m_t, v_t and variable will
update even if g is zero, but in sparse implement, m_t, v_t and variable
will not update in iterations g is zero.

Args:

		learning_rate: A Tensor or a floating point value. The learning rate.

		beta1: A float value or a constant float tensor.
The exponential decay rate for the 1st moment estimates.

		beta2: A float value or a constant float tensor.
The exponential decay rate for the 2nd moment estimates.

		epsilon: A small constant for numerical stability.

		use_locking: If True use locks for update operations.

		name: Optional name for the operations created when applying gradients.
Defaults to “Adam”.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.metrics.streaming_mean_iou.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.streaming_mean_iou(*args, **kwargs) {#streaming_mean_iou}

Calculate per-step mean Intersection-Over-Union (mIOU). (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-10-19.
Instructions for updating:
ignore_mask is being deprecated. Instead use weights with values 0.0 and 1.0 to mask values. For example, weights=tf.logical_not(mask).

Mean Intersection-Over-Union is a common evaluation metric for
semantic image segmentation, which first computes the IOU for each
semantic class and then computes the average over classes.
IOU is defined as follows:
IOU = true_positive / (true_positive + false_positive + false_negative).
The predictions are accumulated in a confusion matrix, weighted by weights,
and mIOU is then calculated from it.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the mean_iou.

If weights is None, weights default to 1. Use weights of 0 to mask values.
Alternatively, if ignore_mask is not None, then mask values where
ignore_mask is True.

Args:
predictions: A tensor of prediction results for semantic labels, whose
shape is [batch size] and type int32 or int64. The tensor will be
flattened, if its rank > 1.
labels: A tensor of ground truth labels with shape [batch size] and of
type int32 or int64. The tensor will be flattened, if its rank > 1.
num_classes: The possible number of labels the prediction task can
have. This value must be provided, since a confusion matrix of
dimension = [num_classes, num_classes] will be allocated.
ignore_mask: An optional, bool Tensor whose shape matches predictions.
weights: An optional Tensor whose shape is broadcastable to predictions.
metrics_collections: An optional list of collections that mean_iou
should be added to.
updates_collections: An optional list of collections update_op should be
added to.
name: An optional variable_scope name.

Returns:
mean_iou: A tensor representing the mean intersection-over-union.
update_op: An operation that increments the confusion matrix.

Raises:
ValueError: If predictions and labels have mismatched shapes, or if
ignore_mask is not None and its shape doesn’t match predictions, or
if weights is not None and its shape doesn’t match predictions, or
if either metrics_collections or updates_collections are not a list or
tuple.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.variable_axis_size_partitioner.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.variable_axis_size_partitioner(max_shard_bytes, axis=0, bytes_per_string_element=16, max_shards=None) {#variable_axis_size_partitioner}

Get a partitioner for VariableScope to keep shards below max_shard_bytes.

This partitioner will shard a Variable along one axis, attempting to keep
the maximum shard size below max_shard_bytes. In practice, this is not
always possible when sharding along only one axis. When this happens,
this axis is sharded as much as possible (i.e., every dimension becomes
a separate shard).

If the partitioner hits the max_shards limit, then each shard may end up
larger than max_shard_bytes. By default max_shards equals None and no
limit on the number of shards is enforced.

One reasonable value for max_shard_bytes is (64 << 20) - 1, or almost
64MB, to keep below the protobuf byte limit.

Args:

		max_shard_bytes: The maximum size any given shard is allowed to be.

		axis: The axis to partition along. Default: outermost axis.

		bytes_per_string_element: If the Variable is of type string, this provides
an estimate of how large each scalar in the Variable is.

		max_shards: The maximum number of shards in int created taking precedence
over max_shard_bytes.

Returns:

A partition function usable as the partitioner argument to
variable_scope, get_variable, and get_partitioned_variable_list.

Raises:

		ValueError: If any of the byte counts are non-positive.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.graph_editor.sgv.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.sgv(*args, **kwargs) {#sgv}

Create a SubGraphView from selected operations and passthrough tensors.

Args:

		*args: list of 1) regular expressions (compiled or not) or 2) (array of)
tf.Operation 3) (array of) tf.Tensor. Those objects will be converted
into a list of operations and a list of candidate for passthrough tensors.

		**kwargs: keyword graph is used 1) to check that the ops and ts are from
the correct graph 2) for regular expression query

Returns:

A subgraph view.

Raises:

		TypeError: if the optional keyword argument graph is not a tf.Graph
or if an argument in args is not an (array of) tf.Tensor
or an (array of) tf.Operation or a string or a regular expression.

		ValueError: if one of the keyword arguments is unexpected.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.rnn.LayerNormBasicLSTMCell.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 LSTM unit with layer normalization and recurrent dropout.

This class adds layer normalization and recurrent dropout to a
basic LSTM unit. Layer normalization implementation is based on:

https://arxiv.org/abs/1607.06450.

“Layer Normalization”
Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton

and is applied before the internal nonlinearities.
Recurrent dropout is base on:

https://arxiv.org/abs/1603.05118

“Recurrent Dropout without Memory Loss”
Stanislau Semeniuta, Aliaksei Severyn, Erhardt Barth.

tf.contrib.rnn.LayerNormBasicLSTMCell.__call__(inputs, state, scope=None) {#LayerNormBasicLSTMCell.call}

LSTM cell with layer normalization and recurrent dropout.

tf.contrib.rnn.LayerNormBasicLSTMCell.__init__(num_units, forget_bias=1.0, input_size=None, activation=tanh, layer_norm=True, norm_gain=1.0, norm_shift=0.0, dropout_keep_prob=1.0, dropout_prob_seed=None) {#LayerNormBasicLSTMCell.init}

Initializes the basic LSTM cell.

Args:

		num_units: int, The number of units in the LSTM cell.

		forget_bias: float, The bias added to forget gates (see above).

		input_size: Deprecated and unused.

		activation: Activation function of the inner states.

		layer_norm: If True, layer normalization will be applied.

		norm_gain: float, The layer normalization gain initial value. If
layer_norm has been set to False, this argument will be ignored.

		norm_shift: float, The layer normalization shift initial value. If
layer_norm has been set to False, this argument will be ignored.

		dropout_keep_prob: unit Tensor or float between 0 and 1 representing the
recurrent dropout probability value. If float and 1.0, no dropout will
be applied.

		dropout_prob_seed: (optional) integer, the randomness seed.

tf.contrib.rnn.LayerNormBasicLSTMCell.output_size {#LayerNormBasicLSTMCell.output_size}

tf.contrib.rnn.LayerNormBasicLSTMCell.state_size {#LayerNormBasicLSTMCell.state_size}

tf.contrib.rnn.LayerNormBasicLSTMCell.zero_state(batch_size, dtype) {#LayerNormBasicLSTMCell.zero_state}

Return zero-filled state tensor(s).

Args:

		batch_size: int, float, or unit Tensor representing the batch size.

		dtype: the data type to use for the state.

Returns:

If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.get_collection.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.get_collection(key, scope=None) {#get_collection}

Wrapper for Graph.get_collection() using the default graph.

See Graph.get_collection()
for more details.

Args:

		key: The key for the collection. For example, the GraphKeys class
contains many standard names for collections.

		scope: (Optional.) If supplied, the resulting list is filtered to include
only items whose name attribute matches using re.match. Items
without a name attribute are never returned if a scope is supplied and
the choice or re.match means that a scope without special tokens
filters by prefix.

Returns:

The list of values in the collection with the given name, or
an empty list if no value has been added to that collection. The
list contains the values in the order under which they were
collected.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.maximum.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.maximum(x, y, name=None) {#maximum}

Returns the max of x and y (i.e. x > y ? x : y) element-wise.

NOTE: Maximum supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.nn.batch_normalization.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.batch_normalization(x, mean, variance, offset, scale, variance_epsilon, name=None) {#batch_normalization}

Batch normalization.

As described in http://arxiv.org/abs/1502.03167.
Normalizes a tensor by mean and variance, and applies (optionally) a
scale \\(\gamma\\) to it, as well as an offset \\(\beta\\):

\\(\frac{\gamma(x-\mu)}{\sigma}+\beta\\)

mean, variance, offset and scale are all expected to be of one of two
shapes:

		In all generality, they can have the same number of dimensions as the
input x, with identical sizes as x for the dimensions that are not
normalized over (the ‘depth’ dimension(s)), and dimension 1 for the
others which are being normalized over.
mean and variance in this case would typically be the outputs of
tf.nn.moments(..., keep_dims=True) during training, or running averages
thereof during inference.

		In the common case where the ‘depth’ dimension is the last dimension in
the input tensor x, they may be one dimensional tensors of the same
size as the ‘depth’ dimension.
This is the case for example for the common [batch, depth] layout of
fully-connected layers, and [batch, height, width, depth] for
convolutions.
mean and variance in this case would typically be the outputs of
tf.nn.moments(..., keep_dims=False) during training, or running averages
thereof during inference.

Args:

		x: Input Tensor of arbitrary dimensionality.

		mean: A mean Tensor.

		variance: A variance Tensor.

		offset: An offset Tensor, often denoted \\(\beta\\) in equations, or
None. If present, will be added to the normalized tensor.

		scale: A scale Tensor, often denoted \\(\gamma\\) in equations, or
None. If present, the scale is applied to the normalized tensor.

		variance_epsilon: A small float number to avoid dividing by 0.

		name: A name for this operation (optional).

Returns:

the normalized, scaled, offset tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.QueueBase.from_list.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.QueueBase.from_list(index, queues) {#QueueBase.from_list}

Create a queue using the queue reference from queues[index].

Args:

		index: An integer scalar tensor that determines the input that gets
selected.

		queues: A list of QueueBase objects.

Returns:

A QueueBase object.

Raises:

		TypeError: When queues is not a list of QueueBase objects,
or when the data types of queues are not all the same.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.nn.softmax.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.softmax(logits, dim=-1, name=None) {#softmax}

Computes log softmax activations.

For each batch i and class j we have

softmax = exp(logits) / reduce_sum(exp(logits), dim)

Args:

		logits: A non-empty Tensor. Must be one of the following types: half,
float32, float64.

		dim: The dimension softmax would be performed on. The default is -1 which
indicates the last dimension.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as logits. Same shape as logits.

Raises:

		InvalidArgumentError: if logits is empty or dim is beyond the last
dimension of logits.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.layers.summarize_tensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.summarize_tensor(tensor, tag=None) {#summarize_tensor}

Summarize a tensor using a suitable summary type.

This function adds a summary op for tensor. The type of summary depends on
the shape of tensor. For scalars, a scalar_summary is created, for all
other tensors, histogram_summary is used.

Args:

		tensor: The tensor to summarize

		tag: The tag to use, if None then use tensor’s op’s name.

Returns:

The summary op created or None for string tensors.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.sparse_reduce_sum.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_reduce_sum(sp_input, reduction_axes=None, keep_dims=False) {#sparse_reduce_sum}

Computes the sum of elements across dimensions of a SparseTensor.

This Op takes a SparseTensor and is the sparse counterpart to
tf.reduce_sum(). In particular, this Op also returns a dense Tensor
instead of a sparse one.

Reduces sp_input along the dimensions given in reduction_axes. Unless
keep_dims is true, the rank of the tensor is reduced by 1 for each entry in
reduction_axes. If keep_dims is true, the reduced dimensions are retained
with length 1.

If reduction_axes has no entries, all dimensions are reduced, and a tensor
with a single element is returned. Additionally, the axes can be negative,
similar to the indexing rules in Python.

For example:

'x' represents [[1, ?, 1]
[?, 1, ?]]
where ? is implicitly-zero.
tf.sparse_reduce_sum(x) ==> 3
tf.sparse_reduce_sum(x, 0) ==> [1, 1, 1]
tf.sparse_reduce_sum(x, 1) ==> [2, 1] # Can also use -1 as the axis.
tf.sparse_reduce_sum(x, 1, keep_dims=True) ==> [[2], [1]]
tf.sparse_reduce_sum(x, [0, 1]) ==> 3

Args:

		sp_input: The SparseTensor to reduce. Should have numeric type.

		reduction_axes: The dimensions to reduce; list or scalar. If None (the
default), reduces all dimensions.

		keep_dims: If true, retain reduced dimensions with length 1.

Returns:

The reduced Tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.graph_editor.get_forward_walk_ops.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.get_forward_walk_ops(seed_ops, inclusive=True, within_ops=None, stop_at_ts=(), control_outputs=None) {#get_forward_walk_ops}

Do a forward graph walk and return all the visited ops.

Args:

		seed_ops: an iterable of operations from which the forward graph
walk starts. If a list of tensors is given instead, the seed_ops are set
to be the consumers of those tensors.

		inclusive: if True the given seed_ops are also part of the resulting set.

		within_ops: an iterable of tf.Operation whithin which the search is
restricted. If within_ops is None, the search is performed within
the whole graph.

		stop_at_ts: an iterable of tensors at which the graph walk stops.

		control_outputs: a util.ControlOutputs instance or None.
If not None, it will be used while walking the graph forward.

Returns:

A Python set of all the tf.Operation ahead of seed_ops.

Raises:

		TypeError: if seed_ops or within_ops cannot be converted to a list of
tf.Operation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.VarLenFeature.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Configuration for parsing a variable-length input feature.

Fields:
dtype: Data type of input.

tf.VarLenFeature.__getnewargs__() {#VarLenFeature.getnewargs}

Return self as a plain tuple. Used by copy and pickle.

tf.VarLenFeature.__getstate__() {#VarLenFeature.getstate}

Exclude the OrderedDict from pickling

tf.VarLenFeature.__new__(_cls, dtype) {#VarLenFeature.new}

Create new instance of VarLenFeature(dtype,)

tf.VarLenFeature.__repr__() {#VarLenFeature.repr}

Return a nicely formatted representation string

tf.VarLenFeature.dtype {#VarLenFeature.dtype}

Alias for field number 0

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.train.SummaryWriter.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Writes Summary protocol buffers to event files.

The SummaryWriter class provides a mechanism to create an event file in a
given directory and add summaries and events to it. The class updates the
file contents asynchronously. This allows a training program to call methods
to add data to the file directly from the training loop, without slowing down
training.

tf.train.SummaryWriter.__init__(logdir, graph=None, max_queue=10, flush_secs=120, graph_def=None) {#SummaryWriter.init}

Creates a SummaryWriter and an event file.

On construction the summary writer creates a new event file in logdir.
This event file will contain Event protocol buffers constructed when you
call one of the following functions: add_summary(), add_session_log(),
add_event(), or add_graph().

If you pass a Graph to the constructor it is added to
the event file. (This is equivalent to calling add_graph() later).

TensorBoard will pick the graph from the file and display it graphically so
you can interactively explore the graph you built. You will usually pass
the graph from the session in which you launched it:

...create a graph...
Launch the graph in a session.
sess = tf.Session()
Create a summary writer, add the 'graph' to the event file.
writer = tf.train.SummaryWriter(<some-directory>, sess.graph)

The other arguments to the constructor control the asynchronous writes to
the event file:

		flush_secs: How often, in seconds, to flush the added summaries
and events to disk.

		max_queue: Maximum number of summaries or events pending to be
written to disk before one of the ‘add’ calls block.

Args:

		logdir: A string. Directory where event file will be written.

		graph: A Graph object, such as sess.graph.

		max_queue: Integer. Size of the queue for pending events and summaries.

		flush_secs: Number. How often, in seconds, to flush the
pending events and summaries to disk.

		graph_def: DEPRECATED: Use the graph argument instead.

tf.train.SummaryWriter.add_summary(summary, global_step=None) {#SummaryWriter.add_summary}

Adds a Summary protocol buffer to the event file.

This method wraps the provided summary in an Event protocol buffer
and adds it to the event file.

You can pass the result of evaluating any summary op, using
Session.run() or
Tensor.eval(), to this
function. Alternatively, you can pass a tf.Summary protocol
buffer that you populate with your own data. The latter is
commonly done to report evaluation results in event files.

Args:

		summary: A Summary protocol buffer, optionally serialized as a string.

		global_step: Number. Optional global step value to record with the
summary.

tf.train.SummaryWriter.add_session_log(session_log, global_step=None) {#SummaryWriter.add_session_log}

Adds a SessionLog protocol buffer to the event file.

This method wraps the provided session in an Event procotol buffer
and adds it to the event file.

Args:

		session_log: A SessionLog protocol buffer.

		global_step: Number. Optional global step value to record with the
summary.

tf.train.SummaryWriter.add_event(event) {#SummaryWriter.add_event}

Adds an event to the event file.

Args:

		event: An Event protocol buffer.

tf.train.SummaryWriter.add_graph(graph, global_step=None, graph_def=None) {#SummaryWriter.add_graph}

Adds a Graph to the event file.

The graph described by the protocol buffer will be displayed by
TensorBoard. Most users pass a graph in the constructor instead.

Args:

		graph: A Graph object, such as sess.graph.

		global_step: Number. Optional global step counter to record with the
graph.

		graph_def: DEPRECATED. Use the graph parameter instead.

Raises:

		ValueError: If both graph and graph_def are passed to the method.

tf.train.SummaryWriter.add_run_metadata(run_metadata, tag, global_step=None) {#SummaryWriter.add_run_metadata}

Adds a metadata information for a single session.run() call.

Args:

		run_metadata: A RunMetadata protobuf object.

		tag: The tag name for this metadata.

		global_step: Number. Optional global step counter to record with the
StepStats.

Raises:

		ValueError: If the provided tag was already used for this type of event.

tf.train.SummaryWriter.get_logdir() {#SummaryWriter.get_logdir}

Returns the directory where event file will be written.

tf.train.SummaryWriter.flush() {#SummaryWriter.flush}

Flushes the event file to disk.

Call this method to make sure that all pending events have been written to
disk.

tf.train.SummaryWriter.close() {#SummaryWriter.close}

Flushes the event file to disk and close the file.

Call this method when you do not need the summary writer anymore.

Other Methods

tf.train.SummaryWriter.reopen() {#SummaryWriter.reopen}

Reopens the summary writer.

Can be called after close() to add more events in the same directory.
The events will go into a new events file.

Does nothing if the summary writer was not closed.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.distributions.LaplaceWithSoftplusScale.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Laplace with softplus applied to scale.

tf.contrib.distributions.LaplaceWithSoftplusScale.__init__(loc, scale, validate_args=False, allow_nan_stats=True, name='LaplaceWithSoftplusScale') {#LaplaceWithSoftplusScale.init}

tf.contrib.distributions.LaplaceWithSoftplusScale.allow_nan_stats {#LaplaceWithSoftplusScale.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.LaplaceWithSoftplusScale.batch_shape(name='batch_shape') {#LaplaceWithSoftplusScale.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.LaplaceWithSoftplusScale.cdf(value, name='cdf') {#LaplaceWithSoftplusScale.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.LaplaceWithSoftplusScale.dtype {#LaplaceWithSoftplusScale.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.LaplaceWithSoftplusScale.entropy(name='entropy') {#LaplaceWithSoftplusScale.entropy}

Shanon entropy in nats.

tf.contrib.distributions.LaplaceWithSoftplusScale.event_shape(name='event_shape') {#LaplaceWithSoftplusScale.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.LaplaceWithSoftplusScale.get_batch_shape() {#LaplaceWithSoftplusScale.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.LaplaceWithSoftplusScale.get_event_shape() {#LaplaceWithSoftplusScale.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.LaplaceWithSoftplusScale.is_continuous {#LaplaceWithSoftplusScale.is_continuous}

tf.contrib.distributions.LaplaceWithSoftplusScale.is_reparameterized {#LaplaceWithSoftplusScale.is_reparameterized}

tf.contrib.distributions.LaplaceWithSoftplusScale.loc {#LaplaceWithSoftplusScale.loc}

Distribution parameter for the location.

tf.contrib.distributions.LaplaceWithSoftplusScale.log_cdf(value, name='log_cdf') {#LaplaceWithSoftplusScale.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.LaplaceWithSoftplusScale.log_pdf(value, name='log_pdf') {#LaplaceWithSoftplusScale.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.LaplaceWithSoftplusScale.log_pmf(value, name='log_pmf') {#LaplaceWithSoftplusScale.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.LaplaceWithSoftplusScale.log_prob(value, name='log_prob') {#LaplaceWithSoftplusScale.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.LaplaceWithSoftplusScale.log_survival_function(value, name='log_survival_function') {#LaplaceWithSoftplusScale.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.LaplaceWithSoftplusScale.mean(name='mean') {#LaplaceWithSoftplusScale.mean}

Mean.

tf.contrib.distributions.LaplaceWithSoftplusScale.mode(name='mode') {#LaplaceWithSoftplusScale.mode}

Mode.

tf.contrib.distributions.LaplaceWithSoftplusScale.name {#LaplaceWithSoftplusScale.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.LaplaceWithSoftplusScale.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#LaplaceWithSoftplusScale.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.LaplaceWithSoftplusScale.param_static_shapes(cls, sample_shape) {#LaplaceWithSoftplusScale.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.LaplaceWithSoftplusScale.parameters {#LaplaceWithSoftplusScale.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.LaplaceWithSoftplusScale.pdf(value, name='pdf') {#LaplaceWithSoftplusScale.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.LaplaceWithSoftplusScale.pmf(value, name='pmf') {#LaplaceWithSoftplusScale.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.LaplaceWithSoftplusScale.prob(value, name='prob') {#LaplaceWithSoftplusScale.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.LaplaceWithSoftplusScale.sample(sample_shape=(), seed=None, name='sample') {#LaplaceWithSoftplusScale.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.LaplaceWithSoftplusScale.sample_n(n, seed=None, name='sample_n') {#LaplaceWithSoftplusScale.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.LaplaceWithSoftplusScale.scale {#LaplaceWithSoftplusScale.scale}

Distribution parameter for scale.

tf.contrib.distributions.LaplaceWithSoftplusScale.std(name='std') {#LaplaceWithSoftplusScale.std}

Standard deviation.

tf.contrib.distributions.LaplaceWithSoftplusScale.survival_function(value, name='survival_function') {#LaplaceWithSoftplusScale.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.LaplaceWithSoftplusScale.validate_args {#LaplaceWithSoftplusScale.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.LaplaceWithSoftplusScale.variance(name='variance') {#LaplaceWithSoftplusScale.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.Variable.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 See the Variables How To for a high
level overview.

A variable maintains state in the graph across calls to run(). You add a
variable to the graph by constructing an instance of the class Variable.

The Variable() constructor requires an initial value for the variable,
which can be a Tensor of any type and shape. The initial value defines the
type and shape of the variable. After construction, the type and shape of
the variable are fixed. The value can be changed using one of the assign
methods.

If you want to change the shape of a variable later you have to use an
assign Op with validate_shape=False.

Just like any Tensor, variables created with Variable() can be used as
inputs for other Ops in the graph. Additionally, all the operators
overloaded for the Tensor class are carried over to variables, so you can
also add nodes to the graph by just doing arithmetic on variables.

import tensorflow as tf

Create a variable.
w = tf.Variable(<initial-value>, name=<optional-name>)

Use the variable in the graph like any Tensor.
y = tf.matmul(w, ...another variable or tensor...)

The overloaded operators are available too.
z = tf.sigmoid(w + y)

Assign a new value to the variable with `assign()` or a related method.
w.assign(w + 1.0)
w.assign_add(1.0)

When you launch the graph, variables have to be explicitly initialized before
you can run Ops that use their value. You can initialize a variable by
running its initializer op, restoring the variable from a save file, or
simply running an assign Op that assigns a value to the variable. In fact,
the variable initializer op is just an assign Op that assigns the
variable’s initial value to the variable itself.

Launch the graph in a session.
with tf.Session() as sess:
 # Run the variable initializer.
 sess.run(w.initializer)
 # ...you now can run ops that use the value of 'w'...

The most common initialization pattern is to use the convenience function
initialize_all_variables() to add an Op to the graph that initializes
all the variables. You then run that Op after launching the graph.

Add an Op to initialize all variables.
init_op = tf.initialize_all_variables()

Launch the graph in a session.
with tf.Session() as sess:
 # Run the Op that initializes all variables.
 sess.run(init_op)
 # ...you can now run any Op that uses variable values...

If you need to create a variable with an initial value dependent on another
variable, use the other variable’s initialized_value(). This ensures that
variables are initialized in the right order.

All variables are automatically collected in the graph where they are
created. By default, the constructor adds the new variable to the graph
collection GraphKeys.VARIABLES. The convenience function
all_variables() returns the contents of that collection.

When building a machine learning model it is often convenient to distinguish
between variables holding the trainable model parameters and other variables
such as a global step variable used to count training steps. To make this
easier, the variable constructor supports a trainable=<bool> parameter. If
True, the new variable is also added to the graph collection
GraphKeys.TRAINABLE_VARIABLES. The convenience function
trainable_variables() returns the contents of this collection. The
various Optimizer classes use this collection as the default list of
variables to optimize.

Creating a variable.

tf.Variable.__init__(initial_value=None, trainable=True, collections=None, validate_shape=True, caching_device=None, name=None, variable_def=None, dtype=None) {#Variable.init}

Creates a new variable with value initial_value.

The new variable is added to the graph collections listed in collections,
which defaults to [GraphKeys.VARIABLES].

If trainable is True the variable is also added to the graph collection
GraphKeys.TRAINABLE_VARIABLES.

This constructor creates both a variable Op and an assign Op to set the
variable to its initial value.

Args:

		initial_value: A Tensor, or Python object convertible to a Tensor,
which is the initial value for the Variable. The initial value must have
a shape specified unless validate_shape is set to False. Can also be a
callable with no argument that returns the initial value when called. In
that case, dtype must be specified. (Note that initializer functions
from init_ops.py must first be bound to a shape before being used here.)

		trainable: If True, the default, also adds the variable to the graph
collection GraphKeys.TRAINABLE_VARIABLES. This collection is used as
the default list of variables to use by the Optimizer classes.

		collections: List of graph collections keys. The new variable is added to
these collections. Defaults to [GraphKeys.VARIABLES].

		validate_shape: If False, allows the variable to be initialized with a
value of unknown shape. If True, the default, the shape of
initial_value must be known.

		caching_device: Optional device string describing where the Variable
should be cached for reading. Defaults to the Variable’s device.
If not None, caches on another device. Typical use is to cache
on the device where the Ops using the Variable reside, to deduplicate
copying through Switch and other conditional statements.

		name: Optional name for the variable. Defaults to 'Variable' and gets
uniquified automatically.

		variable_def: VariableDef protocol buffer. If not None, recreates
the Variable object with its contents. variable_def and the other
arguments are mutually exclusive.

		dtype: If set, initial_value will be converted to the given type.
If None, either the datatype will be kept (if initial_value is
a Tensor), or convert_to_tensor will decide.

Raises:

		ValueError: If both variable_def and initial_value are specified.

		ValueError: If the initial value is not specified, or does not have a
shape and validate_shape is True.

tf.Variable.initialized_value() {#Variable.initialized_value}

Returns the value of the initialized variable.

You should use this instead of the variable itself to initialize another
variable with a value that depends on the value of this variable.

Initialize 'v' with a random tensor.
v = tf.Variable(tf.truncated_normal([10, 40]))
Use `initialized_value` to guarantee that `v` has been
initialized before its value is used to initialize `w`.
The random values are picked only once.
w = tf.Variable(v.initialized_value() * 2.0)

Returns:

A Tensor holding the value of this variable after its initializer
has run.

Changing a variable value.

tf.Variable.assign(value, use_locking=False) {#Variable.assign}

Assigns a new value to the variable.

This is essentially a shortcut for assign(self, value).

Args:

		value: A Tensor. The new value for this variable.

		use_locking: If True, use locking during the assignment.

Returns:

A Tensor that will hold the new value of this variable after
the assignment has completed.

tf.Variable.assign_add(delta, use_locking=False) {#Variable.assign_add}

Adds a value to this variable.

This is essentially a shortcut for assign_add(self, delta).

Args:

		delta: A Tensor. The value to add to this variable.

		use_locking: If True, use locking during the operation.

Returns:

A Tensor that will hold the new value of this variable after
the addition has completed.

tf.Variable.assign_sub(delta, use_locking=False) {#Variable.assign_sub}

Subtracts a value from this variable.

This is essentially a shortcut for assign_sub(self, delta).

Args:

		delta: A Tensor. The value to subtract from this variable.

		use_locking: If True, use locking during the operation.

Returns:

A Tensor that will hold the new value of this variable after
the subtraction has completed.

tf.Variable.scatter_sub(sparse_delta, use_locking=False) {#Variable.scatter_sub}

Subtracts IndexedSlices from this variable.

This is essentially a shortcut for scatter_sub(self, sparse_delta.indices, sparse_delta.values).

Args:

		sparse_delta: IndexedSlices to be subtracted from this variable.

		use_locking: If True, use locking during the operation.

Returns:

A Tensor that will hold the new value of this variable after
the scattered subtraction has completed.

Raises:

		ValueError: if sparse_delta is not an IndexedSlices.

tf.Variable.count_up_to(limit) {#Variable.count_up_to}

Increments this variable until it reaches limit.

When that Op is run it tries to increment the variable by 1. If
incrementing the variable would bring it above limit then the Op raises
the exception OutOfRangeError.

If no error is raised, the Op outputs the value of the variable before
the increment.

This is essentially a shortcut for count_up_to(self, limit).

Args:

		limit: value at which incrementing the variable raises an error.

Returns:

A Tensor that will hold the variable value before the increment. If no
other Op modifies this variable, the values produced will all be
distinct.

tf.Variable.eval(session=None) {#Variable.eval}

In a session, computes and returns the value of this variable.

This is not a graph construction method, it does not add ops to the graph.

This convenience method requires a session where the graph containing this
variable has been launched. If no session is passed, the default session is
used. See the Session class for
more information on launching a graph and on sessions.

v = tf.Variable([1, 2])
init = tf.initialize_all_variables()

with tf.Session() as sess:
 sess.run(init)
 # Usage passing the session explicitly.
 print(v.eval(sess))
 # Usage with the default session. The 'with' block
 # above makes 'sess' the default session.
 print(v.eval())

Args:

		session: The session to use to evaluate this variable. If
none, the default session is used.

Returns:

A numpy ndarray with a copy of the value of this variable.

Properties.

tf.Variable.name {#Variable.name}

The name of this variable.

tf.Variable.dtype {#Variable.dtype}

The DType of this variable.

tf.Variable.get_shape() {#Variable.get_shape}

The TensorShape of this variable.

Returns:

A TensorShape.

tf.Variable.device {#Variable.device}

The device of this variable.

tf.Variable.initializer {#Variable.initializer}

The initializer operation for this variable.

tf.Variable.graph {#Variable.graph}

The Graph of this variable.

tf.Variable.op {#Variable.op}

The Operation of this variable.

Other Methods

tf.Variable.__abs__(a, *args) {#Variable.abs}

Computes the absolute value of a tensor.

Given a tensor of real numbers x, this operation returns a tensor
containing the absolute value of each element in x. For example, if x is
an input element and y is an output element, this operation computes
\(y = |x|\).

See tf.complex_abs() to compute the absolute value of a complex
number.

Args:

		x: A Tensor or SparseTensor of type float32, float64, int32, or
int64.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor the same size and type as x with absolute
values.

tf.Variable.__add__(a, *args) {#Variable.add}

Returns x + y element-wise.

NOTE: Add supports broadcasting. AddN does not. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, int16, int32, int64, complex64, complex128, string.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Variable.__and__(a, *args) {#Variable.and}

Returns the truth value of x AND y element-wise.

NOTE: LogicalAnd supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor of type bool.

		y: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Variable.__div__(a, *args) {#Variable.div}

Returns x / y element-wise.

NOTE: Div supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Variable.__floordiv__(a, *args) {#Variable.floordiv}

Divides x / y elementwise, rounding down for floating point.

The same as tf.div(x,y) for integers, but uses tf.floor(tf.div(x,y)) for
floating point arguments so that the result is always an integer (though
possibly an integer represented as floating point). This op is generated by
x // y floor division in Python 3 and in Python 2.7 with
from __future__ import division.

Note that for efficiency, floordiv uses C semantics for negative numbers
(unlike Python and Numpy).

x and y must have the same type, and the result will have the same type
as well.

Args:

		x: Tensor numerator of real numeric type.

		y: Tensor denominator of real numeric type.

		name: A name for the operation (optional).

Returns:

x / y rounded down (except possibly towards zero for negative integers).

Raises:

		TypeError: If the inputs are complex.

tf.Variable.__ge__(a, *args) {#Variable.ge}

Returns the truth value of (x >= y) element-wise.

NOTE: GreaterEqual supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Variable.__getitem__(var, slice_spec) {#Variable.getitem}

Creates a slice helper object given a variable.

This allows creating a sub-tensor from part of the current contents
of a variable.
See
Tensor.__getitem__
for detailed examples of slicing.

This function in addition also allows assignment to a sliced range.
This is similar to __setitem__ functionality in Python. However,
the syntax is different so that the user can capture the assignment
operation for grouping or passing to sess.run().
For example,

import tensorflow as tf
A = tf.Variable([[1,2,3], [4,5,6], [7,8,9]], dtype=tf.float32)
with tf.Session() as sess:
 sess.run(tf.initialize_all_variables())
 print sess.run(A[:2, :2]) # => [[1,2], [4,5]]

 op = A[:2,:2].assign(22. * tf.ones((2, 2)))
 print sess.run(op) # => [[22, 22, 3], [22, 22, 6], [7,8,9]]

Note that assignments currently do not support NumPy broadcasting
semantics.

Args:

		var: An ops.Variable object.

		slice_spec: The arguments to Tensor.__getitem__.

Returns:

The appropriate slice of “tensor”, based on “slice_spec”.
As an operator. The operator also has a assign() method
that can be used to generate an assignment operator.

Raises:

		ValueError: If a slice range is negative size.

		TypeError: If the slice indices aren’t int, slice, or Ellipsis.

tf.Variable.__gt__(a, *args) {#Variable.gt}

Returns the truth value of (x > y) element-wise.

NOTE: Greater supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Variable.__invert__(a, *args) {#Variable.invert}

Returns the truth value of NOT x element-wise.

Args:

		x: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Variable.__iter__() {#Variable.iter}

Dummy method to prevent iteration. Do not call.

NOTE(mrry): If we register getitem as an overloaded operator,
Python will valiantly attempt to iterate over the variable’s Tensor from 0
to infinity. Declaring this method prevents this unintended behavior.

Raises:

		TypeError: when invoked.

tf.Variable.__le__(a, *args) {#Variable.le}

Returns the truth value of (x <= y) element-wise.

NOTE: LessEqual supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Variable.__lt__(a, *args) {#Variable.lt}

Returns the truth value of (x < y) element-wise.

NOTE: Less supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Variable.__mod__(a, *args) {#Variable.mod}

Returns element-wise remainder of division.

NOTE: Mod supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: int32, int64, float32, float64.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Variable.__mul__(a, *args) {#Variable.mul}

Dispatches cwise mul for “DenseDense” and “DenseSparse”.

tf.Variable.__neg__(a, *args) {#Variable.neg}

Computes numerical negative value element-wise.

I.e., \(y = -x\).

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Variable.__or__(a, *args) {#Variable.or}

Returns the truth value of x OR y element-wise.

NOTE: LogicalOr supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor of type bool.

		y: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Variable.__pow__(a, *args) {#Variable.pow}

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for
corresponding elements in x and y. For example:

tensor 'x' is [[2, 2], [3, 3]]
tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]

Args:

		x: A Tensor of type float32, float64, int32, int64, complex64,
or complex128.

		y: A Tensor of type float32, float64, int32, int64, complex64,
or complex128.

		name: A name for the operation (optional).

Returns:

A Tensor.

tf.Variable.__radd__(a, *args) {#Variable.radd}

Returns x + y element-wise.

NOTE: Add supports broadcasting. AddN does not. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, int16, int32, int64, complex64, complex128, string.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Variable.__rand__(a, *args) {#Variable.rand}

Returns the truth value of x AND y element-wise.

NOTE: LogicalAnd supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor of type bool.

		y: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Variable.__rdiv__(a, *args) {#Variable.rdiv}

Returns x / y element-wise.

NOTE: Div supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Variable.__rfloordiv__(a, *args) {#Variable.rfloordiv}

Divides x / y elementwise, rounding down for floating point.

The same as tf.div(x,y) for integers, but uses tf.floor(tf.div(x,y)) for
floating point arguments so that the result is always an integer (though
possibly an integer represented as floating point). This op is generated by
x // y floor division in Python 3 and in Python 2.7 with
from __future__ import division.

Note that for efficiency, floordiv uses C semantics for negative numbers
(unlike Python and Numpy).

x and y must have the same type, and the result will have the same type
as well.

Args:

		x: Tensor numerator of real numeric type.

		y: Tensor denominator of real numeric type.

		name: A name for the operation (optional).

Returns:

x / y rounded down (except possibly towards zero for negative integers).

Raises:

		TypeError: If the inputs are complex.

tf.Variable.__rmod__(a, *args) {#Variable.rmod}

Returns element-wise remainder of division.

NOTE: Mod supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: int32, int64, float32, float64.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Variable.__rmul__(a, *args) {#Variable.rmul}

Dispatches cwise mul for “DenseDense” and “DenseSparse”.

tf.Variable.__ror__(a, *args) {#Variable.ror}

Returns the truth value of x OR y element-wise.

NOTE: LogicalOr supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor of type bool.

		y: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.Variable.__rpow__(a, *args) {#Variable.rpow}

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for
corresponding elements in x and y. For example:

tensor 'x' is [[2, 2], [3, 3]]
tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]

Args:

		x: A Tensor of type float32, float64, int32, int64, complex64,
or complex128.

		y: A Tensor of type float32, float64, int32, int64, complex64,
or complex128.

		name: A name for the operation (optional).

Returns:

A Tensor.

tf.Variable.__rsub__(a, *args) {#Variable.rsub}

Returns x - y element-wise.

NOTE: Sub supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Variable.__rtruediv__(a, *args) {#Variable.rtruediv}

Divides x / y elementwise, always producing floating point results.

The same as tf.div for floating point arguments, but casts integer arguments
to floating point before dividing so that the result is always floating point.
This op is generated by normal x / y division in Python 3 and in Python 2.7
with from __future__ import division. If you want integer division that
rounds down, use x // y or tf.floordiv.

x and y must have the same numeric type. If the inputs are floating
point, the output will have the same type. If the inputs are integral, the
inputs are cast to float32 for int8 and int16 and float64 for int32
and int64 (matching the behavior of Numpy).

Args:

		x: Tensor numerator of numeric type.

		y: Tensor denominator of numeric type.

		name: A name for the operation (optional).

Returns:

x / y evaluated in floating point.

Raises:

		TypeError: If x and y have different dtypes.

tf.Variable.__rxor__(a, *args) {#Variable.rxor}

x ^ y = (x | y) & ~(x & y).

tf.Variable.__sub__(a, *args) {#Variable.sub}

Returns x - y element-wise.

NOTE: Sub supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.Variable.__truediv__(a, *args) {#Variable.truediv}

Divides x / y elementwise, always producing floating point results.

The same as tf.div for floating point arguments, but casts integer arguments
to floating point before dividing so that the result is always floating point.
This op is generated by normal x / y division in Python 3 and in Python 2.7
with from __future__ import division. If you want integer division that
rounds down, use x // y or tf.floordiv.

x and y must have the same numeric type. If the inputs are floating
point, the output will have the same type. If the inputs are integral, the
inputs are cast to float32 for int8 and int16 and float64 for int32
and int64 (matching the behavior of Numpy).

Args:

		x: Tensor numerator of numeric type.

		y: Tensor denominator of numeric type.

		name: A name for the operation (optional).

Returns:

x / y evaluated in floating point.

Raises:

		TypeError: If x and y have different dtypes.

tf.Variable.__xor__(a, *args) {#Variable.xor}

x ^ y = (x | y) & ~(x & y).

tf.Variable.from_proto(variable_def) {#Variable.from_proto}

Returns a Variable object created from variable_def.

tf.Variable.initial_value {#Variable.initial_value}

Returns the Tensor used as the initial value for the variable.

Note that this is different from initialized_value() which runs
the op that initializes the variable before returning its value.
This method returns the tensor that is used by the op that initializes
the variable.

Returns:

A Tensor.

tf.Variable.ref() {#Variable.ref}

Returns a reference to this variable.

You usually do not need to call this method as all ops that need a reference
to the variable call it automatically.

Returns is a Tensor which holds a reference to the variable. You can
assign a new value to the variable by passing the tensor to an assign op.
See value() if you want to get the value of the
variable.

Returns:

A Tensor that is a reference to the variable.

tf.Variable.to_proto() {#Variable.to_proto}

Converts a Variable to a VariableDef protocol buffer.

Returns:

A VariableDef protocol buffer.

tf.Variable.value() {#Variable.value}

Returns the last snapshot of this variable.

You usually do not need to call this method as all ops that need the value
of the variable call it automatically through a convert_to_tensor() call.

Returns a Tensor which holds the value of the variable. You can not
assign a new value to this tensor as it is not a reference to the variable.
See ref() if you want to get a reference to the
variable.

To avoid copies, if the consumer of the returned value is on the same device
as the variable, this actually returns the live value of the variable, not
a copy. Updates to the variable are seen by the consumer. If the consumer
is on a different device it will get a copy of the variable.

Returns:

A Tensor containing the value of the variable.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.metrics.streaming_precision.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.streaming_precision(*args, **kwargs) {#streaming_precision}

Computes the precision of the predictions with respect to the labels. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-10-19.
Instructions for updating:
ignore_mask is being deprecated. Instead use weights with values 0.0 and 1.0 to mask values. For example, weights=tf.logical_not(mask).

The streaming_precision function creates two local variables,
true_positives and false_positives, that are used to compute the
precision. This value is ultimately returned as precision, an idempotent
operation that simply divides true_positives by the sum of true_positives
and false_positives.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
precision. update_op weights each prediction by the corresponding value in
weights.

If weights is None, weights default to 1. Use weights of 0 to mask values.
Alternatively, if ignore_mask is not None, then mask values where
ignore_mask is True.

Args:
predictions: The predicted values, a bool Tensor of arbitrary shape.
labels: The ground truth values, a bool Tensor whose dimensions must
match predictions.
ignore_mask: An optional, bool Tensor whose shape matches predictions.
weights: An optional Tensor whose shape is broadcastable to predictions.
metrics_collections: An optional list of collections that precision should
be added to.
updates_collections: An optional list of collections that update_op should
be added to.
name: An optional variable_scope name.

Returns:
precision: Scalar float Tensor with the value of true_positives
divided by the sum of true_positives and false_positives.
update_op: Operation that increments true_positives and
false_positives variables appropriately and whose value matches
precision.

Raises:
ValueError: If predictions and labels have mismatched shapes, or if
ignore_mask is not None and its shape doesn’t match predictions, or
if weights is not None and its shape doesn’t match predictions, or
if either metrics_collections or updates_collections are not a list or
tuple.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.conj.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.conj(x, name=None) {#conj}

Returns the complex conjugate of a complex number.

Given a tensor input of complex numbers, this operation returns a tensor of
complex numbers that are the complex conjugate of each element in input. The
complex numbers in input must be of the form \(a + bj\), where a is the
real part and b is the imaginary part.

The complex conjugate returned by this operation is of the form \(a - bj\).

For example:

tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.conj(input) ==> [-2.25 - 4.75j, 3.25 - 5.75j]

If x is real, it is returned unchanged.

Args:

		x: Tensor to conjugate. Must have numeric type.

		name: A name for the operation (optional).

Returns:

A Tensor that is the conjugate of x (with the same type).

Raises:

		TypeError: If x is not a numeric tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.reduce_prod.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.reduce_prod(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_prod}

Computes the product of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

Args:

		input_tensor: The tensor to reduce. Should have numeric type.

		reduction_indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

		keep_dims: If true, retains reduced dimensions with length 1.

		name: A name for the operation (optional).

Returns:

The reduced tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.metrics.streaming_specificity_at_sensitivity.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.streaming_specificity_at_sensitivity(predictions, labels, sensitivity, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, name=None) {#streaming_specificity_at_sensitivity}

Computes the the specificity at a given sensitivity.

The streaming_specificity_at_sensitivity function creates four local
variables, true_positives, true_negatives, false_positives and
false_negatives that are used to compute the specificity at the given
sensitivity value. The threshold for the given sensitivity value is computed
and used to evaluate the corresponding specificity.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
specificity. update_op increments the true_positives, true_negatives,
false_positives and false_negatives counts with the weight of each case
found in the predictions and labels.

If weights is None, weights default to 1. Use weights of 0 to mask values.

For additional information about specificity and sensitivity, see the
following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity

Args:

		predictions: A floating point Tensor of arbitrary shape and whose values
are in the range [0, 1].

		labels: A bool Tensor whose shape matches predictions.

		sensitivity: A scalar value in range [0, 1].

		weights: An optional Tensor whose shape is broadcastable to predictions.

		num_thresholds: The number of thresholds to use for matching the given
sensitivity.

		metrics_collections: An optional list of collections that specificity
should be added to.

		updates_collections: An optional list of collections that update_op should
be added to.

		name: An optional variable_scope name.

Returns:

		specificity: A scalar tensor representing the specificity at the given
specificity value.

		update_op: An operation that increments the true_positives,
true_negatives, false_positives and false_negatives variables
appropriately and whose value matches specificity.

Raises:

		ValueError: If predictions and labels have mismatched shapes, if
weights is not None and its shape doesn’t match predictions, or if
sensitivity is not between 0 and 1, or if either metrics_collections
or updates_collections are not a list or tuple.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 InverseGammaWithSoftplusAlphaBetaTensor is a StochasticTensor backed by the distribution InverseGammaWithSoftplusAlphaBeta.

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#InverseGammaWithSoftplusAlphaBetaTensor.init}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.clone(name=None, **dist_args) {#InverseGammaWithSoftplusAlphaBetaTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.distribution {#InverseGammaWithSoftplusAlphaBetaTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.dtype {#InverseGammaWithSoftplusAlphaBetaTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.entropy(name='entropy') {#InverseGammaWithSoftplusAlphaBetaTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.graph {#InverseGammaWithSoftplusAlphaBetaTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.input_dict {#InverseGammaWithSoftplusAlphaBetaTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.loss(final_loss, name='Loss') {#InverseGammaWithSoftplusAlphaBetaTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.mean(name='mean') {#InverseGammaWithSoftplusAlphaBetaTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.name {#InverseGammaWithSoftplusAlphaBetaTensor.name}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.value(name='value') {#InverseGammaWithSoftplusAlphaBetaTensor.value}

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.value_type {#InverseGammaWithSoftplusAlphaBetaTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.sparse_fill_empty_rows.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_fill_empty_rows(sp_input, default_value, name=None) {#sparse_fill_empty_rows}

Fills empty rows in the input 2-D SparseTensor with a default value.

This op adds entries with the specified default_value at index
[row, 0] for any row in the input that does not already have a value.

For example, suppose sp_input has shape [5, 6] and non-empty values:

[0, 1]: a
[0, 3]: b
[2, 0]: c
[3, 1]: d

Rows 1 and 4 are empty, so the output will be of shape [5, 6] with values:

[0, 1]: a
[0, 3]: b
[1, 0]: default_value
[2, 0]: c
[3, 1]: d
[4, 0]: default_value

Note that the input may have empty columns at the end, with no effect on
this op.

The output SparseTensor will be in row-major order and will have the
same shape as the input.

This op also returns an indicator vector such that

empty_row_indicator[i] = True iff row i was an empty row.

Args:

		sp_input: A SparseTensor with shape [N, M].

		default_value: The value to fill for empty rows, with the same type as
sp_input.

		name: A name prefix for the returned tensors (optional)

Returns:

		sp_ordered_output: A SparseTensor with shape [N, M], and with all empty
rows filled in with default_value.

		empty_row_indicator: A bool vector of length N indicating whether each
input row was empty.

Raises:

		TypeError: If sp_input is not a SparseTensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.assert_equal.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.assert_equal(x, y, data=None, summarize=None, message=None, name=None) {#assert_equal}

Assert the condition x == y holds element-wise.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_equal(x, y)]):
 output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_equal(x, y)], x)

This condition holds if for every pair of (possibly broadcast) elements
x[i], y[i], we have x[i] == y[i].
If both x and y are empty, this is trivially satisfied.

Args:

		x: Numeric Tensor.

		y: Numeric Tensor, same dtype as and broadcastable to x.

		data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of x, y.

		summarize: Print this many entries of each tensor.

		message: A string to prefix to the default message.

		name: A name for this operation (optional). Defaults to “assert_equal”.

Returns:

Op that raises InvalidArgumentError if x == y is False.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.sparse_transpose.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_transpose(sp_input, perm=None, name=None) {#sparse_transpose}

Transposes a SparseTensor

The returned tensor’s dimension i will correspond to the input dimension
perm[i]. If perm is not given, it is set to (n-1...0), where n is
the rank of the input tensor. Hence by default, this operation performs a
regular matrix transpose on 2-D input Tensors.

For example, if sp_input has shape [4, 5] and indices / values:

[0, 3]: b
[0, 1]: a
[3, 1]: d
[2, 0]: c

then the output will be a SparseTensor of shape [5, 4] and
indices / values:

[0, 2]: c
[1, 0]: a
[1, 3]: d
[3, 0]: b

Args:

		sp_input: The input SparseTensor.

		perm: A permutation of the dimensions of sp_input.

		name: A name prefix for the returned tensors (optional)

Returns:

A transposed SparseTensor.

Raises:

		TypeError: If sp_input is not a SparseTensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.distributions.NormalWithSoftplusSigma.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Normal with softplus applied to sigma.

tf.contrib.distributions.NormalWithSoftplusSigma.__init__(mu, sigma, validate_args=False, allow_nan_stats=True, name='NormalWithSoftplusSigma') {#NormalWithSoftplusSigma.init}

tf.contrib.distributions.NormalWithSoftplusSigma.allow_nan_stats {#NormalWithSoftplusSigma.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.NormalWithSoftplusSigma.batch_shape(name='batch_shape') {#NormalWithSoftplusSigma.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.NormalWithSoftplusSigma.cdf(value, name='cdf') {#NormalWithSoftplusSigma.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.NormalWithSoftplusSigma.dtype {#NormalWithSoftplusSigma.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.NormalWithSoftplusSigma.entropy(name='entropy') {#NormalWithSoftplusSigma.entropy}

Shanon entropy in nats.

tf.contrib.distributions.NormalWithSoftplusSigma.event_shape(name='event_shape') {#NormalWithSoftplusSigma.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.NormalWithSoftplusSigma.get_batch_shape() {#NormalWithSoftplusSigma.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.NormalWithSoftplusSigma.get_event_shape() {#NormalWithSoftplusSigma.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.NormalWithSoftplusSigma.is_continuous {#NormalWithSoftplusSigma.is_continuous}

tf.contrib.distributions.NormalWithSoftplusSigma.is_reparameterized {#NormalWithSoftplusSigma.is_reparameterized}

tf.contrib.distributions.NormalWithSoftplusSigma.log_cdf(value, name='log_cdf') {#NormalWithSoftplusSigma.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.NormalWithSoftplusSigma.log_pdf(value, name='log_pdf') {#NormalWithSoftplusSigma.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.NormalWithSoftplusSigma.log_pmf(value, name='log_pmf') {#NormalWithSoftplusSigma.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.NormalWithSoftplusSigma.log_prob(value, name='log_prob') {#NormalWithSoftplusSigma.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.NormalWithSoftplusSigma.log_survival_function(value, name='log_survival_function') {#NormalWithSoftplusSigma.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.NormalWithSoftplusSigma.mean(name='mean') {#NormalWithSoftplusSigma.mean}

Mean.

tf.contrib.distributions.NormalWithSoftplusSigma.mode(name='mode') {#NormalWithSoftplusSigma.mode}

Mode.

tf.contrib.distributions.NormalWithSoftplusSigma.mu {#NormalWithSoftplusSigma.mu}

Distribution parameter for the mean.

tf.contrib.distributions.NormalWithSoftplusSigma.name {#NormalWithSoftplusSigma.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.NormalWithSoftplusSigma.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#NormalWithSoftplusSigma.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.NormalWithSoftplusSigma.param_static_shapes(cls, sample_shape) {#NormalWithSoftplusSigma.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.NormalWithSoftplusSigma.parameters {#NormalWithSoftplusSigma.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.NormalWithSoftplusSigma.pdf(value, name='pdf') {#NormalWithSoftplusSigma.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.NormalWithSoftplusSigma.pmf(value, name='pmf') {#NormalWithSoftplusSigma.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.NormalWithSoftplusSigma.prob(value, name='prob') {#NormalWithSoftplusSigma.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.NormalWithSoftplusSigma.sample(sample_shape=(), seed=None, name='sample') {#NormalWithSoftplusSigma.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.NormalWithSoftplusSigma.sample_n(n, seed=None, name='sample_n') {#NormalWithSoftplusSigma.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.NormalWithSoftplusSigma.sigma {#NormalWithSoftplusSigma.sigma}

Distribution parameter for standard deviation.

tf.contrib.distributions.NormalWithSoftplusSigma.std(name='std') {#NormalWithSoftplusSigma.std}

Standard deviation.

tf.contrib.distributions.NormalWithSoftplusSigma.survival_function(value, name='survival_function') {#NormalWithSoftplusSigma.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.NormalWithSoftplusSigma.validate_args {#NormalWithSoftplusSigma.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.NormalWithSoftplusSigma.variance(name='variance') {#NormalWithSoftplusSigma.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.matrix_transpose.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.matrix_transpose(a, name='matrix_transpose') {#matrix_transpose}

Transposes last two dimensions of tensor a.

For example:

Matrix with no batch dimension.
'x' is [[1 2 3]
[4 5 6]]
tf.matrix_transpose(x) ==> [[1 4]
 [2 5]
 [3 6]]

Matrix with two batch dimensions.
x.shape is [1, 2, 3, 4]
tf.matrix_transpose(x) is shape [1, 2, 4, 3]

Args:

		a: A Tensor with rank >= 2.

		name: A name for the operation (optional).

Returns:

A transposed batch matrix Tensor.

Raises:

		ValueError: If a is determined statically to have rank < 2.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.sparse_retain.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_retain(sp_input, to_retain) {#sparse_retain}

Retains specified non-empty values within a SparseTensor.

For example, if sp_input has shape [4, 5] and 4 non-empty string values:

[0, 1]: a
[0, 3]: b
[2, 0]: c
[3, 1]: d

and to_retain = [True, False, False, True], then the output will
be a SparseTensor of shape [4, 5] with 2 non-empty values:

[0, 1]: a
[3, 1]: d

Args:

		sp_input: The input SparseTensor with N non-empty elements.

		to_retain: A bool vector of length N with M true values.

Returns:

A SparseTensor with the same shape as the input and M non-empty
elements corresponding to the true positions in to_retain.

Raises:

		TypeError: If sp_input is not a SparseTensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.dynamic_stitch.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.dynamic_stitch(indices, data, name=None) {#dynamic_stitch}

Interleave the values from the data tensors into a single tensor.

Builds a merged tensor such that

merged[indices[m][i, ..., j], ...] = data[m][i, ..., j, ...]

For example, if each indices[m] is scalar or vector, we have

Scalar indices
merged[indices[m], ...] = data[m][...]

Vector indices
merged[indices[m][i], ...] = data[m][i, ...]

Each data[i].shape must start with the corresponding indices[i].shape,
and the rest of data[i].shape must be constant w.r.t. i. That is, we
must have data[i].shape = indices[i].shape + constant. In terms of this
constant, the output shape is

merged.shape = [max(indices)] + constant

Values are merged in order, so if an index appears in both indices[m][i] and
indices[n][j] for (m,i) < (n,j) the slice data[n][j] will appear in the
merged result.

For example:

indices[0] = 6
indices[1] = [4, 1]
indices[2] = [[5, 2], [0, 3]]
data[0] = [61, 62]
data[1] = [[41, 42], [11, 12]]
data[2] = [[[51, 52], [21, 22]], [[1, 2], [31, 32]]]
merged = [[1, 2], [11, 12], [21, 22], [31, 32], [41, 42],
 [51, 52], [61, 62]]

[image:]

Args:

		indices: A list of at least 1 Tensor objects of type int32.

		data: A list with the same number of Tensor objects as indices of Tensor objects of the same type.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.nn.conv2d.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None) {#conv2d}

Computes a 2-D convolution given 4-D input and filter tensors.

Given an input tensor of shape [batch, in_height, in_width, in_channels]
and a filter / kernel tensor of shape
[filter_height, filter_width, in_channels, out_channels], this op
performs the following:

		Flattens the filter to a 2-D matrix with shape
[filter_height * filter_width * in_channels, output_channels].

		Extracts image patches from the input tensor to form a virtual
tensor of shape [batch, out_height, out_width, filter_height * filter_width * in_channels].

		For each patch, right-multiplies the filter matrix and the image patch
vector.

In detail, with the default NHWC format,

output[b, i, j, k] =
 sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
 filter[di, dj, q, k]

Must have strides[0] = strides[3] = 1. For the most common case of the same
horizontal and vertices strides, strides = [1, stride, stride, 1].

Args:

		input: A Tensor. Must be one of the following types: half, float32, float64.

		filter: A Tensor. Must have the same type as input.

		strides: A list of ints.
1-D of length 4. The stride of the sliding window for each dimension
of input. Must be in the same order as the dimension specified with format.

		padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.

		use_cudnn_on_gpu: An optional bool. Defaults to True.

		data_format: An optional string from: "NHWC", "NCHW". Defaults to "NHWC".
Specify the data format of the input and output data. With the
default format “NHWC”, the data is stored in the order of:
[batch, in_height, in_width, in_channels].
Alternatively, the format could be “NCHW”, the data storage order of:
[batch, in_channels, in_height, in_width].

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.reverse.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.reverse(tensor, dims, name=None) {#reverse}

Reverses specific dimensions of a tensor.

Given a tensor, and a bool tensor dims representing the dimensions
of tensor, this operation reverses each dimension i of tensor where
dims[i] is True.

tensor can have up to 8 dimensions. The number of dimensions
of tensor must equal the number of elements in dims. In other words:

rank(tensor) = size(dims)

For example:

tensor 't' is [[[[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]]]
tensor 't' shape is [1, 2, 3, 4]

'dims' is [False, False, False, True]
reverse(t, dims) ==> [[[[3, 2, 1, 0],
 [7, 6, 5, 4],
 [11, 10, 9, 8]],
 [[15, 14, 13, 12],
 [19, 18, 17, 16],
 [23, 22, 21, 20]]]]

'dims' is [False, True, False, False]
reverse(t, dims) ==> [[[[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]
 [[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]]]]

'dims' is [False, False, True, False]
reverse(t, dims) ==> [[[[8, 9, 10, 11],
 [4, 5, 6, 7],
 [0, 1, 2, 3]]
 [[20, 21, 22, 23],
 [16, 17, 18, 19],
 [12, 13, 14, 15]]]]

Args:

		tensor: A Tensor. Must be one of the following types: uint8, int8, int32, int64, bool, half, float32, float64, complex64, complex128.
Up to 8-D.

		dims: A Tensor of type bool. 1-D. The dimensions to reverse.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as tensor. The same shape as tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.sparse_reduce_sum_sparse.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.sparse_reduce_sum_sparse(sp_input, reduction_axes=None, keep_dims=False) {#sparse_reduce_sum_sparse}

Computes the sum of elements across dimensions of a SparseTensor.

This Op takes a SparseTensor and is the sparse counterpart to
tf.reduce_sum(). In contrast to SparseReduceSum, this Op returns a
SparseTensor.

Reduces sp_input along the dimensions given in reduction_axes. Unless
keep_dims is true, the rank of the tensor is reduced by 1 for each entry in
reduction_axes. If keep_dims is true, the reduced dimensions are retained
with length 1.

If reduction_axes has no entries, all dimensions are reduced, and a tensor
with a single element is returned. Additionally, the axes can be negative,
which are interpreted according to the indexing rules in Python.

Args:

		sp_input: The SparseTensor to reduce. Should have numeric type.

		reduction_axes: The dimensions to reduce; list or scalar. If None (the
default), reduces all dimensions.

		keep_dims: If true, retain reduced dimensions with length 1.

Returns:

The reduced SparseTensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.crf.crf_unary_score.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.crf.crf_unary_score(tag_indices, sequence_lengths, inputs) {#crf_unary_score}

Computes the unary scores of tag sequences.

Args:

		tag_indices: A [batch_size, max_seq_len] matrix of tag indices.

		sequence_lengths: A [batch_size] vector of true sequence lengths.

		inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials.

Returns:

		unary_scores: A [batch_size] vector of unary scores.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.less.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.less(x, y, name=None) {#less}

Returns the truth value of (x < y) element-wise.

NOTE: Less supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.nn.separable_conv2d.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.separable_conv2d(input, depthwise_filter, pointwise_filter, strides, padding, name=None) {#separable_conv2d}

2-D convolution with separable filters.

Performs a depthwise convolution that acts separately on channels followed by
a pointwise convolution that mixes channels. Note that this is separability
between dimensions [1, 2] and 3, not spatial separability between
dimensions 1 and 2.

In detail,

output[b, i, j, k] = sum_{di, dj, q, r]
 input[b, strides[1] * i + di, strides[2] * j + dj, q] *
 depthwise_filter[di, dj, q, r] *
 pointwise_filter[0, 0, q * channel_multiplier + r, k]

strides controls the strides for the depthwise convolution only, since
the pointwise convolution has implicit strides of [1, 1, 1, 1]. Must have
strides[0] = strides[3] = 1. For the most common case of the same
horizontal and vertical strides, strides = [1, stride, stride, 1].

Args:

		input: 4-D Tensor with shape [batch, in_height, in_width, in_channels].

		depthwise_filter: 4-D Tensor with shape
[filter_height, filter_width, in_channels, channel_multiplier].
Contains in_channels convolutional filters of depth 1.

		pointwise_filter: 4-D Tensor with shape
[1, 1, channel_multiplier * in_channels, out_channels]. Pointwise
filter to mix channels after depthwise_filter has convolved spatially.

		strides: 1-D of size 4. The strides for the depthwise convolution for
each dimension of input.

		padding: A string, either 'VALID' or 'SAME'. The padding algorithm.
See the comment
here [https://www.tensorflow.org/api_docs/python/nn.html#convolution]

		name: A name for this operation (optional).

Returns:

A 4-D Tensor of shape [batch, out_height, out_width, out_channels].

Raises:

		ValueError: If channel_multiplier * in_channels > out_channels,
which means that the separable convolution is overparameterized.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.framework.assert_or_get_global_step.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.assert_or_get_global_step(graph=None, global_step_tensor=None) {#assert_or_get_global_step}

Verifies that a global step tensor is valid or gets one if None is given.

If global_step_tensor is not None, check that it is a valid global step
tensor (using assert_global_step). Otherwise find a global step tensor using
get_global_step and return it.

Args:

		graph: The graph to find the global step tensor for.

		global_step_tensor: The tensor to check for suitability as a global step.
If None is given (the default), find a global step tensor.

Returns:

A tensor suitable as a global step, or None if none was provided and none
was found.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.igamma.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.igamma(a, x, name=None) {#igamma}

Compute the lower regularized incomplete Gamma function Q(a, x).

The lower regularized incomplete Gamma function is defined as:

P(a, x) = gamma(a, x) / Gamma(a) = 1 - Q(a, x)

where

gamma(a, x) = int_{0}^{x} t^{a-1} exp(-t) dt

is the lower incomplete Gamma function.

Note, above Q(a, x) (Igammac) is the upper regularized complete
Gamma function.

Args:

		a: A Tensor. Must be one of the following types: float32, float64.

		x: A Tensor. Must have the same type as a.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as a.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.Operation.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Represents a graph node that performs computation on tensors.

An Operation is a node in a TensorFlow Graph that takes zero or
more Tensor objects as input, and produces zero or more Tensor
objects as output. Objects of type Operation are created by
calling a Python op constructor (such as
tf.matmul())
or Graph.create_op().

For example c = tf.matmul(a, b) creates an Operation of type
“MatMul” that takes tensors a and b as input, and produces c
as output.

After the graph has been launched in a session, an Operation can
be executed by passing it to
Session.run().
op.run() is a shortcut for calling tf.get_default_session().run(op).

tf.Operation.name {#Operation.name}

The full name of this operation.

tf.Operation.type {#Operation.type}

The type of the op (e.g. "MatMul").

tf.Operation.inputs {#Operation.inputs}

The list of Tensor objects representing the data inputs of this op.

tf.Operation.control_inputs {#Operation.control_inputs}

The Operation objects on which this op has a control dependency.

Before this op is executed, TensorFlow will ensure that the
operations in self.control_inputs have finished executing. This
mechanism can be used to run ops sequentially for performance
reasons, or to ensure that the side effects of an op are observed
in the correct order.

Returns:

A list of Operation objects.

tf.Operation.outputs {#Operation.outputs}

The list of Tensor objects representing the outputs of this op.

tf.Operation.device {#Operation.device}

The name of the device to which this op has been assigned, if any.

Returns:

The string name of the device to which this op has been
assigned, or an empty string if it has not been assigned to a
device.

tf.Operation.graph {#Operation.graph}

The Graph that contains this operation.

tf.Operation.run(feed_dict=None, session=None) {#Operation.run}

Runs this operation in a Session.

Calling this method will execute all preceding operations that
produce the inputs needed for this operation.

N.B. Before invoking Operation.run(), its graph must have been
launched in a session, and either a default session must be
available, or session must be specified explicitly.

Args:

		feed_dict: A dictionary that maps Tensor objects to feed values.
See Session.run()
for a description of the valid feed values.

		session: (Optional.) The Session to be used to run to this operation. If
none, the default session will be used.

tf.Operation.get_attr(name) {#Operation.get_attr}

Returns the value of the attr of this op with the given name.

Args:

		name: The name of the attr to fetch.

Returns:

The value of the attr, as a Python object.

Raises:

		ValueError: If this op does not have an attr with the given name.

tf.Operation.traceback {#Operation.traceback}

Returns the call stack from when this operation was constructed.

Other Methods

tf.Operation.__init__(node_def, g, inputs=None, output_types=None, control_inputs=None, input_types=None, original_op=None, op_def=None) {#Operation.init}

Creates an Operation.

NOTE: This constructor validates the name of the Operation (passed
as node_def.name). Valid Operation names match the following
regular expression:

[A-Za-z0-9.][A-Za-z0-9_.\-/]*

Args:

		node_def: node_def_pb2.NodeDef. NodeDef for the Operation.
Used for attributes of node_def_pb2.NodeDef, typically name,
op, and device. The input attribute is irrelevant here
as it will be computed when generating the model.

		g: Graph. The parent graph.

		inputs: list of Tensor objects. The inputs to this Operation.

		output_types: list of DType objects. List of the types of the
Tensors computed by this operation. The length of this list indicates
the number of output endpoints of the Operation.

		control_inputs: list of operations or tensors from which to have a
control dependency.

		input_types: List of DType objects representing the
types of the tensors accepted by the Operation. By default
uses [x.dtype.base_dtype for x in inputs]. Operations that expect
reference-typed inputs must specify these explicitly.

		original_op: Optional. Used to associate the new Operation with an
existing Operation (for example, a replica with the op that was
replicated).

		op_def: Optional. The op_def_pb2.OpDef proto that describes the
op type that this Operation represents.

Raises:

		TypeError: if control inputs are not Operations or Tensors,
or if node_def is not a NodeDef,
or if g is not a Graph,
or if inputs are not tensors,
or if inputs and input_types are incompatible.

		ValueError: if the node_def name is not valid.

tf.Operation.__str__() {#Operation.str}

tf.Operation.colocation_groups() {#Operation.colocation_groups}

Returns the list of colocation groups of the op.

tf.Operation.node_def {#Operation.node_def}

Returns a serialized NodeDef representation of this operation.

Returns:

A
NodeDef [https://www.tensorflow.org/code/tensorflow/core/framework/node_def.proto]
protocol buffer.

tf.Operation.op_def {#Operation.op_def}

Returns the OpDef proto that represents the type of this op.

Returns:

An
OpDef [https://www.tensorflow.org/code/tensorflow/core/framework/op_def.proto]
protocol buffer.

tf.Operation.values() {#Operation.values}

DEPRECATED: Use outputs.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.dynamic_partition.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.dynamic_partition(data, partitions, num_partitions, name=None) {#dynamic_partition}

Partitions data into num_partitions tensors using indices from partitions.

For each index tuple js of size partitions.ndim, the slice data[js, ...]
becomes part of outputs[partitions[js]]. The slices with partitions[js] = i
are placed in outputs[i] in lexicographic order of js, and the first
dimension of outputs[i] is the number of entries in partitions equal to i.
In detail,

outputs[i].shape = [sum(partitions == i)] + data.shape[partitions.ndim:]

outputs[i] = pack([data[js, ...] for js if partitions[js] == i])

data.shape must start with partitions.shape.

For example:

Scalar partitions
partitions = 1
num_partitions = 2
data = [10, 20]
outputs[0] = [] # Empty with shape [0, 2]
outputs[1] = [[10, 20]]

Vector partitions
partitions = [0, 0, 1, 1, 0]
num_partitions = 2
data = [10, 20, 30, 40, 50]
outputs[0] = [10, 20, 50]
outputs[1] = [30, 40]

[image:]

Args:

		data: A Tensor.

		partitions: A Tensor of type int32.
Any shape. Indices in the range [0, num_partitions).

		num_partitions: An int that is >= 1.
The number of partitions to output.

		name: A name for the operation (optional).

Returns:

A list of num_partitions Tensor objects of the same type as data.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.distributions.ExponentialWithSoftplusLam.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Exponential with softplus transform on lam.

tf.contrib.distributions.ExponentialWithSoftplusLam.__init__(lam, validate_args=False, allow_nan_stats=True, name='ExponentialWithSoftplusLam') {#ExponentialWithSoftplusLam.init}

tf.contrib.distributions.ExponentialWithSoftplusLam.allow_nan_stats {#ExponentialWithSoftplusLam.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.ExponentialWithSoftplusLam.alpha {#ExponentialWithSoftplusLam.alpha}

Shape parameter.

tf.contrib.distributions.ExponentialWithSoftplusLam.batch_shape(name='batch_shape') {#ExponentialWithSoftplusLam.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.ExponentialWithSoftplusLam.beta {#ExponentialWithSoftplusLam.beta}

Inverse scale parameter.

tf.contrib.distributions.ExponentialWithSoftplusLam.cdf(value, name='cdf') {#ExponentialWithSoftplusLam.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.ExponentialWithSoftplusLam.dtype {#ExponentialWithSoftplusLam.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.ExponentialWithSoftplusLam.entropy(name='entropy') {#ExponentialWithSoftplusLam.entropy}

Shanon entropy in nats.

tf.contrib.distributions.ExponentialWithSoftplusLam.event_shape(name='event_shape') {#ExponentialWithSoftplusLam.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.ExponentialWithSoftplusLam.get_batch_shape() {#ExponentialWithSoftplusLam.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.ExponentialWithSoftplusLam.get_event_shape() {#ExponentialWithSoftplusLam.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.ExponentialWithSoftplusLam.is_continuous {#ExponentialWithSoftplusLam.is_continuous}

tf.contrib.distributions.ExponentialWithSoftplusLam.is_reparameterized {#ExponentialWithSoftplusLam.is_reparameterized}

tf.contrib.distributions.ExponentialWithSoftplusLam.lam {#ExponentialWithSoftplusLam.lam}

tf.contrib.distributions.ExponentialWithSoftplusLam.log_cdf(value, name='log_cdf') {#ExponentialWithSoftplusLam.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.ExponentialWithSoftplusLam.log_pdf(value, name='log_pdf') {#ExponentialWithSoftplusLam.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.ExponentialWithSoftplusLam.log_pmf(value, name='log_pmf') {#ExponentialWithSoftplusLam.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.ExponentialWithSoftplusLam.log_prob(value, name='log_prob') {#ExponentialWithSoftplusLam.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.ExponentialWithSoftplusLam.log_survival_function(value, name='log_survival_function') {#ExponentialWithSoftplusLam.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.ExponentialWithSoftplusLam.mean(name='mean') {#ExponentialWithSoftplusLam.mean}

Mean.

tf.contrib.distributions.ExponentialWithSoftplusLam.mode(name='mode') {#ExponentialWithSoftplusLam.mode}

Mode.

tf.contrib.distributions.ExponentialWithSoftplusLam.name {#ExponentialWithSoftplusLam.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.ExponentialWithSoftplusLam.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#ExponentialWithSoftplusLam.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.ExponentialWithSoftplusLam.param_static_shapes(cls, sample_shape) {#ExponentialWithSoftplusLam.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.ExponentialWithSoftplusLam.parameters {#ExponentialWithSoftplusLam.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.ExponentialWithSoftplusLam.pdf(value, name='pdf') {#ExponentialWithSoftplusLam.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.ExponentialWithSoftplusLam.pmf(value, name='pmf') {#ExponentialWithSoftplusLam.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.ExponentialWithSoftplusLam.prob(value, name='prob') {#ExponentialWithSoftplusLam.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.ExponentialWithSoftplusLam.sample(sample_shape=(), seed=None, name='sample') {#ExponentialWithSoftplusLam.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.ExponentialWithSoftplusLam.sample_n(n, seed=None, name='sample_n') {#ExponentialWithSoftplusLam.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.ExponentialWithSoftplusLam.std(name='std') {#ExponentialWithSoftplusLam.std}

Standard deviation.

tf.contrib.distributions.ExponentialWithSoftplusLam.survival_function(value, name='survival_function') {#ExponentialWithSoftplusLam.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.ExponentialWithSoftplusLam.validate_args {#ExponentialWithSoftplusLam.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.ExponentialWithSoftplusLam.variance(name='variance') {#ExponentialWithSoftplusLam.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.abs.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.abs(x, name=None) {#abs}

Computes the absolute value of a tensor.

Given a tensor of real numbers x, this operation returns a tensor
containing the absolute value of each element in x. For example, if x is
an input element and y is an output element, this operation computes
\(y = |x|\).

See tf.complex_abs() to compute the absolute value of a complex
number.

Args:

		x: A Tensor or SparseTensor of type float32, float64, int32, or
int64.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor the same size and type as x with absolute
values.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.nn.fixed_unigram_candidate_sampler.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.fixed_unigram_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, vocab_file='', distortion=1.0, num_reserved_ids=0, num_shards=1, shard=0, unigrams=(), seed=None, name=None) {#fixed_unigram_candidate_sampler}

Samples a set of classes using the provided (fixed) base distribution.

This operation randomly samples a tensor of sampled classes
(sampled_candidates) from the range of integers [0, range_max).

The elements of sampled_candidates are drawn without replacement
(if unique=True) or with replacement (if unique=False) from
the base distribution.

The base distribution is read from a file or passed in as an
in-memory array. There is also an option to skew the distribution by
applying a distortion power to the weights.

In addition, this operation returns tensors true_expected_count
and sampled_expected_count representing the number of times each
of the target classes (true_classes) and the sampled
classes (sampled_candidates) is expected to occur in an average
tensor of sampled classes. These values correspond to Q(y|x)
defined in this
document [http://www.tensorflow.org/extras/candidate_sampling.pdf].
If unique=True, then these are post-rejection probabilities and we
compute them approximately.

Args:

		true_classes: A Tensor of type int64 and shape [batch_size, num_true]. The target classes.

		num_true: An int. The number of target classes per training example.

		num_sampled: An int. The number of classes to randomly sample per batch.

		unique: A bool. Determines whether all sampled classes in a batch are
unique.

		range_max: An int. The number of possible classes.

		vocab_file: Each valid line in this file (which should have a CSV-like
format) corresponds to a valid word ID. IDs are in sequential order,
starting from num_reserved_ids. The last entry in each line is expected
to be a value corresponding to the count or relative probability. Exactly
one of vocab_file and unigrams needs to be passed to this operation.

		distortion: The distortion is used to skew the unigram probability
distribution. Each weight is first raised to the distortion’s power
before adding to the internal unigram distribution. As a result,
distortion = 1.0 gives regular unigram sampling (as defined by the vocab
file), and distortion = 0.0 gives a uniform distribution.

		num_reserved_ids: Optionally some reserved IDs can be added in the range
[0, num_reserved_ids] by the users. One use case is that a special
unknown word token is used as ID 0. These IDs will have a sampling
probability of 0.

		num_shards: A sampler can be used to sample from a subset of the original
range in order to speed up the whole computation through parallelism. This
parameter (together with shard) indicates the number of partitions that
are being used in the overall computation.

		shard: A sampler can be used to sample from a subset of the original range
in order to speed up the whole computation through parallelism. This
parameter (together with num_shards) indicates the particular partition
number of the operation, when partitioning is being used.

		unigrams: A list of unigram counts or probabilities, one per ID in
sequential order. Exactly one of vocab_file and unigrams should be
passed to this operation.

		seed: An int. An operation-specific seed. Default is 0.

		name: A name for the operation (optional).

Returns:

		sampled_candidates: A tensor of type int64 and shape [num_sampled].
The sampled classes.

		true_expected_count: A tensor of type float. Same shape as
true_classes. The expected counts under the sampling distribution
of each of true_classes.

		sampled_expected_count: A tensor of type float. Same shape as
sampled_candidates. The expected counts under the sampling distribution
of each of sampled_candidates.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.errors.InternalError.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Raised when the system experiences an internal error.

This exception is raised when some invariant expected by the runtime
has been broken. Catching this exception is not recommended.

tf.errors.InternalError.__init__(node_def, op, message) {#InternalError.init}

Creates an InternalError.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.string_to_hash_bucket.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.string_to_hash_bucket(string_tensor, num_buckets, name=None) {#string_to_hash_bucket}

Converts each string in the input Tensor to its hash mod by a number of buckets.

The hash function is deterministic on the content of the string within the
process.

Note that the hash function may change from time to time.
This functionality will be deprecated and it’s recommended to use
tf.string_to_hash_bucket_fast() or tf.string_to_hash_bucket_strong().

Args:

		string_tensor: A Tensor of type string.

		num_buckets: An int that is >= 1. The number of buckets.

		name: A name for the operation (optional).

Returns:

A Tensor of type int64.
A Tensor of the same shape as the input string_tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.framework.assign_from_values.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.assign_from_values(var_names_to_values) {#assign_from_values}

Creates an assignment operation from a given mapping.

This function provides a mechanism for performing assignment of variables
to values in a way that does not fill the graph with large assignment values.

Args:

		var_names_to_values: A map from variable names to values.

Returns:

		assign_op: An Operation that assigns each of the given variables to the
requested values.

		feed_dict: The feed dictionary to use when evaluating assign_op.

Raises:

		ValueError: if any of the given variable names were not found.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.get_collection_ref.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.get_collection_ref(key) {#get_collection_ref}

Wrapper for Graph.get_collection_ref() using the default graph.

See Graph.get_collection_ref()
for more details.

Args:

		key: The key for the collection. For example, the GraphKeys class
contains many standard names for collections.

Returns:

The list of values in the collection with the given name, or an empty
list if no value has been added to that collection. Note that this returns
the collection list itself, which can be modified in place to change the
collection.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.import_graph_def.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.import_graph_def(graph_def, input_map=None, return_elements=None, name=None, op_dict=None, producer_op_list=None) {#import_graph_def}

Imports the TensorFlow graph in graph_def into the Python Graph.

This function provides a way to import a serialized TensorFlow
GraphDef [https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto]
protocol buffer, and extract individual objects in the GraphDef as
Tensor and Operation objects. See
Graph.as_graph_def() for a way to create a
GraphDef proto.

Args:

		graph_def: A GraphDef proto containing operations to be imported into
the default graph.

		input_map: A dictionary mapping input names (as strings) in graph_def
to Tensor objects. The values of the named input tensors in the
imported graph will be re-mapped to the respective Tensor values.

		return_elements: A list of strings containing operation names in
graph_def that will be returned as Operation objects; and/or
tensor names in graph_def that will be returned as Tensor objects.

		name: (Optional.) A prefix that will be prepended to the names in
graph_def. Defaults to "import".

		op_dict: (Optional.) A dictionary mapping op type names to OpDef protos.
Must contain an OpDef proto for each op type named in graph_def.
If omitted, uses the OpDef protos registered in the global registry.

		producer_op_list: (Optional.) An OpList proto with the (possibly stripped)
list of OpDefs used by the producer of the graph. If provided, attrs
for ops in graph_def that are not in op_dict that have their default
value according to producer_op_list will be removed. This will allow
some more GraphDefs produced by later binaries to be accepted by
earlier binaries.

Returns:

A list of Operation and/or Tensor objects from the imported graph,
corresponding to the names in return_elements.

Raises:

		TypeError: If graph_def is not a GraphDef proto,
input_map is not a dictionary mapping strings to Tensor objects,
or return_elements is not a list of strings.

		ValueError: If input_map, or return_elements contains names that
do not appear in graph_def, or graph_def is not well-formed (e.g.
it refers to an unknown tensor).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.train.get_checkpoint_state.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.get_checkpoint_state(checkpoint_dir, latest_filename=None) {#get_checkpoint_state}

Returns CheckpointState proto from the “checkpoint” file.

If the “checkpoint” file contains a valid CheckpointState
proto, returns it.

Args:

		checkpoint_dir: The directory of checkpoints.

		latest_filename: Optional name of the checkpoint file. Default to
‘checkpoint’.

Returns:

A CheckpointState if the state was available, None
otherwise.

Raises:

		ValueError: if the checkpoint read doesn’t have model_checkpoint_path set.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.crf.crf_sequence_score.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.crf.crf_sequence_score(inputs, tag_indices, sequence_lengths, transition_params) {#crf_sequence_score}

Computes the unnormalized score for a tag sequence.

Args:

		inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials
to use as input to the CRF layer.

		tag_indices: A [batch_size, max_seq_len] matrix of tag indices for which we
compute the unnormalized score.

		sequence_lengths: A [batch_size] vector of true sequence lengths.

		transition_params: A [num_tags, num_tags] transition matrix.

Returns:

		sequence_scores: A [batch_size] vector of unnormalized sequence scores.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.nn.rnn_cell.BasicLSTMCell.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Basic LSTM recurrent network cell.

The implementation is based on: http://arxiv.org/abs/1409.2329.

We add forget_bias (default: 1) to the biases of the forget gate in order to
reduce the scale of forgetting in the beginning of the training.

It does not allow cell clipping, a projection layer, and does not
use peep-hole connections: it is the basic baseline.

For advanced models, please use the full LSTMCell that follows.

tf.nn.rnn_cell.BasicLSTMCell.__call__(inputs, state, scope=None) {#BasicLSTMCell.call}

Long short-term memory cell (LSTM).

tf.nn.rnn_cell.BasicLSTMCell.__init__(num_units, forget_bias=1.0, input_size=None, state_is_tuple=True, activation=tanh) {#BasicLSTMCell.init}

Initialize the basic LSTM cell.

Args:

		num_units: int, The number of units in the LSTM cell.

		forget_bias: float, The bias added to forget gates (see above).

		input_size: Deprecated and unused.

		state_is_tuple: If True, accepted and returned states are 2-tuples of
the c_state and m_state. If False, they are concatenated
along the column axis. The latter behavior will soon be deprecated.

		activation: Activation function of the inner states.

tf.nn.rnn_cell.BasicLSTMCell.output_size {#BasicLSTMCell.output_size}

tf.nn.rnn_cell.BasicLSTMCell.state_size {#BasicLSTMCell.state_size}

tf.nn.rnn_cell.BasicLSTMCell.zero_state(batch_size, dtype) {#BasicLSTMCell.zero_state}

Return zero-filled state tensor(s).

Args:

		batch_size: int, float, or unit Tensor representing the batch size.

		dtype: the data type to use for the state.

Returns:

If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size x state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size x s] for each s in state_size.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.square.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.square(x, name=None) {#square}

Computes square of x element-wise.

I.e., (y = x * x = x^2).

Args:

		x: A Tensor or SparseTensor. Must be one of the following types: half,
float32, float64, int32, int64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.op_scope.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.op_scope(values, name, default_name=None) {#op_scope}

DEPRECATED. Same as name_scope above, just different argument order.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.metrics.streaming_mean_absolute_error.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.streaming_mean_absolute_error(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None) {#streaming_mean_absolute_error}

Computes the mean absolute error between the labels and predictions.

The streaming_mean_absolute_error function creates two local variables,
total and count that are used to compute the mean absolute error. This
average is weighted by weights, and it is ultimately returned as
mean_absolute_error: an idempotent operation that simply divides total by
count.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
mean_absolute_error. Internally, an absolute_errors operation computes the
absolute value of the differences between predictions and labels. Then
update_op increments total with the reduced sum of the product of
weights and absolute_errors, and it increments count with the reduced
sum of weights

If weights is None, weights default to 1. Use weights of 0 to mask values.

Args:

		predictions: A Tensor of arbitrary shape.

		labels: A Tensor of the same shape as predictions.

		weights: An optional Tensor whose shape is broadcastable to predictions.

		metrics_collections: An optional list of collections that
mean_absolute_error should be added to.

		updates_collections: An optional list of collections that update_op should
be added to.

		name: An optional variable_scope name.

Returns:

		mean_absolute_error: A tensor representing the current mean, the value of
total divided by count.

		update_op: An operation that increments the total and count variables
appropriately and whose value matches mean_absolute_error.

Raises:

		ValueError: If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn’t match predictions, or if
either metrics_collections or updates_collections are not a list or
tuple.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.learn.TensorFlowEstimator.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Base class for all TensorFlow estimators.

tf.contrib.learn.TensorFlowEstimator.__init__(model_fn, n_classes, batch_size=32, steps=200, optimizer='Adagrad', learning_rate=0.1, clip_gradients=5.0, class_weight=None, continue_training=False, config=None, verbose=1) {#TensorFlowEstimator.init}

Initializes a TensorFlowEstimator instance.

Args:

		model_fn: Model function, that takes input x, y tensors and outputs
prediction and loss tensors.

		n_classes: Number of classes in the target.

		batch_size: Mini batch size.

		steps: Number of steps to run over data.

		optimizer: Optimizer name (or class), for example “SGD”, “Adam”,
“Adagrad”.

		learning_rate: If this is constant float value, no decay function is used.
Instead, a customized decay function can be passed that accepts
global_step as parameter and returns a Tensor.
e.g. exponential decay function:

def exp_decay(global_step):
 return tf.train.exponential_decay(
 learning_rate=0.1, global_step,
 decay_steps=2, decay_rate=0.001)

		clip_gradients: Clip norm of the gradients to this value to stop
gradient explosion.

		class_weight: None or list of n_classes floats. Weight associated with
classes for loss computation. If not given, all classes are supposed to
have weight one.

		continue_training: when continue_training is True, once initialized
model will be continuely trained on every call of fit.

		config: RunConfig object that controls the configurations of the
session, e.g. num_cores, gpu_memory_fraction, etc.

		verbose: Controls the verbosity, possible values:
		0: the algorithm and debug information is muted.

		1: trainer prints the progress.

		2: log device placement is printed.

tf.contrib.learn.TensorFlowEstimator.__repr__() {#TensorFlowEstimator.repr}

tf.contrib.learn.TensorFlowEstimator.config {#TensorFlowEstimator.config}

tf.contrib.learn.TensorFlowEstimator.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) {#TensorFlowEstimator.evaluate}

Evaluates given model with provided evaluation data.

See superclass Estimator for more details.

Args:

		x: features.

		y: targets.

		input_fn: Input function.

		feed_fn: Function creating a feed dict every time it is called.

		batch_size: minibatch size to use on the input.

		steps: Number of steps for which to evaluate model.

		metrics: Dict of metric ops to run. If None, the default metrics are used.

		name: Name of the evaluation.

Returns:

Returns dict with evaluation results.

tf.contrib.learn.TensorFlowEstimator.export(*args, **kwargs) {#TensorFlowEstimator.export}

Exports inference graph into given dir. (deprecated arguments)

SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23.
Instructions for updating:
The signature of the input_fn accepted by export is changing to be consistent with what’s used by tf.Learn Estimator’s train/evaluate. input_fn and input_feature_key will become required args, and use_deprecated_input_fn will default to False and be removed altogether.

Args:
 export_dir: A string containing a directory to write the exported graph
 and checkpoints.
 input_fn: If `use_deprecated_input_fn` is true, then a function that given
 `Tensor` of `Example` strings, parses it into features that are then
 passed to the model. Otherwise, a function that takes no argument and
 returns a tuple of (features, targets), where features is a dict of
 string key to `Tensor` and targets is a `Tensor` that's currently not
 used (and so can be `None`).
 input_feature_key: Only used if `use_deprecated_input_fn` is false. String
 key into the features dict returned by `input_fn` that corresponds toa
 the raw `Example` strings `Tensor` that the exported model will take as
 input.
 use_deprecated_input_fn: Determines the signature format of `input_fn`.
 signature_fn: Function that returns a default signature and a named
 signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s
 for features and `Tensor` or `dict` of `Tensor`s for predictions.
 prediction_key: The key for a tensor in the `predictions` dict (output
 from the `model_fn`) to use as the `predictions` input to the
 `signature_fn`. Optional. If `None`, predictions will pass to
 `signature_fn` without filtering.
 default_batch_size: Default batch size of the `Example` placeholder.
 exports_to_keep: Number of exports to keep.

Returns:
 The string path to the exported directory. NB: this functionality was
 added ca. 2016/09/25; clients that depend on the return value may need
 to handle the case where this function returns None because subclasses
 are not returning a value.

tf.contrib.learn.TensorFlowEstimator.fit(x, y, steps=None, monitors=None, logdir=None) {#TensorFlowEstimator.fit}

Neural network model from provided model_fn and training data.

Note: called first time constructs the graph and initializers
variables. Consecutives times it will continue training the same model.
This logic follows partial_fit() interface in scikit-learn.
To restart learning, create new estimator.

Args:

		x: matrix or tensor of shape [n_samples, n_features...]. Can be
iterator that returns arrays of features. The training input
samples for fitting the model.

		y: vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of targets. The training target values
(class labels in classification, real numbers in regression).

		steps: int, number of steps to train.
If None or 0, train for self.steps.

		monitors: List of BaseMonitor objects to print training progress and
invoke early stopping.

		logdir: the directory to save the log file that can be used for
optional visualization.

Returns:

Returns self.

tf.contrib.learn.TensorFlowEstimator.get_params(deep=True) {#TensorFlowEstimator.get_params}

Get parameters for this estimator.

Args:

		deep: boolean, optional

If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns:

params : mapping of string to any
Parameter names mapped to their values.

tf.contrib.learn.TensorFlowEstimator.get_tensor(name) {#TensorFlowEstimator.get_tensor}

Returns tensor by name.

Args:

		name: string, name of the tensor.

Returns:

Tensor.

tf.contrib.learn.TensorFlowEstimator.get_variable_names() {#TensorFlowEstimator.get_variable_names}

Returns list of all variable names in this model.

Returns:

List of names.

tf.contrib.learn.TensorFlowEstimator.get_variable_value(name) {#TensorFlowEstimator.get_variable_value}

Returns value of the variable given by name.

Args:

		name: string, name of the tensor.

Returns:

Numpy array - value of the tensor.

tf.contrib.learn.TensorFlowEstimator.model_dir {#TensorFlowEstimator.model_dir}

tf.contrib.learn.TensorFlowEstimator.partial_fit(x, y) {#TensorFlowEstimator.partial_fit}

Incremental fit on a batch of samples.

This method is expected to be called several times consecutively
on different or the same chunks of the dataset. This either can
implement iterative training or out-of-core/online training.
This is especially useful when the whole dataset is too big to
fit in memory at the same time. Or when model is taking long time
to converge, and you want to split up training into subparts.

Args:

		x: matrix or tensor of shape [n_samples, n_features...]. Can be
iterator that returns arrays of features. The training input
samples for fitting the model.

		y: vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of targets. The training target values
(class label in classification, real numbers in regression).

Returns:

Returns self.

tf.contrib.learn.TensorFlowEstimator.predict(x, axis=1, batch_size=None) {#TensorFlowEstimator.predict}

Predict class or regression for x.

For a classification model, the predicted class for each sample in x is
returned. For a regression model, the predicted value based on x is
returned.

Args:

		x: array-like matrix, [n_samples, n_features...] or iterator.

		axis: Which axis to argmax for classification.
By default axis 1 (next after batch) is used.
Use 2 for sequence predictions.

		batch_size: If test set is too big, use batch size to split
it into mini batches. By default the batch_size member
variable is used.

Returns:

		y: array of shape [n_samples]. The predicted classes or predicted
value.

tf.contrib.learn.TensorFlowEstimator.predict_proba(x, batch_size=None) {#TensorFlowEstimator.predict_proba}

Predict class probability of the input samples x.

Args:

		x: array-like matrix, [n_samples, n_features...] or iterator.

		batch_size: If test set is too big, use batch size to split
it into mini batches. By default the batch_size member variable is used.

Returns:

		y: array of shape [n_samples, n_classes]. The predicted
probabilities for each class.

tf.contrib.learn.TensorFlowEstimator.restore(cls, path, config=None) {#TensorFlowEstimator.restore}

Restores model from give path.

Args:

		path: Path to the checkpoints and other model information.

		config: RunConfig object that controls the configurations of the session,
e.g. num_cores, gpu_memory_fraction, etc. This is allowed to be
reconfigured.

Returns:

Estimator, object of the subclass of TensorFlowEstimator.

Raises:

		ValueError: if path does not contain a model definition.

tf.contrib.learn.TensorFlowEstimator.save(path) {#TensorFlowEstimator.save}

Saves checkpoints and graph to given path.

Args:

		path: Folder to save model to.

tf.contrib.learn.TensorFlowEstimator.set_params(**params) {#TensorFlowEstimator.set_params}

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.

Args:

		**params: Parameters.

Returns:

self

Raises:

		ValueError: If params contain invalid names.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 ExponentialTensor is a StochasticTensor backed by the distribution Exponential.

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#ExponentialTensor.init}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.clone(name=None, **dist_args) {#ExponentialTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.distribution {#ExponentialTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.dtype {#ExponentialTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.entropy(name='entropy') {#ExponentialTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.graph {#ExponentialTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.input_dict {#ExponentialTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.loss(final_loss, name='Loss') {#ExponentialTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.mean(name='mean') {#ExponentialTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.name {#ExponentialTensor.name}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.value(name='value') {#ExponentialTensor.value}

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.value_type {#ExponentialTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.training.batch_sequences_with_states.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.training.batch_sequences_with_states(input_key, input_sequences, input_context, input_length, initial_states, num_unroll, batch_size, num_threads=3, capacity=1000, allow_small_batch=True, pad=True, name=None) {#batch_sequences_with_states}

Creates batches of segments of sequential input.

This method creates a SequenceQueueingStateSaver (SQSS) and adds it to
the queuerunners. It returns a NextQueuedSequenceBatch.

It accepts one example at a time identified by a unique input_key.
input_sequence is a dict with values that are tensors with time as first
dimension. This time dimension must be the same across those tensors of an
example. It can vary across examples. Although it always has to be a multiple
of num_unroll. Hence, padding may be necessary and it is turned on by
default by pad=True.

input_length is a Tensor scalar or an int recording the time dimension prior
to padding. It should be between 0 and the time dimension. One reason we want
to keep track of it is so that we can take it into consideration when
computing the loss. If pad=True then input_length can be None and will
be inferred.

This methods segments input_sequence into segments of length num_unroll.
It batches input sequences from batch_size many examples. These mini-batches
are available through the sequence property of the output. Moreover, for
each entry in the batch we can access its original input_key in key and
its input length in total_length. length records within this segment how
many non-padded time steps there are.

Static features of an example that do not vary across time can be part of the
input_context, a dict with Tensor values. This method copies the context for
each segment and makes it availabe in the context of the output.

This method can maintain and update a state for each example. It accepts some
initial_states as a dict with Tensor values. The first mini-batch an example
is contained has initial_states as entry of the state. If save_state is
called then the next segment will have the updated entry of the state.
See NextQueuedSequenceBatch for a complete list of properties and methods.

Example usage:

batch_size = 32
num_unroll = 20
num_enqueue_threads = 3
lstm_size = 8
cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=lstm_size)

key, sequences, context = my_parser(raw_data)
initial_state_values = tf.zeros((state_size,), dtype=tf.float32)
initial_states = {"lstm_state": initial_state_values}
batch = tf.batch_sequences_with_states(
 input_key=key,
 input_sequences=sequences,
 input_context=context,
 initial_states=initial_states,
 num_unroll=num_unroll,
 batch_size=batch_size,
 num_threads=num_enqueue_threads,
 capacity=batch_size * num_enqueue_threads * 2)

inputs = batch.sequences["input"]
context_label = batch.context["label"]

inputs_by_time = tf.split(1, num_unroll, inputs)
assert len(inputs_by_time) == num_unroll

lstm_output, _ = tf.nn.state_saving_rnn(
 cell,
 inputs_by_time,
 state_saver=batch,
 state_name="lstm_state")

Start a prefetcher in the background
sess = tf.Session()

tf.train.start_queue_runners(sess=session)

while True:
 # Step through batches, perform training or inference...
 session.run([lstm_output])

Args:

		input_key: A string scalar Tensor, the unique key for the given
input example. This is used to keep track of the split minibatch elements
of this input. Batched keys of the current iteration are made
accessible via the key property. The shape of input_key (scalar) must
be fully specified.

		input_sequences: A dict mapping string names to Tensor values. The values
must all have matching first dimension, called value_length. They may
vary from input to input. The remainder of the shape (other than the first
dimension) must be fully specified.
The SequenceQueueingStateSaver will split these tensors along
this first dimension into minibatch elements of dimension num_unrolled.
Batched and segmented sequences of the current iteration are made
accessible via the sequences property.

Note: if pad=False, then value_length must always be a multiple
of num_unroll.

		input_context: A dict mapping string names to Tensor values. The values
are treated as “global” across all time splits of the given input example,
and will be copied across for all minibatch elements accordingly.
Batched and copied context of the current iteration are made
accessible via the context property.

Note: All input_context values must have fully defined shapes.

		input_length: None or an int32 scalar Tensor, the length of the sequence
prior to padding. If input_length=None and pad=True then the length
will be inferred and will be equal to value_length. If pad=False then
input_length cannot be None: input_length must be specified. Its
shape of input_length (scalar) must be fully specified. Its value may be
at most value_length for any given input (see above for the definition
of value_length). Batched and total lengths of the current iteration are
made accessible via the length and total_length properties.

		initial_states: A dict mapping string state names to multi-dimensional
values (e.g. constants or tensors). This input defines the set of
states that will be kept track of during computing iterations, and
which can be accessed via the state and save_state methods.

Note: All initial_state values must have fully defined shapes.

		num_unroll: Python integer, how many time steps to unroll at a time.
The input sequences of length k are then split into k / num_unroll many
segments.

		batch_size: int or int32 scalar Tensor, how large minibatches should
be when accessing the state() method and context, sequences, etc,
properties.

		num_threads: The int number of threads enquing input examples into a queue.

		capacity: The max capacity of the queue in number of examples. Needs to be
at least batch_size. Defaults to 1000. When iterating over the same
input example multiple times reusing their keys the capacity must be
smaller than the number of examples.

		allow_small_batch: If true, the queue will return smaller batches when
there aren’t enough input examples to fill a whole batch and the end of
the input has been reached.

		pad: If True, input_sequences will be padded to multiple of
num_unroll. In that case input_length may be None and is assumed to
be the length of first dimension of values in input_sequences
(i.e. value_length).

		name: An op name string (optional).

Returns:

A NextQueuedSequenceBatch with segmented and batched inputs and their
states.

Raises:

		TypeError: if any of the inputs is not an expected type.

		ValueError: if any of the input values is inconsistent, e.g. if
not enough shape information is available from inputs to build
the state saver.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 BinomialTensor is a StochasticTensor backed by the distribution Binomial.

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#BinomialTensor.init}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.clone(name=None, **dist_args) {#BinomialTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.distribution {#BinomialTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.dtype {#BinomialTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.entropy(name='entropy') {#BinomialTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.graph {#BinomialTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.input_dict {#BinomialTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.loss(final_loss, name='Loss') {#BinomialTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.mean(name='mean') {#BinomialTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.name {#BinomialTensor.name}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.value(name='value') {#BinomialTensor.value}

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.value_type {#BinomialTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.assert_proper_iterable.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.assert_proper_iterable(values) {#assert_proper_iterable}

Static assert that values is a “proper” iterable.

Ops that expect iterables of Tensor can call this to validate input.
Useful since Tensor, ndarray, byte/text type are all iterables themselves.

Args:

		values: Object to be checked.

Raises:

		TypeError: If values is not iterable or is one of
Tensor, SparseTensor, np.array, tf.compat.bytes_or_text_types.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.metrics.set_union.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.set_union(a, b, validate_indices=True) {#set_union}

Compute set union of elements in last dimension of a and b.

All but the last dimension of a and b must match.

Args:

		a: Tensor or SparseTensor of the same type as b. If sparse, indices
must be sorted in row-major order.

		b: Tensor or SparseTensor of the same type as a. Must be
SparseTensor if a is SparseTensor. If sparse, indices must be
sorted in row-major order.

		validate_indices: Whether to validate the order and range of sparse indices
in a and b.

Returns:

A SparseTensor with the same rank as a and b, and all but the last
dimension the same. Elements along the last dimension contain the
unions.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.layers.xavier_initializer_conv2d.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.xavier_initializer_conv2d(uniform=True, seed=None, dtype=tf.float32) {#xavier_initializer_conv2d}

Returns an initializer performing “Xavier” initialization for weights.

This function implements the weight initialization from:

Xavier Glorot and Yoshua Bengio (2010):
Understanding the difficulty of training deep feedforward neural
networks. International conference on artificial intelligence and
statistics.

This initializer is designed to keep the scale of the gradients roughly the
same in all layers. In uniform distribution this ends up being the range:
x = sqrt(6. / (in + out)); [-x, x] and for normal distribution a standard
deviation of sqrt(3. / (in + out)) is used.

Args:

		uniform: Whether to use uniform or normal distributed random initialization.

		seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

		dtype: The data type. Only floating point types are supported.

Returns:

An initializer for a weight matrix.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.decode_base64.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.decode_base64(input, name=None) {#decode_base64}

Decode web-safe base64-encoded strings.

Input may or may not have padding at the end. See EncodeBase64 for padding.
Web-safe means that input must use - and _ instead of + and /.

Args:

		input: A Tensor of type string. Base64 strings to decode.

		name: A name for the operation (optional).

Returns:

A Tensor of type string. Decoded strings.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.rsqrt.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.rsqrt(x, name=None) {#rsqrt}

Computes reciprocal of square root of x element-wise.

I.e., \(y = 1 / \sqrt{x}\).

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.unsorted_segment_sum.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.unsorted_segment_sum(data, segment_ids, num_segments, name=None) {#unsorted_segment_sum}

Computes the sum along segments of a tensor.

Read the section on
Segmentation for an explanation
of segments.

Computes a tensor such that
(output[i] = sum_{j...} data[j...] where the sum is over tuples j... such
that segment_ids[j...] == i. Unlike SegmentSum, segment_ids
need not be sorted and need not cover all values in the full
range of valid values.

If the sum is empty for a given segment ID i, output[i] = 0.

num_segments should equal the number of distinct segment IDs.

[image:]

Args:

		data: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.

		segment_ids: A Tensor. Must be one of the following types: int32, int64.
A tensor whose shape is a prefix of data.shape.

		num_segments: A Tensor of type int32.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.
Has same shape as data, except for the first segment_ids.rank
dimensions, which are replaced with a single dimension which has size
num_segments.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 QuantizedDistributionTensor is a StochasticTensor backed by the distribution QuantizedDistribution.

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#QuantizedDistributionTensor.init}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.clone(name=None, **dist_args) {#QuantizedDistributionTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.distribution {#QuantizedDistributionTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.dtype {#QuantizedDistributionTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.entropy(name='entropy') {#QuantizedDistributionTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.graph {#QuantizedDistributionTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.input_dict {#QuantizedDistributionTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.loss(final_loss, name='Loss') {#QuantizedDistributionTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.mean(name='mean') {#QuantizedDistributionTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.name {#QuantizedDistributionTensor.name}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.value(name='value') {#QuantizedDistributionTensor.value}

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.value_type {#QuantizedDistributionTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.greater.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.greater(x, y, name=None) {#greater}

Returns the truth value of (x > y) element-wise.

NOTE: Greater supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.image.resize_bilinear.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.resize_bilinear(images, size, align_corners=None, name=None) {#resize_bilinear}

Resize images to size using bilinear interpolation.

Input images can be of different types but output images are always float.

Args:

		images: A Tensor. Must be one of the following types: uint8, int8, int16, int32, int64, half, float32, float64.
4-D with shape [batch, height, width, channels].

		size: A 1-D int32 Tensor of 2 elements: new_height, new_width. The
new size for the images.

		align_corners: An optional bool. Defaults to False.
If true, rescale input by (new_height - 1) / (height - 1), which
exactly aligns the 4 corners of images and resized images. If false, rescale
by new_height / height. Treat similarly the width dimension.

		name: A name for the operation (optional).

Returns:

A Tensor of type float32. 4-D with shape
[batch, new_height, new_width, channels].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.nn.conv2d_transpose.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.conv2d_transpose(value, filter, output_shape, strides, padding='SAME', name=None) {#conv2d_transpose}

The transpose of conv2d.

This operation is sometimes called “deconvolution” after Deconvolutional
Networks [http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf], but is
actually the transpose (gradient) of conv2d rather than an actual
deconvolution.

Args:

		value: A 4-D Tensor of type float and shape
[batch, height, width, in_channels].

		filter: A 4-D Tensor with the same type as value and shape
[height, width, output_channels, in_channels]. filter‘s
in_channels dimension must match that of value.

		output_shape: A 1-D Tensor representing the output shape of the
deconvolution op.

		strides: A list of ints. The stride of the sliding window for each
dimension of the input tensor.

		padding: A string, either 'VALID' or 'SAME'. The padding algorithm.
See the comment here [https://www.tensorflow.org/api_docs/python/nn.html#convolution]

		name: Optional name for the returned tensor.

Returns:

A Tensor with the same type as value.

Raises:

		ValueError: If input/output depth does not match filter‘s shape, or if
padding is other than 'VALID' or 'SAME'.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.graph_editor.check_cios.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.check_cios(control_inputs=False, control_outputs=None, control_ios=None) {#check_cios}

Do various check on control_inputs and control_outputs.

Args:

		control_inputs: A boolean indicating whether control inputs are enabled.

		control_outputs: An instance of util.ControlOutputs or None. If not None,
control outputs are enabled.

		control_ios: An instance of util.ControlOutputs or None. If not None, both
control inputs and control outputs are enabled. This is equivalent to set
control_inputs to True and control_outputs to the util.ControlOutputs
instance.

Returns:

A tuple (control_inputs, control_outputs) where:
control_inputs is a boolean indicating whether to use control inputs.
control_outputs is an instance of util.ControlOutputs or None

Raises:

		ValueError: if control_inputs is an instance of util.ControlOutputs but
control_outputs is not None

		TypeError: if control_outputs is not None and is not a util.ControlOutputs.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.FixedLengthRecordReader.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A Reader that outputs fixed-length records from a file.

See ReaderBase for supported methods.

tf.FixedLengthRecordReader.__init__(record_bytes, header_bytes=None, footer_bytes=None, name=None) {#FixedLengthRecordReader.init}

Create a FixedLengthRecordReader.

Args:

		record_bytes: An int.

		header_bytes: An optional int. Defaults to 0.

		footer_bytes: An optional int. Defaults to 0.

		name: A name for the operation (optional).

tf.FixedLengthRecordReader.num_records_produced(name=None) {#FixedLengthRecordReader.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.FixedLengthRecordReader.num_work_units_completed(name=None) {#FixedLengthRecordReader.num_work_units_completed}

Returns the number of work units this reader has finished processing.

Args:

		name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.FixedLengthRecordReader.read(queue, name=None) {#FixedLengthRecordReader.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

		key: A string scalar Tensor.

		value: A string scalar Tensor.

tf.FixedLengthRecordReader.read_up_to(queue, num_records, name=None) {#FixedLengthRecordReader.read_up_to}

Returns up to num_records (key, value pairs) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g., when the
Reader needs to start reading from a new file since it has
finished with the previous file).
It may return less than num_records even before the last batch.

Args:

		queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

		num_records: Number of records to read.

		name: A name for the operation (optional).

Returns:

A tuple of Tensors (keys, values).

		keys: A 1-D string Tensor.

		values: A 1-D string Tensor.

tf.FixedLengthRecordReader.reader_ref {#FixedLengthRecordReader.reader_ref}

Op that implements the reader.

tf.FixedLengthRecordReader.reset(name=None) {#FixedLengthRecordReader.reset}

Restore a reader to its initial clean state.

Args:

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.FixedLengthRecordReader.restore_state(state, name=None) {#FixedLengthRecordReader.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

		state: A string Tensor.
Result of a SerializeState of a Reader with matching type.

		name: A name for the operation (optional).

Returns:

The created Operation.

tf.FixedLengthRecordReader.serialize_state(name=None) {#FixedLengthRecordReader.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

		name: A name for the operation (optional).

Returns:

A string Tensor.

tf.FixedLengthRecordReader.supports_serialize {#FixedLengthRecordReader.supports_serialize}

Whether the Reader implementation can serialize its state.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.reset_default_graph.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.reset_default_graph() {#reset_default_graph}

Clears the default graph stack and resets the global default graph.

NOTE: The default graph is a property of the current thread. This
function applies only to the current thread. Calling this function while
a tf.Session or tf.InteractiveSession is active will result in undefined
behavior. Using any previously created tf.Operation or tf.Tensor objects
after calling this function will result in undefined behavior.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.framework.add_arg_scope.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.add_arg_scope(func) {#add_arg_scope}

Decorates a function with args so it can be used within an arg_scope.

Args:

		func: function to decorate.

Returns:

A tuple with the decorated function func_with_args().

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.assign_sub.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.assign_sub(ref, value, use_locking=None, name=None) {#assign_sub}

Update ‘ref’ by subtracting ‘value’ from it.

This operation outputs “ref” after the update is done.
This makes it easier to chain operations that need to use the reset value.

Args:

		ref: A mutable Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.
Should be from a Variable node.

		value: A Tensor. Must have the same type as ref.
The value to be subtracted to the variable.

		use_locking: An optional bool. Defaults to False.
If True, the subtraction will be protected by a lock;
otherwise the behavior is undefined, but may exhibit less contention.

		name: A name for the operation (optional).

Returns:

Same as “ref”. Returned as a convenience for operations that want
to use the new value after the variable has been updated.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.image.hsv_to_rgb.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.hsv_to_rgb(images, name=None) {#hsv_to_rgb}

Convert one or more images from HSV to RGB.

Outputs a tensor of the same shape as the images tensor, containing the RGB
value of the pixels. The output is only well defined if the value in images
are in [0,1].

See rgb_to_hsv for a description of the HSV encoding.

Args:

		images: A Tensor. Must be one of the following types: float32, float64.
1-D or higher rank. HSV data to convert. Last dimension must be size 3.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as images. images converted to RGB.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.graph_editor.Transformer.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Transform a subgraph into another one.

By default, the constructor create a transform which copy a subgraph and
replaces inputs with placeholders. This behavior can be modified by changing
the handlers.

tf.contrib.graph_editor.Transformer.__call__(sgv, dst_graph, dst_scope, src_scope='', reuse_dst_scope=False) {#Transformer.call}

Execute the transformation.

Args:

		sgv: the source subgraph-view.

		dst_graph: the destination graph.

		dst_scope: the destination scope.

		src_scope: the source scope, which specify the path from which the
relative path of the transformed nodes are computed. For instance, if
src_scope is a/ and dst_scoped is b/, then the node a/x/y will have a
relative path of x/y and will be transformed into b/x/y.

		reuse_dst_scope: if True the dst_scope is re-used if it already exists.
Otherwise, the scope is given a unique name based on the one given
by appending an underscore followed by a digit (default).

Returns:

A tuple (sgv, info) where:
sgv is the transformed subgraph view;
info is an instance of Transformer.ResultInfo containing
information about the transform, including mapping between
original and transformed tensors and operations.

Raises:

		ValueError: if the argumens are invalid.

tf.contrib.graph_editor.Transformer.__init__() {#Transformer.init}

Transformer constructor.

The following members can be modified:
transform_op_handler: handle the transformation of a tf.Operation.
This handler defaults to a simple copy.
assign_collections_handler: handle the assignment of collections.
This handler defaults to assigning new collections created under the
given name-scope.
transform_external_input_handler: handle the transform of the inputs to
the given subgraph. This handler defaults to creating placeholders
instead of the ops just before the input tensors of the subgraph.
transform_external_hidden_input_handler: handle the transform of the
hidden inputs of the subgraph, that is, the inputs which are not listed
in sgv.inputs. This handler defaults to a transform which keep the same
input if the source and destination graphs are the same, otherwise
use placeholders.
transform_original_op_hanlder: handle the transform of original_op. This
handler defaults to transforming original_op only if they are in the
subgraph, otherwise they are ignored.

tf.contrib.graph_editor.Transformer.new_name(name) {#Transformer.new_name}

Compute a destination name from a source name.

Args:

		name: the name to be “transformed”.

Returns:

The transformed name.

Raises:

		ValueError: if the source scope is used (that is, not an empty string)
and the source name does not belong to the source scope.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.equal.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.equal(x, y, name=None) {#equal}

Returns the truth value of (x == y) element-wise.

NOTE: Equal supports broadcasting. More about broadcasting
here [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, int16, int32, int64, complex64, quint8, qint8, qint32, string, bool, complex128.

		y: A Tensor. Must have the same type as x.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.crf.viterbi_decode.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.crf.viterbi_decode(score, transition_params) {#viterbi_decode}

Decode the highest scoring sequence of tags outside of TensorFlow.

This should only be used at test time.

Args:

		score: A [seq_len, num_tags] matrix of unary potentials.

		transition_params: A [num_tags, num_tags] matrix of binary potentials.

Returns:

		viterbi: A [seq_len] list of integers containing the highest scoring tag
indicies.

		viterbi_score: A float containing the score for the viterbi sequence.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.layers.layer_norm.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.layers.layer_norm(*args, **kwargs) {#layer_norm}

Adds a Layer Normalization layer from https://arxiv.org/abs/1607.06450.

“Layer Normalization”

Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton

Can be used as a normalizer function for conv2d and fully_connected.

Args:

		inputs: a tensor with 2 or more dimensions. The normalization
occurs over all but the first dimension.

		center: If True, subtract beta. If False, beta is ignored.

		scale: If True, multiply by gamma. If False, gamma is
not used. When the next layer is linear (also e.g. nn.relu), this can be
disabled since the scaling can be done by the next layer.

		activation_fn: activation function, default set to None to skip it and
maintain a linear activation.

		reuse: whether or not the layer and its variables should be reused. To be
able to reuse the layer scope must be given.

		variables_collections: optional collections for the variables.

		outputs_collections: collections to add the outputs.

		trainable: If True also add variables to the graph collection
GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

		scope: Optional scope for variable_op_scope.

Returns:

A Tensor representing the output of the operation.

Raises:

		ValueError: if rank or last dimension of inputs is undefined.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.nn.learned_unigram_candidate_sampler.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.learned_unigram_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, seed=None, name=None) {#learned_unigram_candidate_sampler}

Samples a set of classes from a distribution learned during training.

This operation randomly samples a tensor of sampled classes
(sampled_candidates) from the range of integers [0, range_max).

The elements of sampled_candidates are drawn without replacement
(if unique=True) or with replacement (if unique=False) from
the base distribution.

The base distribution for this operation is constructed on the fly
during training. It is a unigram distribution over the target
classes seen so far during training. Every integer in [0, range_max)
begins with a weight of 1, and is incremented by 1 each time it is
seen as a target class. The base distribution is not saved to checkpoints,
so it is reset when the model is reloaded.

In addition, this operation returns tensors true_expected_count
and sampled_expected_count representing the number of times each
of the target classes (true_classes) and the sampled
classes (sampled_candidates) is expected to occur in an average
tensor of sampled classes. These values correspond to Q(y|x)
defined in this
document [http://www.tensorflow.org/extras/candidate_sampling.pdf].
If unique=True, then these are post-rejection probabilities and we
compute them approximately.

Args:

		true_classes: A Tensor of type int64 and shape [batch_size, num_true]. The target classes.

		num_true: An int. The number of target classes per training example.

		num_sampled: An int. The number of classes to randomly sample per batch.

		unique: A bool. Determines whether all sampled classes in a batch are
unique.

		range_max: An int. The number of possible classes.

		seed: An int. An operation-specific seed. Default is 0.

		name: A name for the operation (optional).

Returns:

		sampled_candidates: A tensor of type int64 and shape [num_sampled].
The sampled classes.

		true_expected_count: A tensor of type float. Same shape as
true_classes. The expected counts under the sampling distribution
of each of true_classes.

		sampled_expected_count: A tensor of type float. Same shape as
sampled_candidates. The expected counts under the sampling distribution
of each of sampled_candidates.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.contrib.distributions.BernoulliWithSigmoidP.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Bernoulli with p = sigmoid(p).

tf.contrib.distributions.BernoulliWithSigmoidP.__init__(p=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='BernoulliWithSigmoidP') {#BernoulliWithSigmoidP.init}

tf.contrib.distributions.BernoulliWithSigmoidP.allow_nan_stats {#BernoulliWithSigmoidP.allow_nan_stats}

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance
of a Cauchy distribution is infinity. However, sometimes the
statistic is undefined, e.g., if a distribution’s pdf does not achieve a
maximum within the support of the distribution, the mode is undefined.
If the mean is undefined, then by definition the variance is undefined.
E.g. the mean for Student’s T for df = 1 is undefined (no clear way to say
it is either + or - infinity), so the variance = E[(X - mean)^2] is also
undefined.

Returns:

		allow_nan_stats: Python boolean.

tf.contrib.distributions.BernoulliWithSigmoidP.batch_shape(name='batch_shape') {#BernoulliWithSigmoidP.batch_shape}

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of
independent distributions of this kind the instance represents.

Args:

		name: name to give to the op

Returns:

		batch_shape: Tensor.

tf.contrib.distributions.BernoulliWithSigmoidP.cdf(value, name='cdf') {#BernoulliWithSigmoidP.cdf}

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		cdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.BernoulliWithSigmoidP.dtype {#BernoulliWithSigmoidP.dtype}

The DType of Tensors handled by this Distribution.

tf.contrib.distributions.BernoulliWithSigmoidP.entropy(name='entropy') {#BernoulliWithSigmoidP.entropy}

Shanon entropy in nats.

tf.contrib.distributions.BernoulliWithSigmoidP.event_shape(name='event_shape') {#BernoulliWithSigmoidP.event_shape}

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

		name: name to give to the op

Returns:

		event_shape: Tensor.

tf.contrib.distributions.BernoulliWithSigmoidP.get_batch_shape() {#BernoulliWithSigmoidP.get_batch_shape}

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

		batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.BernoulliWithSigmoidP.get_event_shape() {#BernoulliWithSigmoidP.get_event_shape}

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

		event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.BernoulliWithSigmoidP.is_continuous {#BernoulliWithSigmoidP.is_continuous}

tf.contrib.distributions.BernoulliWithSigmoidP.is_reparameterized {#BernoulliWithSigmoidP.is_reparameterized}

tf.contrib.distributions.BernoulliWithSigmoidP.log_cdf(value, name='log_cdf') {#BernoulliWithSigmoidP.log_cdf}

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[P[X <= x]]

Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.BernoulliWithSigmoidP.log_pdf(value, name='log_pdf') {#BernoulliWithSigmoidP.log_pdf}

Log probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.BernoulliWithSigmoidP.log_pmf(value, name='log_pmf') {#BernoulliWithSigmoidP.log_pmf}

Log probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.BernoulliWithSigmoidP.log_prob(value, name='log_prob') {#BernoulliWithSigmoidP.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.BernoulliWithSigmoidP.log_survival_function(value, name='log_survival_function') {#BernoulliWithSigmoidP.log_survival_function}

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[P[X > x]]
 = Log[1 - P[X <= x]]
 = Log[1 - cdf(x)]

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype.

tf.contrib.distributions.BernoulliWithSigmoidP.logits {#BernoulliWithSigmoidP.logits}

tf.contrib.distributions.BernoulliWithSigmoidP.mean(name='mean') {#BernoulliWithSigmoidP.mean}

Mean.

tf.contrib.distributions.BernoulliWithSigmoidP.mode(name='mode') {#BernoulliWithSigmoidP.mode}

Mode.

tf.contrib.distributions.BernoulliWithSigmoidP.name {#BernoulliWithSigmoidP.name}

Name prepended to all ops created by this Distribution.

tf.contrib.distributions.BernoulliWithSigmoidP.p {#BernoulliWithSigmoidP.p}

tf.contrib.distributions.BernoulliWithSigmoidP.param_shapes(cls, sample_shape, name='DistributionParamShapes') {#BernoulliWithSigmoidP.param_shapes}

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

		sample_shape: Tensor or python list/tuple. Desired shape of a call to
sample().

		name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

tf.contrib.distributions.BernoulliWithSigmoidP.param_static_shapes(cls, sample_shape) {#BernoulliWithSigmoidP.param_static_shapes}

param_shapes with static (i.e. TensorShape) shapes.

Args:

		sample_shape: TensorShape or python list/tuple. Desired shape of a call
to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

		ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.BernoulliWithSigmoidP.parameters {#BernoulliWithSigmoidP.parameters}

Dictionary of parameters used by this Distribution.

tf.contrib.distributions.BernoulliWithSigmoidP.pdf(value, name='pdf') {#BernoulliWithSigmoidP.pdf}

Probability density function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if not is_continuous.

tf.contrib.distributions.BernoulliWithSigmoidP.pmf(value, name='pmf') {#BernoulliWithSigmoidP.pmf}

Probability mass function.

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		pmf: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

Raises:

		AttributeError: if is_continuous.

tf.contrib.distributions.BernoulliWithSigmoidP.prob(value, name='prob') {#BernoulliWithSigmoidP.prob}

Probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.BernoulliWithSigmoidP.q {#BernoulliWithSigmoidP.q}

1-p.

tf.contrib.distributions.BernoulliWithSigmoidP.sample(sample_shape=(), seed=None, name='sample') {#BernoulliWithSigmoidP.sample}

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single
sample.

Args:

		sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.BernoulliWithSigmoidP.sample_n(n, seed=None, name='sample_n') {#BernoulliWithSigmoidP.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

tf.contrib.distributions.BernoulliWithSigmoidP.std(name='std') {#BernoulliWithSigmoidP.std}

Standard deviation.

tf.contrib.distributions.BernoulliWithSigmoidP.survival_function(value, name='survival_function') {#BernoulliWithSigmoidP.survival_function}

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
 = 1 - P[X <= x]
 = 1 - cdf(x).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.BernoulliWithSigmoidP.validate_args {#BernoulliWithSigmoidP.validate_args}

Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.BernoulliWithSigmoidP.variance(name='variance') {#BernoulliWithSigmoidP.variance}

Variance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.framework.assert_same_float_dtype.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.assert_same_float_dtype(tensors=None, dtype=None) {#assert_same_float_dtype}

Validate and return float type based on tensors and dtype.

For ops such as matrix multiplication, inputs and weights must be of the
same float type. This function validates that all tensors are the same type,
validates that type is dtype (if supplied), and returns the type. Type must
be dtypes.float32 or dtypes.float64. If neither tensors nor
dtype is supplied, default to dtypes.float32.

Args:

		tensors: Tensors of input values. Can include None elements, which will be
ignored.

		dtype: Expected type.

Returns:

Validated type.

Raises:

		ValueError: if neither tensors nor dtype is supplied, or result is not
float.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard4/tf.nn.log_poisson_loss.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.log_poisson_loss(log_input, targets, compute_full_loss=False, name=None) {#log_poisson_loss}

Computes log poisson loss given log_input.

Gives the log-likelihood loss between the prediction and the target under the
assumption that the target has a poisson distribution.
Caveat: By default, this is not the exact loss, but the loss minus a
constant term [log(z!)]. That has no effect for optimization, but
does not play well with relative loss comparisons. To compute an
approximation of the log factorial term, specify
compute_full_loss=True to enable Stirling’s Approximation.

For brevity, let c = log(x) = log_input, z = targets. The log poisson
loss is

 -log(exp(-x) * (x^z) / z!)
= -log(exp(-x) * (x^z)) + log(z!)
~ -log(exp(-x)) - log(x^z) [+ z * log(z) - z + 0.5 * log(2 * pi * z)]
 [Note the second term is the Stirling's Approximation for log(z!).
 It is invariant to x and does not affect optimization, though
 important for correct relative loss comparisons. It is only
 computed when compute_full_loss == True.]
= x - z * log(x) [+ z * log(z) - z + 0.5 * log(2 * pi * z)]
= exp(c) - z * c [+ z * log(z) - z + 0.5 * log(2 * pi * z)]

Args:

		log_input: A Tensor of type float32 or float64.

		targets: A Tensor of the same type and shape as log_input.

		compute_full_loss: whether to compute the full loss. If false, a constant
term is dropped in favor of more efficient optimization.

		name: A name for the operation (optional).

Returns:

A Tensor of the same shape as log_input with the componentwise
logistic losses.

Raises:

		ValueError: If log_input and targets do not have the same shape.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.batch_to_space_nd.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.batch_to_space_nd(input, block_shape, crops, name=None) {#batch_to_space_nd}

BatchToSpace for N-D tensors of type T.

This operation reshapes the “batch” dimension 0 into M + 1 dimensions of shape
block_shape + [batch], interleaves these blocks back into the grid defined by
the spatial dimensions [1, ..., M], to obtain a result with the same rank as
the input. The spatial dimensions of this intermediate result are then
optionally cropped according to crops to produce the output. This is the
reverse of SpaceToBatch. See below for a precise description.

Args:

		input: A Tensor.
N-D with shape input_shape = [batch] + spatial_shape + remaining_shape,
where spatial_shape has M dimensions.

		block_shape: A Tensor. Must be one of the following types: int32, int64.
1-D with shape [M], all values must be >= 1.

		crops: A Tensor. Must be one of the following types: int32, int64.
2-D with shape [M, 2], all values must be >= 0.
crops[i] = [crop_start, crop_end] specifies the amount to crop from input
dimension i + 1, which corresponds to spatial dimension i. It is
required that
crop_start[i] + crop_end[i] <= block_shape[i] * input_shape[i + 1].

This operation is equivalent to the following steps:

		Reshape input to reshaped of shape:
[block_shape[0], ..., block_shape[M-1],
batch / prod(block_shape),
input_shape[1], ..., input_shape[N-1]]

		Permute dimensions of reshaped to produce permuted of shape
[batch / prod(block_shape),

input_shape[1], block_shape[0],
...,
input_shape[M], block_shape[M-1],

input_shape[M+1], ..., input_shape[N-1]]

		Reshape permuted to produce reshaped_permuted of shape
[batch / prod(block_shape),

input_shape[1] * block_shape[0],
...,
input_shape[M] * block_shape[M-1],

input_shape[M+1],
...,
input_shape[N-1]]

		Crop the start and end of dimensions [1, ..., M] of
reshaped_permuted according to crops to produce the output of shape:
[batch / prod(block_shape),

input_shape[1] * block_shape[0] - crops[0,0] - crops[0,1],
...,
input_shape[M] * block_shape[M-1] - crops[M-1,0] - crops[M-1,1],

input_shape[M+1], ..., input_shape[N-1]]

Some examples:

(1) For the following input of shape [4, 1, 1, 1], block_shape = [2, 2], and
crops = [[0, 0], [0, 0]]:

[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]

The output tensor has shape [1, 2, 2, 1] and value:

x = [[[[1], [2]], [[3], [4]]]]

(2) For the following input of shape [4, 1, 1, 3], block_shape = [2, 2], and
crops = [[0, 0], [0, 0]]:

[[[1, 2, 3]], [[4, 5, 6]], [[7, 8, 9]], [[10, 11, 12]]]

The output tensor has shape [1, 2, 2, 3] and value:

x = [[[[1, 2, 3], [4, 5, 6]],
 [[7, 8, 9], [10, 11, 12]]]]

(3) For the following input of shape [4, 2, 2, 1], block_shape = [2, 2], and
crops = [[0, 0], [0, 0]]:

x = [[[[1], [3]], [[5], [7]]],
 [[[2], [4]], [[10], [12]]],
 [[[5], [7]], [[13], [15]]],
 [[[6], [8]], [[14], [16]]]]

The output tensor has shape [1, 4, 4, 1] and value:

x = [[[1], [2], [3], [4]],
 [[5], [6], [7], [8]],
 [[9], [10], [11], [12]],
 [[13], [14], [15], [16]]]

(4) For the following input of shape [8, 1, 3, 1], block_shape = [2, 2], and
crops = [[0, 0], [2, 0]]:

x = [[[[0], [1], [3]]], [[[0], [9], [11]]],
 [[[0], [2], [4]]], [[[0], [10], [12]]],
 [[[0], [5], [7]]], [[[0], [13], [15]]],
 [[[0], [6], [8]]], [[[0], [14], [16]]]]

The output tensor has shape [2, 2, 4, 1] and value:

x = [[[[1], [2], [3], [4]],
 [[5], [6], [7], [8]]],
 [[[9], [10], [11], [12]],
 [[13], [14], [15], [16]]]]

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.assert_variables_initialized.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.assert_variables_initialized(var_list=None) {#assert_variables_initialized}

Returns an Op to check if variables are initialized.

NOTE: This function is obsolete and will be removed in 6 months. Please
change your implementation to use report_uninitialized_variables().

When run, the returned Op will raise the exception FailedPreconditionError
if any of the variables has not yet been initialized.

Note: This function is implemented by trying to fetch the values of the
variables. If one of the variables is not initialized a message may be
logged by the C++ runtime. This is expected.

Args:

		var_list: List of Variable objects to check. Defaults to the
value of all_variables().

Returns:

An Op, or None if there are no variables.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.train.Coordinator.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 A coordinator for threads.

This class implements a simple mechanism to coordinate the termination of a
set of threads.

Usage:

Create a coordinator.
coord = Coordinator()
Start a number of threads, passing the coordinator to each of them.
...start thread 1...(coord, ...)
...start thread N...(coord, ...)
Wait for all the threads to terminate.
coord.join(threads)

Any of the threads can call coord.request_stop() to ask for all the threads
to stop. To cooperate with the requests, each thread must check for
coord.should_stop() on a regular basis. coord.should_stop() returns
True as soon as coord.request_stop() has been called.

A typical thread running with a coordinator will do something like:

while not coord.should_stop():
 ...do some work...

Exception handling:

A thread can report an exception to the coordinator as part of the
should_stop() call. The exception will be re-raised from the
coord.join() call.

Thread code:

try:
 while not coord.should_stop():
 ...do some work...
except Exception as e:
 coord.request_stop(e)

Main code:

try:
 ...
 coord = Coordinator()
 # Start a number of threads, passing the coordinator to each of them.
 ...start thread 1...(coord, ...)
 ...start thread N...(coord, ...)
 # Wait for all the threads to terminate.
 coord.join(threads)
except Exception as e:
 ...exception that was passed to coord.request_stop()

To simplify the thread implementation, the Coordinator provides a
context handler stop_on_exception() that automatically requests a stop if
an exception is raised. Using the context handler the thread code above
can be written as:

with coord.stop_on_exception():
 while not coord.should_stop():
 ...do some work...

Grace period for stopping:

After a thread has called coord.request_stop() the other threads have a
fixed time to stop, this is called the ‘stop grace period’ and defaults to 2
minutes. If any of the threads is still alive after the grace period expires
coord.join() raises a RuntimeException reporting the laggards.

try:
 ...
 coord = Coordinator()
 # Start a number of threads, passing the coordinator to each of them.
 ...start thread 1...(coord, ...)
 ...start thread N...(coord, ...)
 # Wait for all the threads to terminate, give them 10s grace period
 coord.join(threads, stop_grace_period_secs=10)
except RuntimeException:
 ...one of the threads took more than 10s to stop after request_stop()
 ...was called.
except Exception:
 ...exception that was passed to coord.request_stop()

tf.train.Coordinator.__init__(clean_stop_exception_types=None) {#Coordinator.init}

Create a new Coordinator.

Args:

		clean_stop_exception_types: Optional tuple of Exception types that should
cause a clean stop of the coordinator. If an exception of one of these
types is reported to request_stop(ex) the coordinator will behave as
if request_stop(None) was called. Defaults to
(tf.errors.OutOfRangeError,) which is used by input queues to signal
the end of input. When feeding training data from a Python iterator it
is common to add StopIteration to this list.

tf.train.Coordinator.clear_stop() {#Coordinator.clear_stop}

Clears the stop flag.

After this is called, calls to should_stop() will return False.

tf.train.Coordinator.join(threads=None, stop_grace_period_secs=120) {#Coordinator.join}

Wait for threads to terminate.

This call blocks until a set of threads have terminated. The set of thread
is the union of the threads passed in the threads argument and the list
of threads that registered with the coordinator by calling
Coordinator.register_thread().

After the threads stop, if an exc_info was passed to request_stop, that
exception is re-raised.

Grace period handling: When request_stop() is called, threads are given
‘stop_grace_period_secs’ seconds to terminate. If any of them is still
alive after that period expires, a RuntimeError is raised. Note that if
an exc_info was passed to request_stop() then it is raised instead of
that RuntimeError.

Args:

		threads: List of threading.Threads. The started threads to join in
addition to the registered threads.

		stop_grace_period_secs: Number of seconds given to threads to stop after
request_stop() has been called.

Raises:

		RuntimeError: If any thread is still alive after request_stop()
is called and the grace period expires.

tf.train.Coordinator.joined {#Coordinator.joined}

tf.train.Coordinator.register_thread(thread) {#Coordinator.register_thread}

Register a thread to join.

Args:

		thread: A Python thread to join.

tf.train.Coordinator.request_stop(ex=None) {#Coordinator.request_stop}

Request that the threads stop.

After this is called, calls to should_stop() will return True.

Note: If an exception is being passed in, in must be in the context of
handling the exception (i.e. try: ... except Exception as ex: ...) and not
a newly created one.

Args:

		ex: Optional Exception, or Python exc_info tuple as returned by
sys.exc_info(). If this is the first call to request_stop() the
corresponding exception is recorded and re-raised from join().

tf.train.Coordinator.should_stop() {#Coordinator.should_stop}

Check if stop was requested.

Returns:

True if a stop was requested.

tf.train.Coordinator.stop_on_exception() {#Coordinator.stop_on_exception}

Context manager to request stop when an Exception is raised.

Code that uses a coordinator must catch exceptions and pass
them to the request_stop() method to stop the other threads
managed by the coordinator.

This context handler simplifies the exception handling.
Use it as follows:

with coord.stop_on_exception():
 # Any exception raised in the body of the with
 # clause is reported to the coordinator before terminating
 # the execution of the body.
 ...body...

This is completely equivalent to the slightly longer code:

try:
 ...body...
exception Exception as ex:
 coord.request_stop(ex)

Yields:

nothing.

tf.train.Coordinator.wait_for_stop(timeout=None) {#Coordinator.wait_for_stop}

Wait till the Coordinator is told to stop.

Args:

		timeout: Float. Sleep for up to that many seconds waiting for
should_stop() to become True.

Returns:

True if the Coordinator is told stop, False if the timeout expired.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.graph_editor.detach.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.graph_editor.detach(sgv, control_inputs=False, control_outputs=None, control_ios=None) {#detach}

Detach both the inputs and the outputs of a subgraph view.

Args:

		sgv: the subgraph view to be detached. This argument is converted to a
subgraph using the same rules as the function subgraph.make_view.
Note that sgv is modified in place.

		control_inputs: A boolean indicating whether control inputs are enabled.

		control_outputs: An instance of util.ControlOutputs or None. If not None,
control outputs are enabled.

		control_ios: An instance of util.ControlOutputs or None. If not None, both
control inputs and control outputs are enabled. This is equivalent to set
control_inputs to True and control_outputs to the util.ControlOutputs
instance.

Returns:

A tuple (sgv, detached_inputs, detached_outputs) where:
sgv is a new subgraph view of the detached subgraph;
detach_inputs is a list of the created input placeholders;
detach_outputs is a list of the created output placeholders.

Raises:

		StandardError: if sgv cannot be converted to a SubGraphView using
the same rules than the function subgraph.make_view.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.where.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.where(input, name=None) {#where}

Returns locations of true values in a boolean tensor.

This operation returns the coordinates of true elements in input. The
coordinates are returned in a 2-D tensor where the first dimension (rows)
represents the number of true elements, and the second dimension (columns)
represents the coordinates of the true elements. Keep in mind, the shape of
the output tensor can vary depending on how many true values there are in
input. Indices are output in row-major order.

For example:

'input' tensor is [[True, False]
[True, False]]
'input' has two true values, so output has two coordinates.
'input' has rank of 2, so coordinates have two indices.
where(input) ==> [[0, 0],
 [1, 0]]

`input` tensor is [[[True, False]
[True, False]]
[[False, True]
[False, True]]
[[False, False]
[False, True]]]
'input' has 5 true values, so output has 5 coordinates.
'input' has rank of 3, so coordinates have three indices.
where(input) ==> [[0, 0, 0],
 [0, 1, 0],
 [1, 0, 1],
 [1, 1, 1],
 [2, 1, 1]]

Args:

		input: A Tensor of type bool.

		name: A name for the operation (optional).

Returns:

A Tensor of type int64.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.learn.read_batch_examples.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.learn.read_batch_examples(file_pattern, batch_size, reader, randomize_input=True, num_epochs=None, queue_capacity=10000, num_threads=1, read_batch_size=1, parse_fn=None, name=None) {#read_batch_examples}

Adds operations to read, queue, batch Example protos.

Given file pattern (or list of files), will setup a queue for file names,
read Example proto using provided reader, use batch queue to create
batches of examples of size batch_size.

All queue runners are added to the queue runners collection, and may be
started via start_queue_runners.

All ops are added to the default graph.

Use parse_fn if you need to do parsing / processing on single examples.

Args:

		file_pattern: List of files or pattern of file paths containing
Example records. See tf.gfile.Glob for pattern rules.

		batch_size: An int or scalar Tensor specifying the batch size to use.

		reader: A function or class that returns an object with
read method, (filename tensor) -> (example tensor).

		randomize_input: Whether the input should be randomized.

		num_epochs: Integer specifying the number of times to read through the
dataset. If None, cycles through the dataset forever.
NOTE - If specified, creates a variable that must be initialized, so call
tf.initialize_all_variables() as shown in the tests.

		queue_capacity: Capacity for input queue.

		num_threads: The number of threads enqueuing examples.

		read_batch_size: An int or scalar Tensor specifying the number of
records to read at once

		parse_fn: Parsing function, takes Example Tensor returns parsed
representation. If None, no parsing is done.

		name: Name of resulting op.

Returns:

String Tensor of batched Example proto.

Raises:

		ValueError: for invalid inputs.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.is_inf.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.is_inf(x, name=None) {#is_inf}

Returns which elements of x are Inf.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64.

		name: A name for the operation (optional).

Returns:

A Tensor of type bool.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.nn.avg_pool.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.avg_pool(value, ksize, strides, padding, data_format='NHWC', name=None) {#avg_pool}

Performs the average pooling on the input.

Each entry in output is the mean of the corresponding size ksize
window in value.

Args:

		value: A 4-D Tensor of shape [batch, height, width, channels] and type
float32, float64, qint8, quint8, or qint32.

		ksize: A list of ints that has length >= 4.
The size of the window for each dimension of the input tensor.

		strides: A list of ints that has length >= 4.
The stride of the sliding window for each dimension of the
input tensor.

		padding: A string, either 'VALID' or 'SAME'. The padding algorithm.
See the comment here [https://www.tensorflow.org/api_docs/python/nn.html#convolution]

		data_format: A string. ‘NHWC’ and ‘NCHW’ are supported.

		name: Optional name for the operation.

Returns:

A Tensor with the same type as value. The average pooled output tensor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.nn.elu.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.elu(features, name=None) {#elu}

Computes exponential linear: exp(features) - 1 if < 0, features otherwise.

See Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
 [http://arxiv.org/abs/1511.07289]

Args:

		features: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as features.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.train.do_quantize_training_on_graphdef.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.train.do_quantize_training_on_graphdef(input_graph, num_bits) {#do_quantize_training_on_graphdef}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.distributions.BaseDistribution.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 Simple abstract base class for probability distributions.

Implementations of core distributions to be included in the distributions
module should subclass Distribution. This base class may be useful to users
that want to fulfill a simpler distribution contract.

tf.contrib.distributions.BaseDistribution.log_prob(value, name='log_prob') {#BaseDistribution.log_prob}

Log probability density/mass function (depending on is_continuous).

Args:

		value: float or double Tensor.

		name: The name to give this op.

Returns:

		log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype.

tf.contrib.distributions.BaseDistribution.sample_n(n, seed=None, name='sample') {#BaseDistribution.sample_n}

Generate n samples.

Args:

		n: Scalar Tensor of type int32 or int64, the number of
observations to sample.

		seed: Python integer seed for RNG

		name: name to give to the op.

Returns:

		samples: a Tensor with a prepended dimension (n,).

Raises:

		TypeError: if n is not an integer type.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.bitcast.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.bitcast(input, type, name=None) {#bitcast}

Bitcasts a tensor from one type to another without copying data.

Given a tensor input, this operation returns a tensor that has the same buffer
data as input with datatype type.

If the input datatype T is larger than the output datatype type then the
shape changes from [...] to [..., sizeof(T)/sizeof(type)].

If T is smaller than type, the operator requires that the rightmost
dimension be equal to sizeof(type)/sizeof(T). The shape then goes from
[..., sizeof(type)/sizeof(T)] to [...].

NOTE: Bitcast is implemented as a low-level cast, so machines with different
endian orderings will give different results.

Args:

		input: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.

		type: A tf.DType from: tf.float32, tf.float64, tf.int64, tf.int32, tf.uint8, tf.uint16, tf.int16, tf.int8, tf.complex64, tf.complex128, tf.qint8, tf.quint8, tf.qint32, tf.half.

		name: A name for the operation (optional).

Returns:

A Tensor of type type.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.graph_editor.ControlOutputs.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 The control outputs topology.

tf.contrib.graph_editor.ControlOutputs.__init__(graph) {#ControlOutputs.init}

Create a dictionary of control-output dependencies.

Args:

		graph: a tf.Graph.

Returns:

A dictionary where a key is a tf.Operation instance and the corresponding
value is a list of all the ops which have the key as one of their
control-input dependencies.

Raises:

		TypeError: graph is not a tf.Graph.

tf.contrib.graph_editor.ControlOutputs.get(op) {#ControlOutputs.get}

return the control outputs of op.

tf.contrib.graph_editor.ControlOutputs.get_all() {#ControlOutputs.get_all}

tf.contrib.graph_editor.ControlOutputs.graph {#ControlOutputs.graph}

tf.contrib.graph_editor.ControlOutputs.update() {#ControlOutputs.update}

Update the control outputs if the graph has changed.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.framework.get_variables_by_suffix.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.framework.get_variables_by_suffix(suffix, scope=None) {#get_variables_by_suffix}

Gets the list of variables that end with the given suffix.

Args:

		suffix: suffix for filtering the variables to return.

		scope: an optional scope for filtering the variables to return.

Returns:

a copied list of variables with the given name and prefix.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.image.transpose_image.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.image.transpose_image(image) {#transpose_image}

Transpose an image by swapping the first and second dimension.

See also transpose().

Args:

		image: 3-D tensor of shape [height, width, channels]

Returns:

A 3-D tensor of shape [width, height, channels]

Raises:

		ValueError: if the shape of image not supported.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.contrib.metrics.streaming_sensitivity_at_specificity.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.streaming_sensitivity_at_specificity(predictions, labels, specificity, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, name=None) {#streaming_sensitivity_at_specificity}

Computes the the specificity at a given sensitivity.

The streaming_sensitivity_at_specificity function creates four local
variables, true_positives, true_negatives, false_positives and
false_negatives that are used to compute the sensitivity at the given
specificity value. The threshold for the given specificity value is computed
and used to evaluate the corresponding sensitivity.

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
sensitivity. update_op increments the true_positives, true_negatives,
false_positives and false_negatives counts with the weight of each case
found in the predictions and labels.

If weights is None, weights default to 1. Use weights of 0 to mask values.

For additional information about specificity and sensitivity, see the
following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity

Args:

		predictions: A floating point Tensor of arbitrary shape and whose values
are in the range [0, 1].

		labels: A bool Tensor whose shape matches predictions.

		specificity: A scalar value in range [0, 1].

		weights: An optional Tensor whose shape is broadcastable to predictions.

		num_thresholds: The number of thresholds to use for matching the given
specificity.

		metrics_collections: An optional list of collections that sensitivity
should be added to.

		updates_collections: An optional list of collections that update_op should
be added to.

		name: An optional variable_scope name.

Returns:

		sensitivity: A scalar tensor representing the sensitivity at the given
specificity value.

		update_op: An operation that increments the true_positives,
true_negatives, false_positives and false_negatives variables
appropriately and whose value matches sensitivity.

Raises:

		ValueError: If predictions and labels have mismatched shapes, if
weights is not None and its shape doesn’t match predictions, or if
specificity is not between 0 and 1, or if either metrics_collections
or updates_collections are not a list or tuple.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard6/tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

 MultivariateNormalFullTensor is a StochasticTensor backed by the distribution MultivariateNormalFull.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args) {#MultivariateNormalFullTensor.init}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.clone(name=None, **dist_args) {#MultivariateNormalFullTensor.clone}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.distribution {#MultivariateNormalFullTensor.distribution}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.dtype {#MultivariateNormalFullTensor.dtype}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.entropy(name='entropy') {#MultivariateNormalFullTensor.entropy}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.graph {#MultivariateNormalFullTensor.graph}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.input_dict {#MultivariateNormalFullTensor.input_dict}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.loss(final_loss, name='Loss') {#MultivariateNormalFullTensor.loss}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.mean(name='mean') {#MultivariateNormalFullTensor.mean}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.name {#MultivariateNormalFullTensor.name}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.value(name='value') {#MultivariateNormalFullTensor.value}

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.value_type {#MultivariateNormalFullTensor.value_type}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.contrib.metrics.streaming_sparse_average_precision_at_k.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.contrib.metrics.streaming_sparse_average_precision_at_k(predictions, labels, k, weights=None, metrics_collections=None, updates_collections=None, name=None) {#streaming_sparse_average_precision_at_k}

Computes average precision@k of predictions with respect to sparse labels.

See sparse_average_precision_at_k for details on formula. weights are
applied to the result of sparse_average_precision_at_k

streaming_sparse_average_precision_at_k creates two local variables,
average_precision_at_<k>/count and average_precision_at_<k>/total, that
are used to compute the frequency. This frequency is ultimately returned as
precision_at_<k>: an idempotent operation that simply divides
true_positive_at_<k> by total (true_positive_at_<k> +
false_positive_at_<k>).

For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
precision_at_<k>. Internally, a top_k operation computes a Tensor
indicating the top k predictions. Set operations applied to top_k and
labels calculate the true positives and false positives weighted by
weights. Then update_op increments true_positive_at_<k> and
false_positive_at_<k> using these values.

If weights is None, weights default to 1. Use weights of 0 to mask values.

Args:

		predictions: Float Tensor with shape [D1, ... DN, num_classes] where
N >= 1. Commonly, N=1 and predictions has shape
[batch size, num_classes]. The final dimension contains the logit values
for each class. [D1, ... DN] must match labels.

		labels: int64 Tensor or SparseTensor with shape
[D1, ... DN, num_labels], where N >= 1 and num_labels is the number of
target classes for the associated prediction. Commonly, N=1 and labels
has shape [batch_size, num_labels]. [D1, ... DN] must match
predictions_idx. Values should be in range [0, num_classes], where
num_classes is the last dimension of predictions.

		k: Integer, k for @k metric. This will calculate an average precision for
range [1,k], as documented above.

		weights: An optional Tensor whose shape is broadcastable to the the first
[D1, ... DN] dimensions of predictions and labels.

		metrics_collections: An optional list of collections that values should
be added to.

		updates_collections: An optional list of collections that updates should
be added to.

		name: Name of new update operation, and namespace for other dependant ops.

Returns:

		mean_average_precision: Scalar float64 Tensor with the mean average
precision values.

		update: Operation that increments variables appropriately, and whose
value matches metric.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.acos.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.acos(x, name=None) {#acos}

Computes acos of x element-wise.

Args:

		x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.segment_sum.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.segment_sum(data, segment_ids, name=None) {#segment_sum}

Computes the sum along segments of a tensor.

Read the section on Segmentation
for an explanation of segments.

Computes a tensor such that
\(output_i = \sum_j data_j\) where sum is over j such
that segment_ids[j] == i.

[image:]

Args:

		data: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half.

		segment_ids: A Tensor. Must be one of the following types: int32, int64.
A 1-D tensor whose rank is equal to the rank of data‘s
first dimension. Values should be sorted and can be repeated.

		name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.
Has same shape as data, except for dimension 0 which
has size k, the number of segments.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.nn.relu6.html

 Navigation

 		
 index

 		Tensorflow2 stable documentation »

tf.nn.relu6(features, name=None) {#relu6}

Computes Rectified Linear 6: min(max(features, 0), 6).

Args:

		features: A Tensor with type float, double, int32, int64, uint8,
int16, or int8.

		name: A name for the operation (optional).

Returns:

A Tensor with the same type as features.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

